1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// https://developers.google.com/protocol-buffers/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: kenton@google.com (Kenton Varda)
32//  Based on original Protocol Buffers design by
33//  Sanjay Ghemawat, Jeff Dean, and others.
34
35#include <google/protobuf/stubs/hash.h>
36#include <map>
37#include <set>
38#include <string>
39#include <vector>
40#include <algorithm>
41#include <limits>
42
43#include <google/protobuf/descriptor.h>
44#include <google/protobuf/descriptor_database.h>
45#include <google/protobuf/descriptor.pb.h>
46#include <google/protobuf/dynamic_message.h>
47#include <google/protobuf/generated_message_util.h>
48#include <google/protobuf/text_format.h>
49#include <google/protobuf/unknown_field_set.h>
50#include <google/protobuf/wire_format.h>
51#include <google/protobuf/io/strtod.h>
52#include <google/protobuf/io/coded_stream.h>
53#include <google/protobuf/io/tokenizer.h>
54#include <google/protobuf/io/zero_copy_stream_impl.h>
55#include <google/protobuf/stubs/common.h>
56#include <google/protobuf/stubs/once.h>
57#include <google/protobuf/stubs/strutil.h>
58#include <google/protobuf/stubs/substitute.h>
59#include <google/protobuf/stubs/map_util.h>
60#include <google/protobuf/stubs/stl_util.h>
61
62#undef PACKAGE  // autoheader #defines this.  :(
63
64namespace google {
65namespace protobuf {
66
67const FieldDescriptor::CppType
68FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = {
69  static_cast<CppType>(0),  // 0 is reserved for errors
70
71  CPPTYPE_DOUBLE,   // TYPE_DOUBLE
72  CPPTYPE_FLOAT,    // TYPE_FLOAT
73  CPPTYPE_INT64,    // TYPE_INT64
74  CPPTYPE_UINT64,   // TYPE_UINT64
75  CPPTYPE_INT32,    // TYPE_INT32
76  CPPTYPE_UINT64,   // TYPE_FIXED64
77  CPPTYPE_UINT32,   // TYPE_FIXED32
78  CPPTYPE_BOOL,     // TYPE_BOOL
79  CPPTYPE_STRING,   // TYPE_STRING
80  CPPTYPE_MESSAGE,  // TYPE_GROUP
81  CPPTYPE_MESSAGE,  // TYPE_MESSAGE
82  CPPTYPE_STRING,   // TYPE_BYTES
83  CPPTYPE_UINT32,   // TYPE_UINT32
84  CPPTYPE_ENUM,     // TYPE_ENUM
85  CPPTYPE_INT32,    // TYPE_SFIXED32
86  CPPTYPE_INT64,    // TYPE_SFIXED64
87  CPPTYPE_INT32,    // TYPE_SINT32
88  CPPTYPE_INT64,    // TYPE_SINT64
89};
90
91const char * const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = {
92  "ERROR",     // 0 is reserved for errors
93
94  "double",    // TYPE_DOUBLE
95  "float",     // TYPE_FLOAT
96  "int64",     // TYPE_INT64
97  "uint64",    // TYPE_UINT64
98  "int32",     // TYPE_INT32
99  "fixed64",   // TYPE_FIXED64
100  "fixed32",   // TYPE_FIXED32
101  "bool",      // TYPE_BOOL
102  "string",    // TYPE_STRING
103  "group",     // TYPE_GROUP
104  "message",   // TYPE_MESSAGE
105  "bytes",     // TYPE_BYTES
106  "uint32",    // TYPE_UINT32
107  "enum",      // TYPE_ENUM
108  "sfixed32",  // TYPE_SFIXED32
109  "sfixed64",  // TYPE_SFIXED64
110  "sint32",    // TYPE_SINT32
111  "sint64",    // TYPE_SINT64
112};
113
114const char * const FieldDescriptor::kCppTypeToName[MAX_CPPTYPE + 1] = {
115  "ERROR",     // 0 is reserved for errors
116
117  "int32",     // CPPTYPE_INT32
118  "int64",     // CPPTYPE_INT64
119  "uint32",    // CPPTYPE_UINT32
120  "uint64",    // CPPTYPE_UINT64
121  "double",    // CPPTYPE_DOUBLE
122  "float",     // CPPTYPE_FLOAT
123  "bool",      // CPPTYPE_BOOL
124  "enum",      // CPPTYPE_ENUM
125  "string",    // CPPTYPE_STRING
126  "message",   // CPPTYPE_MESSAGE
127};
128
129const char * const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = {
130  "ERROR",     // 0 is reserved for errors
131
132  "optional",  // LABEL_OPTIONAL
133  "required",  // LABEL_REQUIRED
134  "repeated",  // LABEL_REPEATED
135};
136
137static const char * const kNonLinkedWeakMessageReplacementName = "google.protobuf.Empty";
138
139#ifndef _MSC_VER  // MSVC doesn't need these and won't even accept them.
140const int FieldDescriptor::kMaxNumber;
141const int FieldDescriptor::kFirstReservedNumber;
142const int FieldDescriptor::kLastReservedNumber;
143#endif
144
145namespace {
146
147string ToCamelCase(const string& input) {
148  bool capitalize_next = false;
149  string result;
150  result.reserve(input.size());
151
152  for (int i = 0; i < input.size(); i++) {
153    if (input[i] == '_') {
154      capitalize_next = true;
155    } else if (capitalize_next) {
156      // Note:  I distrust ctype.h due to locales.
157      if ('a' <= input[i] && input[i] <= 'z') {
158        result.push_back(input[i] - 'a' + 'A');
159      } else {
160        result.push_back(input[i]);
161      }
162      capitalize_next = false;
163    } else {
164      result.push_back(input[i]);
165    }
166  }
167
168  // Lower-case the first letter.
169  if (!result.empty() && 'A' <= result[0] && result[0] <= 'Z') {
170    result[0] = result[0] - 'A' + 'a';
171  }
172
173  return result;
174}
175
176// A DescriptorPool contains a bunch of hash_maps to implement the
177// various Find*By*() methods.  Since hashtable lookups are O(1), it's
178// most efficient to construct a fixed set of large hash_maps used by
179// all objects in the pool rather than construct one or more small
180// hash_maps for each object.
181//
182// The keys to these hash_maps are (parent, name) or (parent, number)
183// pairs.  Unfortunately STL doesn't provide hash functions for pair<>,
184// so we must invent our own.
185//
186// TODO(kenton):  Use StringPiece rather than const char* in keys?  It would
187//   be a lot cleaner but we'd just have to convert it back to const char*
188//   for the open source release.
189
190typedef pair<const void*, const char*> PointerStringPair;
191
192struct PointerStringPairEqual {
193  inline bool operator()(const PointerStringPair& a,
194                         const PointerStringPair& b) const {
195    return a.first == b.first && strcmp(a.second, b.second) == 0;
196  }
197};
198
199template<typename PairType>
200struct PointerIntegerPairHash {
201  size_t operator()(const PairType& p) const {
202    // FIXME(kenton):  What is the best way to compute this hash?  I have
203    // no idea!  This seems a bit better than an XOR.
204    return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) + p.second;
205  }
206
207#ifdef _MSC_VER
208  // Used only by MSVC and platforms where hash_map is not available.
209  static const size_t bucket_size = 4;
210  static const size_t min_buckets = 8;
211#endif
212  inline bool operator()(const PairType& a, const PairType& b) const {
213    return a.first < b.first ||
214          (a.first == b.first && a.second < b.second);
215  }
216};
217
218typedef pair<const Descriptor*, int> DescriptorIntPair;
219typedef pair<const EnumDescriptor*, int> EnumIntPair;
220
221struct PointerStringPairHash {
222  size_t operator()(const PointerStringPair& p) const {
223    // FIXME(kenton):  What is the best way to compute this hash?  I have
224    // no idea!  This seems a bit better than an XOR.
225    hash<const char*> cstring_hash;
226    return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) +
227           cstring_hash(p.second);
228  }
229
230#ifdef _MSC_VER
231  // Used only by MSVC and platforms where hash_map is not available.
232  static const size_t bucket_size = 4;
233  static const size_t min_buckets = 8;
234#endif
235  inline bool operator()(const PointerStringPair& a,
236                         const PointerStringPair& b) const {
237    if (a.first < b.first) return true;
238    if (a.first > b.first) return false;
239    return strcmp(a.second, b.second) < 0;
240  }
241};
242
243
244struct Symbol {
245  enum Type {
246    NULL_SYMBOL, MESSAGE, FIELD, ONEOF, ENUM, ENUM_VALUE, SERVICE, METHOD,
247    PACKAGE
248  };
249  Type type;
250  union {
251    const Descriptor* descriptor;
252    const FieldDescriptor* field_descriptor;
253    const OneofDescriptor* oneof_descriptor;
254    const EnumDescriptor* enum_descriptor;
255    const EnumValueDescriptor* enum_value_descriptor;
256    const ServiceDescriptor* service_descriptor;
257    const MethodDescriptor* method_descriptor;
258    const FileDescriptor* package_file_descriptor;
259  };
260
261  inline Symbol() : type(NULL_SYMBOL) { descriptor = NULL; }
262  inline bool IsNull() const { return type == NULL_SYMBOL; }
263  inline bool IsType() const {
264    return type == MESSAGE || type == ENUM;
265  }
266  inline bool IsAggregate() const {
267    return type == MESSAGE || type == PACKAGE
268        || type == ENUM || type == SERVICE;
269  }
270
271#define CONSTRUCTOR(TYPE, TYPE_CONSTANT, FIELD)  \
272  inline explicit Symbol(const TYPE* value) {    \
273    type = TYPE_CONSTANT;                        \
274    this->FIELD = value;                         \
275  }
276
277  CONSTRUCTOR(Descriptor         , MESSAGE   , descriptor             )
278  CONSTRUCTOR(FieldDescriptor    , FIELD     , field_descriptor       )
279  CONSTRUCTOR(OneofDescriptor    , ONEOF     , oneof_descriptor       )
280  CONSTRUCTOR(EnumDescriptor     , ENUM      , enum_descriptor        )
281  CONSTRUCTOR(EnumValueDescriptor, ENUM_VALUE, enum_value_descriptor  )
282  CONSTRUCTOR(ServiceDescriptor  , SERVICE   , service_descriptor     )
283  CONSTRUCTOR(MethodDescriptor   , METHOD    , method_descriptor      )
284  CONSTRUCTOR(FileDescriptor     , PACKAGE   , package_file_descriptor)
285#undef CONSTRUCTOR
286
287  const FileDescriptor* GetFile() const {
288    switch (type) {
289      case NULL_SYMBOL: return NULL;
290      case MESSAGE    : return descriptor           ->file();
291      case FIELD      : return field_descriptor     ->file();
292      case ONEOF      : return oneof_descriptor     ->containing_type()->file();
293      case ENUM       : return enum_descriptor      ->file();
294      case ENUM_VALUE : return enum_value_descriptor->type()->file();
295      case SERVICE    : return service_descriptor   ->file();
296      case METHOD     : return method_descriptor    ->service()->file();
297      case PACKAGE    : return package_file_descriptor;
298    }
299    return NULL;
300  }
301};
302
303const Symbol kNullSymbol;
304
305typedef hash_map<const char*, Symbol,
306                 hash<const char*>, streq>
307  SymbolsByNameMap;
308typedef hash_map<PointerStringPair, Symbol,
309                 PointerStringPairHash, PointerStringPairEqual>
310  SymbolsByParentMap;
311typedef hash_map<const char*, const FileDescriptor*,
312                 hash<const char*>, streq>
313  FilesByNameMap;
314typedef hash_map<PointerStringPair, const FieldDescriptor*,
315                 PointerStringPairHash, PointerStringPairEqual>
316  FieldsByNameMap;
317typedef hash_map<DescriptorIntPair, const FieldDescriptor*,
318                 PointerIntegerPairHash<DescriptorIntPair> >
319  FieldsByNumberMap;
320typedef hash_map<EnumIntPair, const EnumValueDescriptor*,
321                 PointerIntegerPairHash<EnumIntPair> >
322  EnumValuesByNumberMap;
323// This is a map rather than a hash_map, since we use it to iterate
324// through all the extensions that extend a given Descriptor, and an
325// ordered data structure that implements lower_bound is convenient
326// for that.
327typedef map<DescriptorIntPair, const FieldDescriptor*>
328  ExtensionsGroupedByDescriptorMap;
329typedef hash_map<string, const SourceCodeInfo_Location*> LocationsByPathMap;
330}  // anonymous namespace
331
332// ===================================================================
333// DescriptorPool::Tables
334
335class DescriptorPool::Tables {
336 public:
337  Tables();
338  ~Tables();
339
340  // Record the current state of the tables to the stack of checkpoints.
341  // Each call to AddCheckpoint() must be paired with exactly one call to either
342  // ClearLastCheckpoint() or RollbackToLastCheckpoint().
343  //
344  // This is used when building files, since some kinds of validation errors
345  // cannot be detected until the file's descriptors have already been added to
346  // the tables.
347  //
348  // This supports recursive checkpoints, since building a file may trigger
349  // recursive building of other files. Note that recursive checkpoints are not
350  // normally necessary; explicit dependencies are built prior to checkpointing.
351  // So although we recursively build transitive imports, there is at most one
352  // checkpoint in the stack during dependency building.
353  //
354  // Recursive checkpoints only arise during cross-linking of the descriptors.
355  // Symbol references must be resolved, via DescriptorBuilder::FindSymbol and
356  // friends. If the pending file references an unknown symbol
357  // (e.g., it is not defined in the pending file's explicit dependencies), and
358  // the pool is using a fallback database, and that database contains a file
359  // defining that symbol, and that file has not yet been built by the pool,
360  // the pool builds the file during cross-linking, leading to another
361  // checkpoint.
362  void AddCheckpoint();
363
364  // Mark the last checkpoint as having cleared successfully, removing it from
365  // the stack. If the stack is empty, all pending symbols will be committed.
366  //
367  // Note that this does not guarantee that the symbols added since the last
368  // checkpoint won't be rolled back: if a checkpoint gets rolled back,
369  // everything past that point gets rolled back, including symbols added after
370  // checkpoints that were pushed onto the stack after it and marked as cleared.
371  void ClearLastCheckpoint();
372
373  // Roll back the Tables to the state of the checkpoint at the top of the
374  // stack, removing everything that was added after that point.
375  void RollbackToLastCheckpoint();
376
377  // The stack of files which are currently being built.  Used to detect
378  // cyclic dependencies when loading files from a DescriptorDatabase.  Not
379  // used when fallback_database_ == NULL.
380  vector<string> pending_files_;
381
382  // A set of files which we have tried to load from the fallback database
383  // and encountered errors.  We will not attempt to load them again during
384  // execution of the current public API call, but for compatibility with
385  // legacy clients, this is cleared at the beginning of each public API call.
386  // Not used when fallback_database_ == NULL.
387  hash_set<string> known_bad_files_;
388
389  // A set of symbols which we have tried to load from the fallback database
390  // and encountered errors. We will not attempt to load them again during
391  // execution of the current public API call, but for compatibility with
392  // legacy clients, this is cleared at the beginning of each public API call.
393  hash_set<string> known_bad_symbols_;
394
395  // The set of descriptors for which we've already loaded the full
396  // set of extensions numbers from fallback_database_.
397  hash_set<const Descriptor*> extensions_loaded_from_db_;
398
399  // -----------------------------------------------------------------
400  // Finding items.
401
402  // Find symbols.  This returns a null Symbol (symbol.IsNull() is true)
403  // if not found.
404  inline Symbol FindSymbol(const string& key) const;
405
406  // This implements the body of DescriptorPool::Find*ByName().  It should
407  // really be a private method of DescriptorPool, but that would require
408  // declaring Symbol in descriptor.h, which would drag all kinds of other
409  // stuff into the header.  Yay C++.
410  Symbol FindByNameHelper(
411    const DescriptorPool* pool, const string& name);
412
413  // These return NULL if not found.
414  inline const FileDescriptor* FindFile(const string& key) const;
415  inline const FieldDescriptor* FindExtension(const Descriptor* extendee,
416                                              int number);
417  inline void FindAllExtensions(const Descriptor* extendee,
418                                vector<const FieldDescriptor*>* out) const;
419
420  // -----------------------------------------------------------------
421  // Adding items.
422
423  // These add items to the corresponding tables.  They return false if
424  // the key already exists in the table.  For AddSymbol(), the string passed
425  // in must be one that was constructed using AllocateString(), as it will
426  // be used as a key in the symbols_by_name_ map without copying.
427  bool AddSymbol(const string& full_name, Symbol symbol);
428  bool AddFile(const FileDescriptor* file);
429  bool AddExtension(const FieldDescriptor* field);
430
431  // -----------------------------------------------------------------
432  // Allocating memory.
433
434  // Allocate an object which will be reclaimed when the pool is
435  // destroyed.  Note that the object's destructor will never be called,
436  // so its fields must be plain old data (primitive data types and
437  // pointers).  All of the descriptor types are such objects.
438  template<typename Type> Type* Allocate();
439
440  // Allocate an array of objects which will be reclaimed when the
441  // pool in destroyed.  Again, destructors are never called.
442  template<typename Type> Type* AllocateArray(int count);
443
444  // Allocate a string which will be destroyed when the pool is destroyed.
445  // The string is initialized to the given value for convenience.
446  string* AllocateString(const string& value);
447
448  // Allocate a protocol message object.  Some older versions of GCC have
449  // trouble understanding explicit template instantiations in some cases, so
450  // in those cases we have to pass a dummy pointer of the right type as the
451  // parameter instead of specifying the type explicitly.
452  template<typename Type> Type* AllocateMessage(Type* dummy = NULL);
453
454  // Allocate a FileDescriptorTables object.
455  FileDescriptorTables* AllocateFileTables();
456
457 private:
458  vector<string*> strings_;    // All strings in the pool.
459  vector<Message*> messages_;  // All messages in the pool.
460  vector<FileDescriptorTables*> file_tables_;  // All file tables in the pool.
461  vector<void*> allocations_;  // All other memory allocated in the pool.
462
463  SymbolsByNameMap      symbols_by_name_;
464  FilesByNameMap        files_by_name_;
465  ExtensionsGroupedByDescriptorMap extensions_;
466
467  struct CheckPoint {
468    explicit CheckPoint(const Tables* tables)
469      : strings_before_checkpoint(tables->strings_.size()),
470        messages_before_checkpoint(tables->messages_.size()),
471        file_tables_before_checkpoint(tables->file_tables_.size()),
472        allocations_before_checkpoint(tables->allocations_.size()),
473        pending_symbols_before_checkpoint(
474            tables->symbols_after_checkpoint_.size()),
475        pending_files_before_checkpoint(
476            tables->files_after_checkpoint_.size()),
477        pending_extensions_before_checkpoint(
478            tables->extensions_after_checkpoint_.size()) {
479    }
480    int strings_before_checkpoint;
481    int messages_before_checkpoint;
482    int file_tables_before_checkpoint;
483    int allocations_before_checkpoint;
484    int pending_symbols_before_checkpoint;
485    int pending_files_before_checkpoint;
486    int pending_extensions_before_checkpoint;
487  };
488  vector<CheckPoint> checkpoints_;
489  vector<const char*      > symbols_after_checkpoint_;
490  vector<const char*      > files_after_checkpoint_;
491  vector<DescriptorIntPair> extensions_after_checkpoint_;
492
493  // Allocate some bytes which will be reclaimed when the pool is
494  // destroyed.
495  void* AllocateBytes(int size);
496};
497
498// Contains tables specific to a particular file.  These tables are not
499// modified once the file has been constructed, so they need not be
500// protected by a mutex.  This makes operations that depend only on the
501// contents of a single file -- e.g. Descriptor::FindFieldByName() --
502// lock-free.
503//
504// For historical reasons, the definitions of the methods of
505// FileDescriptorTables and DescriptorPool::Tables are interleaved below.
506// These used to be a single class.
507class FileDescriptorTables {
508 public:
509  FileDescriptorTables();
510  ~FileDescriptorTables();
511
512  // Empty table, used with placeholder files.
513  static const FileDescriptorTables kEmpty;
514
515  // -----------------------------------------------------------------
516  // Finding items.
517
518  // Find symbols.  These return a null Symbol (symbol.IsNull() is true)
519  // if not found.
520  inline Symbol FindNestedSymbol(const void* parent,
521                                 const string& name) const;
522  inline Symbol FindNestedSymbolOfType(const void* parent,
523                                       const string& name,
524                                       const Symbol::Type type) const;
525
526  // These return NULL if not found.
527  inline const FieldDescriptor* FindFieldByNumber(
528    const Descriptor* parent, int number) const;
529  inline const FieldDescriptor* FindFieldByLowercaseName(
530    const void* parent, const string& lowercase_name) const;
531  inline const FieldDescriptor* FindFieldByCamelcaseName(
532    const void* parent, const string& camelcase_name) const;
533  inline const EnumValueDescriptor* FindEnumValueByNumber(
534    const EnumDescriptor* parent, int number) const;
535
536  // -----------------------------------------------------------------
537  // Adding items.
538
539  // These add items to the corresponding tables.  They return false if
540  // the key already exists in the table.  For AddAliasUnderParent(), the
541  // string passed in must be one that was constructed using AllocateString(),
542  // as it will be used as a key in the symbols_by_parent_ map without copying.
543  bool AddAliasUnderParent(const void* parent, const string& name,
544                           Symbol symbol);
545  bool AddFieldByNumber(const FieldDescriptor* field);
546  bool AddEnumValueByNumber(const EnumValueDescriptor* value);
547
548  // Adds the field to the lowercase_name and camelcase_name maps.  Never
549  // fails because we allow duplicates; the first field by the name wins.
550  void AddFieldByStylizedNames(const FieldDescriptor* field);
551
552  // Populates p->first->locations_by_path_ from p->second.
553  // Unusual signature dictated by GoogleOnceDynamic.
554  static void BuildLocationsByPath(
555      pair<const FileDescriptorTables*, const SourceCodeInfo*>* p);
556
557  // Returns the location denoted by the specified path through info,
558  // or NULL if not found.
559  // The value of info must be that of the corresponding FileDescriptor.
560  // (Conceptually a pure function, but stateful as an optimisation.)
561  const SourceCodeInfo_Location* GetSourceLocation(
562      const vector<int>& path, const SourceCodeInfo* info) const;
563
564 private:
565  SymbolsByParentMap    symbols_by_parent_;
566  FieldsByNameMap       fields_by_lowercase_name_;
567  FieldsByNameMap       fields_by_camelcase_name_;
568  FieldsByNumberMap     fields_by_number_;       // Not including extensions.
569  EnumValuesByNumberMap enum_values_by_number_;
570
571  // Populated on first request to save space, hence constness games.
572  mutable GoogleOnceDynamic locations_by_path_once_;
573  mutable LocationsByPathMap locations_by_path_;
574};
575
576DescriptorPool::Tables::Tables()
577    // Start some hash_map and hash_set objects with a small # of buckets
578    : known_bad_files_(3),
579      known_bad_symbols_(3),
580      extensions_loaded_from_db_(3),
581      symbols_by_name_(3),
582      files_by_name_(3) {}
583
584
585DescriptorPool::Tables::~Tables() {
586  GOOGLE_DCHECK(checkpoints_.empty());
587  // Note that the deletion order is important, since the destructors of some
588  // messages may refer to objects in allocations_.
589  STLDeleteElements(&messages_);
590  for (int i = 0; i < allocations_.size(); i++) {
591    operator delete(allocations_[i]);
592  }
593  STLDeleteElements(&strings_);
594  STLDeleteElements(&file_tables_);
595}
596
597FileDescriptorTables::FileDescriptorTables()
598    // Initialize all the hash tables to start out with a small # of buckets
599    : symbols_by_parent_(3),
600      fields_by_lowercase_name_(3),
601      fields_by_camelcase_name_(3),
602      fields_by_number_(3),
603      enum_values_by_number_(3) {
604}
605
606FileDescriptorTables::~FileDescriptorTables() {}
607
608const FileDescriptorTables FileDescriptorTables::kEmpty;
609
610void DescriptorPool::Tables::AddCheckpoint() {
611  checkpoints_.push_back(CheckPoint(this));
612}
613
614void DescriptorPool::Tables::ClearLastCheckpoint() {
615  GOOGLE_DCHECK(!checkpoints_.empty());
616  checkpoints_.pop_back();
617  if (checkpoints_.empty()) {
618    // All checkpoints have been cleared: we can now commit all of the pending
619    // data.
620    symbols_after_checkpoint_.clear();
621    files_after_checkpoint_.clear();
622    extensions_after_checkpoint_.clear();
623  }
624}
625
626void DescriptorPool::Tables::RollbackToLastCheckpoint() {
627  GOOGLE_DCHECK(!checkpoints_.empty());
628  const CheckPoint& checkpoint = checkpoints_.back();
629
630  for (int i = checkpoint.pending_symbols_before_checkpoint;
631       i < symbols_after_checkpoint_.size();
632       i++) {
633    symbols_by_name_.erase(symbols_after_checkpoint_[i]);
634  }
635  for (int i = checkpoint.pending_files_before_checkpoint;
636       i < files_after_checkpoint_.size();
637       i++) {
638    files_by_name_.erase(files_after_checkpoint_[i]);
639  }
640  for (int i = checkpoint.pending_extensions_before_checkpoint;
641       i < extensions_after_checkpoint_.size();
642       i++) {
643    extensions_.erase(extensions_after_checkpoint_[i]);
644  }
645
646  symbols_after_checkpoint_.resize(
647      checkpoint.pending_symbols_before_checkpoint);
648  files_after_checkpoint_.resize(checkpoint.pending_files_before_checkpoint);
649  extensions_after_checkpoint_.resize(
650      checkpoint.pending_extensions_before_checkpoint);
651
652  STLDeleteContainerPointers(
653      strings_.begin() + checkpoint.strings_before_checkpoint, strings_.end());
654  STLDeleteContainerPointers(
655      messages_.begin() + checkpoint.messages_before_checkpoint,
656      messages_.end());
657  STLDeleteContainerPointers(
658      file_tables_.begin() + checkpoint.file_tables_before_checkpoint,
659      file_tables_.end());
660  for (int i = checkpoint.allocations_before_checkpoint;
661       i < allocations_.size();
662       i++) {
663    operator delete(allocations_[i]);
664  }
665
666  strings_.resize(checkpoint.strings_before_checkpoint);
667  messages_.resize(checkpoint.messages_before_checkpoint);
668  file_tables_.resize(checkpoint.file_tables_before_checkpoint);
669  allocations_.resize(checkpoint.allocations_before_checkpoint);
670  checkpoints_.pop_back();
671}
672
673// -------------------------------------------------------------------
674
675inline Symbol DescriptorPool::Tables::FindSymbol(const string& key) const {
676  const Symbol* result = FindOrNull(symbols_by_name_, key.c_str());
677  if (result == NULL) {
678    return kNullSymbol;
679  } else {
680    return *result;
681  }
682}
683
684inline Symbol FileDescriptorTables::FindNestedSymbol(
685    const void* parent, const string& name) const {
686  const Symbol* result =
687    FindOrNull(symbols_by_parent_, PointerStringPair(parent, name.c_str()));
688  if (result == NULL) {
689    return kNullSymbol;
690  } else {
691    return *result;
692  }
693}
694
695inline Symbol FileDescriptorTables::FindNestedSymbolOfType(
696    const void* parent, const string& name, const Symbol::Type type) const {
697  Symbol result = FindNestedSymbol(parent, name);
698  if (result.type != type) return kNullSymbol;
699  return result;
700}
701
702Symbol DescriptorPool::Tables::FindByNameHelper(
703    const DescriptorPool* pool, const string& name) {
704  MutexLockMaybe lock(pool->mutex_);
705  known_bad_symbols_.clear();
706  known_bad_files_.clear();
707  Symbol result = FindSymbol(name);
708
709  if (result.IsNull() && pool->underlay_ != NULL) {
710    // Symbol not found; check the underlay.
