1/*
2 * jdsample.c
3 *
4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains upsampling routines.
9 *
10 * Upsampling input data is counted in "row groups".  A row group
11 * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
12 * sample rows of each component.  Upsampling will normally produce
13 * max_v_samp_factor pixel rows from each row group (but this could vary
14 * if the upsampler is applying a scale factor of its own).
15 *
16 * An excellent reference for image resampling is
17 *   Digital Image Warping, George Wolberg, 1990.
18 *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
19 */
20
21#define JPEG_INTERNALS
22#include "jinclude.h"
23#include "jpeglib.h"
24
25
26/* Pointer to routine to upsample a single component */
27typedef JMETHOD(void, upsample1_ptr,
28		(j_decompress_ptr cinfo, jpeg_component_info * compptr,
29		 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
30
31/* Private subobject */
32
33typedef struct {
34  struct jpeg_upsampler pub;	/* public fields */
35
36  /* Color conversion buffer.  When using separate upsampling and color
37   * conversion steps, this buffer holds one upsampled row group until it
38   * has been color converted and output.
39   * Note: we do not allocate any storage for component(s) which are full-size,
40   * ie do not need rescaling.  The corresponding entry of color_buf[] is
41   * simply set to point to the input data array, thereby avoiding copying.
42   */
43  JSAMPARRAY color_buf[MAX_COMPONENTS];
44
45  /* Per-component upsampling method pointers */
46  upsample1_ptr methods[MAX_COMPONENTS];
47
48  int next_row_out;		/* counts rows emitted from color_buf */
49  JDIMENSION rows_to_go;	/* counts rows remaining in image */
50
51  /* Height of an input row group for each component. */
52  int rowgroup_height[MAX_COMPONENTS];
53
54  /* These arrays save pixel expansion factors so that int_expand need not
55   * recompute them each time.  They are unused for other upsampling methods.
56   */
57  UINT8 h_expand[MAX_COMPONENTS];
58  UINT8 v_expand[MAX_COMPONENTS];
59} my_upsampler;
60
61typedef my_upsampler * my_upsample_ptr;
62
63
64/*
65 * Initialize for an upsampling pass.
66 */
67
68METHODDEF(void)
69start_pass_upsample (j_decompress_ptr cinfo)
70{
71  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
72
73  /* Mark the conversion buffer empty */
74  upsample->next_row_out = cinfo->max_v_samp_factor;
75  /* Initialize total-height counter for detecting bottom of image */
76  upsample->rows_to_go = cinfo->output_height;
77}
78
79
80/*
81 * Control routine to do upsampling (and color conversion).
82 *
83 * In this version we upsample each component independently.
84 * We upsample one row group into the conversion buffer, then apply
85 * color conversion a row at a time.
86 */
87
88METHODDEF(void)
89sep_upsample (j_decompress_ptr cinfo,
90	      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
91	      JDIMENSION in_row_groups_avail,
92	      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
93	      JDIMENSION out_rows_avail)
94{
95  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
96  int ci;
97  jpeg_component_info * compptr;
98  JDIMENSION num_rows;
99
100  /* Fill the conversion buffer, if it's empty */
101  if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
102    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
103	 ci++, compptr++) {
104      /* Invoke per-component upsample method.  Notice we pass a POINTER
105       * to color_buf[ci], so that fullsize_upsample can change it.
106       */
107      (*upsample->methods[ci]) (cinfo, compptr,
108	input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
109	upsample->color_buf + ci);
110    }
111    upsample->next_row_out = 0;
112  }
113
114  /* Color-convert and emit rows */
115
116  /* How many we have in the buffer: */
117  num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
118  /* Not more than the distance to the end of the image.  Need this test
119   * in case the image height is not a multiple of max_v_samp_factor:
120   */
121  if (num_rows > upsample->rows_to_go)
122    num_rows = upsample->rows_to_go;
123  /* And not more than what the client can accept: */
124  out_rows_avail -= *out_row_ctr;
125  if (num_rows > out_rows_avail)
126    num_rows = out_rows_avail;
127
128  (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
129				     (JDIMENSION) upsample->next_row_out,
130				     output_buf + *out_row_ctr,
131				     (int) num_rows);
132
133  /* Adjust counts */
134  *out_row_ctr += num_rows;
135  upsample->rows_to_go -= num_rows;
136  upsample->next_row_out += num_rows;
137  /* When the buffer is emptied, declare this input row group consumed */
138  if (upsample->next_row_out >= cinfo->max_v_samp_factor)
139    (*in_row_group_ctr)++;
140}
141
142
143/*
144 * These are the routines invoked by sep_upsample to upsample pixel values
145 * of a single component.  One row group is processed per call.
146 */
147
148
149/*
150 * For full-size components, we just make color_buf[ci] point at the
151 * input buffer, and thus avoid copying any data.  Note that this is
152 * safe only because sep_upsample doesn't declare the input row group
153 * "consumed" until we are done color converting and emitting it.
