1/*
2 * Simultaneous authentication of equals
3 * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9#include "includes.h"
10
11#include "common.h"
12#include "crypto/crypto.h"
13#include "crypto/sha256.h"
14#include "crypto/random.h"
15#include "crypto/dh_groups.h"
16#include "ieee802_11_defs.h"
17#include "sae.h"
18
19
20int sae_set_group(struct sae_data *sae, int group)
21{
22	struct sae_temporary_data *tmp;
23
24	sae_clear_data(sae);
25	tmp = sae->tmp = os_zalloc(sizeof(*tmp));
26	if (tmp == NULL)
27		return -1;
28
29	/* First, check if this is an ECC group */
30	tmp->ec = crypto_ec_init(group);
31	if (tmp->ec) {
32		sae->group = group;
33		tmp->prime_len = crypto_ec_prime_len(tmp->ec);
34		tmp->prime = crypto_ec_get_prime(tmp->ec);
35		tmp->order = crypto_ec_get_order(tmp->ec);
36		return 0;
37	}
38
39	/* Not an ECC group, check FFC */
40	tmp->dh = dh_groups_get(group);
41	if (tmp->dh) {
42		sae->group = group;
43		tmp->prime_len = tmp->dh->prime_len;
44		if (tmp->prime_len > SAE_MAX_PRIME_LEN) {
45			sae_clear_data(sae);
46			return -1;
47		}
48
49		tmp->prime_buf = crypto_bignum_init_set(tmp->dh->prime,
50							tmp->prime_len);
51		if (tmp->prime_buf == NULL) {
52			sae_clear_data(sae);
53			return -1;
54		}
55		tmp->prime = tmp->prime_buf;
56
57		tmp->order_buf = crypto_bignum_init_set(tmp->dh->order,
58							tmp->dh->order_len);
59		if (tmp->order_buf == NULL) {
60			sae_clear_data(sae);
61			return -1;
62		}
63		tmp->order = tmp->order_buf;
64
65		return 0;
66	}
67
68	/* Unsupported group */
69	return -1;
70}
71
72
73void sae_clear_temp_data(struct sae_data *sae)
74{
75	struct sae_temporary_data *tmp;
76	if (sae == NULL || sae->tmp == NULL)
77		return;
78	tmp = sae->tmp;
79	crypto_ec_deinit(tmp->ec);
80	crypto_bignum_deinit(tmp->prime_buf, 0);
81	crypto_bignum_deinit(tmp->order_buf, 0);
82	crypto_bignum_deinit(tmp->sae_rand, 1);
83	crypto_bignum_deinit(tmp->pwe_ffc, 1);
84	crypto_bignum_deinit(tmp->own_commit_scalar, 0);
85	crypto_bignum_deinit(tmp->own_commit_element_ffc, 0);
86	crypto_bignum_deinit(tmp->peer_commit_element_ffc, 0);
87	crypto_ec_point_deinit(tmp->pwe_ecc, 1);
88	crypto_ec_point_deinit(tmp->own_commit_element_ecc, 0);
89	crypto_ec_point_deinit(tmp->peer_commit_element_ecc, 0);
90	wpabuf_free(tmp->anti_clogging_token);
91	bin_clear_free(tmp, sizeof(*tmp));
92	sae->tmp = NULL;
93}
94
95
96void sae_clear_data(struct sae_data *sae)
97{
98	if (sae == NULL)
99		return;
100	sae_clear_temp_data(sae);
101	crypto_bignum_deinit(sae->peer_commit_scalar, 0);
102	os_memset(sae, 0, sizeof(*sae));
103}
104
105
106static void buf_shift_right(u8 *buf, size_t len, size_t bits)
107{
108	size_t i;
109	for (i = len - 1; i > 0; i--)
110		buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
111	buf[0] >>= bits;
112}
113
114
115static struct crypto_bignum * sae_get_rand(struct sae_data *sae)
116{
117	u8 val[SAE_MAX_PRIME_LEN];
118	int iter = 0;
119	struct crypto_bignum *bn = NULL;
120	int order_len_bits = crypto_bignum_bits(sae->tmp->order);
121	size_t order_len = (order_len_bits + 7) / 8;
122
123	if (order_len > sizeof(val))
124		return NULL;
125
126	for (;;) {
127		if (iter++ > 100 || random_get_bytes(val, order_len) < 0)
128			return NULL;
129		if (order_len_bits % 8)
130			buf_shift_right(val, order_len, 8 - order_len_bits % 8);
131		bn = crypto_bignum_init_set(val, order_len);
132		if (bn == NULL)
133			return NULL;
134		if (crypto_bignum_is_zero(bn) ||