711    result =
712      pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name);
713  }
714
715  if (result.IsNull()) {
716    // Symbol still not found, so check fallback database.
717    if (pool->TryFindSymbolInFallbackDatabase(name)) {
718      result = FindSymbol(name);
719    }
720  }
721
722  return result;
723}
724
725inline const FileDescriptor* DescriptorPool::Tables::FindFile(
726    const string& key) const {
727  return FindPtrOrNull(files_by_name_, key.c_str());
728}
729
730inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber(
731    const Descriptor* parent, int number) const {
732  return FindPtrOrNull(fields_by_number_, make_pair(parent, number));
733}
734
735inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName(
736    const void* parent, const string& lowercase_name) const {
737  return FindPtrOrNull(fields_by_lowercase_name_,
738                       PointerStringPair(parent, lowercase_name.c_str()));
739}
740
741inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName(
742    const void* parent, const string& camelcase_name) const {
743  return FindPtrOrNull(fields_by_camelcase_name_,
744                       PointerStringPair(parent, camelcase_name.c_str()));
745}
746
747inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber(
748    const EnumDescriptor* parent, int number) const {
749  return FindPtrOrNull(enum_values_by_number_, make_pair(parent, number));
750}
751
752inline const FieldDescriptor* DescriptorPool::Tables::FindExtension(
753    const Descriptor* extendee, int number) {
754  return FindPtrOrNull(extensions_, make_pair(extendee, number));
755}
756
757inline void DescriptorPool::Tables::FindAllExtensions(
758    const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
759  ExtensionsGroupedByDescriptorMap::const_iterator it =
760      extensions_.lower_bound(make_pair(extendee, 0));
761  for (; it != extensions_.end() && it->first.first == extendee; ++it) {
762    out->push_back(it->second);
763  }
764}
765
766// -------------------------------------------------------------------
767
768bool DescriptorPool::Tables::AddSymbol(
769    const string& full_name, Symbol symbol) {
770  if (InsertIfNotPresent(&symbols_by_name_, full_name.c_str(), symbol)) {
771    symbols_after_checkpoint_.push_back(full_name.c_str());
772    return true;
773  } else {
774    return false;
775  }
776}
777
778bool FileDescriptorTables::AddAliasUnderParent(
779    const void* parent, const string& name, Symbol symbol) {
780  PointerStringPair by_parent_key(parent, name.c_str());
781  return InsertIfNotPresent(&symbols_by_parent_, by_parent_key, symbol);
782}
783
784bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) {
785  if (InsertIfNotPresent(&files_by_name_, file->name().c_str(), file)) {
786    files_after_checkpoint_.push_back(file->name().c_str());
787    return true;
788  } else {
789    return false;
790  }
791}
792
793void FileDescriptorTables::AddFieldByStylizedNames(
794    const FieldDescriptor* field) {
795  const void* parent;
796  if (field->is_extension()) {
797    if (field->extension_scope() == NULL) {
798      parent = field->file();
799    } else {
800      parent = field->extension_scope();
801    }
802  } else {
803    parent = field->containing_type();
804  }
805
806  PointerStringPair lowercase_key(parent, field->lowercase_name().c_str());
807  InsertIfNotPresent(&fields_by_lowercase_name_, lowercase_key, field);
808
809  PointerStringPair camelcase_key(parent, field->camelcase_name().c_str());
810  InsertIfNotPresent(&fields_by_camelcase_name_, camelcase_key, field);
811}
812
813bool FileDescriptorTables::AddFieldByNumber(const FieldDescriptor* field) {
814  DescriptorIntPair key(field->containing_type(), field->number());
815  return InsertIfNotPresent(&fields_by_number_, key, field);
816}
817
818bool FileDescriptorTables::AddEnumValueByNumber(
819    const EnumValueDescriptor* value) {
820  EnumIntPair key(value->type(), value->number());
821  return InsertIfNotPresent(&enum_values_by_number_, key, value);
822}
823
824bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) {
825  DescriptorIntPair key(field->containing_type(), field->number());
826  if (InsertIfNotPresent(&extensions_, key, field)) {
827    extensions_after_checkpoint_.push_back(key);
828    return true;
829  } else {
830    return false;
831  }
832}
833
834// -------------------------------------------------------------------
835
836template<typename Type>
837Type* DescriptorPool::Tables::Allocate() {
838  return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type)));
839}
840
841template<typename Type>
842Type* DescriptorPool::Tables::AllocateArray(int count) {
843  return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type) * count));
844}
845
846string* DescriptorPool::Tables::AllocateString(const string& value) {
847  string* result = new string(value);
848  strings_.push_back(result);
849  return result;
850}
851
852template<typename Type>
853Type* DescriptorPool::Tables::AllocateMessage(Type* /* dummy */) {
854  Type* result = new Type;
855  messages_.push_back(result);
856  return result;
857}
858
859FileDescriptorTables* DescriptorPool::Tables::AllocateFileTables() {
860  FileDescriptorTables* result = new FileDescriptorTables;
861  file_tables_.push_back(result);
862  return result;
863}
864
865void* DescriptorPool::Tables::AllocateBytes(int size) {
866  // TODO(kenton):  Would it be worthwhile to implement this in some more
867  // sophisticated way?  Probably not for the open source release, but for
868  // internal use we could easily plug in one of our existing memory pool
869  // allocators...
870  if (size == 0) return NULL;
871
872  void* result = operator new(size);
873  allocations_.push_back(result);
874  return result;
875}
876
877void FileDescriptorTables::BuildLocationsByPath(
878    pair<const FileDescriptorTables*, const SourceCodeInfo*>* p) {
879  for (int i = 0, len = p->second->location_size(); i < len; ++i) {
880    const SourceCodeInfo_Location* loc = &p->second->location().Get(i);
881    p->first->locations_by_path_[Join(loc->path(), ",")] = loc;
882  }
883}
884
885const SourceCodeInfo_Location* FileDescriptorTables::GetSourceLocation(
886    const vector<int>& path, const SourceCodeInfo* info) const {
887  pair<const FileDescriptorTables*, const SourceCodeInfo*> p(
888      make_pair(this, info));
889  locations_by_path_once_.Init(&FileDescriptorTables::BuildLocationsByPath, &p);
890  return FindPtrOrNull(locations_by_path_, Join(path, ","));
891}
892
893// ===================================================================
894// DescriptorPool
895
896DescriptorPool::ErrorCollector::~ErrorCollector() {}
897
898DescriptorPool::DescriptorPool()
899  : mutex_(NULL),
900    fallback_database_(NULL),
901    default_error_collector_(NULL),
902    underlay_(NULL),
903    tables_(new Tables),
904    enforce_dependencies_(true),
905    allow_unknown_(false),
906    enforce_weak_(false) {}
907
908DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database,
909                               ErrorCollector* error_collector)
910  : mutex_(new Mutex),
911    fallback_database_(fallback_database),
912    default_error_collector_(error_collector),
913    underlay_(NULL),
914    tables_(new Tables),
915    enforce_dependencies_(true),
916    allow_unknown_(false),
917    enforce_weak_(false) {
918}
919
920DescriptorPool::DescriptorPool(const DescriptorPool* underlay)
921  : mutex_(NULL),
922    fallback_database_(NULL),
923    default_error_collector_(NULL),
924    underlay_(underlay),
925    tables_(new Tables),
926    enforce_dependencies_(true),
927    allow_unknown_(false),
928    enforce_weak_(false) {}
929
930DescriptorPool::~DescriptorPool() {
931  if (mutex_ != NULL) delete mutex_;
932}
933
934// DescriptorPool::BuildFile() defined later.
935// DescriptorPool::BuildFileCollectingErrors() defined later.
936
937void DescriptorPool::InternalDontEnforceDependencies() {
938  enforce_dependencies_ = false;
939}
940
941void DescriptorPool::AddUnusedImportTrackFile(const string& file_name) {
942  unused_import_track_files_.insert(file_name);
943}
944
945void DescriptorPool::ClearUnusedImportTrackFiles() {
946  unused_import_track_files_.clear();
947}
948
949bool DescriptorPool::InternalIsFileLoaded(const string& filename) const {
950  MutexLockMaybe lock(mutex_);
951  return tables_->FindFile(filename) != NULL;
952}
953
954// generated_pool ====================================================
955
956namespace {
957
958
959EncodedDescriptorDatabase* generated_database_ = NULL;
960DescriptorPool* generated_pool_ = NULL;
961GOOGLE_PROTOBUF_DECLARE_ONCE(generated_pool_init_);
962
963void DeleteGeneratedPool() {
964  delete generated_database_;
965  generated_database_ = NULL;
966  delete generated_pool_;
967  generated_pool_ = NULL;
968}
969
970static void InitGeneratedPool() {
971  generated_database_ = new EncodedDescriptorDatabase;
972  generated_pool_ = new DescriptorPool(generated_database_);
973
974  internal::OnShutdown(&DeleteGeneratedPool);
975}
976
977inline void InitGeneratedPoolOnce() {
978  ::google::protobuf::GoogleOnceInit(&generated_pool_init_, &InitGeneratedPool);
979}
980
981}  // anonymous namespace
982
983const DescriptorPool* DescriptorPool::generated_pool() {
984  InitGeneratedPoolOnce();
985  return generated_pool_;
986}
987
988DescriptorPool* DescriptorPool::internal_generated_pool() {
989  InitGeneratedPoolOnce();
990  return generated_pool_;
991}
992
993void DescriptorPool::InternalAddGeneratedFile(
994    const void* encoded_file_descriptor, int size) {
995  // So, this function is called in the process of initializing the
996  // descriptors for generated proto classes.  Each generated .pb.cc file
997  // has an internal procedure called AddDescriptors() which is called at
998  // process startup, and that function calls this one in order to register
999  // the raw bytes of the FileDescriptorProto representing the file.
1000  //
1001  // We do not actually construct the descriptor objects right away.  We just
1002  // hang on to the bytes until they are actually needed.  We actually construct
1003  // the descriptor the first time one of the following things happens:
1004  // * Someone calls a method like descriptor(), GetDescriptor(), or
1005  //   GetReflection() on the generated types, which requires returning the
1006  //   descriptor or an object based on it.
1007  // * Someone looks up the descriptor in DescriptorPool::generated_pool().
1008  //
1009  // Once one of these happens, the DescriptorPool actually parses the
1010  // FileDescriptorProto and generates a FileDescriptor (and all its children)
1011  // based on it.
1012  //
1013  // Note that FileDescriptorProto is itself a generated protocol message.
1014  // Therefore, when we parse one, we have to be very careful to avoid using
1015  // any descriptor-based operations, since this might cause infinite recursion
1016  // or deadlock.
1017  InitGeneratedPoolOnce();
1018  GOOGLE_CHECK(generated_database_->Add(encoded_file_descriptor, size));
1019}
1020
1021
1022// Find*By* methods ==================================================
1023
1024// TODO(kenton):  There's a lot of repeated code here, but I'm not sure if
1025//   there's any good way to factor it out.  Think about this some time when
1026//   there's nothing more important to do (read: never).
1027
1028const FileDescriptor* DescriptorPool::FindFileByName(const string& name) const {
1029  MutexLockMaybe lock(mutex_);
1030  tables_->known_bad_symbols_.clear();
1031  tables_->known_bad_files_.clear();
1032  const FileDescriptor* result = tables_->FindFile(name);
1033  if (result != NULL) return result;
1034  if (underlay_ != NULL) {
1035    result = underlay_->FindFileByName(name);
1036    if (result != NULL) return result;
1037  }
1038  if (TryFindFileInFallbackDatabase(name)) {
1039    result = tables_->FindFile(name);
1040    if (result != NULL) return result;
1041  }
1042  return NULL;
1043}
1044
1045const FileDescriptor* DescriptorPool::FindFileContainingSymbol(
1046    const string& symbol_name) const {
1047  MutexLockMaybe lock(mutex_);
1048  tables_->known_bad_symbols_.clear();
1049  tables_->known_bad_files_.clear();
1050  Symbol result = tables_->FindSymbol(symbol_name);
1051  if (!result.IsNull()) return result.GetFile();
1052  if (underlay_ != NULL) {
1053    const FileDescriptor* file_result =
1054      underlay_->FindFileContainingSymbol(symbol_name);
1055    if (file_result != NULL) return file_result;
1056  }
1057  if (TryFindSymbolInFallbackDatabase(symbol_name)) {
1058    result = tables_->FindSymbol(symbol_name);
1059    if (!result.IsNull()) return result.GetFile();
1060  }
1061  return NULL;
1062}
1063
1064const Descriptor* DescriptorPool::FindMessageTypeByName(
1065    const string& name) const {
1066  Symbol result = tables_->FindByNameHelper(this, name);
1067  return (result.type == Symbol::MESSAGE) ? result.descriptor : NULL;
1068}
1069
1070const FieldDescriptor* DescriptorPool::FindFieldByName(
1071    const string& name) const {
1072  Symbol result = tables_->FindByNameHelper(this, name);
1073  if (result.type == Symbol::FIELD &&
1074      !result.field_descriptor->is_extension()) {
1075    return result.field_descriptor;
1076  } else {
1077    return NULL;
1078  }
1079}
1080
1081const FieldDescriptor* DescriptorPool::FindExtensionByName(
1082    const string& name) const {
1083  Symbol result = tables_->FindByNameHelper(this, name);
1084  if (result.type == Symbol::FIELD &&
1085      result.field_descriptor->is_extension()) {
1086    return result.field_descriptor;
1087  } else {
1088    return NULL;
1089  }
1090}
1091
1092const OneofDescriptor* DescriptorPool::FindOneofByName(
1093    const string& name) const {
1094  Symbol result = tables_->FindByNameHelper(this, name);
1095  return (result.type == Symbol::ONEOF) ? result.oneof_descriptor : NULL;
1096}
1097
1098const EnumDescriptor* DescriptorPool::FindEnumTypeByName(
1099    const string& name) const {
1100  Symbol result = tables_->FindByNameHelper(this, name);
1101  return (result.type == Symbol::ENUM) ? result.enum_descriptor : NULL;
1102}
1103
1104const EnumValueDescriptor* DescriptorPool::FindEnumValueByName(
1105    const string& name) const {
1106  Symbol result = tables_->FindByNameHelper(this, name);
1107  return (result.type == Symbol::ENUM_VALUE) ?
1108    result.enum_value_descriptor : NULL;
1109}
1110
1111const ServiceDescriptor* DescriptorPool::FindServiceByName(
1112    const string& name) const {
1113  Symbol result = tables_->FindByNameHelper(this, name);
1114  return (result.type == Symbol::SERVICE) ? result.service_descriptor : NULL;
1115}
1116
1117const MethodDescriptor* DescriptorPool::FindMethodByName(
1118    const string& name) const {
1119  Symbol result = tables_->FindByNameHelper(this, name);
1120  return (result.type == Symbol::METHOD) ? result.method_descriptor : NULL;
1121}
1122
1123const FieldDescriptor* DescriptorPool::FindExtensionByNumber(
1124    const Descriptor* extendee, int number) const {
1125  MutexLockMaybe lock(mutex_);
1126  tables_->known_bad_symbols_.clear();
1127  tables_->known_bad_files_.clear();
1128  const FieldDescriptor* result = tables_->FindExtension(extendee, number);
1129  if (result != NULL) {
1130    return result;
1131  }
1132  if (underlay_ != NULL) {
1133    result = underlay_->FindExtensionByNumber(extendee, number);
1134    if (result != NULL) return result;
1135  }
1136  if (TryFindExtensionInFallbackDatabase(extendee, number)) {
1137    result = tables_->FindExtension(extendee, number);
1138    if (result != NULL) {
1139      return result;
1140    }
1141  }
1142  return NULL;
1143}
1144
1145void DescriptorPool::FindAllExtensions(
1146    const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
1147  MutexLockMaybe lock(mutex_);
1148  tables_->known_bad_symbols_.clear();
1149  tables_->known_bad_files_.clear();
1150
1151  // Initialize tables_->extensions_ from the fallback database first
1152  // (but do this only once per descriptor).
1153  if (fallback_database_ != NULL &&
1154      tables_->extensions_loaded_from_db_.count(extendee) == 0) {
1155    vector<int> numbers;
1156    if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(),
1157                                                    &numbers)) {
1158      for (int i = 0; i < numbers.size(); ++i) {
1159        int number = numbers[i];
1160        if (tables_->FindExtension(extendee, number) == NULL) {
1161          TryFindExtensionInFallbackDatabase(extendee, number);
1162        }
1163      }
1164      tables_->extensions_loaded_from_db_.insert(extendee);
1165    }
1166  }
1167
1168  tables_->FindAllExtensions(extendee, out);
1169  if (underlay_ != NULL) {
1170    underlay_->FindAllExtensions(extendee, out);
1171  }
1172}
1173
1174
1175// -------------------------------------------------------------------
1176
1177const FieldDescriptor*
1178Descriptor::FindFieldByNumber(int key) const {
1179  const FieldDescriptor* result =
1180    file()->tables_->FindFieldByNumber(this, key);
1181  if (result == NULL || result->is_extension()) {
1182    return NULL;
1183  } else {
1184    return result;
1185  }
1186}
1187
1188const FieldDescriptor*
1189Descriptor::FindFieldByLowercaseName(const string& key) const {
1190  const FieldDescriptor* result =
1191    file()->tables_->FindFieldByLowercaseName(this, key);
1192  if (result == NULL || result->is_extension()) {
1193    return NULL;
1194  } else {
1195    return result;
1196  }
1197}
1198
1199const FieldDescriptor*
1200Descriptor::FindFieldByCamelcaseName(const string& key) const {
1201  const FieldDescriptor* result =
1202    file()->tables_->FindFieldByCamelcaseName(this, key);
1203  if (result == NULL || result->is_extension()) {
1204    return NULL;
1205  } else {
1206    return result;
1207  }
1208}
1209
1210const FieldDescriptor*
1211Descriptor::FindFieldByName(const string& key) const {
1212  Symbol result =
1213    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1214  if (!result.IsNull() && !result.field_descriptor->is_extension()) {
1215    return result.field_descriptor;
1216  } else {
1217    return NULL;
1218  }
1219}
1220
1221const OneofDescriptor*
1222Descriptor::FindOneofByName(const string& key) const {
1223  Symbol result =
1224    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ONEOF);
1225  if (!result.IsNull()) {
1226    return result.oneof_descriptor;
1227  } else {
1228    return NULL;
1229  }
1230}
1231
1232const FieldDescriptor*
1233Descriptor::FindExtensionByName(const string& key) const {
1234  Symbol result =
1235    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1236  if (!result.IsNull() && result.field_descriptor->is_extension()) {
1237    return result.field_descriptor;
1238  } else {
1239    return NULL;
1240  }
1241}
1242
1243const FieldDescriptor*
1244Descriptor::FindExtensionByLowercaseName(const string& key) const {
1245  const FieldDescriptor* result =
1246    file()->tables_->FindFieldByLowercaseName(this, key);
1247  if (result == NULL || !result->is_extension()) {
1248    return NULL;
1249  } else {
1250    return result;
1251  }
1252}
1253
1254const FieldDescriptor*
1255Descriptor::FindExtensionByCamelcaseName(const string& key) const {
1256  const FieldDescriptor* result =
1257    file()->tables_->FindFieldByCamelcaseName(this, key);
1258  if (result == NULL || !result->is_extension()) {
1259    return NULL;
1260  } else {
1261    return result;
1262  }
1263}
1264
1265const Descriptor*
1266Descriptor::FindNestedTypeByName(const string& key) const {
1267  Symbol result =
1268    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1269  if (!result.IsNull()) {
1270    return result.descriptor;
1271  } else {
1272    return NULL;
1273  }
1274}
1275
1276const EnumDescriptor*
1277Descriptor::FindEnumTypeByName(const string& key) const {
1278  Symbol result =
1279    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1280  if (!result.IsNull()) {
1281    return result.enum_descriptor;
1282  } else {
1283    return NULL;
1284  }
1285}
1286
1287const EnumValueDescriptor*
1288Descriptor::FindEnumValueByName(const string& key) const {
1289  Symbol result =
1290    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1291  if (!result.IsNull()) {
1292    return result.enum_value_descriptor;
1293  } else {
1294    return NULL;
1295  }
1296}
1297
1298const EnumValueDescriptor*
1299EnumDescriptor::FindValueByName(const string& key) const {
1300  Symbol result =
1301    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1302  if (!result.IsNull()) {
1303    return result.enum_value_descriptor;
1304  } else {
1305    return NULL;
1306  }
1307}
1308
1309const EnumValueDescriptor*
1310EnumDescriptor::FindValueByNumber(int key) const {
1311  return file()->tables_->FindEnumValueByNumber(this, key);
1312}
1313
1314const MethodDescriptor*
1315ServiceDescriptor::FindMethodByName(const string& key) const {
1316  Symbol result =
1317    file()->tables_->FindNestedSymbolOfType(this, key, Symbol::METHOD);
1318  if (!result.IsNull()) {
1319    return result.method_descriptor;
1320  } else {
1321    return NULL;
1322  }
1323}
1324
1325const Descriptor*
1326FileDescriptor::FindMessageTypeByName(const string& key) const {
1327  Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1328  if (!result.IsNull()) {
1329    return result.descriptor;
1330  } else {
1331    return NULL;
1332  }
1333}
1334
1335const EnumDescriptor*
1336FileDescriptor::FindEnumTypeByName(const string& key) const {
1337  Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1338  if (!result.IsNull()) {
1339    return result.enum_descriptor;
1340  } else {
1341    return NULL;
1342  }
1343}
1344
1345const EnumValueDescriptor*
1346FileDescriptor::FindEnumValueByName(const string& key) const {
1347  Symbol result =
1348    tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1349  if (!result.IsNull()) {
1350    return result.enum_value_descriptor;
1351  } else {
1352    return NULL;
1353  }
1354}
1355
1356const ServiceDescriptor*
1357FileDescriptor::FindServiceByName(const string& key) const {
1358  Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::SERVICE);
1359  if (!result.IsNull()) {
1360    return result.service_descriptor;
1361  } else {
1362    return NULL;
1363  }
1364}
1365
1366const FieldDescriptor*
1367FileDescriptor::FindExtensionByName(const string& key) const {
1368  Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1369  if (!result.IsNull() && result.field_descriptor->is_extension()) {
1370    return result.field_descriptor;
1371  } else {
1372    return NULL;
1373  }
1374}
1375
1376const FieldDescriptor*
1377FileDescriptor::FindExtensionByLowercaseName(const string& key) const {
1378  const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key);
1379  if (result == NULL || !result->is_extension()) {
1380    return NULL;
1381  } else {
1382    return result;
1383  }
1384}
1385
1386const FieldDescriptor*
1387FileDescriptor::FindExtensionByCamelcaseName(const string& key) const {
1388  const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key);
1389  if (result == NULL || !result->is_extension()) {
1390    return NULL;
1391  } else {
1392    return result;
1393  }
1394}
1395
1396const Descriptor::ExtensionRange*
1397Descriptor::FindExtensionRangeContainingNumber(int number) const {
1398  // Linear search should be fine because we don't expect a message to have
1399  // more than a couple extension ranges.
1400  for (int i = 0; i < extension_range_count(); i++) {
1401    if (number >= extension_range(i)->start &&
1402        number <  extension_range(i)->end) {
1403      return extension_range(i);
1404    }
1405  }
1406  return NULL;
1407}
1408
1409// -------------------------------------------------------------------
1410
1411bool DescriptorPool::TryFindFileInFallbackDatabase(const string& name) const {
1412  if (fallback_database_ == NULL) return false;
1413
1414  if (tables_->known_bad_files_.count(name) > 0) return false;
1415
1416  FileDescriptorProto file_proto;
1417  if (!fallback_database_->FindFileByName(name, &file_proto) ||
1418      BuildFileFromDatabase(file_proto) == NULL) {
1419    tables_->known_bad_files_.insert(name);
1420    return false;
1421  }
1422  return true;
1423}
1424
1425bool DescriptorPool::IsSubSymbolOfBuiltType(const string& name) const {
1426  string prefix = name;
1427  for (;;) {
1428    string::size_type dot_pos = prefix.find_last_of('.');
1429    if (dot_pos == string::npos) {
1430      break;
1431    }
1432    prefix = prefix.substr(0, dot_pos);
1433    Symbol symbol = tables_->FindSymbol(prefix);
1434    // If the symbol type is anything other than PACKAGE, then its complete
1435    // definition is already known.
1436    if (!symbol.IsNull() && symbol.type != Symbol::PACKAGE) {
1437      return true;
1438    }
1439  }
1440  if (underlay_ != NULL) {
1441    // Check to see if any prefix of this symbol exists in the underlay.