154 */
155
156METHODDEF(void)
157fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
158		   JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
159{
160  *output_data_ptr = input_data;
161}
162
163
164/*
165 * This is a no-op version used for "uninteresting" components.
166 * These components will not be referenced by color conversion.
167 */
168
169METHODDEF(void)
170noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
171	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
172{
173  *output_data_ptr = NULL;	/* safety check */
174}
175
176
177/*
178 * This version handles any integral sampling ratios.
179 * This is not used for typical JPEG files, so it need not be fast.
180 * Nor, for that matter, is it particularly accurate: the algorithm is
181 * simple replication of the input pixel onto the corresponding output
182 * pixels.  The hi-falutin sampling literature refers to this as a
183 * "box filter".  A box filter tends to introduce visible artifacts,
184 * so if you are actually going to use 3:1 or 4:1 sampling ratios
185 * you would be well advised to improve this code.
186 */
187
188METHODDEF(void)
189int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
190	      JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
191{
192  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
193  JSAMPARRAY output_data = *output_data_ptr;
194  register JSAMPROW inptr, outptr;
195  register JSAMPLE invalue;
196  register int h;
197  JSAMPROW outend;
198  int h_expand, v_expand;
199  int inrow, outrow;
200
201  h_expand = upsample->h_expand[compptr->component_index];
202  v_expand = upsample->v_expand[compptr->component_index];
203
204  inrow = outrow = 0;
205  while (outrow < cinfo->max_v_samp_factor) {
206    /* Generate one output row with proper horizontal expansion */
207    inptr = input_data[inrow];
208    outptr = output_data[outrow];
209    outend = outptr + cinfo->output_width;
210    while (outptr < outend) {
211      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
212      for (h = h_expand; h > 0; h--) {
213	*outptr++ = invalue;
214      }
215    }
216    /* Generate any additional output rows by duplicating the first one */
217    if (v_expand > 1) {
218      jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
219			v_expand-1, cinfo->output_width);
220    }
221    inrow++;
222    outrow += v_expand;
223  }
224}
225
226
227/*
228 * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
229 * It's still a box filter.
230 */
231
232METHODDEF(void)
233h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
234	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
235{
236  JSAMPARRAY output_data = *output_data_ptr;
237  register JSAMPROW inptr, outptr;
238  register JSAMPLE invalue;
239  JSAMPROW outend;
240  int inrow;
241
242  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
243    inptr = input_data[inrow];
244    outptr = output_data[inrow];
245    outend = outptr + cinfo->output_width;
246    while (outptr < outend) {
247      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
248      *outptr++ = invalue;
249      *outptr++ = invalue;
250    }
251  }
252}
253
254
255/*
256 * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
257 * It's still a box filter.
258 */
259
260METHODDEF(void)
261h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
262	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
263{
264  JSAMPARRAY output_data = *output_data_ptr;
265  register JSAMPROW inptr, outptr;
266  register JSAMPLE invalue;
267  JSAMPROW outend;
268  int inrow, outrow;
269
270  inrow = outrow = 0;
271  while (outrow < cinfo->max_v_samp_factor) {
272    inptr = input_data[inrow];
273    outptr = output_data[outrow];
274    outend = outptr + cinfo->output_width;
275    while (outptr < outend) {
276      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
277      *outptr++ = invalue;
278      *outptr++ = invalue;
279    }
280    jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
281		      1, cinfo->output_width);
282    inrow++;
283    outrow += 2;
284  }
285}
286
287
288/*
289 * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
290 *
291 * The upsampling algorithm is linear interpolation between pixel centers,
292 * also known as a "triangle filter".  This is a good compromise between
293 * speed and visual quality.  The centers of the output pixels are 1/4 and 3/4
294 * of the way between input pixel centers.
295 *
296 * A note about the "bias" calculations: when rounding fractional values to
297 * integer, we do not want to always round 0.5 up to the next integer.
298 * If we did that, we'd introduce a noticeable bias towards larger values.
299 * Instead, this code is arranged so that 0.5 will be rounded up or down at
300 * alternate pixel locations (a simple ordered dither pattern).
301 */
302
303METHODDEF(void)
304h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
305		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
306{
307  JSAMPARRAY output_data = *output_data_ptr;
308  register JSAMPROW inptr, outptr;
309  register int invalue;
310  register JDIMENSION colctr;
311  int inrow;
312
313  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
314    inptr = input_data[inrow];
315    outptr = output_data[inrow];
316    /* Special case for first column */
317    invalue = GETJSAMPLE(*inptr++);
318    *outptr++ = (JSAMPLE) invalue;
319    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
320
321    for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
322      /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
323      invalue = GETJSAMPLE(*inptr++) * 3;
324      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
325      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
326    }
327
328    /* Special case for last column */
329    invalue = GETJSAMPLE(*inptr);
330    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
331    *outptr++ = (JSAMPLE) invalue;
332  }
333}
334
335
336/*
337 * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
338 * Again a triangle filter; see comments for h2v1 case, above.