135		    crypto_bignum_is_one(bn) ||
136		    crypto_bignum_cmp(bn, sae->tmp->order) >= 0) {
137			crypto_bignum_deinit(bn, 0);
138			continue;
139		}
140		break;
141	}
142
143	os_memset(val, 0, order_len);
144	return bn;
145}
146
147
148static struct crypto_bignum * sae_get_rand_and_mask(struct sae_data *sae)
149{
150	crypto_bignum_deinit(sae->tmp->sae_rand, 1);
151	sae->tmp->sae_rand = sae_get_rand(sae);
152	if (sae->tmp->sae_rand == NULL)
153		return NULL;
154	return sae_get_rand(sae);
155}
156
157
158static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
159{
160	wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
161		   " addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
162	if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
163		os_memcpy(key, addr1, ETH_ALEN);
164		os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
165	} else {
166		os_memcpy(key, addr2, ETH_ALEN);
167		os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
168	}
169}
170
171
172static struct crypto_bignum *
173get_rand_1_to_p_1(const u8 *prime, size_t prime_len, size_t prime_bits,
174		  int *r_odd)
175{
176	for (;;) {
177		struct crypto_bignum *r;
178		u8 tmp[SAE_MAX_ECC_PRIME_LEN];
179
180		if (random_get_bytes(tmp, prime_len) < 0)
181			break;
182		if (prime_bits % 8)
183			buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
184		if (os_memcmp(tmp, prime, prime_len) >= 0)
185			continue;
186		r = crypto_bignum_init_set(tmp, prime_len);
187		if (!r)
188			break;
189		if (crypto_bignum_is_zero(r)) {
190			crypto_bignum_deinit(r, 0);
191			continue;
192		}
193
194		*r_odd = tmp[prime_len - 1] & 0x01;
195		return r;
196	}
197
198	return NULL;
199}
200
201
202static int is_quadratic_residue_blind(struct sae_data *sae,
203				      const u8 *prime, size_t bits,
204				      const struct crypto_bignum *qr,
205				      const struct crypto_bignum *qnr,
206				      const struct crypto_bignum *y_sqr)
207{
208	struct crypto_bignum *r, *num;
209	int r_odd, check, res = -1;
210
211	/*
212	 * Use the blinding technique to mask y_sqr while determining
213	 * whether it is a quadratic residue modulo p to avoid leaking
214	 * timing information while determining the Legendre symbol.
215	 *
216	 * v = y_sqr
217	 * r = a random number between 1 and p-1, inclusive
218	 * num = (v * r * r) modulo p
219	 */
220	r = get_rand_1_to_p_1(prime, sae->tmp->prime_len, bits, &r_odd);
221	if (!r)
222		return -1;
223
224	num = crypto_bignum_init();
225	if (!num ||
226	    crypto_bignum_mulmod(y_sqr, r, sae->tmp->prime, num) < 0 ||
227	    crypto_bignum_mulmod(num, r, sae->tmp->prime, num) < 0)
228		goto fail;
229
230	if (r_odd) {
231		/*
232		 * num = (num * qr) module p
233		 * LGR(num, p) = 1 ==> quadratic residue
234		 */
235		if (crypto_bignum_mulmod(num, qr, sae->tmp->prime, num) < 0)
236			goto fail;
237		check = 1;
238	} else {
239		/*
240		 * num = (num * qnr) module p
241		 * LGR(num, p) = -1 ==> quadratic residue
242		 */
243		if (crypto_bignum_mulmod(num, qnr, sae->tmp->prime, num) < 0)
244			goto fail;
245		check = -1;
246	}
247
248	res = crypto_bignum_legendre(num, sae->tmp->prime);
249	if (res == -2) {
250		res = -1;
251		goto fail;
252	}
253	res = res == check;
254fail:
255	crypto_bignum_deinit(num, 1);
256	crypto_bignum_deinit(r, 1);
257	return res;
258}
259
260
261static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
262				 const u8 *prime,
263				 const struct crypto_bignum *qr,