1442    return underlay_->IsSubSymbolOfBuiltType(name);
1443  }
1444  return false;
1445}
1446
1447bool DescriptorPool::TryFindSymbolInFallbackDatabase(const string& name) const {
1448  if (fallback_database_ == NULL) return false;
1449
1450  if (tables_->known_bad_symbols_.count(name) > 0) return false;
1451
1452  FileDescriptorProto file_proto;
1453  if (// We skip looking in the fallback database if the name is a sub-symbol
1454      // of any descriptor that already exists in the descriptor pool (except
1455      // for package descriptors).  This is valid because all symbols except
1456      // for packages are defined in a single file, so if the symbol exists
1457      // then we should already have its definition.
1458      //
1459      // The other reason to do this is to support "overriding" type
1460      // definitions by merging two databases that define the same type.  (Yes,
1461      // people do this.)  The main difficulty with making this work is that
1462      // FindFileContainingSymbol() is allowed to return both false positives
1463      // (e.g., SimpleDescriptorDatabase, UpgradedDescriptorDatabase) and false
1464      // negatives (e.g. ProtoFileParser, SourceTreeDescriptorDatabase).
1465      // When two such databases are merged, looking up a non-existent
1466      // sub-symbol of a type that already exists in the descriptor pool can
1467      // result in an attempt to load multiple definitions of the same type.
1468      // The check below avoids this.
1469      IsSubSymbolOfBuiltType(name)
1470
1471      // Look up file containing this symbol in fallback database.
1472      || !fallback_database_->FindFileContainingSymbol(name, &file_proto)
1473
1474      // Check if we've already built this file. If so, it apparently doesn't
1475      // contain the symbol we're looking for.  Some DescriptorDatabases
1476      // return false positives.
1477      || tables_->FindFile(file_proto.name()) != NULL
1478
1479      // Build the file.
1480      || BuildFileFromDatabase(file_proto) == NULL) {
1481    tables_->known_bad_symbols_.insert(name);
1482    return false;
1483  }
1484
1485  return true;
1486}
1487
1488bool DescriptorPool::TryFindExtensionInFallbackDatabase(
1489    const Descriptor* containing_type, int field_number) const {
1490  if (fallback_database_ == NULL) return false;
1491
1492  FileDescriptorProto file_proto;
1493  if (!fallback_database_->FindFileContainingExtension(
1494        containing_type->full_name(), field_number, &file_proto)) {
1495    return false;
1496  }
1497
1498  if (tables_->FindFile(file_proto.name()) != NULL) {
1499    // We've already loaded this file, and it apparently doesn't contain the
1500    // extension we're looking for.  Some DescriptorDatabases return false
1501    // positives.
1502    return false;
1503  }
1504
1505  if (BuildFileFromDatabase(file_proto) == NULL) {
1506    return false;
1507  }
1508
1509  return true;
1510}
1511
1512// ===================================================================
1513
1514string FieldDescriptor::DefaultValueAsString(bool quote_string_type) const {
1515  GOOGLE_CHECK(has_default_value()) << "No default value";
1516  switch (cpp_type()) {
1517    case CPPTYPE_INT32:
1518      return SimpleItoa(default_value_int32());
1519      break;
1520    case CPPTYPE_INT64:
1521      return SimpleItoa(default_value_int64());
1522      break;
1523    case CPPTYPE_UINT32:
1524      return SimpleItoa(default_value_uint32());
1525      break;
1526    case CPPTYPE_UINT64:
1527      return SimpleItoa(default_value_uint64());
1528      break;
1529    case CPPTYPE_FLOAT:
1530      return SimpleFtoa(default_value_float());
1531      break;
1532    case CPPTYPE_DOUBLE:
1533      return SimpleDtoa(default_value_double());
1534      break;
1535    case CPPTYPE_BOOL:
1536      return default_value_bool() ? "true" : "false";
1537      break;
1538    case CPPTYPE_STRING:
1539      if (quote_string_type) {
1540        return "\"" + CEscape(default_value_string()) + "\"";
1541      } else {
1542        if (type() == TYPE_BYTES) {
1543          return CEscape(default_value_string());
1544        } else {
1545          return default_value_string();
1546        }
1547      }
1548      break;
1549    case CPPTYPE_ENUM:
1550      return default_value_enum()->name();
1551      break;
1552    case CPPTYPE_MESSAGE:
1553      GOOGLE_LOG(DFATAL) << "Messages can't have default values!";
1554      break;
1555  }
1556  GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string";
1557  return "";
1558}
1559
1560// CopyTo methods ====================================================
1561
1562void FileDescriptor::CopyTo(FileDescriptorProto* proto) const {
1563  proto->set_name(name());
1564  if (!package().empty()) proto->set_package(package());
1565
1566  for (int i = 0; i < dependency_count(); i++) {
1567    proto->add_dependency(dependency(i)->name());
1568  }
1569
1570  for (int i = 0; i < public_dependency_count(); i++) {
1571    proto->add_public_dependency(public_dependencies_[i]);
1572  }
1573
1574  for (int i = 0; i < weak_dependency_count(); i++) {
1575    proto->add_weak_dependency(weak_dependencies_[i]);
1576  }
1577
1578  for (int i = 0; i < message_type_count(); i++) {
1579    message_type(i)->CopyTo(proto->add_message_type());
1580  }
1581  for (int i = 0; i < enum_type_count(); i++) {
1582    enum_type(i)->CopyTo(proto->add_enum_type());
1583  }
1584  for (int i = 0; i < service_count(); i++) {
1585    service(i)->CopyTo(proto->add_service());
1586  }
1587  for (int i = 0; i < extension_count(); i++) {
1588    extension(i)->CopyTo(proto->add_extension());
1589  }
1590
1591  if (&options() != &FileOptions::default_instance()) {
1592    proto->mutable_options()->CopyFrom(options());
1593  }
1594}
1595
1596void FileDescriptor::CopySourceCodeInfoTo(FileDescriptorProto* proto) const {
1597  if (source_code_info_ != &SourceCodeInfo::default_instance()) {
1598    proto->mutable_source_code_info()->CopyFrom(*source_code_info_);
1599  }
1600}
1601
1602void Descriptor::CopyTo(DescriptorProto* proto) const {
1603  proto->set_name(name());
1604
1605  for (int i = 0; i < field_count(); i++) {
1606    field(i)->CopyTo(proto->add_field());
1607  }
1608  for (int i = 0; i < oneof_decl_count(); i++) {
1609    oneof_decl(i)->CopyTo(proto->add_oneof_decl());
1610  }
1611  for (int i = 0; i < nested_type_count(); i++) {
1612    nested_type(i)->CopyTo(proto->add_nested_type());
1613  }
1614  for (int i = 0; i < enum_type_count(); i++) {
1615    enum_type(i)->CopyTo(proto->add_enum_type());
1616  }
1617  for (int i = 0; i < extension_range_count(); i++) {
1618    DescriptorProto::ExtensionRange* range = proto->add_extension_range();
1619    range->set_start(extension_range(i)->start);
1620    range->set_end(extension_range(i)->end);
1621  }
1622  for (int i = 0; i < extension_count(); i++) {
1623    extension(i)->CopyTo(proto->add_extension());
1624  }
1625
1626  if (&options() != &MessageOptions::default_instance()) {
1627    proto->mutable_options()->CopyFrom(options());
1628  }
1629}
1630
1631void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const {
1632  proto->set_name(name());
1633  proto->set_number(number());
1634
1635  // Some compilers do not allow static_cast directly between two enum types,
1636  // so we must cast to int first.
1637  proto->set_label(static_cast<FieldDescriptorProto::Label>(
1638                     implicit_cast<int>(label())));
1639  proto->set_type(static_cast<FieldDescriptorProto::Type>(
1640                    implicit_cast<int>(type())));
1641
1642  if (is_extension()) {
1643    if (!containing_type()->is_unqualified_placeholder_) {
1644      proto->set_extendee(".");
1645    }
1646    proto->mutable_extendee()->append(containing_type()->full_name());
1647  }
1648
1649  if (cpp_type() == CPPTYPE_MESSAGE) {
1650    if (message_type()->is_placeholder_) {
1651      // We don't actually know if the type is a message type.  It could be
1652      // an enum.
1653      proto->clear_type();
1654    }
1655
1656    if (!message_type()->is_unqualified_placeholder_) {
1657      proto->set_type_name(".");
1658    }
1659    proto->mutable_type_name()->append(message_type()->full_name());
1660  } else if (cpp_type() == CPPTYPE_ENUM) {
1661    if (!enum_type()->is_unqualified_placeholder_) {
1662      proto->set_type_name(".");
1663    }
1664    proto->mutable_type_name()->append(enum_type()->full_name());
1665  }
1666
1667  if (has_default_value()) {
1668    proto->set_default_value(DefaultValueAsString(false));
1669  }
1670
1671  if (containing_oneof() != NULL && !is_extension()) {
1672    proto->set_oneof_index(containing_oneof()->index());
1673  }
1674
1675  if (&options() != &FieldOptions::default_instance()) {
1676    proto->mutable_options()->CopyFrom(options());
1677  }
1678}
1679
1680void OneofDescriptor::CopyTo(OneofDescriptorProto* proto) const {
1681  proto->set_name(name());
1682}
1683
1684void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const {
1685  proto->set_name(name());
1686
1687  for (int i = 0; i < value_count(); i++) {
1688    value(i)->CopyTo(proto->add_value());
1689  }
1690
1691  if (&options() != &EnumOptions::default_instance()) {
1692    proto->mutable_options()->CopyFrom(options());
1693  }
1694}
1695
1696void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const {
1697  proto->set_name(name());
1698  proto->set_number(number());
1699
1700  if (&options() != &EnumValueOptions::default_instance()) {
1701    proto->mutable_options()->CopyFrom(options());
1702  }
1703}
1704
1705void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const {
1706  proto->set_name(name());
1707
1708  for (int i = 0; i < method_count(); i++) {
1709    method(i)->CopyTo(proto->add_method());
1710  }
1711
1712  if (&options() != &ServiceOptions::default_instance()) {
1713    proto->mutable_options()->CopyFrom(options());
1714  }
1715}
1716
1717void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const {
1718  proto->set_name(name());
1719
1720  if (!input_type()->is_unqualified_placeholder_) {
1721    proto->set_input_type(".");
1722  }
1723  proto->mutable_input_type()->append(input_type()->full_name());
1724
1725  if (!output_type()->is_unqualified_placeholder_) {
1726    proto->set_output_type(".");
1727  }
1728  proto->mutable_output_type()->append(output_type()->full_name());
1729
1730  if (&options() != &MethodOptions::default_instance()) {
1731    proto->mutable_options()->CopyFrom(options());
1732  }
1733}
1734
1735// DebugString methods ===============================================
1736
1737namespace {
1738
1739// Used by each of the option formatters.
1740bool RetrieveOptions(int depth,
1741                     const Message &options,
1742                     vector<string> *option_entries) {
1743  option_entries->clear();
1744  const Reflection* reflection = options.GetReflection();
1745  vector<const FieldDescriptor*> fields;
1746  reflection->ListFields(options, &fields);
1747  for (int i = 0; i < fields.size(); i++) {
1748    int count = 1;
1749    bool repeated = false;
1750    if (fields[i]->is_repeated()) {
1751      count = reflection->FieldSize(options, fields[i]);
1752      repeated = true;
1753    }
1754    for (int j = 0; j < count; j++) {
1755      string fieldval;
1756      if (fields[i]->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
1757        string tmp;
1758        TextFormat::Printer printer;
1759        printer.SetInitialIndentLevel(depth + 1);
1760        printer.PrintFieldValueToString(options, fields[i],
1761                                        repeated ? j : -1, &tmp);
1762        fieldval.append("{\n");
1763        fieldval.append(tmp);
1764        fieldval.append(depth * 2, ' ');
1765        fieldval.append("}");
1766      } else {
1767        TextFormat::PrintFieldValueToString(options, fields[i],
1768                                            repeated ? j : -1, &fieldval);
1769      }
1770      string name;
1771      if (fields[i]->is_extension()) {
1772        name = "(." + fields[i]->full_name() + ")";
1773      } else {
1774        name = fields[i]->name();
1775      }
1776      option_entries->push_back(name + " = " + fieldval);
1777    }
1778  }
1779  return !option_entries->empty();
1780}
1781
1782// Formats options that all appear together in brackets. Does not include
1783// brackets.
1784bool FormatBracketedOptions(int depth, const Message &options, string *output) {
1785  vector<string> all_options;
1786  if (RetrieveOptions(depth, options, &all_options)) {
1787    output->append(Join(all_options, ", "));
1788  }
1789  return !all_options.empty();
1790}
1791
1792// Formats options one per line
1793bool FormatLineOptions(int depth, const Message &options, string *output) {
1794  string prefix(depth * 2, ' ');
1795  vector<string> all_options;
1796  if (RetrieveOptions(depth, options, &all_options)) {
1797    for (int i = 0; i < all_options.size(); i++) {
1798      strings::SubstituteAndAppend(output, "$0option $1;\n",
1799                                   prefix, all_options[i]);
1800    }
1801  }
1802  return !all_options.empty();
1803}
1804
1805}  // anonymous namespace
1806
1807string FileDescriptor::DebugString() const {
1808  string contents = "syntax = \"proto2\";\n\n";
1809
1810  set<int> public_dependencies;
1811  set<int> weak_dependencies;
1812  public_dependencies.insert(public_dependencies_,
1813                             public_dependencies_ + public_dependency_count_);
1814  weak_dependencies.insert(weak_dependencies_,
1815                           weak_dependencies_ + weak_dependency_count_);
1816
1817  for (int i = 0; i < dependency_count(); i++) {
1818    if (public_dependencies.count(i) > 0) {
1819      strings::SubstituteAndAppend(&contents, "import public \"$0\";\n",
1820                                   dependency(i)->name());
1821    } else if (weak_dependencies.count(i) > 0) {
1822      strings::SubstituteAndAppend(&contents, "import weak \"$0\";\n",
1823                                   dependency(i)->name());
1824    } else {
1825      strings::SubstituteAndAppend(&contents, "import \"$0\";\n",
1826                                   dependency(i)->name());
1827    }
1828  }
1829
1830  if (!package().empty()) {
1831    strings::SubstituteAndAppend(&contents, "package $0;\n\n", package());
1832  }
1833
1834  if (FormatLineOptions(0, options(), &contents)) {
1835    contents.append("\n");  // add some space if we had options
1836  }
1837
1838  for (int i = 0; i < enum_type_count(); i++) {
1839    enum_type(i)->DebugString(0, &contents);
1840    contents.append("\n");
1841  }
1842
1843  // Find all the 'group' type extensions; we will not output their nested
1844  // definitions (those will be done with their group field descriptor).
1845  set<const Descriptor*> groups;
1846  for (int i = 0; i < extension_count(); i++) {
1847    if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
1848      groups.insert(extension(i)->message_type());
1849    }
1850  }
1851
1852  for (int i = 0; i < message_type_count(); i++) {
1853    if (groups.count(message_type(i)) == 0) {
1854      strings::SubstituteAndAppend(&contents, "message $0",
1855                                   message_type(i)->name());
1856      message_type(i)->DebugString(0, &contents);
1857      contents.append("\n");
1858    }
1859  }
1860
1861  for (int i = 0; i < service_count(); i++) {
1862    service(i)->DebugString(&contents);
1863    contents.append("\n");
1864  }
1865
1866  const Descriptor* containing_type = NULL;
1867  for (int i = 0; i < extension_count(); i++) {
1868    if (extension(i)->containing_type() != containing_type) {
1869      if (i > 0) contents.append("}\n\n");
1870      containing_type = extension(i)->containing_type();
1871      strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
1872                                   containing_type->full_name());
1873    }
1874    extension(i)->DebugString(1, FieldDescriptor::PRINT_LABEL, &contents);
1875  }
1876  if (extension_count() > 0) contents.append("}\n\n");
1877
1878  return contents;
1879}
1880
1881string Descriptor::DebugString() const {
1882  string contents;
1883  strings::SubstituteAndAppend(&contents, "message $0", name());
1884  DebugString(0, &contents);
1885  return contents;
1886}
1887
1888void Descriptor::DebugString(int depth, string *contents) const {
1889  string prefix(depth * 2, ' ');
1890  ++depth;
1891  contents->append(" {\n");
1892
1893  FormatLineOptions(depth, options(), contents);
1894
1895  // Find all the 'group' types for fields and extensions; we will not output
1896  // their nested definitions (those will be done with their group field
1897  // descriptor).
1898  set<const Descriptor*> groups;
1899  for (int i = 0; i < field_count(); i++) {
1900    if (field(i)->type() == FieldDescriptor::TYPE_GROUP) {
1901      groups.insert(field(i)->message_type());
1902    }
1903  }
1904  for (int i = 0; i < extension_count(); i++) {
1905    if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
1906      groups.insert(extension(i)->message_type());
1907    }
1908  }
1909
1910  for (int i = 0; i < nested_type_count(); i++) {
1911    if (groups.count(nested_type(i)) == 0) {
1912      strings::SubstituteAndAppend(contents, "$0  message $1",
1913                                   prefix, nested_type(i)->name());
1914      nested_type(i)->DebugString(depth, contents);
1915    }
1916  }
1917  for (int i = 0; i < enum_type_count(); i++) {
1918    enum_type(i)->DebugString(depth, contents);
1919  }
1920  for (int i = 0; i < field_count(); i++) {
1921    if (field(i)->containing_oneof() == NULL) {
1922      field(i)->DebugString(depth, FieldDescriptor::PRINT_LABEL, contents);
1923    } else if (field(i)->containing_oneof()->field(0) == field(i)) {
1924      // This is the first field in this oneof, so print the whole oneof.
1925      field(i)->containing_oneof()->DebugString(depth, contents);
1926    }
1927  }
1928
1929  for (int i = 0; i < extension_range_count(); i++) {
1930    strings::SubstituteAndAppend(contents, "$0  extensions $1 to $2;\n",
1931                                 prefix,
1932                                 extension_range(i)->start,
1933                                 extension_range(i)->end - 1);
1934  }
1935
1936  // Group extensions by what they extend, so they can be printed out together.
1937  const Descriptor* containing_type = NULL;
1938  for (int i = 0; i < extension_count(); i++) {
1939    if (extension(i)->containing_type() != containing_type) {
1940      if (i > 0) strings::SubstituteAndAppend(contents, "$0  }\n", prefix);
1941      containing_type = extension(i)->containing_type();
1942      strings::SubstituteAndAppend(contents, "$0  extend .$1 {\n",
1943                                   prefix, containing_type->full_name());
1944    }
1945    extension(i)->DebugString(
1946        depth + 1, FieldDescriptor::PRINT_LABEL, contents);
1947  }
1948  if (extension_count() > 0)
1949    strings::SubstituteAndAppend(contents, "$0  }\n", prefix);
1950
1951  strings::SubstituteAndAppend(contents, "$0}\n", prefix);
1952}
1953
1954string FieldDescriptor::DebugString() const {
1955  string contents;
1956  int depth = 0;
1957  if (is_extension()) {
1958    strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
1959                                 containing_type()->full_name());
1960    depth = 1;
1961  }
1962  DebugString(depth, PRINT_LABEL, &contents);
1963  if (is_extension()) {
1964    contents.append("}\n");
1965  }
1966  return contents;
1967}
1968
1969void FieldDescriptor::DebugString(int depth,
1970                                  PrintLabelFlag print_label_flag,
1971                                  string *contents) const {
1972  string prefix(depth * 2, ' ');
1973  string field_type;
1974  switch (type()) {
1975    case TYPE_MESSAGE:
1976      field_type = "." + message_type()->full_name();
1977      break;
1978    case TYPE_ENUM:
1979      field_type = "." + enum_type()->full_name();
1980      break;
1981    default:
1982      field_type = kTypeToName[type()];
1983  }
1984
1985  string label;
1986  if (print_label_flag == PRINT_LABEL) {
1987    label = kLabelToName[this->label()];
1988    label.push_back(' ');
1989  }
1990
1991  strings::SubstituteAndAppend(contents, "$0$1$2 $3 = $4",
1992                               prefix,
1993                               label,
1994                               field_type,
1995                               type() == TYPE_GROUP ? message_type()->name() :
1996                                                      name(),
1997                               number());
1998
1999  bool bracketed = false;
2000  if (has_default_value()) {
2001    bracketed = true;
2002    strings::SubstituteAndAppend(contents, " [default = $0",
2003                                 DefaultValueAsString(true));
2004  }
2005
2006  string formatted_options;
2007  if (FormatBracketedOptions(depth, options(), &formatted_options)) {
2008    contents->append(bracketed ? ", " : " [");
2009    bracketed = true;
2010    contents->append(formatted_options);
2011  }
2012
2013  if (bracketed) {
2014    contents->append("]");
2015  }
2016
2017  if (type() == TYPE_GROUP) {
2018    message_type()->DebugString(depth, contents);
2019  } else {
2020    contents->append(";\n");
2021  }
2022}
2023
2024string OneofDescriptor::DebugString() const {
2025  string contents;
2026  DebugString(0, &contents);
2027  return contents;
2028}
2029
2030void OneofDescriptor::DebugString(int depth, string* contents) const {
2031  string prefix(depth * 2, ' ');
2032  ++depth;
2033  strings::SubstituteAndAppend(
2034      contents, "$0 oneof $1 {\n", prefix, name());
2035  for (int i = 0; i < field_count(); i++) {
2036    field(i)->DebugString(depth, FieldDescriptor::OMIT_LABEL, contents);
2037  }
2038  strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2039}
2040
2041string EnumDescriptor::DebugString() const {
2042  string contents;
2043  DebugString(0, &contents);
2044  return contents;
2045}
2046
2047void EnumDescriptor::DebugString(int depth, string *contents) const {
2048  string prefix(depth * 2, ' ');
2049  ++depth;
2050  strings::SubstituteAndAppend(contents, "$0enum $1 {\n",
2051                               prefix, name());
2052
2053  FormatLineOptions(depth, options(), contents);
2054
2055  for (int i = 0; i < value_count(); i++) {
2056    value(i)->DebugString(depth, contents);
2057  }
2058  strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2059}
2060
2061string EnumValueDescriptor::DebugString() const {
2062  string contents;
2063  DebugString(0, &contents);
2064  return contents;
2065}
2066
2067void EnumValueDescriptor::DebugString(int depth, string *contents) const {
2068  string prefix(depth * 2, ' ');
2069  strings::SubstituteAndAppend(contents, "$0$1 = $2",
2070                               prefix, name(), number());
2071
2072  string formatted_options;
2073  if (FormatBracketedOptions(depth, options(), &formatted_options)) {
2074    strings::SubstituteAndAppend(contents, " [$0]", formatted_options);
2075  }
2076  contents->append(";\n");
2077}
2078
2079string ServiceDescriptor::DebugString() const {
2080  string contents;
2081  DebugString(&contents);
2082  return contents;
2083}
2084
2085void ServiceDescriptor::DebugString(string *contents) const {
2086  strings::SubstituteAndAppend(contents, "service $0 {\n", name());
2087
2088  FormatLineOptions(1, options(), contents);
2089
2090  for (int i = 0; i < method_count(); i++) {
2091    method(i)->DebugString(1, contents);
2092  }
2093
2094  contents->append("}\n");
2095}
2096
2097string MethodDescriptor::DebugString() const {
2098  string contents;
2099  DebugString(0, &contents);
2100  return contents;
2101}
2102
2103void MethodDescriptor::DebugString(int depth, string *contents) const {
2104  string prefix(depth * 2, ' ');
2105  ++depth;
2106  strings::SubstituteAndAppend(contents, "$0rpc $1(.$2) returns (.$3)",
2107                               prefix, name(),
2108                               input_type()->full_name(),
2109                               output_type()->full_name());
2110
2111  string formatted_options;
2112  if (FormatLineOptions(depth, options(), &formatted_options)) {
2113    strings::SubstituteAndAppend(contents, " {\n$0$1}\n",
2114                                 formatted_options, prefix);
2115  } else {
2116    contents->append(";\n");
2117  }
2118}
2119
2120
2121// Location methods ===============================================
2122
2123bool FileDescriptor::GetSourceLocation(const vector<int>& path,
2124                                       SourceLocation* out_location) const {
2125  GOOGLE_CHECK_NOTNULL(out_location);
2126  if (source_code_info_) {
2127    if (const SourceCodeInfo_Location* loc =
2128        tables_->GetSourceLocation(path, source_code_info_)) {
2129      const RepeatedField<int32>& span = loc->span();
2130      if (span.size() == 3 || span.size() == 4) {
2131        out_location->start_line   = span.Get(0);
2132        out_location->start_column = span.Get(1);
2133        out_location->end_line     = span.Get(span.size() == 3 ? 0 : 2);
2134        out_location->end_column   = span.Get(span.size() - 1);
2135
2136        out_location->leading_comments = loc->leading_comments();
2137        out_location->trailing_comments = loc->trailing_comments();
2138        return true;
2139      }
2140    }
2141  }
2142  return false;
2143}
2144
2145bool FieldDescriptor::is_packed() const {
2146  return is_packable() && (options_ != NULL) && options_->packed();
2147}
2148
2149bool Descriptor::GetSourceLocation(SourceLocation* out_location) const {
2150  vector<int> path;
2151  GetLocationPath(&path);
2152  return file()->GetSourceLocation(path, out_location);
2153}
2154
2155bool FieldDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2156  vector<int> path;
2157  GetLocationPath(&path);
2158  return file()->GetSourceLocation(path, out_location);
2159}
2160
2161bool OneofDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2162  vector<int> path;
2163  GetLocationPath(&path);
2164  return containing_type()->file()->GetSourceLocation(path, out_location);
2165}
2166
2167bool EnumDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2168  vector<int> path;
2169  GetLocationPath(&path);
2170  return file()->GetSourceLocation(path, out_location);
2171}
2172
2173bool MethodDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2174  vector<int> path;
2175  GetLocationPath(&path);
2176  return service()->file()->GetSourceLocation(path, out_location);
2177}
2178
2179bool ServiceDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2180  vector<int> path;
2181  GetLocationPath(&path);
2182  return file()->GetSourceLocation(path, out_location);
2183}
2184
2185bool EnumValueDescriptor::GetSourceLocation(
2186    SourceLocation* out_location) const {
2187  vector<int> path;
2188  GetLocationPath(&path);
2189  return type()->file()->GetSourceLocation(path, out_location);
2190}
2191
2192void Descriptor::GetLocationPath(vector<int>* output) const {
2193  if (containing_type()) {
2194    containing_type()->GetLocationPath(output);
2195    output->push_back(DescriptorProto::kNestedTypeFieldNumber);
2196    output->push_back(index());
2197  } else {
2198    output->push_back(FileDescriptorProto::kMessageTypeFieldNumber);
2199    output->push_back(index());
2200  }
2201}
2202
2203void FieldDescriptor::GetLocationPath(vector<int>* output) const {
2204  if (is_extension()) {
2205    if (extension_scope() == NULL) {
2206      output->push_back(FileDescriptorProto::kExtensionFieldNumber);
2207      output->push_back(index());
2208    } else {
2209      extension_scope()->GetLocationPath(output);
2210      output->push_back(DescriptorProto::kExtensionFieldNumber);
2211      output->push_back(index());
2212    }
2213  } else {
2214    containing_type()->GetLocationPath(output);
2215    output->push_back(DescriptorProto::kFieldFieldNumber);
2216    output->push_back(index());
2217  }
2218}
2219
2220void OneofDescriptor::GetLocationPath(vector<int>* output) const {
2221  containing_type()->GetLocationPath(output);
2222  output->push_back(DescriptorProto::kOneofDeclFieldNumber);
2223  output->push_back(index());
2224}
2225
2226void EnumDescriptor::GetLocationPath(vector<int>* output) const {
2227  if (containing_type()) {
2228    containing_type()->GetLocationPath(output);
2229    output->push_back(DescriptorProto::kEnumTypeFieldNumber);
2230    output->push_back(index());
2231  } else {
2232    output->push_back(FileDescriptorProto::kEnumTypeFieldNumber);
2233    output->push_back(index());
2234  }
2235}
2236
2237void EnumValueDescriptor::GetLocationPath(vector<int>* output) const {
2238  type()->GetLocationPath(output);
2239  output->push_back(EnumDescriptorProto::kValueFieldNumber);
2240  output->push_back(index());
2241}
2242
2243void ServiceDescriptor::GetLocationPath(vector<int>* output) const {
2244  output->push_back(FileDescriptorProto::kServiceFieldNumber);
2245  output->push_back(index());
2246}
2247
2248void MethodDescriptor::GetLocationPath(vector<int>* output) const {
2249  service()->GetLocationPath(output);
2250  output->push_back(ServiceDescriptorProto::kMethodFieldNumber);
2251  output->push_back(index());
2252}
2253
2254// ===================================================================
2255
2256namespace {
2257
2258// Represents an options message to interpret. Extension names in the option
2259// name are respolved relative to name_scope. element_name and orig_opt are
2260// used only for error reporting (since the parser records locations against
2261// pointers in the original options, not the mutable copy). The Message must be
2262// one of the Options messages in descriptor.proto.