339 *
340 * It is OK for us to reference the adjacent input rows because we demanded
341 * context from the main buffer controller (see initialization code).
342 */
343
344METHODDEF(void)
345h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
346		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
347{
348  JSAMPARRAY output_data = *output_data_ptr;
349  register JSAMPROW inptr0, inptr1, outptr;
350#if BITS_IN_JSAMPLE == 8
351  register int thiscolsum, lastcolsum, nextcolsum;
352#else
353  register INT32 thiscolsum, lastcolsum, nextcolsum;
354#endif
355  register JDIMENSION colctr;
356  int inrow, outrow, v;
357
358  inrow = outrow = 0;
359  while (outrow < cinfo->max_v_samp_factor) {
360    for (v = 0; v < 2; v++) {
361      /* inptr0 points to nearest input row, inptr1 points to next nearest */
362      inptr0 = input_data[inrow];
363      if (v == 0)		/* next nearest is row above */
364	inptr1 = input_data[inrow-1];
365      else			/* next nearest is row below */
366	inptr1 = input_data[inrow+1];
367      outptr = output_data[outrow++];
368
369      /* Special case for first column */
370      thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
371      nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
372      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
373      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
374      lastcolsum = thiscolsum; thiscolsum = nextcolsum;
375
376      for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
377	/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
378	/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
379	nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
380	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
381	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
382	lastcolsum = thiscolsum; thiscolsum = nextcolsum;
383      }
384
385      /* Special case for last column */
386      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
387      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
388    }
389    inrow++;
390  }
391}
392
393
394/*
395 * Module initialization routine for upsampling.
396 */
397
398GLOBAL(void)
399jinit_upsampler (j_decompress_ptr cinfo)
400{
401  my_upsample_ptr upsample;
402  int ci;
403  jpeg_component_info * compptr;
404  boolean need_buffer, do_fancy;
405  int h_in_group, v_in_group, h_out_group, v_out_group;
406
407  upsample = (my_upsample_ptr)
408    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
409				SIZEOF(my_upsampler));
410  cinfo->upsample = (struct jpeg_upsampler *) upsample;
411  upsample->pub.start_pass = start_pass_upsample;
412  upsample->pub.upsample = sep_upsample;
413  upsample->pub.need_context_rows = FALSE; /* until we find out differently */
414
415  if (cinfo->CCIR601_sampling)	/* this isn't supported */
416    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
417
418  /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
419   * so don't ask for it.
420   */
421  do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
422
423  /* Verify we can handle the sampling factors, select per-component methods,
424   * and create storage as needed.
425   */
426  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
427       ci++, compptr++) {
428    /* Compute size of an "input group" after IDCT scaling.  This many samples
429     * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
430     */
431    h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
432		 cinfo->min_DCT_scaled_size;
433    v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
434		 cinfo->min_DCT_scaled_size;
435    h_out_group = cinfo->max_h_samp_factor;
436    v_out_group = cinfo->max_v_samp_factor;
437    upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
438    need_buffer = TRUE;
439    if (! compptr->component_needed) {
440      /* Don't bother to upsample an uninteresting component. */
441      upsample->methods[ci] = noop_upsample;
442      need_buffer = FALSE;
443    } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
444      /* Fullsize components can be processed without any work. */
445      upsample->methods[ci] = fullsize_upsample;
446      need_buffer = FALSE;
447    } else if (h_in_group * 2 == h_out_group &&
448	       v_in_group == v_out_group) {
449      /* Special cases for 2h1v upsampling */
450      if (do_fancy && compptr->downsampled_width > 2)
451	upsample->methods[ci] = h2v1_fancy_upsample;
452      else
453	upsample->methods[ci] = h2v1_upsample;
454    } else if (h_in_group * 2 == h_out_group &&
455	       v_in_group * 2 == v_out_group) {
456      /* Special cases for 2h2v upsampling */
457      if (do_fancy && compptr->downsampled_width > 2) {
458	upsample->methods[ci] = h2v2_fancy_upsample;
459	upsample->pub.need_context_rows = TRUE;
460      } else
461	upsample->methods[ci] = h2v2_upsample;
462    } else if ((h_out_group % h_in_group) == 0 &&
463	       (v_out_group % v_in_group) == 0) {
464      /* Generic integral-factors upsampling method */
465      upsample->methods[ci] = int_upsample;
466      upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
467      upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
468    } else
469      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
470    if (need_buffer) {
471      upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
472	((j_common_ptr) cinfo, JPOOL_IMAGE,
473	 (JDIMENSION) jround_up((long) cinfo->output_width,
474				(long) cinfo->max_h_samp_factor),
475	 (JDIMENSION) cinfo->max_v_samp_factor);
476    }
477  }
478}
479