264				 const struct crypto_bignum *qnr,
265				 struct crypto_bignum **ret_x_cand)
266{
267	u8 pwd_value[SAE_MAX_ECC_PRIME_LEN];
268	struct crypto_bignum *y_sqr, *x_cand;
269	int res;
270	size_t bits;
271
272	*ret_x_cand = NULL;
273
274	wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
275
276	/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
277	bits = crypto_ec_prime_len_bits(sae->tmp->ec);
278	if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
279			    prime, sae->tmp->prime_len, pwd_value, bits) < 0)
280		return -1;
281	if (bits % 8)
282		buf_shift_right(pwd_value, sizeof(pwd_value), 8 - bits % 8);
283	wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
284			pwd_value, sae->tmp->prime_len);
285
286	if (os_memcmp(pwd_value, prime, sae->tmp->prime_len) >= 0)
287		return 0;
288
289	x_cand = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
290	if (!x_cand)
291		return -1;
292	y_sqr = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x_cand);
293	if (!y_sqr) {
294		crypto_bignum_deinit(x_cand, 1);
295		return -1;
296	}
297
298	res = is_quadratic_residue_blind(sae, prime, bits, qr, qnr, y_sqr);
299	crypto_bignum_deinit(y_sqr, 1);
300	if (res <= 0) {
301		crypto_bignum_deinit(x_cand, 1);
302		return res;
303	}
304
305	*ret_x_cand = x_cand;
306	return 1;
307}
308
309
310static int sae_test_pwd_seed_ffc(struct sae_data *sae, const u8 *pwd_seed,
311				 struct crypto_bignum *pwe)
312{
313	u8 pwd_value[SAE_MAX_PRIME_LEN];
314	size_t bits = sae->tmp->prime_len * 8;
315	u8 exp[1];
316	struct crypto_bignum *a, *b;
317	int res;
318
319	wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
320
321	/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
322	if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
323			    sae->tmp->dh->prime, sae->tmp->prime_len, pwd_value,
324			    bits) < 0)
325		return -1;
326	wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value,
327			sae->tmp->prime_len);
328
329	if (os_memcmp(pwd_value, sae->tmp->dh->prime, sae->tmp->prime_len) >= 0)
330	{
331		wpa_printf(MSG_DEBUG, "SAE: pwd-value >= p");
332		return 0;
333	}
334
335	/* PWE = pwd-value^((p-1)/r) modulo p */
336
337	a = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
338
339	if (sae->tmp->dh->safe_prime) {
340		/*
341		 * r = (p-1)/2 for the group used here, so this becomes:
342		 * PWE = pwd-value^2 modulo p
343		 */
344		exp[0] = 2;
345		b = crypto_bignum_init_set(exp, sizeof(exp));
346	} else {
347		/* Calculate exponent: (p-1)/r */
348		exp[0] = 1;
349		b = crypto_bignum_init_set(exp, sizeof(exp));
350		if (b == NULL ||
351		    crypto_bignum_sub(sae->tmp->prime, b, b) < 0 ||
352		    crypto_bignum_div(b, sae->tmp->order, b) < 0) {
353			crypto_bignum_deinit(b, 0);
354			b = NULL;
355		}
356	}
357
358	if (a == NULL || b == NULL)
359		res = -1;
360	else
361		res = crypto_bignum_exptmod(a, b, sae->tmp->prime, pwe);
362
363	crypto_bignum_deinit(a, 0);
364	crypto_bignum_deinit(b, 0);
365
366	if (res < 0) {
367		wpa_printf(MSG_DEBUG, "SAE: Failed to calculate PWE");
368		return -1;
369	}
370
371	/* if (PWE > 1) --> found */
372	if (crypto_bignum_is_zero(pwe) || crypto_bignum_is_one(pwe)) {
373		wpa_printf(MSG_DEBUG, "SAE: PWE <= 1");
374		return 0;
375	}
376
377	wpa_printf(MSG_DEBUG, "SAE: PWE found");
378	return 1;
379}
380
381
382static int get_random_qr_qnr(const u8 *prime, size_t prime_len,
383			     const struct crypto_bignum *prime_bn,
384			     size_t prime_bits, struct crypto_bignum **qr,