2263struct OptionsToInterpret {
2264  OptionsToInterpret(const string& ns,
2265                     const string& el,
2266                     const Message* orig_opt,
2267                     Message* opt)
2268      : name_scope(ns),
2269        element_name(el),
2270        original_options(orig_opt),
2271        options(opt) {
2272  }
2273  string name_scope;
2274  string element_name;
2275  const Message* original_options;
2276  Message* options;
2277};
2278
2279}  // namespace
2280
2281class DescriptorBuilder {
2282 public:
2283  DescriptorBuilder(const DescriptorPool* pool,
2284                    DescriptorPool::Tables* tables,
2285                    DescriptorPool::ErrorCollector* error_collector);
2286  ~DescriptorBuilder();
2287
2288  const FileDescriptor* BuildFile(const FileDescriptorProto& proto);
2289
2290 private:
2291  friend class OptionInterpreter;
2292
2293  const DescriptorPool* pool_;
2294  DescriptorPool::Tables* tables_;  // for convenience
2295  DescriptorPool::ErrorCollector* error_collector_;
2296
2297  // As we build descriptors we store copies of the options messages in
2298  // them. We put pointers to those copies in this vector, as we build, so we
2299  // can later (after cross-linking) interpret those options.
2300  vector<OptionsToInterpret> options_to_interpret_;
2301
2302  bool had_errors_;
2303  string filename_;
2304  FileDescriptor* file_;
2305  FileDescriptorTables* file_tables_;
2306  set<const FileDescriptor*> dependencies_;
2307
2308  // unused_dependency_ is used to record the unused imported files.
2309  // Note: public import is not considered.
2310  set<const FileDescriptor*> unused_dependency_;
2311
2312  // If LookupSymbol() finds a symbol that is in a file which is not a declared
2313  // dependency of this file, it will fail, but will set
2314  // possible_undeclared_dependency_ to point at that file.  This is only used
2315  // by AddNotDefinedError() to report a more useful error message.
2316  // possible_undeclared_dependency_name_ is the name of the symbol that was
2317  // actually found in possible_undeclared_dependency_, which may be a parent
2318  // of the symbol actually looked for.
2319  const FileDescriptor* possible_undeclared_dependency_;
2320  string possible_undeclared_dependency_name_;
2321
2322  // If LookupSymbol() could resolve a symbol which is not defined,
2323  // record the resolved name.  This is only used by AddNotDefinedError()
2324  // to report a more useful error message.
2325  string undefine_resolved_name_;
2326
2327  void AddError(const string& element_name,
2328                const Message& descriptor,
2329                DescriptorPool::ErrorCollector::ErrorLocation location,
2330                const string& error);
2331  void AddError(const string& element_name,
2332                const Message& descriptor,
2333                DescriptorPool::ErrorCollector::ErrorLocation location,
2334                const char* error);
2335  void AddRecursiveImportError(const FileDescriptorProto& proto, int from_here);
2336  void AddTwiceListedError(const FileDescriptorProto& proto, int index);
2337  void AddImportError(const FileDescriptorProto& proto, int index);
2338
2339  // Adds an error indicating that undefined_symbol was not defined.  Must
2340  // only be called after LookupSymbol() fails.
2341  void AddNotDefinedError(
2342    const string& element_name,
2343    const Message& descriptor,
2344    DescriptorPool::ErrorCollector::ErrorLocation location,
2345    const string& undefined_symbol);
2346
2347  void AddWarning(const string& element_name, const Message& descriptor,
2348                  DescriptorPool::ErrorCollector::ErrorLocation location,
2349                  const string& error);
2350
2351  // Silly helper which determines if the given file is in the given package.
2352  // I.e., either file->package() == package_name or file->package() is a
2353  // nested package within package_name.
2354  bool IsInPackage(const FileDescriptor* file, const string& package_name);
2355
2356  // Helper function which finds all public dependencies of the given file, and
2357  // stores the them in the dependencies_ set in the builder.
2358  void RecordPublicDependencies(const FileDescriptor* file);
2359
2360  // Like tables_->FindSymbol(), but additionally:
2361  // - Search the pool's underlay if not found in tables_.
2362  // - Insure that the resulting Symbol is from one of the file's declared
2363  //   dependencies.
2364  Symbol FindSymbol(const string& name);
2365
2366  // Like FindSymbol() but does not require that the symbol is in one of the
2367  // file's declared dependencies.
2368  Symbol FindSymbolNotEnforcingDeps(const string& name);
2369
2370  // This implements the body of FindSymbolNotEnforcingDeps().
2371  Symbol FindSymbolNotEnforcingDepsHelper(const DescriptorPool* pool,
2372                                          const string& name);
2373
2374  // Like FindSymbol(), but looks up the name relative to some other symbol
2375  // name.  This first searches siblings of relative_to, then siblings of its
2376  // parents, etc.  For example, LookupSymbol("foo.bar", "baz.qux.corge") makes
2377  // the following calls, returning the first non-null result:
2378  // FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"),
2379  // FindSymbol("foo.bar").  If AllowUnknownDependencies() has been called
2380  // on the DescriptorPool, this will generate a placeholder type if
2381  // the name is not found (unless the name itself is malformed).  The
2382  // placeholder_type parameter indicates what kind of placeholder should be
2383  // constructed in this case.  The resolve_mode parameter determines whether
2384  // any symbol is returned, or only symbols that are types.  Note, however,
2385  // that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode,
2386  // if it believes that's all it could refer to.  The caller should always
2387  // check that it receives the type of symbol it was expecting.
2388  enum PlaceholderType {
2389    PLACEHOLDER_MESSAGE,
2390    PLACEHOLDER_ENUM,
2391    PLACEHOLDER_EXTENDABLE_MESSAGE
2392  };
2393  enum ResolveMode {
2394    LOOKUP_ALL, LOOKUP_TYPES
2395  };
2396  Symbol LookupSymbol(const string& name, const string& relative_to,
2397                      PlaceholderType placeholder_type = PLACEHOLDER_MESSAGE,
2398                      ResolveMode resolve_mode = LOOKUP_ALL);
2399
2400  // Like LookupSymbol() but will not return a placeholder even if
2401  // AllowUnknownDependencies() has been used.
2402  Symbol LookupSymbolNoPlaceholder(const string& name,
2403                                   const string& relative_to,
2404                                   ResolveMode resolve_mode = LOOKUP_ALL);
2405
2406  // Creates a placeholder type suitable for return from LookupSymbol().  May
2407  // return kNullSymbol if the name is not a valid type name.
2408  Symbol NewPlaceholder(const string& name, PlaceholderType placeholder_type);
2409
2410  // Creates a placeholder file.  Never returns NULL.  This is used when an
2411  // import is not found and AllowUnknownDependencies() is enabled.
2412  const FileDescriptor* NewPlaceholderFile(const string& name);
2413
2414  // Calls tables_->AddSymbol() and records an error if it fails.  Returns
2415  // true if successful or false if failed, though most callers can ignore
2416  // the return value since an error has already been recorded.
2417  bool AddSymbol(const string& full_name,
2418                 const void* parent, const string& name,
2419                 const Message& proto, Symbol symbol);
2420
2421  // Like AddSymbol(), but succeeds if the symbol is already defined as long
2422  // as the existing definition is also a package (because it's OK to define
2423  // the same package in two different files).  Also adds all parents of the
2424  // packgae to the symbol table (e.g. AddPackage("foo.bar", ...) will add
2425  // "foo.bar" and "foo" to the table).
2426  void AddPackage(const string& name, const Message& proto,
2427                  const FileDescriptor* file);
2428
2429  // Checks that the symbol name contains only alphanumeric characters and
2430  // underscores.  Records an error otherwise.
2431  void ValidateSymbolName(const string& name, const string& full_name,
2432                          const Message& proto);
2433
2434  // Like ValidateSymbolName(), but the name is allowed to contain periods and
2435  // an error is indicated by returning false (not recording the error).
2436  bool ValidateQualifiedName(const string& name);
2437
2438  // Used by BUILD_ARRAY macro (below) to avoid having to have the type
2439  // specified as a macro parameter.
2440  template <typename Type>
2441  inline void AllocateArray(int size, Type** output) {
2442    *output = tables_->AllocateArray<Type>(size);
2443  }
2444
2445  // Allocates a copy of orig_options in tables_ and stores it in the
2446  // descriptor. Remembers its uninterpreted options, to be interpreted
2447  // later. DescriptorT must be one of the Descriptor messages from
2448  // descriptor.proto.
2449  template<class DescriptorT> void AllocateOptions(
2450      const typename DescriptorT::OptionsType& orig_options,
2451      DescriptorT* descriptor);
2452  // Specialization for FileOptions.
2453  void AllocateOptions(const FileOptions& orig_options,
2454                       FileDescriptor* descriptor);
2455
2456  // Implementation for AllocateOptions(). Don't call this directly.
2457  template<class DescriptorT> void AllocateOptionsImpl(
2458      const string& name_scope,
2459      const string& element_name,
2460      const typename DescriptorT::OptionsType& orig_options,
2461      DescriptorT* descriptor);
2462
2463  // These methods all have the same signature for the sake of the BUILD_ARRAY
2464  // macro, below.
2465  void BuildMessage(const DescriptorProto& proto,
2466                    const Descriptor* parent,
2467                    Descriptor* result);
2468  void BuildFieldOrExtension(const FieldDescriptorProto& proto,
2469                             const Descriptor* parent,
2470                             FieldDescriptor* result,
2471                             bool is_extension);
2472  void BuildField(const FieldDescriptorProto& proto,
2473                  const Descriptor* parent,
2474                  FieldDescriptor* result) {
2475    BuildFieldOrExtension(proto, parent, result, false);
2476  }
2477  void BuildExtension(const FieldDescriptorProto& proto,
2478                      const Descriptor* parent,
2479                      FieldDescriptor* result) {
2480    BuildFieldOrExtension(proto, parent, result, true);
2481  }
2482  void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto,
2483                           const Descriptor* parent,
2484                           Descriptor::ExtensionRange* result);
2485  void BuildOneof(const OneofDescriptorProto& proto,
2486                  Descriptor* parent,
2487                  OneofDescriptor* result);
2488  void BuildEnum(const EnumDescriptorProto& proto,
2489                 const Descriptor* parent,
2490                 EnumDescriptor* result);
2491  void BuildEnumValue(const EnumValueDescriptorProto& proto,
2492                      const EnumDescriptor* parent,
2493                      EnumValueDescriptor* result);
2494  void BuildService(const ServiceDescriptorProto& proto,
2495                    const void* dummy,
2496                    ServiceDescriptor* result);
2497  void BuildMethod(const MethodDescriptorProto& proto,
2498                   const ServiceDescriptor* parent,
2499                   MethodDescriptor* result);
2500
2501  void LogUnusedDependency(const FileDescriptor* result);
2502
2503  // Must be run only after building.
2504  //
2505  // NOTE: Options will not be available during cross-linking, as they
2506  // have not yet been interpreted. Defer any handling of options to the
2507  // Validate*Options methods.
2508  void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto);
2509  void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto);
2510  void CrossLinkField(FieldDescriptor* field,
2511                      const FieldDescriptorProto& proto);
2512  void CrossLinkEnum(EnumDescriptor* enum_type,
2513                     const EnumDescriptorProto& proto);
2514  void CrossLinkEnumValue(EnumValueDescriptor* enum_value,
2515                          const EnumValueDescriptorProto& proto);
2516  void CrossLinkService(ServiceDescriptor* service,
2517                        const ServiceDescriptorProto& proto);
2518  void CrossLinkMethod(MethodDescriptor* method,
2519                       const MethodDescriptorProto& proto);
2520
2521  // Must be run only after cross-linking.
2522  void InterpretOptions();
2523
2524  // A helper class for interpreting options.
2525  class OptionInterpreter {
2526   public:
2527    // Creates an interpreter that operates in the context of the pool of the
2528    // specified builder, which must not be NULL. We don't take ownership of the
2529    // builder.
2530    explicit OptionInterpreter(DescriptorBuilder* builder);
2531
2532    ~OptionInterpreter();
2533
2534    // Interprets the uninterpreted options in the specified Options message.
2535    // On error, calls AddError() on the underlying builder and returns false.
2536    // Otherwise returns true.
2537    bool InterpretOptions(OptionsToInterpret* options_to_interpret);
2538
2539    class AggregateOptionFinder;
2540
2541   private:
2542    // Interprets uninterpreted_option_ on the specified message, which
2543    // must be the mutable copy of the original options message to which
2544    // uninterpreted_option_ belongs.
2545    bool InterpretSingleOption(Message* options);
2546
2547    // Adds the uninterpreted_option to the given options message verbatim.
2548    // Used when AllowUnknownDependencies() is in effect and we can't find
2549    // the option's definition.
2550    void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option,
2551                                Message* options);
2552
2553    // A recursive helper function that drills into the intermediate fields
2554    // in unknown_fields to check if field innermost_field is set on the
2555    // innermost message. Returns false and sets an error if so.
2556    bool ExamineIfOptionIsSet(
2557        vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
2558        vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
2559        const FieldDescriptor* innermost_field, const string& debug_msg_name,
2560        const UnknownFieldSet& unknown_fields);
2561
2562    // Validates the value for the option field of the currently interpreted
2563    // option and then sets it on the unknown_field.
2564    bool SetOptionValue(const FieldDescriptor* option_field,
2565                        UnknownFieldSet* unknown_fields);
2566
2567    // Parses an aggregate value for a CPPTYPE_MESSAGE option and
2568    // saves it into *unknown_fields.
2569    bool SetAggregateOption(const FieldDescriptor* option_field,
2570                            UnknownFieldSet* unknown_fields);
2571
2572    // Convenience functions to set an int field the right way, depending on
2573    // its wire type (a single int CppType can represent multiple wire types).
2574    void SetInt32(int number, int32 value, FieldDescriptor::Type type,
2575                  UnknownFieldSet* unknown_fields);
2576    void SetInt64(int number, int64 value, FieldDescriptor::Type type,
2577                  UnknownFieldSet* unknown_fields);
2578    void SetUInt32(int number, uint32 value, FieldDescriptor::Type type,
2579                   UnknownFieldSet* unknown_fields);
2580    void SetUInt64(int number, uint64 value, FieldDescriptor::Type type,
2581                   UnknownFieldSet* unknown_fields);
2582
2583    // A helper function that adds an error at the specified location of the
2584    // option we're currently interpreting, and returns false.
2585    bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,
2586                        const string& msg) {
2587      builder_->AddError(options_to_interpret_->element_name,
2588                         *uninterpreted_option_, location, msg);
2589      return false;
2590    }
2591
2592    // A helper function that adds an error at the location of the option name
2593    // and returns false.
2594    bool AddNameError(const string& msg) {
2595      return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg);
2596    }
2597
2598    // A helper function that adds an error at the location of the option name
2599    // and returns false.
2600    bool AddValueError(const string& msg) {
2601      return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg);
2602    }
2603
2604    // We interpret against this builder's pool. Is never NULL. We don't own
2605    // this pointer.
2606    DescriptorBuilder* builder_;
2607
2608    // The options we're currently interpreting, or NULL if we're not in a call
2609    // to InterpretOptions.
2610    const OptionsToInterpret* options_to_interpret_;
2611
2612    // The option we're currently interpreting within options_to_interpret_, or
2613    // NULL if we're not in a call to InterpretOptions(). This points to a
2614    // submessage of the original option, not the mutable copy. Therefore we
2615    // can use it to find locations recorded by the parser.
2616    const UninterpretedOption* uninterpreted_option_;
2617
2618    // Factory used to create the dynamic messages we need to parse
2619    // any aggregate option values we encounter.
2620    DynamicMessageFactory dynamic_factory_;
2621
2622    GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter);
2623  };
2624
2625  // Work-around for broken compilers:  According to the C++ standard,
2626  // OptionInterpreter should have access to the private members of any class
2627  // which has declared DescriptorBuilder as a friend.  Unfortunately some old
2628  // versions of GCC and other compilers do not implement this correctly.  So,
2629  // we have to have these intermediate methods to provide access.  We also
2630  // redundantly declare OptionInterpreter a friend just to make things extra
2631  // clear for these bad compilers.
2632  friend class OptionInterpreter;
2633  friend class OptionInterpreter::AggregateOptionFinder;
2634
2635  static inline bool get_allow_unknown(const DescriptorPool* pool) {
2636    return pool->allow_unknown_;
2637  }
2638  static inline bool get_enforce_weak(const DescriptorPool* pool) {
2639    return pool->enforce_weak_;
2640  }
2641  static inline bool get_is_placeholder(const Descriptor* descriptor) {
2642    return descriptor->is_placeholder_;
2643  }
2644  static inline void assert_mutex_held(const DescriptorPool* pool) {
2645    if (pool->mutex_ != NULL) {
2646      pool->mutex_->AssertHeld();
2647    }
2648  }
2649
2650  // Must be run only after options have been interpreted.
2651  //
2652  // NOTE: Validation code must only reference the options in the mutable
2653  // descriptors, which are the ones that have been interpreted. The const
2654  // proto references are passed in only so they can be provided to calls to
2655  // AddError(). Do not look at their options, which have not been interpreted.
2656  void ValidateFileOptions(FileDescriptor* file,
2657                           const FileDescriptorProto& proto);
2658  void ValidateMessageOptions(Descriptor* message,
2659                              const DescriptorProto& proto);
2660  void ValidateFieldOptions(FieldDescriptor* field,
2661                            const FieldDescriptorProto& proto);
2662  void ValidateEnumOptions(EnumDescriptor* enm,
2663                           const EnumDescriptorProto& proto);
2664  void ValidateEnumValueOptions(EnumValueDescriptor* enum_value,
2665                                const EnumValueDescriptorProto& proto);
2666  void ValidateServiceOptions(ServiceDescriptor* service,
2667                              const ServiceDescriptorProto& proto);
2668  void ValidateMethodOptions(MethodDescriptor* method,
2669                             const MethodDescriptorProto& proto);
2670
2671  void ValidateMapKey(FieldDescriptor* field,
2672                      const FieldDescriptorProto& proto);
2673
2674};
2675
2676const FileDescriptor* DescriptorPool::BuildFile(
2677    const FileDescriptorProto& proto) {
2678  GOOGLE_CHECK(fallback_database_ == NULL)
2679    << "Cannot call BuildFile on a DescriptorPool that uses a "
2680       "DescriptorDatabase.  You must instead find a way to get your file "
2681       "into the underlying database.";
2682  GOOGLE_CHECK(mutex_ == NULL);   // Implied by the above GOOGLE_CHECK.
2683  tables_->known_bad_symbols_.clear();
2684  tables_->known_bad_files_.clear();
2685  return DescriptorBuilder(this, tables_.get(), NULL).BuildFile(proto);
2686}
2687
2688const FileDescriptor* DescriptorPool::BuildFileCollectingErrors(
2689    const FileDescriptorProto& proto,
2690    ErrorCollector* error_collector) {
2691  GOOGLE_CHECK(fallback_database_ == NULL)
2692    << "Cannot call BuildFile on a DescriptorPool that uses a "
2693       "DescriptorDatabase.  You must instead find a way to get your file "
2694       "into the underlying database.";
2695  GOOGLE_CHECK(mutex_ == NULL);   // Implied by the above GOOGLE_CHECK.
2696  tables_->known_bad_symbols_.clear();
2697  tables_->known_bad_files_.clear();
2698  return DescriptorBuilder(this, tables_.get(),
2699                           error_collector).BuildFile(proto);
2700}
2701
2702const FileDescriptor* DescriptorPool::BuildFileFromDatabase(
2703    const FileDescriptorProto& proto) const {
2704  mutex_->AssertHeld();
2705  if (tables_->known_bad_files_.count(proto.name()) > 0) {
2706    return NULL;
2707  }
2708  const FileDescriptor* result =
2709      DescriptorBuilder(this, tables_.get(),
2710                        default_error_collector_).BuildFile(proto);
2711  if (result == NULL) {
2712    tables_->known_bad_files_.insert(proto.name());
2713  }
2714  return result;
2715}
2716
2717DescriptorBuilder::DescriptorBuilder(
2718    const DescriptorPool* pool,
2719    DescriptorPool::Tables* tables,
2720    DescriptorPool::ErrorCollector* error_collector)
2721  : pool_(pool),
2722    tables_(tables),
2723    error_collector_(error_collector),
2724    had_errors_(false),
2725    possible_undeclared_dependency_(NULL),
2726    undefine_resolved_name_("") {}
2727
2728DescriptorBuilder::~DescriptorBuilder() {}
2729
2730void DescriptorBuilder::AddError(
2731    const string& element_name,
2732    const Message& descriptor,
2733    DescriptorPool::ErrorCollector::ErrorLocation location,
2734    const string& error) {
2735  if (error_collector_ == NULL) {
2736    if (!had_errors_) {
2737      GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_
2738                 << "\":";
2739    }
2740    GOOGLE_LOG(ERROR) << "  " << element_name << ": " << error;
2741  } else {
2742    error_collector_->AddError(filename_, element_name,
2743                               &descriptor, location, error);
2744  }
2745  had_errors_ = true;
2746}
2747
2748void DescriptorBuilder::AddError(
2749    const string& element_name,
2750    const Message& descriptor,
2751    DescriptorPool::ErrorCollector::ErrorLocation location,
2752    const char* error) {
2753  AddError(element_name, descriptor, location, string(error));
2754}
2755
2756void DescriptorBuilder::AddNotDefinedError(
2757    const string& element_name,
2758    const Message& descriptor,
2759    DescriptorPool::ErrorCollector::ErrorLocation location,
2760    const string& undefined_symbol) {
2761  if (possible_undeclared_dependency_ == NULL &&
2762      undefine_resolved_name_.empty()) {
2763    AddError(element_name, descriptor, location,
2764             "\"" + undefined_symbol + "\" is not defined.");
2765  } else {
2766    if (possible_undeclared_dependency_ != NULL) {
2767      AddError(element_name, descriptor, location,
2768               "\"" + possible_undeclared_dependency_name_ +
2769               "\" seems to be defined in \"" +
2770               possible_undeclared_dependency_->name() + "\", which is not "
2771               "imported by \"" + filename_ + "\".  To use it here, please "
2772               "add the necessary import.");
2773    }
2774    if (!undefine_resolved_name_.empty()) {
2775      AddError(element_name, descriptor, location,
2776               "\"" + undefined_symbol + "\" is resolved to \"" +
2777               undefine_resolved_name_ + "\", which is not defined. "
2778               "The innermost scope is searched first in name resolution. "
2779               "Consider using a leading '.'(i.e., \"."
2780               + undefined_symbol +
2781               "\") to start from the outermost scope.");
2782    }
2783  }
2784}
2785
2786void DescriptorBuilder::AddWarning(
2787    const string& element_name, const Message& descriptor,
2788    DescriptorPool::ErrorCollector::ErrorLocation location,
2789    const string& error) {
2790  if (error_collector_ == NULL) {
2791    GOOGLE_LOG(WARNING) << filename_ << " " << element_name << ": " << error;
2792  } else {
2793    error_collector_->AddWarning(filename_, element_name, &descriptor, location,
2794                                 error);
2795  }
2796}
2797
2798bool DescriptorBuilder::IsInPackage(const FileDescriptor* file,
2799                                    const string& package_name) {
2800  return HasPrefixString(file->package(), package_name) &&
2801           (file->package().size() == package_name.size() ||
2802            file->package()[package_name.size()] == '.');
2803}
2804
2805void DescriptorBuilder::RecordPublicDependencies(const FileDescriptor* file) {
2806  if (file == NULL || !dependencies_.insert(file).second) return;
2807  for (int i = 0; file != NULL && i < file->public_dependency_count(); i++) {
2808    RecordPublicDependencies(file->public_dependency(i));
2809  }
2810}
2811
2812Symbol DescriptorBuilder::FindSymbolNotEnforcingDepsHelper(
2813    const DescriptorPool* pool, const string& name) {
2814  // If we are looking at an underlay, we must lock its mutex_, since we are
2815  // accessing the underlay's tables_ directly.