385			     struct crypto_bignum **qnr)
386{
387	*qr = NULL;
388	*qnr = NULL;
389
390	while (!(*qr) || !(*qnr)) {
391		u8 tmp[SAE_MAX_ECC_PRIME_LEN];
392		struct crypto_bignum *q;
393		int res;
394
395		if (random_get_bytes(tmp, prime_len) < 0)
396			break;
397		if (prime_bits % 8)
398			buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
399		if (os_memcmp(tmp, prime, prime_len) >= 0)
400			continue;
401		q = crypto_bignum_init_set(tmp, prime_len);
402		if (!q)
403			break;
404		res = crypto_bignum_legendre(q, prime_bn);
405
406		if (res == 1 && !(*qr))
407			*qr = q;
408		else if (res == -1 && !(*qnr))
409			*qnr = q;
410		else
411			crypto_bignum_deinit(q, 0);
412	}
413
414	return (*qr && *qnr) ? 0 : -1;
415}
416
417
418static int sae_derive_pwe_ecc(struct sae_data *sae, const u8 *addr1,
419			      const u8 *addr2, const u8 *password,
420			      size_t password_len)
421{
422	u8 counter, k = 40;
423	u8 addrs[2 * ETH_ALEN];
424	const u8 *addr[2];
425	size_t len[2];
426	u8 dummy_password[32];
427	size_t dummy_password_len;
428	int pwd_seed_odd = 0;
429	u8 prime[SAE_MAX_ECC_PRIME_LEN];
430	size_t prime_len;
431	struct crypto_bignum *x = NULL, *qr, *qnr;
432	size_t bits;
433	int res;
434
435	dummy_password_len = password_len;
436	if (dummy_password_len > sizeof(dummy_password))
437		dummy_password_len = sizeof(dummy_password);
438	if (random_get_bytes(dummy_password, dummy_password_len) < 0)
439		return -1;
440
441	prime_len = sae->tmp->prime_len;
442	if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
443				 prime_len) < 0)
444		return -1;
445	bits = crypto_ec_prime_len_bits(sae->tmp->ec);
446
447	/*
448	 * Create a random quadratic residue (qr) and quadratic non-residue
449	 * (qnr) modulo p for blinding purposes during the loop.
450	 */
451	if (get_random_qr_qnr(prime, prime_len, sae->tmp->prime, bits,
452			      &qr, &qnr) < 0)
453		return -1;
454
455	wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
456			      password, password_len);
457
458	/*
459	 * H(salt, ikm) = HMAC-SHA256(salt, ikm)
460	 * base = password
461	 * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
462	 *              base || counter)
463	 */
464	sae_pwd_seed_key(addr1, addr2, addrs);
465
466	addr[0] = password;
467	len[0] = password_len;
468	addr[1] = &counter;
469	len[1] = sizeof(counter);
470
471	/*
472	 * Continue for at least k iterations to protect against side-channel
473	 * attacks that attempt to determine the number of iterations required
474	 * in the loop.
475	 */
476	for (counter = 1; counter <= k || !x; counter++) {
477		u8 pwd_seed[SHA256_MAC_LEN];
478		struct crypto_bignum *x_cand;
479
480		if (counter > 200) {
481			/* This should not happen in practice */
482			wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
483			break;
484		}
485
486		wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
487		if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
488				       pwd_seed) < 0)
489			break;
490
491		res = sae_test_pwd_seed_ecc(sae, pwd_seed,
492					    prime, qr, qnr, &x_cand);
493		if (res < 0)
494			goto fail;
495		if (res > 0 && !x) {
496			wpa_printf(MSG_DEBUG,
497				   "SAE: Selected pwd-seed with counter %u",
498				   counter);
499			x = x_cand;
500			pwd_seed_odd = pwd_seed[SHA256_MAC_LEN - 1] & 0x01;
501			os_memset(pwd_seed, 0, sizeof(pwd_seed));
502
503			/*
504			 * Use a dummy password for the following rounds, if
505			 * any.