2816  MutexLockMaybe lock((pool == pool_) ? NULL : pool->mutex_);
2817
2818  Symbol result = pool->tables_->FindSymbol(name);
2819  if (result.IsNull() && pool->underlay_ != NULL) {
2820    // Symbol not found; check the underlay.
2821    result = FindSymbolNotEnforcingDepsHelper(pool->underlay_, name);
2822  }
2823
2824  if (result.IsNull()) {
2825    // In theory, we shouldn't need to check fallback_database_ because the
2826    // symbol should be in one of its file's direct dependencies, and we have
2827    // already loaded those by the time we get here.  But we check anyway so
2828    // that we can generate better error message when dependencies are missing
2829    // (i.e., "missing dependency" rather than "type is not defined").
2830    if (pool->TryFindSymbolInFallbackDatabase(name)) {
2831      result = pool->tables_->FindSymbol(name);
2832    }
2833  }
2834
2835  return result;
2836}
2837
2838Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const string& name) {
2839  return FindSymbolNotEnforcingDepsHelper(pool_, name);
2840}
2841
2842Symbol DescriptorBuilder::FindSymbol(const string& name) {
2843  Symbol result = FindSymbolNotEnforcingDeps(name);
2844
2845  if (result.IsNull()) return result;
2846
2847  if (!pool_->enforce_dependencies_) {
2848    // Hack for CompilerUpgrader.
2849    return result;
2850  }
2851
2852  // Only find symbols which were defined in this file or one of its
2853  // dependencies.
2854  const FileDescriptor* file = result.GetFile();
2855  if (file == file_ || dependencies_.count(file) > 0) {
2856    unused_dependency_.erase(file);
2857    return result;
2858  }
2859
2860  if (result.type == Symbol::PACKAGE) {
2861    // Arg, this is overcomplicated.  The symbol is a package name.  It could
2862    // be that the package was defined in multiple files.  result.GetFile()
2863    // returns the first file we saw that used this package.  We've determined
2864    // that that file is not a direct dependency of the file we are currently
2865    // building, but it could be that some other file which *is* a direct
2866    // dependency also defines the same package.  We can't really rule out this
2867    // symbol unless none of the dependencies define it.
2868    if (IsInPackage(file_, name)) return result;
2869    for (set<const FileDescriptor*>::const_iterator it = dependencies_.begin();
2870         it != dependencies_.end(); ++it) {
2871      // Note:  A dependency may be NULL if it was not found or had errors.
2872      if (*it != NULL && IsInPackage(*it, name)) return result;
2873    }
2874  }
2875
2876  possible_undeclared_dependency_ = file;
2877  possible_undeclared_dependency_name_ = name;
2878  return kNullSymbol;
2879}
2880
2881Symbol DescriptorBuilder::LookupSymbolNoPlaceholder(
2882    const string& name, const string& relative_to, ResolveMode resolve_mode) {
2883  possible_undeclared_dependency_ = NULL;
2884  undefine_resolved_name_.clear();
2885
2886  if (name.size() > 0 && name[0] == '.') {
2887    // Fully-qualified name.
2888    return FindSymbol(name.substr(1));
2889  }
2890
2891  // If name is something like "Foo.Bar.baz", and symbols named "Foo" are
2892  // defined in multiple parent scopes, we only want to find "Bar.baz" in the
2893  // innermost one.  E.g., the following should produce an error:
2894  //   message Bar { message Baz {} }
2895  //   message Foo {
2896  //     message Bar {
2897  //     }
2898  //     optional Bar.Baz baz = 1;
2899  //   }
2900  // So, we look for just "Foo" first, then look for "Bar.baz" within it if
2901  // found.
2902  string::size_type name_dot_pos = name.find_first_of('.');
2903  string first_part_of_name;
2904  if (name_dot_pos == string::npos) {
2905    first_part_of_name = name;
2906  } else {
2907    first_part_of_name = name.substr(0, name_dot_pos);
2908  }
2909
2910  string scope_to_try(relative_to);
2911
2912  while (true) {
2913    // Chop off the last component of the scope.
2914    string::size_type dot_pos = scope_to_try.find_last_of('.');
2915    if (dot_pos == string::npos) {
2916      return FindSymbol(name);
2917    } else {
2918      scope_to_try.erase(dot_pos);
2919    }
2920
2921    // Append ".first_part_of_name" and try to find.
2922    string::size_type old_size = scope_to_try.size();
2923    scope_to_try.append(1, '.');
2924    scope_to_try.append(first_part_of_name);
2925    Symbol result = FindSymbol(scope_to_try);
2926    if (!result.IsNull()) {
2927      if (first_part_of_name.size() < name.size()) {
2928        // name is a compound symbol, of which we only found the first part.
2929        // Now try to look up the rest of it.
2930        if (result.IsAggregate()) {
2931          scope_to_try.append(name, first_part_of_name.size(),
2932                              name.size() - first_part_of_name.size());
2933          result = FindSymbol(scope_to_try);
2934          if (result.IsNull()) {
2935            undefine_resolved_name_ = scope_to_try;
2936          }
2937          return result;
2938        } else {
2939          // We found a symbol but it's not an aggregate.  Continue the loop.
2940        }
2941      } else {
2942        if (resolve_mode == LOOKUP_TYPES && !result.IsType()) {
2943          // We found a symbol but it's not a type.  Continue the loop.
2944        } else {
2945          return result;
2946        }
2947      }
2948    }
2949
2950    // Not found.  Remove the name so we can try again.
2951    scope_to_try.erase(old_size);
2952  }
2953}
2954
2955Symbol DescriptorBuilder::LookupSymbol(
2956    const string& name, const string& relative_to,
2957    PlaceholderType placeholder_type, ResolveMode resolve_mode) {
2958  Symbol result = LookupSymbolNoPlaceholder(
2959      name, relative_to, resolve_mode);
2960  if (result.IsNull() && pool_->allow_unknown_) {
2961    // Not found, but AllowUnknownDependencies() is enabled.  Return a
2962    // placeholder instead.
2963    result = NewPlaceholder(name, placeholder_type);
2964  }
2965  return result;
2966}
2967
2968Symbol DescriptorBuilder::NewPlaceholder(const string& name,
2969                                         PlaceholderType placeholder_type) {
2970  // Compute names.
2971  const string* placeholder_full_name;
2972  const string* placeholder_name;
2973  const string* placeholder_package;
2974
2975  if (!ValidateQualifiedName(name)) return kNullSymbol;
2976  if (name[0] == '.') {
2977    // Fully-qualified.
2978    placeholder_full_name = tables_->AllocateString(name.substr(1));
2979  } else {
2980    placeholder_full_name = tables_->AllocateString(name);
2981  }
2982
2983  string::size_type dotpos = placeholder_full_name->find_last_of('.');
2984  if (dotpos != string::npos) {
2985    placeholder_package = tables_->AllocateString(
2986      placeholder_full_name->substr(0, dotpos));
2987    placeholder_name = tables_->AllocateString(
2988      placeholder_full_name->substr(dotpos + 1));
2989  } else {
2990    placeholder_package = &internal::GetEmptyString();
2991    placeholder_name = placeholder_full_name;
2992  }
2993
2994  // Create the placeholders.
2995  FileDescriptor* placeholder_file = tables_->Allocate<FileDescriptor>();
2996  memset(placeholder_file, 0, sizeof(*placeholder_file));
2997
2998  placeholder_file->source_code_info_ = &SourceCodeInfo::default_instance();
2999
3000  placeholder_file->name_ =
3001    tables_->AllocateString(*placeholder_full_name + ".placeholder.proto");
3002  placeholder_file->package_ = placeholder_package;
3003  placeholder_file->pool_ = pool_;
3004  placeholder_file->options_ = &FileOptions::default_instance();
3005  placeholder_file->tables_ = &FileDescriptorTables::kEmpty;
3006  placeholder_file->is_placeholder_ = true;
3007  // All other fields are zero or NULL.
3008
3009  if (placeholder_type == PLACEHOLDER_ENUM) {
3010    placeholder_file->enum_type_count_ = 1;
3011    placeholder_file->enum_types_ =
3012      tables_->AllocateArray<EnumDescriptor>(1);
3013
3014    EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0];
3015    memset(placeholder_enum, 0, sizeof(*placeholder_enum));
3016
3017    placeholder_enum->full_name_ = placeholder_full_name;
3018    placeholder_enum->name_ = placeholder_name;
3019    placeholder_enum->file_ = placeholder_file;
3020    placeholder_enum->options_ = &EnumOptions::default_instance();
3021    placeholder_enum->is_placeholder_ = true;
3022    placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.');
3023
3024    // Enums must have at least one value.
3025    placeholder_enum->value_count_ = 1;
3026    placeholder_enum->values_ = tables_->AllocateArray<EnumValueDescriptor>(1);
3027
3028    EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0];
3029    memset(placeholder_value, 0, sizeof(*placeholder_value));
3030
3031    placeholder_value->name_ = tables_->AllocateString("PLACEHOLDER_VALUE");
3032    // Note that enum value names are siblings of their type, not children.
3033    placeholder_value->full_name_ =
3034      placeholder_package->empty() ? placeholder_value->name_ :
3035        tables_->AllocateString(*placeholder_package + ".PLACEHOLDER_VALUE");
3036
3037    placeholder_value->number_ = 0;
3038    placeholder_value->type_ = placeholder_enum;
3039    placeholder_value->options_ = &EnumValueOptions::default_instance();
3040
3041    return Symbol(placeholder_enum);
3042  } else {
3043    placeholder_file->message_type_count_ = 1;
3044    placeholder_file->message_types_ =
3045      tables_->AllocateArray<Descriptor>(1);
3046
3047    Descriptor* placeholder_message = &placeholder_file->message_types_[0];
3048    memset(placeholder_message, 0, sizeof(*placeholder_message));
3049
3050    placeholder_message->full_name_ = placeholder_full_name;
3051    placeholder_message->name_ = placeholder_name;
3052    placeholder_message->file_ = placeholder_file;
3053    placeholder_message->options_ = &MessageOptions::default_instance();
3054    placeholder_message->is_placeholder_ = true;
3055    placeholder_message->is_unqualified_placeholder_ = (name[0] != '.');
3056
3057    if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) {
3058      placeholder_message->extension_range_count_ = 1;
3059      placeholder_message->extension_ranges_ =
3060        tables_->AllocateArray<Descriptor::ExtensionRange>(1);
3061      placeholder_message->extension_ranges_->start = 1;
3062      // kMaxNumber + 1 because ExtensionRange::end is exclusive.
3063      placeholder_message->extension_ranges_->end =
3064        FieldDescriptor::kMaxNumber + 1;
3065    }
3066
3067    return Symbol(placeholder_message);
3068  }
3069}
3070
3071const FileDescriptor* DescriptorBuilder::NewPlaceholderFile(
3072    const string& name) {
3073  FileDescriptor* placeholder = tables_->Allocate<FileDescriptor>();
3074  memset(placeholder, 0, sizeof(*placeholder));
3075
3076  placeholder->name_ = tables_->AllocateString(name);
3077  placeholder->package_ = &internal::GetEmptyString();
3078  placeholder->pool_ = pool_;
3079  placeholder->options_ = &FileOptions::default_instance();
3080  placeholder->tables_ = &FileDescriptorTables::kEmpty;
3081  placeholder->is_placeholder_ = true;
3082  // All other fields are zero or NULL.
3083
3084  return placeholder;
3085}
3086
3087bool DescriptorBuilder::AddSymbol(
3088    const string& full_name, const void* parent, const string& name,
3089    const Message& proto, Symbol symbol) {
3090  // If the caller passed NULL for the parent, the symbol is at file scope.
3091  // Use its file as the parent instead.
3092  if (parent == NULL) parent = file_;
3093
3094  if (tables_->AddSymbol(full_name, symbol)) {
3095    if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) {
3096      GOOGLE_LOG(DFATAL) << "\"" << full_name << "\" not previously defined in "
3097                     "symbols_by_name_, but was defined in symbols_by_parent_; "
3098                     "this shouldn't be possible.";
3099      return false;
3100    }
3101    return true;
3102  } else {
3103    const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile();
3104    if (other_file == file_) {
3105      string::size_type dot_pos = full_name.find_last_of('.');
3106      if (dot_pos == string::npos) {
3107        AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3108                 "\"" + full_name + "\" is already defined.");
3109      } else {
3110        AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3111                 "\"" + full_name.substr(dot_pos + 1) +
3112                 "\" is already defined in \"" +
3113                 full_name.substr(0, dot_pos) + "\".");
3114      }
3115    } else {
3116      // Symbol seems to have been defined in a different file.
3117      AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3118               "\"" + full_name + "\" is already defined in file \"" +
3119               other_file->name() + "\".");
3120    }
3121    return false;
3122  }
3123}
3124
3125void DescriptorBuilder::AddPackage(
3126    const string& name, const Message& proto, const FileDescriptor* file) {
3127  if (tables_->AddSymbol(name, Symbol(file))) {
3128    // Success.  Also add parent package, if any.
3129    string::size_type dot_pos = name.find_last_of('.');
3130    if (dot_pos == string::npos) {
3131      // No parents.
3132      ValidateSymbolName(name, name, proto);
3133    } else {
3134      // Has parent.
3135      string* parent_name = tables_->AllocateString(name.substr(0, dot_pos));
3136      AddPackage(*parent_name, proto, file);
3137      ValidateSymbolName(name.substr(dot_pos + 1), name, proto);
3138    }
3139  } else {
3140    Symbol existing_symbol = tables_->FindSymbol(name);
3141    // It's OK to redefine a package.
3142    if (existing_symbol.type != Symbol::PACKAGE) {
3143      // Symbol seems to have been defined in a different file.
3144      AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
3145               "\"" + name + "\" is already defined (as something other than "
3146               "a package) in file \"" + existing_symbol.GetFile()->name() +
3147               "\".");
3148    }
3149  }
3150}
3151
3152void DescriptorBuilder::ValidateSymbolName(
3153    const string& name, const string& full_name, const Message& proto) {
3154  if (name.empty()) {
3155    AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3156             "Missing name.");
3157  } else {
3158    for (int i = 0; i < name.size(); i++) {
3159      // I don't trust isalnum() due to locales.  :(
3160      if ((name[i] < 'a' || 'z' < name[i]) &&
3161          (name[i] < 'A' || 'Z' < name[i]) &&
3162          (name[i] < '0' || '9' < name[i]) &&
3163          (name[i] != '_')) {
3164        AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3165                 "\"" + name + "\" is not a valid identifier.");
3166      }
3167    }
3168  }
3169}
3170
3171bool DescriptorBuilder::ValidateQualifiedName(const string& name) {
3172  bool last_was_period = false;
3173
3174  for (int i = 0; i < name.size(); i++) {
3175    // I don't trust isalnum() due to locales.  :(
3176    if (('a' <= name[i] && name[i] <= 'z') ||
3177        ('A' <= name[i] && name[i] <= 'Z') ||
3178        ('0' <= name[i] && name[i] <= '9') ||
3179        (name[i] == '_')) {
3180      last_was_period = false;
3181    } else if (name[i] == '.') {
3182      if (last_was_period) return false;
3183      last_was_period = true;
3184    } else {
3185      return false;
3186    }
3187  }
3188
3189  return !name.empty() && !last_was_period;
3190}
3191
3192// -------------------------------------------------------------------
3193
3194// This generic implementation is good for all descriptors except
3195// FileDescriptor.
3196template<class DescriptorT> void DescriptorBuilder::AllocateOptions(
3197    const typename DescriptorT::OptionsType& orig_options,
3198    DescriptorT* descriptor) {
3199  AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(),
3200                      orig_options, descriptor);
3201}
3202
3203// We specialize for FileDescriptor.
3204void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options,
3205                                        FileDescriptor* descriptor) {
3206  // We add the dummy token so that LookupSymbol does the right thing.
3207  AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(),
3208                      orig_options, descriptor);
3209}
3210
3211template<class DescriptorT> void DescriptorBuilder::AllocateOptionsImpl(
3212    const string& name_scope,
3213    const string& element_name,
3214    const typename DescriptorT::OptionsType& orig_options,
3215    DescriptorT* descriptor) {
3216  // We need to use a dummy pointer to work around a bug in older versions of
3217  // GCC.  Otherwise, the following two lines could be replaced with:
3218  //   typename DescriptorT::OptionsType* options =
3219  //       tables_->AllocateMessage<typename DescriptorT::OptionsType>();
3220  typename DescriptorT::OptionsType* const dummy = NULL;
3221  typename DescriptorT::OptionsType* options = tables_->AllocateMessage(dummy);
3222  // Avoid using MergeFrom()/CopyFrom() in this class to make it -fno-rtti
3223  // friendly. Without RTTI, MergeFrom() and CopyFrom() will fallback to the
3224  // reflection based method, which requires the Descriptor. However, we are in
3225  // the middle of building the descriptors, thus the deadlock.
3226  options->ParseFromString(orig_options.SerializeAsString());
3227  descriptor->options_ = options;
3228
3229  // Don't add to options_to_interpret_ unless there were uninterpreted
3230  // options.  This not only avoids unnecessary work, but prevents a
3231  // bootstrapping problem when building descriptors for descriptor.proto.
3232  // descriptor.proto does not contain any uninterpreted options, but
3233  // attempting to interpret options anyway will cause
3234  // OptionsType::GetDescriptor() to be called which may then deadlock since
3235  // we're still trying to build it.
3236  if (options->uninterpreted_option_size() > 0) {
3237    options_to_interpret_.push_back(
3238        OptionsToInterpret(name_scope, element_name, &orig_options, options));
3239  }
3240}
3241
3242
3243// A common pattern:  We want to convert a repeated field in the descriptor
3244// to an array of values, calling some method to build each value.
3245#define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT)             \
3246  OUTPUT->NAME##_count_ = INPUT.NAME##_size();                       \
3247  AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_);             \
3248  for (int i = 0; i < INPUT.NAME##_size(); i++) {                    \
3249    METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i);             \
3250  }
3251
3252void DescriptorBuilder::AddRecursiveImportError(
3253    const FileDescriptorProto& proto, int from_here) {
3254  string error_message("File recursively imports itself: ");
3255  for (int i = from_here; i < tables_->pending_files_.size(); i++) {
3256    error_message.append(tables_->pending_files_[i]);
3257    error_message.append(" -> ");
3258  }
3259  error_message.append(proto.name());
3260
3261  AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3262           error_message);
3263}
3264
3265void DescriptorBuilder::AddTwiceListedError(const FileDescriptorProto& proto,
3266                                            int index) {
3267  AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3268           "Import \"" + proto.dependency(index) + "\" was listed twice.");
3269}
3270
3271void DescriptorBuilder::AddImportError(const FileDescriptorProto& proto,
3272                                       int index) {
3273  string message;
3274  if (pool_->fallback_database_ == NULL) {
3275    message = "Import \"" + proto.dependency(index) +
3276              "\" has not been loaded.";
3277  } else {
3278    message = "Import \"" + proto.dependency(index) +
3279              "\" was not found or had errors.";
3280  }
3281  AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, message);
3282}
3283
3284static bool ExistingFileMatchesProto(const FileDescriptor* existing_file,
3285                                     const FileDescriptorProto& proto) {
3286  FileDescriptorProto existing_proto;
3287  existing_file->CopyTo(&existing_proto);
3288  return existing_proto.SerializeAsString() == proto.SerializeAsString();
3289}
3290
3291const FileDescriptor* DescriptorBuilder::BuildFile(
3292    const FileDescriptorProto& proto) {
3293  filename_ = proto.name();
3294
3295  // Check if the file already exists and is identical to the one being built.
3296  // Note:  This only works if the input is canonical -- that is, it
3297  //   fully-qualifies all type names, has no UninterpretedOptions, etc.
3298  //   This is fine, because this idempotency "feature" really only exists to
3299  //   accomodate one hack in the proto1->proto2 migration layer.
3300  const FileDescriptor* existing_file = tables_->FindFile(filename_);
3301  if (existing_file != NULL) {
3302    // File already in pool.  Compare the existing one to the input.
3303    if (ExistingFileMatchesProto(existing_file, proto)) {
3304      // They're identical.  Return the existing descriptor.
3305      return existing_file;
3306    }
3307
3308    // Not a match.  The error will be detected and handled later.
3309  }
3310
3311  // Check to see if this file is already on the pending files list.
3312  // TODO(kenton):  Allow recursive imports?  It may not work with some
3313  //   (most?) programming languages.  E.g., in C++, a forward declaration
3314  //   of a type is not sufficient to allow it to be used even in a
3315  //   generated header file due to inlining.  This could perhaps be
3316  //   worked around using tricks involving inserting #include statements
3317  //   mid-file, but that's pretty ugly, and I'm pretty sure there are
3318  //   some languages out there that do not allow recursive dependencies
3319  //   at all.
3320  for (int i = 0; i < tables_->pending_files_.size(); i++) {
3321    if (tables_->pending_files_[i] == proto.name()) {
3322      AddRecursiveImportError(proto, i);
3323      return NULL;
3324    }
3325  }
3326
3327  // If we have a fallback_database_, attempt to load all dependencies now,
3328  // before checkpointing tables_.  This avoids confusion with recursive
3329  // checkpoints.
3330  if (pool_->fallback_database_ != NULL) {
3331    tables_->pending_files_.push_back(proto.name());
3332    for (int i = 0; i < proto.dependency_size(); i++) {
3333      if (tables_->FindFile(proto.dependency(i)) == NULL &&
3334          (pool_->underlay_ == NULL ||
3335           pool_->underlay_->FindFileByName(proto.dependency(i)) == NULL)) {
3336        // We don't care what this returns since we'll find out below anyway.
3337        pool_->TryFindFileInFallbackDatabase(proto.dependency(i));
3338      }
3339    }
3340    tables_->pending_files_.pop_back();
3341  }
3342
3343  // Checkpoint the tables so that we can roll back if something goes wrong.
3344  tables_->AddCheckpoint();
3345
3346  FileDescriptor* result = tables_->Allocate<FileDescriptor>();
3347  file_ = result;
3348
3349  result->is_placeholder_ = false;
3350  if (proto.has_source_code_info()) {
3351    SourceCodeInfo *info = tables_->AllocateMessage<SourceCodeInfo>();
3352    info->CopyFrom(proto.source_code_info());
3353    result->source_code_info_ = info;
3354  } else {
3355    result->source_code_info_ = &SourceCodeInfo::default_instance();
3356  }
3357
3358  file_tables_ = tables_->AllocateFileTables();
3359  file_->tables_ = file_tables_;
3360
3361  if (!proto.has_name()) {
3362    AddError("", proto, DescriptorPool::ErrorCollector::OTHER,
3363             "Missing field: FileDescriptorProto.name.");
3364  }
3365
3366  result->name_ = tables_->AllocateString(proto.name());
3367  if (proto.has_package()) {
3368    result->package_ = tables_->AllocateString(proto.package());
3369  } else {
3370    // We cannot rely on proto.package() returning a valid string if
3371    // proto.has_package() is false, because we might be running at static
3372    // initialization time, in which case default values have not yet been
3373    // initialized.
3374    result->package_ = tables_->AllocateString("");
3375  }
3376  result->pool_ = pool_;
3377
3378  // Add to tables.
3379  if (!tables_->AddFile(result)) {
3380    AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3381             "A file with this name is already in the pool.");
3382    // Bail out early so that if this is actually the exact same file, we
3383    // don't end up reporting that every single symbol is already defined.
3384    tables_->RollbackToLastCheckpoint();
3385    return NULL;
3386  }
3387  if (!result->package().empty()) {
3388    AddPackage(result->package(), proto, result);
3389  }
3390
3391  // Make sure all dependencies are loaded.
3392  set<string> seen_dependencies;
3393  result->dependency_count_ = proto.dependency_size();
3394  result->dependencies_ =
3395    tables_->AllocateArray<const FileDescriptor*>(proto.dependency_size());
3396  unused_dependency_.clear();
3397  set<int> weak_deps;
3398  for (int i = 0; i < proto.weak_dependency_size(); ++i) {
3399    weak_deps.insert(proto.weak_dependency(i));
3400  }
3401  for (int i = 0; i < proto.dependency_size(); i++) {
3402    if (!seen_dependencies.insert(proto.dependency(i)).second) {
3403      AddTwiceListedError(proto, i);
3404    }
3405
3406    const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i));
3407    if (dependency == NULL && pool_->underlay_ != NULL) {
3408      dependency = pool_->underlay_->FindFileByName(proto.dependency(i));
3409    }
3410
3411    if (dependency == NULL) {
3412      if (pool_->allow_unknown_ ||
3413          (!pool_->enforce_weak_ && weak_deps.find(i) != weak_deps.end())) {
3414        dependency = NewPlaceholderFile(proto.dependency(i));
3415      } else {
3416        AddImportError(proto, i);
3417      }
3418    } else {
3419      // Add to unused_dependency_ to track unused imported files.
3420      // Note: do not track unused imported files for public import.
3421      if (pool_->enforce_dependencies_ &&
3422          (pool_->unused_import_track_files_.find(proto.name()) !=
3423           pool_->unused_import_track_files_.end()) &&
3424          (dependency->public_dependency_count() == 0)) {
3425        unused_dependency_.insert(dependency);
3426      }
3427    }
3428
3429    result->dependencies_[i] = dependency;
3430  }
3431
3432  // Check public dependencies.
3433  int public_dependency_count = 0;
3434  result->public_dependencies_ = tables_->AllocateArray<int>(
3435      proto.public_dependency_size());
3436  for (int i = 0; i < proto.public_dependency_size(); i++) {
3437    // Only put valid public dependency indexes.
3438    int index = proto.public_dependency(i);
3439    if (index >= 0 && index < proto.dependency_size()) {
3440      result->public_dependencies_[public_dependency_count++] = index;
3441      // Do not track unused imported files for public import.
3442      unused_dependency_.erase(result->dependency(index));
3443    } else {
3444      AddError(proto.name(), proto,
3445               DescriptorPool::ErrorCollector::OTHER,
3446               "Invalid public dependency index.");
3447    }
3448  }
3449  result->public_dependency_count_ = public_dependency_count;
3450
3451  // Build dependency set
3452  dependencies_.clear();
3453  for (int i = 0; i < result->dependency_count(); i++) {
3454    RecordPublicDependencies(result->dependency(i));
3455  }
3456
3457  // Check weak dependencies.
3458  int weak_dependency_count = 0;
3459  result->weak_dependencies_ = tables_->AllocateArray<int>(
3460      proto.weak_dependency_size());
3461  for (int i = 0; i < proto.weak_dependency_size(); i++) {
3462    int index = proto.weak_dependency(i);
3463    if (index >= 0 && index < proto.dependency_size()) {
3464      result->weak_dependencies_[weak_dependency_count++] = index;
3465    } else {
3466      AddError(proto.name(), proto,
3467               DescriptorPool::ErrorCollector::OTHER,
3468               "Invalid weak dependency index.");
3469    }
3470  }
3471  result->weak_dependency_count_ = weak_dependency_count;
3472
3473  // Convert children.
3474  BUILD_ARRAY(proto, result, message_type, BuildMessage  , NULL);
3475  BUILD_ARRAY(proto, result, enum_type   , BuildEnum     , NULL);
3476  BUILD_ARRAY(proto, result, service     , BuildService  , NULL);
3477  BUILD_ARRAY(proto, result, extension   , BuildExtension, NULL);
3478
3479  // Copy options.
3480  if (!proto.has_options()) {
3481    result->options_ = NULL;  // Will set to default_instance later.
3482  } else {
3483    AllocateOptions(proto.options(), result);
3484  }
3485
3486  // Note that the following steps must occur in exactly the specified order.
3487
3488  // Cross-link.
3489  CrossLinkFile(result, proto);
3490
3491  // Interpret any remaining uninterpreted options gathered into
3492  // options_to_interpret_ during descriptor building.  Cross-linking has made
3493  // extension options known, so all interpretations should now succeed.
3494  if (!had_errors_) {
3495    OptionInterpreter option_interpreter(this);
3496    for (vector<OptionsToInterpret>::iterator iter =
3497             options_to_interpret_.begin();
3498         iter != options_to_interpret_.end(); ++iter) {
3499      option_interpreter.InterpretOptions(&(*iter));
3500    }
3501    options_to_interpret_.clear();
3502  }
3503
3504  // Validate options.
3505  if (!had_errors_) {
3506    ValidateFileOptions(result, proto);
3507  }
3508
3509
3510  if (!unused_dependency_.empty()) {
3511    LogUnusedDependency(result);
3512  }
3513
3514  if (had_errors_) {
3515    tables_->RollbackToLastCheckpoint();
3516    return NULL;
3517  } else {
3518    tables_->ClearLastCheckpoint();
3519    return result;
3520  }
3521}
3522
3523void DescriptorBuilder::BuildMessage(const DescriptorProto& proto,
3524                                     const Descriptor* parent,
3525                                     Descriptor* result) {
3526  const string& scope = (parent == NULL) ?
3527    file_->package() : parent->full_name();
3528  string* full_name = tables_->AllocateString(scope);
3529  if (!full_name->empty()) full_name->append(1, '.');
3530  full_name->append(proto.name());
3531
3532  ValidateSymbolName(proto.name(), *full_name, proto);
3533
3534  result->name_            = tables_->AllocateString(proto.name());
3535  result->full_name_       = full_name;
3536  result->file_            = file_;
3537  result->containing_type_ = parent;
3538  result->is_placeholder_  = false;
3539  result->is_unqualified_placeholder_ = false;
3540
3541  // Build oneofs first so that fields and extension ranges can refer to them.
3542  BUILD_ARRAY(proto, result, oneof_decl     , BuildOneof         , result);
3543  BUILD_ARRAY(proto, result, field          , BuildField         , result);
3544  BUILD_ARRAY(proto, result, nested_type    , BuildMessage       , result);
3545  BUILD_ARRAY(proto, result, enum_type      , BuildEnum          , result);
3546  BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result);
3547  BUILD_ARRAY(proto, result, extension      , BuildExtension     , result);
3548
3549  // Copy options.
3550  if (!proto.has_options()) {
3551    result->options_ = NULL;  // Will set to default_instance later.
3552  } else {
3553    AllocateOptions(proto.options(), result);
3554  }
3555
3556  AddSymbol(result->full_name(), parent, result->name(),
3557            proto, Symbol(result));
3558
3559  // Check that no fields have numbers in extension ranges.
3560  for (int i = 0; i < result->field_count(); i++) {
3561    const FieldDescriptor* field = result->field(i);
3562    for (int j = 0; j < result->extension_range_count(); j++) {
3563      const Descriptor::ExtensionRange* range = result->extension_range(j);
3564      if (range->start <= field->number() && field->number() < range->end) {
3565        AddError(field->full_name(), proto.extension_range(j),
3566                 DescriptorPool::ErrorCollector::NUMBER,
3567                 strings::Substitute(
3568                   "Extension range $0 to $1 includes field \"$2\" ($3).",
3569                   range->start, range->end - 1,
3570                   field->name(), field->number()));
3571      }
3572    }
3573  }
3574
3575  // Check that extension ranges don't overlap.
3576  for (int i = 0; i < result->extension_range_count(); i++) {
3577    const Descriptor::ExtensionRange* range1 = result->extension_range(i);
3578    for (int j = i + 1; j < result->extension_range_count(); j++) {
3579      const Descriptor::ExtensionRange* range2 = result->extension_range(j);
3580      if (range1->end > range2->start && range2->end > range1->start) {
3581        AddError(result->full_name(), proto.extension_range(j),
3582                 DescriptorPool::ErrorCollector::NUMBER,
3583                 strings::Substitute("Extension range $0 to $1 overlaps with "
3584                                     "already-defined range $2 to $3.",
3585                                     range2->start, range2->end - 1,
3586                                     range1->start, range1->end - 1));
3587      }
3588    }
3589  }
3590}
3591
3592void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto,
3593                                              const Descriptor* parent,
3594                                              FieldDescriptor* result,
3595                                              bool is_extension) {
3596  const string& scope = (parent == NULL) ?
3597    file_->package() : parent->full_name();
3598  string* full_name = tables_->AllocateString(scope);
3599  if (!full_name->empty()) full_name->append(1, '.');
3600  full_name->append(proto.name());
3601
3602  ValidateSymbolName(proto.name(), *full_name, proto);
3603
3604  result->name_         = tables_->AllocateString(proto.name());
3605  result->full_name_    = full_name;
3606  result->file_         = file_;
3607  result->number_       = proto.number();
3608  result->is_extension_ = is_extension;
3609
3610  // If .proto files follow the style guide then the name should already be
3611  // lower-cased.  If that's the case we can just reuse the string we already
3612  // allocated rather than allocate a new one.
3613  string lowercase_name(proto.name());
3614  LowerString(&lowercase_name);
3615  if (lowercase_name == proto.name()) {
3616    result->lowercase_name_ = result->name_;
3617  } else {
3618    result->lowercase_name_ = tables_->AllocateString(lowercase_name);
3619  }
3620
3621  // Don't bother with the above optimization for camel-case names since
3622  // .proto files that follow the guide shouldn't be using names in this
3623  // format, so the optimization wouldn't help much.
3624  result->camelcase_name_ = tables_->AllocateString(ToCamelCase(proto.name()));
3625
3626  // Some compilers do not allow static_cast directly between two enum types,
3627  // so we must cast to int first.
3628  result->type_  = static_cast<FieldDescriptor::Type>(
3629                     implicit_cast<int>(proto.type()));
3630  result->label_ = static_cast<FieldDescriptor::Label>(
3631                     implicit_cast<int>(proto.label()));
3632
3633  // An extension cannot have a required field (b/13365836).
3634  if (result->is_extension_ &&
3635      result->label_ == FieldDescriptor::LABEL_REQUIRED) {
3636    AddError(result->full_name(), proto,
3637             // Error location `TYPE`: we would really like to indicate
3638             // `LABEL`, but the `ErrorLocation` enum has no entry for this, and
3639             // we don't necessarily know about all implementations of the
3640             // `ErrorCollector` interface to extend them to handle the new
3641             // error location type properly.
3642             DescriptorPool::ErrorCollector::TYPE,
3643             "Message extensions cannot have required fields.");
3644  }
3645
3646  // Some of these may be filled in when cross-linking.
3647  result->containing_type_ = NULL;
3648  result->extension_scope_ = NULL;
3649  result->experimental_map_key_ = NULL;
3650  result->message_type_ = NULL;
3651  result->enum_type_ = NULL;
3652
3653  result->has_default_value_ = proto.has_default_value();
3654  if (proto.has_default_value() && result->is_repeated()) {
3655    AddError(result->full_name(), proto,
3656             DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3657             "Repeated fields can't have default values.");
3658  }
3659
3660  if (proto.has_type()) {
3661    if (proto.has_default_value()) {
3662      char* end_pos = NULL;
3663      switch (result->cpp_type()) {
3664        case FieldDescriptor::CPPTYPE_INT32:
3665          result->default_value_int32_ =
3666            strtol(proto.default_value().c_str(), &end_pos, 0);
3667          break;
3668        case FieldDescriptor::CPPTYPE_INT64:
3669          result->default_value_int64_ =
3670            strto64(proto.default_value().c_str(), &end_pos, 0);
3671          break;
3672        case FieldDescriptor::CPPTYPE_UINT32:
3673          result->default_value_uint32_ =
3674            strtoul(proto.default_value().c_str(), &end_pos, 0);
3675          break;
3676        case FieldDescriptor::CPPTYPE_UINT64:
3677          result->default_value_uint64_ =
3678            strtou64(proto.default_value().c_str(), &end_pos, 0);
3679          break;
3680        case FieldDescriptor::CPPTYPE_FLOAT:
3681          if (proto.default_value() == "inf") {
3682            result->default_value_float_ = numeric_limits<float>::infinity();
3683          } else if (proto.default_value() == "-inf") {
3684            result->default_value_float_ = -numeric_limits<float>::infinity();
3685          } else if (proto.default_value() == "nan") {
3686            result->default_value_float_ = numeric_limits<float>::quiet_NaN();
3687          } else  {
3688            result->default_value_float_ =
3689              io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
3690          }
3691          break;
3692        case FieldDescriptor::CPPTYPE_DOUBLE:
3693          if (proto.default_value() == "inf") {
3694            result->default_value_double_ = numeric_limits<double>::infinity();
3695          } else if (proto.default_value() == "-inf") {
3696            result->default_value_double_ = -numeric_limits<double>::infinity();
3697          } else if (proto.default_value() == "nan") {
3698            result->default_value_double_ = numeric_limits<double>::quiet_NaN();
3699          } else  {
3700            result->default_value_double_ =
3701                io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
3702          }
3703          break;
3704        case FieldDescriptor::CPPTYPE_BOOL:
3705          if (proto.default_value() == "true") {
3706            result->default_value_bool_ = true;
3707          } else if (proto.default_value() == "false") {
3708            result->default_value_bool_ = false;
3709          } else {
3710            AddError(result->full_name(), proto,
3711                     DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3712                     "Boolean default must be true or false.");
3713          }
3714          break;
3715        case FieldDescriptor::CPPTYPE_ENUM:
3716          // This will be filled in when cross-linking.
3717          result->default_value_enum_ = NULL;
3718          break;
3719        case FieldDescriptor::CPPTYPE_STRING:
3720          if (result->type() == FieldDescriptor::TYPE_BYTES) {
3721            result->default_value_string_ = tables_->AllocateString(
3722              UnescapeCEscapeString(proto.default_value()));
3723          } else {
3724            result->default_value_string_ =
3725                tables_->AllocateString(proto.default_value());
3726          }
3727          break;
3728        case FieldDescriptor::CPPTYPE_MESSAGE:
3729          AddError(result->full_name(), proto,
3730                   DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3731                   "Messages can't have default values.");
3732          result->has_default_value_ = false;
3733          break;
3734      }
3735
3736      if (end_pos != NULL) {
3737        // end_pos is only set non-NULL by the parsers for numeric types, above.
3738        // This checks that the default was non-empty and had no extra junk
3739        // after the end of the number.
3740        if (proto.default_value().empty() || *end_pos != '\0') {
3741          AddError(result->full_name(), proto,
3742                   DescriptorPool::ErrorCollector::DEFAULT_VALUE,
3743                   "Couldn't parse default value \"" + proto.default_value() +
3744                   "\".");
3745        }
3746      }
3747    } else {
3748      // No explicit default value
3749      switch (result->cpp_type()) {
3750        case FieldDescriptor::CPPTYPE_INT32:
3751          result->default_value_int32_ = 0;
3752          break;
3753        case FieldDescriptor::CPPTYPE_INT64:
3754          result->default_value_int64_ = 0;
3755          break;
3756        case FieldDescriptor::CPPTYPE_UINT32:
3757          result->default_value_uint32_ = 0;
3758          break;
3759        case FieldDescriptor::CPPTYPE_UINT64:
3760          result->default_value_uint64_ = 0;
3761          break;
3762        case FieldDescriptor::CPPTYPE_FLOAT:
3763          result->default_value_float_ = 0.0f;
3764          break;
3765        case FieldDescriptor::CPPTYPE_DOUBLE:
3766          result->default_value_double_ = 0.0;
3767          break;
3768        case FieldDescriptor::CPPTYPE_BOOL:
3769          result->default_value_bool_ = false;
3770          break;
3771        case FieldDescriptor::CPPTYPE_ENUM:
3772          // This will be filled in when cross-linking.
3773          result->default_value_enum_ = NULL;
3774          break;
3775        case FieldDescriptor::CPPTYPE_STRING:
3776          result->default_value_string_ = &internal::GetEmptyString();
3777          break;
3778        case FieldDescriptor::CPPTYPE_MESSAGE:
3779          break;
3780      }
3781    }
3782  }
3783
3784  if (result->number() <= 0) {
3785    AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3786             "Field numbers must be positive integers.");
3787  } else if (!is_extension && result->number() > FieldDescriptor::kMaxNumber) {
3788    // Only validate that the number is within the valid field range if it is
3789    // not an extension. Since extension numbers are validated with the
3790    // extendee's valid set of extension numbers, and those are in turn
3791    // validated against the max allowed number, the check is unnecessary for
3792    // extension fields.
3793    // This avoids cross-linking issues that arise when attempting to check if
3794    // the extendee is a message_set_wire_format message, which has a higher max
3795    // on extension numbers.
3796    AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3797             strings::Substitute("Field numbers cannot be greater than $0.",
3798                                 FieldDescriptor::kMaxNumber));
3799  } else if (result->number() >= FieldDescriptor::kFirstReservedNumber &&
3800             result->number() <= FieldDescriptor::kLastReservedNumber) {
3801    AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
3802             strings::Substitute(
3803               "Field numbers $0 through $1 are reserved for the protocol "
3804               "buffer library implementation.",
3805               FieldDescriptor::kFirstReservedNumber,
3806               FieldDescriptor::kLastReservedNumber));
3807  }
3808
3809  if (is_extension) {
3810    if (!proto.has_extendee()) {
3811      AddError(result->full_name(), proto,
3812               DescriptorPool::ErrorCollector::EXTENDEE,
3813               "FieldDescriptorProto.extendee not set for extension field.");
3814    }
3815
3816    result->extension_scope_ = parent;
3817
3818    if (proto.has_oneof_index()) {
3819      AddError(result->full_name(), proto,
3820               DescriptorPool::ErrorCollector::OTHER,
3821               "FieldDescriptorProto.oneof_index should not be set for "
3822               "extensions.");
3823    }
3824
3825    // Fill in later (maybe).
3826    result->containing_oneof_ = NULL;
3827  } else {
3828    if (proto.has_extendee()) {
3829      AddError(result->full_name(), proto,
3830               DescriptorPool::ErrorCollector::EXTENDEE,
3831               "FieldDescriptorProto.extendee set for non-extension field.");
3832    }
3833
3834    result->containing_type_ = parent;
3835
3836    if (proto.has_oneof_index()) {
3837      if (proto.oneof_index() < 0 ||
3838          proto.oneof_index() >= parent->oneof_decl_count()) {
3839        AddError(result->full_name(), proto,
3840                 DescriptorPool::ErrorCollector::OTHER,
3841                 strings::Substitute("FieldDescriptorProto.oneof_index $0 is "
3842                                     "out of range for type \"$1\".",
3843                                     proto.oneof_index(),
3844                                     parent->name()));
3845        result->containing_oneof_ = NULL;
3846      } else {
3847        result->containing_oneof_ = parent->oneof_decl(proto.oneof_index());
3848      }
3849    } else {
3850      result->containing_oneof_ = NULL;
3851    }
3852  }
3853
3854  // Copy options.
3855  if (!proto.has_options()) {
3856    result->options_ = NULL;  // Will set to default_instance later.
3857  } else {
3858    AllocateOptions(proto.options(), result);
3859  }
3860
3861  AddSymbol(result->full_name(), parent, result->name(),
3862            proto, Symbol(result));
3863}
3864
3865void DescriptorBuilder::BuildExtensionRange(
3866    const DescriptorProto::ExtensionRange& proto,
3867    const Descriptor* parent,
3868    Descriptor::ExtensionRange* result) {
3869  result->start = proto.start();
3870  result->end = proto.end();
3871  if (result->start <= 0) {
3872    AddError(parent->full_name(), proto,
3873             DescriptorPool::ErrorCollector::NUMBER,
3874             "Extension numbers must be positive integers.");
3875  }
3876
3877  // Checking of the upper bound of the extension range is deferred until after
3878  // options interpreting. This allows messages with message_set_wire_format to
3879  // have extensions beyond FieldDescriptor::kMaxNumber, since the extension
3880  // numbers are actually used as int32s in the message_set_wire_format.
3881
3882  if (result->start >= result->end) {
3883    AddError(parent->full_name(), proto,
3884             DescriptorPool::ErrorCollector::NUMBER,
3885             "Extension range end number must be greater than start number.");
3886  }
3887}
3888
3889void DescriptorBuilder::BuildOneof(const OneofDescriptorProto& proto,
3890                                   Descriptor* parent,
3891                                   OneofDescriptor* result) {
3892  string* full_name = tables_->AllocateString(parent->full_name());
3893  full_name->append(1, '.');
3894  full_name->append(proto.name());
3895
3896  ValidateSymbolName(proto.name(), *full_name, proto);
3897
3898  result->name_ = tables_->AllocateString(proto.name());
3899  result->full_name_ = full_name;
3900
3901  result->containing_type_ = parent;
3902
3903  // We need to fill these in later.
3904  result->field_count_ = 0;
3905  result->fields_ = NULL;
3906
3907  AddSymbol(result->full_name(), parent, result->name(),
3908            proto, Symbol(result));
3909}
3910
3911void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto,
3912                                  const Descriptor* parent,
3913                                  EnumDescriptor* result) {
3914  const string& scope = (parent == NULL) ?
3915    file_->package() : parent->full_name();
3916  string* full_name = tables_->AllocateString(scope);
3917  if (!full_name->empty()) full_name->append(1, '.');
3918  full_name->append(proto.name());
3919
3920  ValidateSymbolName(proto.name(), *full_name, proto);
3921
3922  result->name_            = tables_->AllocateString(proto.name());
3923  result->full_name_       = full_name;
3924  result->file_            = file_;
3925  result->containing_type_ = parent;
3926  result->is_placeholder_  = false;
3927  result->is_unqualified_placeholder_ = false;
3928
3929  if (proto.value_size() == 0) {
3930    // We cannot allow enums with no values because this would mean there
3931    // would be no valid default value for fields of this type.
3932    AddError(result->full_name(), proto,
3933             DescriptorPool::ErrorCollector::NAME,
3934             "Enums must contain at least one value.");
3935  }
3936
3937  BUILD_ARRAY(proto, result, value, BuildEnumValue, result);
3938
3939  // Copy options.
3940  if (!proto.has_options()) {
3941    result->options_ = NULL;  // Will set to default_instance later.
3942  } else {
3943    AllocateOptions(proto.options(), result);
3944  }
3945
3946  AddSymbol(result->full_name(), parent, result->name(),
3947            proto, Symbol(result));
3948}
3949
3950void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto,
3951                                       const EnumDescriptor* parent,
3952                                       EnumValueDescriptor* result) {
3953  result->name_   = tables_->AllocateString(proto.name());
3954  result->number_ = proto.number();
3955  result->type_   = parent;
3956
3957  // Note:  full_name for enum values is a sibling to the parent's name, not a
3958  //   child of it.
3959  string* full_name = tables_->AllocateString(*parent->full_name_);
3960  full_name->resize(full_name->size() - parent->name_->size());
3961  full_name->append(*result->name_);
3962  result->full_name_ = full_name;
3963
3964  ValidateSymbolName(proto.name(), *full_name, proto);
3965
3966  // Copy options.
3967  if (!proto.has_options()) {
3968    result->options_ = NULL;  // Will set to default_instance later.
3969  } else {
3970    AllocateOptions(proto.options(), result);
3971  }
3972
3973  // Again, enum values are weird because we makes them appear as siblings
3974  // of the enum type instead of children of it.  So, we use
3975  // parent->containing_type() as the value's parent.
3976  bool added_to_outer_scope =
3977    AddSymbol(result->full_name(), parent->containing_type(), result->name(),
3978              proto, Symbol(result));
3979
3980  // However, we also want to be able to search for values within a single
3981  // enum type, so we add it as a child of the enum type itself, too.
3982  // Note:  This could fail, but if it does, the error has already been
3983  //   reported by the above AddSymbol() call, so we ignore the return code.
3984  bool added_to_inner_scope =
3985    file_tables_->AddAliasUnderParent(parent, result->name(), Symbol(result));
3986
3987  if (added_to_inner_scope && !added_to_outer_scope) {
3988    // This value did not conflict with any values defined in the same enum,
3989    // but it did conflict with some other symbol defined in the enum type's
3990    // scope.  Let's print an additional error to explain this.
3991    string outer_scope;
3992    if (parent->containing_type() == NULL) {
3993      outer_scope = file_->package();
3994    } else {
3995      outer_scope = parent->containing_type()->full_name();
3996    }
3997
3998    if (outer_scope.empty()) {
3999      outer_scope = "the global scope";
4000    } else {
4001      outer_scope = "\"" + outer_scope + "\"";
4002    }
4003
4004    AddError(result->full_name(), proto,
4005             DescriptorPool::ErrorCollector::NAME,
4006             "Note that enum values use C++ scoping rules, meaning that "
4007             "enum values are siblings of their type, not children of it.  "
4008             "Therefore, \"" + result->name() + "\" must be unique within "
4009             + outer_scope + ", not just within \"" + parent->name() + "\".");
4010  }
4011
4012  // An enum is allowed to define two numbers that refer to the same value.
4013  // FindValueByNumber() should return the first such value, so we simply
4014  // ignore AddEnumValueByNumber()'s return code.
4015  file_tables_->AddEnumValueByNumber(result);
4016}
4017
4018void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto,
4019                                     const void* /* dummy */,
4020                                     ServiceDescriptor* result) {
4021  string* full_name = tables_->AllocateString(file_->package());
4022  if (!full_name->empty()) full_name->append(1, '.');
4023  full_name->append(proto.name());
4024
4025  ValidateSymbolName(proto.name(), *full_name, proto);
4026
4027  result->name_      = tables_->AllocateString(proto.name());
4028  result->full_name_ = full_name;
4029  result->file_      = file_;
4030
4031  BUILD_ARRAY(proto, result, method, BuildMethod, result);
4032
4033  // Copy options.
4034  if (!proto.has_options()) {
4035    result->options_ = NULL;  // Will set to default_instance later.
4036  } else {
4037    AllocateOptions(proto.options(), result);
4038  }
4039
4040  AddSymbol(result->full_name(), NULL, result->name(),
4041            proto, Symbol(result));
4042}
4043
4044void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto,
4045                                    const ServiceDescriptor* parent,
4046                                    MethodDescriptor* result) {
4047  result->name_    = tables_->AllocateString(proto.name());
4048  result->service_ = parent;
4049
4050  string* full_name = tables_->AllocateString(parent->full_name());
4051  full_name->append(1, '.');
4052  full_name->append(*result->name_);
4053  result->full_name_ = full_name;
4054
4055  ValidateSymbolName(proto.name(), *full_name, proto);
4056
4057  // These will be filled in when cross-linking.
4058  result->input_type_ = NULL;
4059  result->output_type_ = NULL;
4060
4061  // Copy options.
4062  if (!proto.has_options()) {
4063    result->options_ = NULL;  // Will set to default_instance later.
4064  } else {
4065    AllocateOptions(proto.options(), result);
4066  }
4067
4068  AddSymbol(result->full_name(), parent, result->name(),
4069            proto, Symbol(result));
4070}
4071
4072#undef BUILD_ARRAY
4073
4074// -------------------------------------------------------------------
4075
4076void DescriptorBuilder::CrossLinkFile(
4077    FileDescriptor* file, const FileDescriptorProto& proto) {
4078  if (file->options_ == NULL) {
4079    file->options_ = &FileOptions::default_instance();
4080  }
4081
4082  for (int i = 0; i < file->message_type_count(); i++) {
4083    CrossLinkMessage(&file->message_types_[i], proto.message_type(i));
4084  }
4085
4086  for (int i = 0; i < file->extension_count(); i++) {
4087    CrossLinkField(&file->extensions_[i], proto.extension(i));
4088  }
4089
4090  for (int i = 0; i < file->enum_type_count(); i++) {
4091    CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i));
4092  }
4093
4094  for (int i = 0; i < file->service_count(); i++) {
4095    CrossLinkService(&file->services_[i], proto.service(i));
4096  }
4097}
4098
4099void DescriptorBuilder::CrossLinkMessage(
4100    Descriptor* message, const DescriptorProto& proto) {
4101  if (message->options_ == NULL) {
4102    message->options_ = &MessageOptions::default_instance();
4103  }
4104
4105  for (int i = 0; i < message->nested_type_count(); i++) {
4106    CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i));
4107  }
4108
4109  for (int i = 0; i < message->enum_type_count(); i++) {
4110    CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i));
4111  }
4112
4113  for (int i = 0; i < message->field_count(); i++) {
4114    CrossLinkField(&message->fields_[i], proto.field(i));
4115  }
4116
4117  for (int i = 0; i < message->extension_count(); i++) {
4118    CrossLinkField(&message->extensions_[i], proto.extension(i));
4119  }
4120
4121  // Set up field array for each oneof.