506			 */
507			addr[0] = dummy_password;
508			len[0] = dummy_password_len;
509		} else if (res > 0) {
510			crypto_bignum_deinit(x_cand, 1);
511		}
512	}
513
514	if (!x) {
515		wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE");
516		res = -1;
517		goto fail;
518	}
519
520	if (!sae->tmp->pwe_ecc)
521		sae->tmp->pwe_ecc = crypto_ec_point_init(sae->tmp->ec);
522	if (!sae->tmp->pwe_ecc)
523		res = -1;
524	else
525		res = crypto_ec_point_solve_y_coord(sae->tmp->ec,
526						    sae->tmp->pwe_ecc, x,
527						    pwd_seed_odd);
528	crypto_bignum_deinit(x, 1);
529	if (res < 0) {
530		/*
531		 * This should not happen since we already checked that there
532		 * is a result.
533		 */
534		wpa_printf(MSG_DEBUG, "SAE: Could not solve y");
535	}
536
537fail:
538	crypto_bignum_deinit(qr, 0);
539	crypto_bignum_deinit(qnr, 0);
540
541	return res;
542}
543
544
545static int sae_derive_pwe_ffc(struct sae_data *sae, const u8 *addr1,
546			      const u8 *addr2, const u8 *password,
547			      size_t password_len)
548{
549	u8 counter;
550	u8 addrs[2 * ETH_ALEN];
551	const u8 *addr[2];
552	size_t len[2];
553	int found = 0;
554
555	if (sae->tmp->pwe_ffc == NULL) {
556		sae->tmp->pwe_ffc = crypto_bignum_init();
557		if (sae->tmp->pwe_ffc == NULL)
558			return -1;
559	}
560
561	wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
562			      password, password_len);
563
564	/*
565	 * H(salt, ikm) = HMAC-SHA256(salt, ikm)
566	 * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
567	 *              password || counter)
568	 */
569	sae_pwd_seed_key(addr1, addr2, addrs);
570
571	addr[0] = password;
572	len[0] = password_len;
573	addr[1] = &counter;
574	len[1] = sizeof(counter);
575
576	for (counter = 1; !found; counter++) {
577		u8 pwd_seed[SHA256_MAC_LEN];
578		int res;
579
580		if (counter > 200) {
581			/* This should not happen in practice */
582			wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
583			break;
584		}
585
586		wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
587		if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
588				       pwd_seed) < 0)
589			break;
590		res = sae_test_pwd_seed_ffc(sae, pwd_seed, sae->tmp->pwe_ffc);
591		if (res < 0)
592			break;
593		if (res > 0) {
594			wpa_printf(MSG_DEBUG, "SAE: Use this PWE");
595			found = 1;
596		}
597	}
598
599	return found ? 0 : -1;
600}
601
602
603static int sae_derive_commit_element_ecc(struct sae_data *sae,
604					 struct crypto_bignum *mask)
605{
606	/* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
607	if (!sae->tmp->own_commit_element_ecc) {
608		sae->tmp->own_commit_element_ecc =
609			crypto_ec_point_init(sae->tmp->ec);
610		if (!sae->tmp->own_commit_element_ecc)
611			return -1;
612	}
613
614	if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc, mask,
615				sae->tmp->own_commit_element_ecc) < 0 ||
616	    crypto_ec_point_invert(sae->tmp->ec,
617				   sae->tmp->own_commit_element_ecc) < 0) {
618		wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
619		return -1;
620	}
621
622	return 0;
623}
624
625
626static int sae_derive_commit_element_ffc(struct sae_data *sae,
627					 struct crypto_bignum *mask)
628{
629	/* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
630	if (!sae->tmp->own_commit_element_ffc) {
631		sae->tmp->own_commit_element_ffc = crypto_bignum_init();
632		if (!sae->tmp->own_commit_element_ffc)
633			return -1;
634	}
635
636	if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, mask, sae->tmp->prime,
637				  sae->tmp->own_commit_element_ffc) < 0 ||
638	    crypto_bignum_inverse(sae->tmp->own_commit_element_ffc,
639				  sae->tmp->prime,
640				  sae->tmp->own_commit_element_ffc) < 0) {
641		wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
642		return -1;
643	}
644
645	return 0;
646}
647
648
649static int sae_derive_commit(struct sae_data *sae)
650{
651	struct crypto_bignum *mask;
652	int ret = -1;
653	unsigned int counter = 0;
654
655	do {
656		counter++;
657		if (counter > 100) {
658			/*
659			 * This cannot really happen in practice if the random
660			 * number generator is working. Anyway, to avoid even a
661			 * theoretical infinite loop, break out after 100
662			 * attemps.