4122
4123  // First count the number of fields per oneof.
4124  for (int i = 0; i < message->field_count(); i++) {
4125    const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof();
4126    if (oneof_decl != NULL) {
4127      // Must go through oneof_decls_ array to get a non-const version of the
4128      // OneofDescriptor.
4129      ++message->oneof_decls_[oneof_decl->index()].field_count_;
4130    }
4131  }
4132
4133  // Then allocate the arrays.
4134  for (int i = 0; i < message->oneof_decl_count(); i++) {
4135    OneofDescriptor* oneof_decl = &message->oneof_decls_[i];
4136
4137    if (oneof_decl->field_count() == 0) {
4138      AddError(message->full_name() + "." + oneof_decl->name(),
4139               proto.oneof_decl(i),
4140               DescriptorPool::ErrorCollector::NAME,
4141               "Oneof must have at least one field.");
4142    }
4143
4144    oneof_decl->fields_ =
4145      tables_->AllocateArray<const FieldDescriptor*>(oneof_decl->field_count_);
4146    oneof_decl->field_count_ = 0;
4147  }
4148
4149  // Then fill them in.
4150  for (int i = 0; i < message->field_count(); i++) {
4151    const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof();
4152    if (oneof_decl != NULL) {
4153      OneofDescriptor* mutable_oneof_decl =
4154          &message->oneof_decls_[oneof_decl->index()];
4155      message->fields_[i].index_in_oneof_ = mutable_oneof_decl->field_count_;
4156      mutable_oneof_decl->fields_[mutable_oneof_decl->field_count_++] =
4157          message->field(i);
4158    }
4159  }
4160}
4161
4162void DescriptorBuilder::CrossLinkField(
4163    FieldDescriptor* field, const FieldDescriptorProto& proto) {
4164  if (field->options_ == NULL) {
4165    field->options_ = &FieldOptions::default_instance();
4166  }
4167
4168  if (proto.has_extendee()) {
4169    Symbol extendee = LookupSymbol(proto.extendee(), field->full_name(),
4170                                   PLACEHOLDER_EXTENDABLE_MESSAGE);
4171    if (extendee.IsNull()) {
4172      AddNotDefinedError(field->full_name(), proto,
4173                         DescriptorPool::ErrorCollector::EXTENDEE,
4174                         proto.extendee());
4175      return;
4176    } else if (extendee.type != Symbol::MESSAGE) {
4177      AddError(field->full_name(), proto,
4178               DescriptorPool::ErrorCollector::EXTENDEE,
4179               "\"" + proto.extendee() + "\" is not a message type.");
4180      return;
4181    }
4182    field->containing_type_ = extendee.descriptor;
4183
4184    const Descriptor::ExtensionRange* extension_range = field->containing_type()
4185        ->FindExtensionRangeContainingNumber(field->number());
4186
4187    if (extension_range == NULL) {
4188      AddError(field->full_name(), proto,
4189               DescriptorPool::ErrorCollector::NUMBER,
4190               strings::Substitute("\"$0\" does not declare $1 as an "
4191                                   "extension number.",
4192                                   field->containing_type()->full_name(),
4193                                   field->number()));
4194    }
4195  }
4196
4197  if (field->containing_oneof() != NULL) {
4198    if (field->label() != FieldDescriptor::LABEL_OPTIONAL) {
4199      // Note that this error will never happen when parsing .proto files.
4200      // It can only happen if you manually construct a FileDescriptorProto
4201      // that is incorrect.
4202      AddError(field->full_name(), proto,
4203               DescriptorPool::ErrorCollector::NAME,
4204               "Fields of oneofs must themselves have label LABEL_OPTIONAL.");
4205    }
4206  }
4207
4208  if (proto.has_type_name()) {
4209    // Assume we are expecting a message type unless the proto contains some
4210    // evidence that it expects an enum type.  This only makes a difference if
4211    // we end up creating a placeholder.
4212    bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) ||
4213                          proto.has_default_value();
4214
4215    Symbol type =
4216      LookupSymbol(proto.type_name(), field->full_name(),
4217                   expecting_enum ? PLACEHOLDER_ENUM : PLACEHOLDER_MESSAGE,
4218                   LOOKUP_TYPES);
4219
4220    // If the type is a weak type, we change the type to a google.protobuf.Empty field.
4221    if (type.IsNull() && !pool_->enforce_weak_ && proto.options().weak()) {
4222      type = FindSymbol(kNonLinkedWeakMessageReplacementName);
4223    }
4224
4225    if (type.IsNull()) {
4226      AddNotDefinedError(field->full_name(), proto,
4227                         DescriptorPool::ErrorCollector::TYPE,
4228                         proto.type_name());
4229      return;
4230    }
4231
4232    if (!proto.has_type()) {
4233      // Choose field type based on symbol.
4234      if (type.type == Symbol::MESSAGE) {
4235        field->type_ = FieldDescriptor::TYPE_MESSAGE;
4236      } else if (type.type == Symbol::ENUM) {
4237        field->type_ = FieldDescriptor::TYPE_ENUM;
4238      } else {
4239        AddError(field->full_name(), proto,
4240                 DescriptorPool::ErrorCollector::TYPE,
4241                 "\"" + proto.type_name() + "\" is not a type.");
4242        return;
4243      }
4244    }
4245
4246    if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
4247      if (type.type != Symbol::MESSAGE) {
4248        AddError(field->full_name(), proto,
4249                 DescriptorPool::ErrorCollector::TYPE,
4250                 "\"" + proto.type_name() + "\" is not a message type.");
4251        return;
4252      }
4253      field->message_type_ = type.descriptor;
4254
4255      if (field->has_default_value()) {
4256        AddError(field->full_name(), proto,
4257                 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4258                 "Messages can't have default values.");
4259      }
4260    } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
4261      if (type.type != Symbol::ENUM) {
4262        AddError(field->full_name(), proto,
4263                 DescriptorPool::ErrorCollector::TYPE,
4264                 "\"" + proto.type_name() + "\" is not an enum type.");
4265        return;
4266      }
4267      field->enum_type_ = type.enum_descriptor;
4268
4269      if (field->enum_type()->is_placeholder_) {
4270        // We can't look up default values for placeholder types.  We'll have
4271        // to just drop them.
4272        field->has_default_value_ = false;
4273      }
4274
4275      if (field->has_default_value()) {
4276        // Ensure that the default value is an identifier. Parser cannot always
4277        // verify this because it does not have complete type information.
4278        // N.B. that this check yields better error messages but is not
4279        // necessary for correctness (an enum symbol must be a valid identifier
4280        // anyway), only for better errors.
4281        if (!io::Tokenizer::IsIdentifier(proto.default_value())) {
4282          AddError(field->full_name(), proto,
4283                   DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4284                   "Default value for an enum field must be an identifier.");
4285        } else {
4286          // We can't just use field->enum_type()->FindValueByName() here
4287          // because that locks the pool's mutex, which we have already locked
4288          // at this point.
4289          Symbol default_value =
4290            LookupSymbolNoPlaceholder(proto.default_value(),
4291                                      field->enum_type()->full_name());
4292
4293          if (default_value.type == Symbol::ENUM_VALUE &&
4294              default_value.enum_value_descriptor->type() ==
4295              field->enum_type()) {
4296            field->default_value_enum_ = default_value.enum_value_descriptor;
4297          } else {
4298            AddError(field->full_name(), proto,
4299                     DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4300                     "Enum type \"" + field->enum_type()->full_name() +
4301                     "\" has no value named \"" + proto.default_value() +
4302                     "\".");
4303          }
4304        }
4305      } else if (field->enum_type()->value_count() > 0) {
4306        // All enums must have at least one value, or we would have reported
4307        // an error elsewhere.  We use the first defined value as the default
4308        // if a default is not explicitly defined.
4309        field->default_value_enum_ = field->enum_type()->value(0);
4310      }
4311    } else {
4312      AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4313               "Field with primitive type has type_name.");
4314    }
4315  } else {
4316    if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
4317        field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
4318      AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4319               "Field with message or enum type missing type_name.");
4320    }
4321  }
4322
4323  // Add the field to the fields-by-number table.
4324  // Note:  We have to do this *after* cross-linking because extensions do not
4325  //   know their containing type until now.
4326  if (!file_tables_->AddFieldByNumber(field)) {
4327    const FieldDescriptor* conflicting_field =
4328      file_tables_->FindFieldByNumber(field->containing_type(),
4329                                      field->number());
4330    if (field->is_extension()) {
4331      AddError(field->full_name(), proto,
4332               DescriptorPool::ErrorCollector::NUMBER,
4333               strings::Substitute("Extension number $0 has already been used "
4334                                   "in \"$1\" by extension \"$2\".",
4335                                   field->number(),
4336                                   field->containing_type()->full_name(),
4337                                   conflicting_field->full_name()));
4338    } else {
4339      AddError(field->full_name(), proto,
4340               DescriptorPool::ErrorCollector::NUMBER,
4341               strings::Substitute("Field number $0 has already been used in "
4342                                   "\"$1\" by field \"$2\".",
4343                                   field->number(),
4344                                   field->containing_type()->full_name(),
4345                                   conflicting_field->name()));
4346    }
4347  } else {
4348    if (field->is_extension()) {
4349      if (!tables_->AddExtension(field)) {
4350        const FieldDescriptor* conflicting_field =
4351            tables_->FindExtension(field->containing_type(), field->number());
4352        string error_msg = strings::Substitute(
4353            "Extension number $0 has already been used in \"$1\" by extension "
4354            "\"$2\" defined in $3.",
4355            field->number(),
4356            field->containing_type()->full_name(),
4357            conflicting_field->full_name(),
4358            conflicting_field->file()->name());
4359        // Conflicting extension numbers should be an error. However, before
4360        // turning this into an error we need to fix all existing broken
4361        // protos first.
4362        // TODO(xiaofeng): Change this to an error.
4363        AddWarning(field->full_name(), proto,
4364                   DescriptorPool::ErrorCollector::NUMBER, error_msg);
4365      }
4366    }
4367  }
4368
4369  // Add the field to the lowercase-name and camelcase-name tables.
4370  file_tables_->AddFieldByStylizedNames(field);
4371}
4372
4373void DescriptorBuilder::CrossLinkEnum(
4374    EnumDescriptor* enum_type, const EnumDescriptorProto& proto) {
4375  if (enum_type->options_ == NULL) {
4376    enum_type->options_ = &EnumOptions::default_instance();
4377  }
4378
4379  for (int i = 0; i < enum_type->value_count(); i++) {
4380    CrossLinkEnumValue(&enum_type->values_[i], proto.value(i));
4381  }
4382}
4383
4384void DescriptorBuilder::CrossLinkEnumValue(
4385    EnumValueDescriptor* enum_value,
4386    const EnumValueDescriptorProto& /* proto */) {
4387  if (enum_value->options_ == NULL) {
4388    enum_value->options_ = &EnumValueOptions::default_instance();
4389  }
4390}
4391
4392void DescriptorBuilder::CrossLinkService(
4393    ServiceDescriptor* service, const ServiceDescriptorProto& proto) {
4394  if (service->options_ == NULL) {
4395    service->options_ = &ServiceOptions::default_instance();
4396  }
4397
4398  for (int i = 0; i < service->method_count(); i++) {
4399    CrossLinkMethod(&service->methods_[i], proto.method(i));
4400  }
4401}
4402
4403void DescriptorBuilder::CrossLinkMethod(
4404    MethodDescriptor* method, const MethodDescriptorProto& proto) {
4405  if (method->options_ == NULL) {
4406    method->options_ = &MethodOptions::default_instance();
4407  }
4408
4409  Symbol input_type = LookupSymbol(proto.input_type(), method->full_name());
4410  if (input_type.IsNull()) {
4411    AddNotDefinedError(method->full_name(), proto,
4412                       DescriptorPool::ErrorCollector::INPUT_TYPE,
4413                       proto.input_type());
4414  } else if (input_type.type != Symbol::MESSAGE) {
4415    AddError(method->full_name(), proto,
4416             DescriptorPool::ErrorCollector::INPUT_TYPE,
4417             "\"" + proto.input_type() + "\" is not a message type.");
4418  } else {
4419    method->input_type_ = input_type.descriptor;
4420  }
4421
4422  Symbol output_type = LookupSymbol(proto.output_type(), method->full_name());
4423  if (output_type.IsNull()) {
4424    AddNotDefinedError(method->full_name(), proto,
4425                       DescriptorPool::ErrorCollector::OUTPUT_TYPE,
4426                       proto.output_type());
4427  } else if (output_type.type != Symbol::MESSAGE) {
4428    AddError(method->full_name(), proto,
4429             DescriptorPool::ErrorCollector::OUTPUT_TYPE,
4430             "\"" + proto.output_type() + "\" is not a message type.");
4431  } else {
4432    method->output_type_ = output_type.descriptor;
4433  }
4434}
4435
4436// -------------------------------------------------------------------
4437
4438#define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type)  \
4439  for (int i = 0; i < descriptor->array_name##_count(); ++i) {     \
4440    Validate##type##Options(descriptor->array_name##s_ + i,        \
4441                            proto.array_name(i));                  \
4442  }
4443
4444// Determine if the file uses optimize_for = LITE_RUNTIME, being careful to
4445// avoid problems that exist at init time.
4446static bool IsLite(const FileDescriptor* file) {
4447  // TODO(kenton):  I don't even remember how many of these conditions are
4448  //   actually possible.  I'm just being super-safe.
4449  return file != NULL &&
4450         &file->options() != &FileOptions::default_instance() &&
4451         file->options().optimize_for() == FileOptions::LITE_RUNTIME;
4452}
4453
4454void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file,
4455                                            const FileDescriptorProto& proto) {
4456  VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message);
4457  VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum);
4458  VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service);
4459  VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field);
4460
4461  // Lite files can only be imported by other Lite files.
4462  if (!IsLite(file)) {
4463    for (int i = 0; i < file->dependency_count(); i++) {
4464      if (IsLite(file->dependency(i))) {
4465        AddError(
4466          file->name(), proto,
4467          DescriptorPool::ErrorCollector::OTHER,
4468          "Files that do not use optimize_for = LITE_RUNTIME cannot import "
4469          "files which do use this option.  This file is not lite, but it "
4470          "imports \"" + file->dependency(i)->name() + "\" which is.");
4471        break;
4472      }
4473    }
4474  }
4475}
4476
4477
4478void DescriptorBuilder::ValidateMessageOptions(Descriptor* message,
4479                                               const DescriptorProto& proto) {
4480  VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field);
4481  VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message);
4482  VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum);
4483  VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field);
4484
4485  const int64 max_extension_range =
4486      static_cast<int64>(message->options().message_set_wire_format() ?
4487                         kint32max :
4488                         FieldDescriptor::kMaxNumber);
4489  for (int i = 0; i < message->extension_range_count(); ++i) {
4490    if (message->extension_range(i)->end > max_extension_range + 1) {
4491      AddError(
4492          message->full_name(), proto.extension_range(i),
4493          DescriptorPool::ErrorCollector::NUMBER,
4494          strings::Substitute("Extension numbers cannot be greater than $0.",
4495                              max_extension_range));
4496    }
4497  }
4498}
4499
4500void DescriptorBuilder::ValidateFieldOptions(FieldDescriptor* field,
4501    const FieldDescriptorProto& proto) {
4502  if (field->options().has_experimental_map_key()) {
4503    ValidateMapKey(field, proto);
4504  }
4505
4506  // Only message type fields may be lazy.
4507  if (field->options().lazy()) {
4508    if (field->type() != FieldDescriptor::TYPE_MESSAGE) {
4509      AddError(field->full_name(), proto,
4510               DescriptorPool::ErrorCollector::TYPE,
4511               "[lazy = true] can only be specified for submessage fields.");
4512    }
4513  }
4514
4515  // Only repeated primitive fields may be packed.
4516  if (field->options().packed() && !field->is_packable()) {
4517    AddError(
4518      field->full_name(), proto,
4519      DescriptorPool::ErrorCollector::TYPE,
4520      "[packed = true] can only be specified for repeated primitive fields.");
4521  }
4522
4523  // Note:  Default instance may not yet be initialized here, so we have to
4524  //   avoid reading from it.
4525  if (field->containing_type_ != NULL &&
4526      &field->containing_type()->options() !=
4527      &MessageOptions::default_instance() &&
4528      field->containing_type()->options().message_set_wire_format()) {
4529    if (field->is_extension()) {
4530      if (!field->is_optional() ||
4531          field->type() != FieldDescriptor::TYPE_MESSAGE) {
4532        AddError(field->full_name(), proto,
4533                 DescriptorPool::ErrorCollector::TYPE,
4534                 "Extensions of MessageSets must be optional messages.");
4535      }
4536    } else {
4537      AddError(field->full_name(), proto,
4538               DescriptorPool::ErrorCollector::NAME,
4539               "MessageSets cannot have fields, only extensions.");
4540    }
4541  }
4542
4543  // Lite extensions can only be of Lite types.
4544  if (IsLite(field->file()) &&
4545      field->containing_type_ != NULL &&
4546      !IsLite(field->containing_type()->file())) {
4547    AddError(field->full_name(), proto,
4548             DescriptorPool::ErrorCollector::EXTENDEE,
4549             "Extensions to non-lite types can only be declared in non-lite "
4550             "files.  Note that you cannot extend a non-lite type to contain "
4551             "a lite type, but the reverse is allowed.");
4552  }
4553
4554}
4555
4556void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm,
4557                                            const EnumDescriptorProto& proto) {
4558  VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue);
4559  if (!enm->options().has_allow_alias() || !enm->options().allow_alias()) {
4560    map<int, string> used_values;
4561    for (int i = 0; i < enm->value_count(); ++i) {
4562      const EnumValueDescriptor* enum_value = enm->value(i);
4563      if (used_values.find(enum_value->number()) != used_values.end()) {
4564        string error =
4565            "\"" + enum_value->full_name() +
4566            "\" uses the same enum value as \"" +
4567            used_values[enum_value->number()] + "\". If this is intended, set "
4568            "'option allow_alias = true;' to the enum definition.";
4569        if (!enm->options().allow_alias()) {
4570          // Generate error if duplicated enum values are explicitly disallowed.
4571          AddError(enm->full_name(), proto,
4572                   DescriptorPool::ErrorCollector::NUMBER,
4573                   error);
4574        } else {
4575          // Generate warning if duplicated values are found but the option
4576          // isn't set.
4577          GOOGLE_LOG(ERROR) << error;
4578        }
4579      } else {
4580        used_values[enum_value->number()] = enum_value->full_name();
4581      }
4582    }
4583  }
4584}
4585
4586void DescriptorBuilder::ValidateEnumValueOptions(
4587    EnumValueDescriptor* /* enum_value */,
4588    const EnumValueDescriptorProto& /* proto */) {
4589  // Nothing to do so far.
4590}
4591void DescriptorBuilder::ValidateServiceOptions(ServiceDescriptor* service,
4592    const ServiceDescriptorProto& proto) {
4593  if (IsLite(service->file()) &&
4594      (service->file()->options().cc_generic_services() ||
4595       service->file()->options().java_generic_services())) {
4596    AddError(service->full_name(), proto,
4597             DescriptorPool::ErrorCollector::NAME,
4598             "Files with optimize_for = LITE_RUNTIME cannot define services "
4599             "unless you set both options cc_generic_services and "
4600             "java_generic_sevices to false.");
4601  }
4602
4603  VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method);
4604}
4605
4606void DescriptorBuilder::ValidateMethodOptions(MethodDescriptor* /* method */,
4607    const MethodDescriptorProto& /* proto */) {
4608  // Nothing to do so far.
4609}
4610
4611void DescriptorBuilder::ValidateMapKey(FieldDescriptor* field,
4612                                       const FieldDescriptorProto& proto) {
4613  if (!field->is_repeated()) {
4614    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4615             "map type is only allowed for repeated fields.");
4616    return;
4617  }
4618
4619  if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
4620    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4621             "map type is only allowed for fields with a message type.");
4622    return;
4623  }
4624
4625  const Descriptor* item_type = field->message_type();
4626  if (item_type == NULL) {
4627    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4628             "Could not find field type.");
4629    return;
4630  }
4631
4632  // Find the field in item_type named by "experimental_map_key"
4633  const string& key_name = field->options().experimental_map_key();
4634  const Symbol key_symbol = LookupSymbol(
4635      key_name,
4636      // We append ".key_name" to the containing type's name since
4637      // LookupSymbol() searches for peers of the supplied name, not
4638      // children of the supplied name.
4639      item_type->full_name() + "." + key_name);
4640
4641  if (key_symbol.IsNull() || key_symbol.field_descriptor->is_extension()) {
4642    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4643             "Could not find field named \"" + key_name + "\" in type \"" +
4644             item_type->full_name() + "\".");
4645    return;
4646  }
4647  const FieldDescriptor* key_field = key_symbol.field_descriptor;
4648
4649  if (key_field->is_repeated()) {
4650    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4651             "map_key must not name a repeated field.");
4652    return;
4653  }
4654
4655  if (key_field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
4656    AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4657             "map key must name a scalar or string field.");
4658    return;
4659  }
4660
4661  field->experimental_map_key_ = key_field;
4662}
4663
4664
4665#undef VALIDATE_OPTIONS_FROM_ARRAY
4666
4667// -------------------------------------------------------------------
4668
4669DescriptorBuilder::OptionInterpreter::OptionInterpreter(
4670    DescriptorBuilder* builder) : builder_(builder) {
4671  GOOGLE_CHECK(builder_);
4672}
4673
4674DescriptorBuilder::OptionInterpreter::~OptionInterpreter() {
4675}
4676
4677bool DescriptorBuilder::OptionInterpreter::InterpretOptions(
4678    OptionsToInterpret* options_to_interpret) {
4679  // Note that these may be in different pools, so we can't use the same
4680  // descriptor and reflection objects on both.
4681  Message* options = options_to_interpret->options;
4682  const Message* original_options = options_to_interpret->original_options;
4683
4684  bool failed = false;
4685  options_to_interpret_ = options_to_interpret;
4686
4687  // Find the uninterpreted_option field in the mutable copy of the options
4688  // and clear them, since we're about to interpret them.
4689  const FieldDescriptor* uninterpreted_options_field =
4690      options->GetDescriptor()->FindFieldByName("uninterpreted_option");
4691  GOOGLE_CHECK(uninterpreted_options_field != NULL)
4692      << "No field named \"uninterpreted_option\" in the Options proto.";
4693  options->GetReflection()->ClearField(options, uninterpreted_options_field);
4694
4695  // Find the uninterpreted_option field in the original options.
4696  const FieldDescriptor* original_uninterpreted_options_field =
4697      original_options->GetDescriptor()->
4698          FindFieldByName("uninterpreted_option");
4699  GOOGLE_CHECK(original_uninterpreted_options_field != NULL)
4700      << "No field named \"uninterpreted_option\" in the Options proto.";
4701
4702  const int num_uninterpreted_options = original_options->GetReflection()->
4703      FieldSize(*original_options, original_uninterpreted_options_field);
4704  for (int i = 0; i < num_uninterpreted_options; ++i) {
4705    uninterpreted_option_ = down_cast<const UninterpretedOption*>(
4706        &original_options->GetReflection()->GetRepeatedMessage(
4707            *original_options, original_uninterpreted_options_field, i));
4708    if (!InterpretSingleOption(options)) {
4709      // Error already added by InterpretSingleOption().
4710      failed = true;
4711      break;
4712    }
4713  }
4714  // Reset these, so we don't have any dangling pointers.
4715  uninterpreted_option_ = NULL;
4716  options_to_interpret_ = NULL;
4717
4718  if (!failed) {
4719    // InterpretSingleOption() added the interpreted options in the
4720    // UnknownFieldSet, in case the option isn't yet known to us.  Now we
4721    // serialize the options message and deserialize it back.  That way, any
4722    // option fields that we do happen to know about will get moved from the
4723    // UnknownFieldSet into the real fields, and thus be available right away.
4724    // If they are not known, that's OK too. They will get reparsed into the
4725    // UnknownFieldSet and wait there until the message is parsed by something
4726    // that does know about the options.
4727    string buf;
4728    options->AppendToString(&buf);
4729    GOOGLE_CHECK(options->ParseFromString(buf))
4730        << "Protocol message serialized itself in invalid fashion.";
4731  }
4732
4733  return !failed;
4734}
4735
4736bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption(
4737    Message* options) {
4738  // First do some basic validation.
4739  if (uninterpreted_option_->name_size() == 0) {
4740    // This should never happen unless the parser has gone seriously awry or
4741    // someone has manually created the uninterpreted option badly.
4742    return AddNameError("Option must have a name.");
4743  }
4744  if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") {
4745    return AddNameError("Option must not use reserved name "
4746                        "\"uninterpreted_option\".");
4747  }
4748
4749  const Descriptor* options_descriptor = NULL;
4750  // Get the options message's descriptor from the builder's pool, so that we
4751  // get the version that knows about any extension options declared in the
4752  // file we're currently building. The descriptor should be there as long as
4753  // the file we're building imported "google/protobuf/descriptors.proto".
4754
4755  // Note that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
4756  // DescriptorPool::FindMessageTypeByName() because we're already holding the
4757  // pool's mutex, and the latter method locks it again.  We don't use
4758  // FindSymbol() because files that use custom options only need to depend on
4759  // the file that defines the option, not descriptor.proto itself.
4760  Symbol symbol = builder_->FindSymbolNotEnforcingDeps(
4761    options->GetDescriptor()->full_name());
4762  if (!symbol.IsNull() && symbol.type == Symbol::MESSAGE) {
4763    options_descriptor = symbol.descriptor;
4764  } else {
4765    // The options message's descriptor was not in the builder's pool, so use
4766    // the standard version from the generated pool. We're not holding the
4767    // generated pool's mutex, so we can search it the straightforward way.
4768    options_descriptor = options->GetDescriptor();
4769  }
4770  GOOGLE_CHECK(options_descriptor);
4771
4772  // We iterate over the name parts to drill into the submessages until we find
4773  // the leaf field for the option. As we drill down we remember the current
4774  // submessage's descriptor in |descriptor| and the next field in that
4775  // submessage in |field|. We also track the fields we're drilling down
4776  // through in |intermediate_fields|. As we go, we reconstruct the full option
4777  // name in |debug_msg_name|, for use in error messages.
4778  const Descriptor* descriptor = options_descriptor;
4779  const FieldDescriptor* field = NULL;
4780  vector<const FieldDescriptor*> intermediate_fields;
4781  string debug_msg_name = "";
4782
4783  for (int i = 0; i < uninterpreted_option_->name_size(); ++i) {
4784    const string& name_part = uninterpreted_option_->name(i).name_part();
4785    if (debug_msg_name.size() > 0) {
4786      debug_msg_name += ".";
4787    }
4788    if (uninterpreted_option_->name(i).is_extension()) {
4789      debug_msg_name += "(" + name_part + ")";
4790      // Search for the extension's descriptor as an extension in the builder's
4791      // pool. Note that we use DescriptorBuilder::LookupSymbol(), not
4792      // DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows
4793      // relative lookups, and 2) because we're already holding the pool's
4794      // mutex, and the latter method locks it again.
4795      symbol = builder_->LookupSymbol(name_part,
4796                                      options_to_interpret_->name_scope);
4797      if (!symbol.IsNull() && symbol.type == Symbol::FIELD) {
4798        field = symbol.field_descriptor;
4799      }
4800      // If we don't find the field then the field's descriptor was not in the
4801      // builder's pool, but there's no point in looking in the generated
4802      // pool. We require that you import the file that defines any extensions
4803      // you use, so they must be present in the builder's pool.
4804    } else {
4805      debug_msg_name += name_part;
4806      // Search for the field's descriptor as a regular field.
4807      field = descriptor->FindFieldByName(name_part);
4808    }
4809
4810    if (field == NULL) {
4811      if (get_allow_unknown(builder_->pool_)) {
4812        // We can't find the option, but AllowUnknownDependencies() is enabled,
4813        // so we will just leave it as uninterpreted.
4814        AddWithoutInterpreting(*uninterpreted_option_, options);
4815        return true;
4816      } else if (!(builder_->undefine_resolved_name_).empty()) {
4817        // Option is resolved to a name which is not defined.
4818        return AddNameError(
4819            "Option \"" + debug_msg_name + "\" is resolved to \"(" +
4820            builder_->undefine_resolved_name_ +
4821            ")\", which is not defined. The innermost scope is searched first "
4822            "in name resolution. Consider using a leading '.'(i.e., \"(." +
4823            debug_msg_name.substr(1) +
4824            "\") to start from the outermost scope.");
4825      } else {
4826        return AddNameError("Option \"" + debug_msg_name + "\" unknown.");
4827      }
4828    } else if (field->containing_type() != descriptor) {
4829      if (get_is_placeholder(field->containing_type())) {
4830        // The field is an extension of a placeholder type, so we can't
4831        // reliably verify whether it is a valid extension to use here (e.g.
4832        // we don't know if it is an extension of the correct *Options message,
4833        // or if it has a valid field number, etc.).  Just leave it as
4834        // uninterpreted instead.
4835        AddWithoutInterpreting(*uninterpreted_option_, options);
4836        return true;
4837      } else {
4838        // This can only happen if, due to some insane misconfiguration of the
4839        // pools, we find the options message in one pool but the field in
4840        // another. This would probably imply a hefty bug somewhere.
4841        return AddNameError("Option field \"" + debug_msg_name +
4842                            "\" is not a field or extension of message \"" +
4843                            descriptor->name() + "\".");
4844      }
4845    } else if (i < uninterpreted_option_->name_size() - 1) {
4846      if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
4847        return AddNameError("Option \"" +  debug_msg_name +
4848                            "\" is an atomic type, not a message.");
4849      } else if (field->is_repeated()) {
4850        return AddNameError("Option field \"" + debug_msg_name +
4851                            "\" is a repeated message. Repeated message "
4852                            "options must be initialized using an "
4853                            "aggregate value.");
4854      } else {
4855        // Drill down into the submessage.
4856        intermediate_fields.push_back(field);
4857        descriptor = field->message_type();
4858      }
4859    }
4860  }
4861
4862  // We've found the leaf field. Now we use UnknownFieldSets to set its value
4863  // on the options message. We do so because the message may not yet know
4864  // about its extension fields, so we may not be able to set the fields
4865  // directly. But the UnknownFieldSets will serialize to the same wire-format
4866  // message, so reading that message back in once the extension fields are
4867  // known will populate them correctly.
4868
4869  // First see if the option is already set.
4870  if (!field->is_repeated() && !ExamineIfOptionIsSet(
4871          intermediate_fields.begin(),
4872          intermediate_fields.end(),
4873          field, debug_msg_name,
4874          options->GetReflection()->GetUnknownFields(*options))) {
4875    return false;  // ExamineIfOptionIsSet() already added the error.
4876  }
4877
4878
4879  // First set the value on the UnknownFieldSet corresponding to the
4880  // innermost message.
4881  scoped_ptr<UnknownFieldSet> unknown_fields(new UnknownFieldSet());
4882  if (!SetOptionValue(field, unknown_fields.get())) {
4883    return false;  // SetOptionValue() already added the error.
4884  }
4885
4886  // Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all
4887  // the intermediate messages.
4888  for (vector<const FieldDescriptor*>::reverse_iterator iter =
4889           intermediate_fields.rbegin();
4890       iter != intermediate_fields.rend(); ++iter) {
4891    scoped_ptr<UnknownFieldSet> parent_unknown_fields(new UnknownFieldSet());
4892    switch ((*iter)->type()) {
4893      case FieldDescriptor::TYPE_MESSAGE: {
4894        io::StringOutputStream outstr(
4895            parent_unknown_fields->AddLengthDelimited((*iter)->number()));
4896        io::CodedOutputStream out(&outstr);
4897        internal::WireFormat::SerializeUnknownFields(*unknown_fields, &out);
4898        GOOGLE_CHECK(!out.HadError())
4899            << "Unexpected failure while serializing option submessage "
4900            << debug_msg_name << "\".";
4901        break;
4902      }
4903
4904      case FieldDescriptor::TYPE_GROUP: {
4905         parent_unknown_fields->AddGroup((*iter)->number())
4906                              ->MergeFrom(*unknown_fields);
4907        break;
4908      }
4909
4910      default:
4911        GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: "
4912                   << (*iter)->type();
4913        return false;
4914    }
4915    unknown_fields.reset(parent_unknown_fields.release());
4916  }
4917
4918  // Now merge the UnknownFieldSet corresponding to the top-level message into
4919  // the options message.
4920  options->GetReflection()->MutableUnknownFields(options)->MergeFrom(
4921      *unknown_fields);
4922
4923  return true;
4924}
4925
4926void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting(
4927    const UninterpretedOption& uninterpreted_option, Message* options) {
4928  const FieldDescriptor* field =
4929    options->GetDescriptor()->FindFieldByName("uninterpreted_option");
4930  GOOGLE_CHECK(field != NULL);
4931
4932  options->GetReflection()->AddMessage(options, field)
4933    ->CopyFrom(uninterpreted_option);
4934}
4935
4936bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet(
4937    vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
4938    vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
4939    const FieldDescriptor* innermost_field, const string& debug_msg_name,
4940    const UnknownFieldSet& unknown_fields) {
4941  // We do linear searches of the UnknownFieldSet and its sub-groups.  This
4942  // should be fine since it's unlikely that any one options structure will
4943  // contain more than a handful of options.
4944
4945  if (intermediate_fields_iter == intermediate_fields_end) {
4946    // We're at the innermost submessage.
4947    for (int i = 0; i < unknown_fields.field_count(); i++) {
4948      if (unknown_fields.field(i).number() == innermost_field->number()) {
4949        return AddNameError("Option \"" + debug_msg_name +
4950                            "\" was already set.");
4951      }
4952    }
4953    return true;
4954  }
4955
4956  for (int i = 0; i < unknown_fields.field_count(); i++) {
4957    if (unknown_fields.field(i).number() ==
4958        (*intermediate_fields_iter)->number()) {
4959      const UnknownField* unknown_field = &unknown_fields.field(i);
4960      FieldDescriptor::Type type = (*intermediate_fields_iter)->type();
4961      // Recurse into the next submessage.
4962      switch (type) {
4963        case FieldDescriptor::TYPE_MESSAGE:
4964          if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) {
4965            UnknownFieldSet intermediate_unknown_fields;
4966            if (intermediate_unknown_fields.ParseFromString(
4967                    unknown_field->length_delimited()) &&
4968                !ExamineIfOptionIsSet(intermediate_fields_iter + 1,
4969                                      intermediate_fields_end,
4970                                      innermost_field, debug_msg_name,
4971                                      intermediate_unknown_fields)) {
4972              return false;  // Error already added.
4973            }
4974          }
4975          break;
4976
4977        case FieldDescriptor::TYPE_GROUP:
4978          if (unknown_field->type() == UnknownField::TYPE_GROUP) {
4979            if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
4980                                      intermediate_fields_end,
4981                                      innermost_field, debug_msg_name,
4982                                      unknown_field->group())) {
4983              return false;  // Error already added.
4984            }
4985          }
4986          break;
4987
4988        default:
4989          GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type;
4990          return false;
4991      }
4992    }
4993  }
4994  return true;
4995}
4996
4997bool DescriptorBuilder::OptionInterpreter::SetOptionValue(
4998    const FieldDescriptor* option_field,
4999    UnknownFieldSet* unknown_fields) {
5000  // We switch on the CppType to validate.
5001  switch (option_field->cpp_type()) {
5002
5003    case FieldDescriptor::CPPTYPE_INT32:
5004      if (uninterpreted_option_->has_positive_int_value()) {
5005        if (uninterpreted_option_->positive_int_value() >
5006            static_cast<uint64>(kint32max)) {
5007          return AddValueError("Value out of range for int32 option \"" +
5008                               option_field->full_name() + "\".");
5009        } else {
5010          SetInt32(option_field->number(),
5011                   uninterpreted_option_->positive_int_value(),
5012                   option_field->type(), unknown_fields);
5013        }
5014      } else if (uninterpreted_option_->has_negative_int_value()) {
5015        if (uninterpreted_option_->negative_int_value() <
5016            static_cast<int64>(kint32min)) {
5017          return AddValueError("Value out of range for int32 option \"" +
5018                               option_field->full_name() + "\".");
5019        } else {
5020          SetInt32(option_field->number(),
5021                   uninterpreted_option_->negative_int_value(),
5022                   option_field->type(), unknown_fields);
5023        }
5024      } else {
5025        return AddValueError("Value must be integer for int32 option \"" +
5026                             option_field->full_name() + "\".");
5027      }
5028      break;
5029
5030    case FieldDescriptor::CPPTYPE_INT64:
5031      if (uninterpreted_option_->has_positive_int_value()) {
5032        if (uninterpreted_option_->positive_int_value() >
5033            static_cast<uint64>(kint64max)) {
5034          return AddValueError("Value out of range for int64 option \"" +
5035                               option_field->full_name() + "\".");
5036        } else {
5037          SetInt64(option_field->number(),
5038                   uninterpreted_option_->positive_int_value(),
5039                   option_field->type(), unknown_fields);
5040        }
5041      } else if (uninterpreted_option_->has_negative_int_value()) {
5042        SetInt64(option_field->number(),
5043                 uninterpreted_option_->negative_int_value(),
5044                 option_field->type(), unknown_fields);
5045      } else {
5046        return AddValueError("Value must be integer for int64 option \"" +
5047                             option_field->full_name() + "\".");
5048      }
5049      break;
5050
5051    case FieldDescriptor::CPPTYPE_UINT32:
5052      if (uninterpreted_option_->has_positive_int_value()) {
5053        if (uninterpreted_option_->positive_int_value() > kuint32max) {
5054          return AddValueError("Value out of range for uint32 option \"" +
5055                               option_field->name() + "\".");
5056        } else {
5057          SetUInt32(option_field->number(),
5058                    uninterpreted_option_->positive_int_value(),
5059                    option_field->type(), unknown_fields);
5060        }
5061      } else {
5062        return AddValueError("Value must be non-negative integer for uint32 "
5063                             "option \"" + option_field->full_name() + "\".");
5064      }
5065      break;
5066
5067    case FieldDescriptor::CPPTYPE_UINT64:
5068      if (uninterpreted_option_->has_positive_int_value()) {
5069        SetUInt64(option_field->number(),
5070                  uninterpreted_option_->positive_int_value(),
5071                  option_field->type(), unknown_fields);
5072      } else {
5073        return AddValueError("Value must be non-negative integer for uint64 "
5074                             "option \"" + option_field->full_name() + "\".");
5075      }
5076      break;
5077
5078    case FieldDescriptor::CPPTYPE_FLOAT: {
5079      float value;
5080      if (uninterpreted_option_->has_double_value()) {
5081        value = uninterpreted_option_->double_value();
5082      } else if (uninterpreted_option_->has_positive_int_value()) {
5083        value = uninterpreted_option_->positive_int_value();
5084      } else if (uninterpreted_option_->has_negative_int_value()) {
5085        value = uninterpreted_option_->negative_int_value();
5086      } else {
5087        return AddValueError("Value must be number for float option \"" +
5088                             option_field->full_name() + "\".");
5089      }
5090      unknown_fields->AddFixed32(option_field->number(),
5091          google::protobuf::internal::WireFormatLite::EncodeFloat(value));
5092      break;
5093    }
5094
5095    case FieldDescriptor::CPPTYPE_DOUBLE: {
5096      double value;
5097      if (uninterpreted_option_->has_double_value()) {
5098        value = uninterpreted_option_->double_value();
5099      } else if (uninterpreted_option_->has_positive_int_value()) {
5100        value = uninterpreted_option_->positive_int_value();
5101      } else if (uninterpreted_option_->has_negative_int_value()) {
5102        value = uninterpreted_option_->negative_int_value();
5103      } else {
5104        return AddValueError("Value must be number for double option \"" +
5105                             option_field->full_name() + "\".");
5106      }
5107      unknown_fields->AddFixed64(option_field->number(),
5108          google::protobuf::internal::WireFormatLite::EncodeDouble(value));
5109      break;
5110    }
5111
5112    case FieldDescriptor::CPPTYPE_BOOL:
5113      uint64 value;
5114      if (!uninterpreted_option_->has_identifier_value()) {
5115        return AddValueError("Value must be identifier for boolean option "
5116                             "\"" + option_field->full_name() + "\".");
5117      }
5118      if (uninterpreted_option_->identifier_value() == "true") {
5119        value = 1;
5120      } else if (uninterpreted_option_->identifier_value() == "false") {
5121        value = 0;
5122      } else {
5123        return AddValueError("Value must be \"true\" or \"false\" for boolean "
5124                             "option \"" + option_field->full_name() + "\".");
5125      }
5126      unknown_fields->AddVarint(option_field->number(), value);
5127      break;
5128
5129    case FieldDescriptor::CPPTYPE_ENUM: {
5130      if (!uninterpreted_option_->has_identifier_value()) {
5131        return AddValueError("Value must be identifier for enum-valued option "
5132                             "\"" + option_field->full_name() + "\".");
5133      }
5134      const EnumDescriptor* enum_type = option_field->enum_type();
5135      const string& value_name = uninterpreted_option_->identifier_value();
5136      const EnumValueDescriptor* enum_value = NULL;
5137
5138      if (enum_type->file()->pool() != DescriptorPool::generated_pool()) {
5139        // Note that the enum value's fully-qualified name is a sibling of the
5140        // enum's name, not a child of it.
5141        string fully_qualified_name = enum_type->full_name();
5142        fully_qualified_name.resize(fully_qualified_name.size() -
5143                                    enum_type->name().size());
5144        fully_qualified_name += value_name;
5145
5146        // Search for the enum value's descriptor in the builder's pool. Note
5147        // that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
5148        // DescriptorPool::FindEnumValueByName() because we're already holding
5149        // the pool's mutex, and the latter method locks it again.
5150        Symbol symbol =
5151          builder_->FindSymbolNotEnforcingDeps(fully_qualified_name);
5152        if (!symbol.IsNull() && symbol.type == Symbol::ENUM_VALUE) {
5153          if (symbol.enum_value_descriptor->type() != enum_type) {
5154            return AddValueError("Enum type \"" + enum_type->full_name() +
5155                "\" has no value named \"" + value_name + "\" for option \"" +
5156                option_field->full_name() +
5157                "\". This appears to be a value from a sibling type.");
5158          } else {
5159            enum_value = symbol.enum_value_descriptor;
5160          }
5161        }
5162      } else {
5163        // The enum type is in the generated pool, so we can search for the
5164        // value there.
5165        enum_value = enum_type->FindValueByName(value_name);
5166      }
5167
5168      if (enum_value == NULL) {
5169        return AddValueError("Enum type \"" +
5170                             option_field->enum_type()->full_name() +
5171                             "\" has no value named \"" + value_name + "\" for "
5172                             "option \"" + option_field->full_name() + "\".");
5173      } else {
5174        // Sign-extension is not a problem, since we cast directly from int32 to
5175        // uint64, without first going through uint32.
5176        unknown_fields->AddVarint(option_field->number(),
5177          static_cast<uint64>(static_cast<int64>(enum_value->number())));
5178      }
5179      break;
5180    }
5181
5182    case FieldDescriptor::CPPTYPE_STRING:
5183      if (!uninterpreted_option_->has_string_value()) {
5184        return AddValueError("Value must be quoted string for string option "
5185                             "\"" + option_field->full_name() + "\".");
5186      }
5187      // The string has already been unquoted and unescaped by the parser.
5188      unknown_fields->AddLengthDelimited(option_field->number(),
5189          uninterpreted_option_->string_value());
5190      break;
5191
5192    case FieldDescriptor::CPPTYPE_MESSAGE:
5193      if (!SetAggregateOption(option_field, unknown_fields)) {
5194        return false;
5195      }
5196      break;
5197  }
5198
5199  return true;
5200}
5201
5202class DescriptorBuilder::OptionInterpreter::AggregateOptionFinder
5203    : public TextFormat::Finder {
5204 public:
5205  DescriptorBuilder* builder_;
5206
5207  virtual const FieldDescriptor* FindExtension(
5208      Message* message, const string& name) const {
5209    assert_mutex_held(builder_->pool_);
5210    const Descriptor* descriptor = message->GetDescriptor();
5211    Symbol result = builder_->LookupSymbolNoPlaceholder(
5212        name, descriptor->full_name());
5213    if (result.type == Symbol::FIELD &&
5214        result.field_descriptor->is_extension()) {
5215      return result.field_descriptor;
5216    } else if (result.type == Symbol::MESSAGE &&
5217               descriptor->options().message_set_wire_format()) {
5218      const Descriptor* foreign_type = result.descriptor;
5219      // The text format allows MessageSet items to be specified using
5220      // the type name, rather than the extension identifier. If the symbol
5221      // lookup returned a Message, and the enclosing Message has
5222      // message_set_wire_format = true, then return the message set
5223      // extension, if one exists.
5224      for (int i = 0; i < foreign_type->extension_count(); i++) {
5225        const FieldDescriptor* extension = foreign_type->extension(i);
5226        if (extension->containing_type() == descriptor &&
5227            extension->type() == FieldDescriptor::TYPE_MESSAGE &&
5228            extension->is_optional() &&
5229            extension->message_type() == foreign_type) {
5230          // Found it.
5231          return extension;
5232        }
5233      }
5234    }
5235    return NULL;
5236  }
5237};
5238
5239// A custom error collector to record any text-format parsing errors
5240namespace {
5241class AggregateErrorCollector : public io::ErrorCollector {
5242 public:
5243  string error_;
5244
5245  virtual void AddError(int /* line */, int /* column */,
5246                        const string& message) {
5247    if (!error_.empty()) {
5248      error_ += "; ";
5249    }
5250    error_ += message;
5251  }
5252
5253  virtual void AddWarning(int /* line */, int /* column */,
5254                          const string& /* message */) {
5255    // Ignore warnings
5256  }
5257};
5258}
5259
5260// We construct a dynamic message of the type corresponding to
5261// option_field, parse the supplied text-format string into this
5262// message, and serialize the resulting message to produce the value.
5263bool DescriptorBuilder::OptionInterpreter::SetAggregateOption(
5264    const FieldDescriptor* option_field,
5265    UnknownFieldSet* unknown_fields) {
5266  if (!uninterpreted_option_->has_aggregate_value()) {
5267    return AddValueError("Option \"" + option_field->full_name() +
5268                         "\" is a message. To set the entire message, use "
5269                         "syntax like \"" + option_field->name() +
5270                         " = { <proto text format> }\". "
5271                         "To set fields within it, use "
5272                         "syntax like \"" + option_field->name() +
5273                         ".foo = value\".");
5274  }
5275
5276  const Descriptor* type = option_field->message_type();
5277  scoped_ptr<Message> dynamic(dynamic_factory_.GetPrototype(type)->New());
5278  GOOGLE_CHECK(dynamic.get() != NULL)
5279      << "Could not create an instance of " << option_field->DebugString();
5280
5281  AggregateErrorCollector collector;
5282  AggregateOptionFinder finder;
5283  finder.builder_ = builder_;
5284  TextFormat::Parser parser;
5285  parser.RecordErrorsTo(&collector);
5286  parser.SetFinder(&finder);
5287  if (!parser.ParseFromString(uninterpreted_option_->aggregate_value(),
5288                              dynamic.get())) {
5289    AddValueError("Error while parsing option value for \"" +
5290                  option_field->name() + "\": " + collector.error_);
5291    return false;
5292  } else {
5293    string serial;
5294    dynamic->SerializeToString(&serial);  // Never fails
5295    if (option_field->type() == FieldDescriptor::TYPE_MESSAGE) {
5296      unknown_fields->AddLengthDelimited(option_field->number(), serial);
5297    } else {
5298      GOOGLE_CHECK_EQ(option_field->type(),  FieldDescriptor::TYPE_GROUP);
5299      UnknownFieldSet* group = unknown_fields->AddGroup(option_field->number());
5300      group->ParseFromString(serial);
5301    }
5302    return true;
5303  }
5304}
5305
5306void DescriptorBuilder::OptionInterpreter::SetInt32(int number, int32 value,
5307    FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
5308  switch (type) {
5309    case FieldDescriptor::TYPE_INT32:
5310      unknown_fields->AddVarint(number,
5311        static_cast<uint64>(static_cast<int64>(value)));
5312      break;
5313
5314    case FieldDescriptor::TYPE_SFIXED32:
5315      unknown_fields->AddFixed32(number, static_cast<uint32>(value));
5316      break;
5317
5318    case FieldDescriptor::TYPE_SINT32:
5319      unknown_fields->AddVarint(number,
5320          google::protobuf::internal::WireFormatLite::ZigZagEncode32(value));
5321      break;
5322
5323    default:
5324      GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type;
5325      break;
5326  }
5327}
5328
5329void DescriptorBuilder::OptionInterpreter::SetInt64(int number, int64 value,
5330    FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
5331  switch (type) {
5332    case FieldDescriptor::TYPE_INT64:
5333      unknown_fields->AddVarint(number, static_cast<uint64>(value));
5334      break;
5335
5336    case FieldDescriptor::TYPE_SFIXED64:
5337      unknown_fields->AddFixed64(number, static_cast<uint64>(value));
5338      break;
5339
5340    case FieldDescriptor::TYPE_SINT64:
5341      unknown_fields->AddVarint(number,
5342          google::protobuf::internal::WireFormatLite::ZigZagEncode64(value));
5343      break;
5344
5345    default:
5346      GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type;
5347      break;
5348  }
5349}
5350
5351void DescriptorBuilder::OptionInterpreter::SetUInt32(int number, uint32 value,
5352    FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
5353  switch (type) {
5354    case FieldDescriptor::TYPE_UINT32:
5355      unknown_fields->AddVarint(number, static_cast<uint64>(value));
5356      break;
5357
5358    case FieldDescriptor::TYPE_FIXED32:
5359      unknown_fields->AddFixed32(number, static_cast<uint32>(value));
5360      break;
5361
5362    default:
5363      GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type;
5364      break;
5365  }
5366}
5367
5368void DescriptorBuilder::OptionInterpreter::SetUInt64(int number, uint64 value,
5369    FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
5370  switch (type) {
5371    case FieldDescriptor::TYPE_UINT64:
5372      unknown_fields->AddVarint(number, value);
5373      break;
5374
5375    case FieldDescriptor::TYPE_FIXED64:
5376      unknown_fields->AddFixed64(number, value);
5377      break;
5378
5379    default:
5380      GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type;
5381      break;
5382  }
5383}
5384
5385void DescriptorBuilder::LogUnusedDependency(const FileDescriptor* result) {
5386
5387  if (!unused_dependency_.empty()) {
5388    std::set<string> annotation_extensions;
5389    annotation_extensions.insert("google.protobuf.MessageOptions");
5390    annotation_extensions.insert("google.protobuf.FileOptions");
5391    annotation_extensions.insert("google.protobuf.FieldOptions");
5392    annotation_extensions.insert("google.protobuf.EnumOptions");
5393    annotation_extensions.insert("google.protobuf.EnumValueOptions");
5394    annotation_extensions.insert("google.protobuf.ServiceOptions");
5395    annotation_extensions.insert("google.protobuf.MethodOptions");
5396    annotation_extensions.insert("google.protobuf.StreamOptions");
5397    for (set<const FileDescriptor*>::const_iterator
5398             it = unused_dependency_.begin();
5399         it != unused_dependency_.end(); ++it) {
5400      // Do not log warnings for proto files which extend annotations.
5401      int i;
5402      for (i = 0 ; i < (*it)->extension_count(); ++i) {
5403        if (annotation_extensions.find(
5404                (*it)->extension(i)->containing_type()->full_name())
5405            != annotation_extensions.end()) {
5406          break;
5407        }
5408      }
5409      // Log warnings for unused imported files.
5410      if (i == (*it)->extension_count()) {
5411        GOOGLE_LOG(WARNING) << "Warning: Unused import: \"" << result->name()
5412                     << "\" imports \"" << (*it)->name()
5413                     << "\" which is not used.";
5414      }
5415    }
5416  }
5417}
5418
5419}  // namespace protobuf
5420}  // namespace google
5421