663			 */
664			return -1;
665		}
666
667		mask = sae_get_rand_and_mask(sae);
668		if (mask == NULL) {
669			wpa_printf(MSG_DEBUG, "SAE: Could not get rand/mask");
670			return -1;
671		}
672
673		/* commit-scalar = (rand + mask) modulo r */
674		if (!sae->tmp->own_commit_scalar) {
675			sae->tmp->own_commit_scalar = crypto_bignum_init();
676			if (!sae->tmp->own_commit_scalar)
677				goto fail;
678		}
679		crypto_bignum_add(sae->tmp->sae_rand, mask,
680				  sae->tmp->own_commit_scalar);
681		crypto_bignum_mod(sae->tmp->own_commit_scalar, sae->tmp->order,
682				  sae->tmp->own_commit_scalar);
683	} while (crypto_bignum_is_zero(sae->tmp->own_commit_scalar) ||
684		 crypto_bignum_is_one(sae->tmp->own_commit_scalar));
685
686	if ((sae->tmp->ec && sae_derive_commit_element_ecc(sae, mask) < 0) ||
687	    (sae->tmp->dh && sae_derive_commit_element_ffc(sae, mask) < 0))
688		goto fail;
689
690	ret = 0;
691fail:
692	crypto_bignum_deinit(mask, 1);
693	return ret;
694}
695
696
697int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
698		       const u8 *password, size_t password_len,
699		       struct sae_data *sae)
700{
701	if (sae->tmp == NULL ||
702	    (sae->tmp->ec && sae_derive_pwe_ecc(sae, addr1, addr2, password,
703						password_len) < 0) ||
704	    (sae->tmp->dh && sae_derive_pwe_ffc(sae, addr1, addr2, password,
705						password_len) < 0) ||
706	    sae_derive_commit(sae) < 0)
707		return -1;
708	return 0;
709}
710
711
712static int sae_derive_k_ecc(struct sae_data *sae, u8 *k)
713{
714	struct crypto_ec_point *K;
715	int ret = -1;
716
717	K = crypto_ec_point_init(sae->tmp->ec);
718	if (K == NULL)
719		goto fail;
720
721	/*
722	 * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
723	 *                                        PEER-COMMIT-ELEMENT)))
724	 * If K is identity element (point-at-infinity), reject
725	 * k = F(K) (= x coordinate)
726	 */
727
728	if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc,
729				sae->peer_commit_scalar, K) < 0 ||
730	    crypto_ec_point_add(sae->tmp->ec, K,
731				sae->tmp->peer_commit_element_ecc, K) < 0 ||
732	    crypto_ec_point_mul(sae->tmp->ec, K, sae->tmp->sae_rand, K) < 0 ||
733	    crypto_ec_point_is_at_infinity(sae->tmp->ec, K) ||
734	    crypto_ec_point_to_bin(sae->tmp->ec, K, k, NULL) < 0) {
735		wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
736		goto fail;
737	}
738
739	wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
740
741	ret = 0;
742fail:
743	crypto_ec_point_deinit(K, 1);
744	return ret;
745}
746
747
748static int sae_derive_k_ffc(struct sae_data *sae, u8 *k)
749{
750	struct crypto_bignum *K;
751	int ret = -1;
752
753	K = crypto_bignum_init();
754	if (K == NULL)
755		goto fail;
756
757	/*
758	 * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
759	 *                                        PEER-COMMIT-ELEMENT)))
760	 * If K is identity element (one), reject.
761	 * k = F(K) (= x coordinate)
762	 */
763
764	if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, sae->peer_commit_scalar,
765				  sae->tmp->prime, K) < 0 ||
766	    crypto_bignum_mulmod(K, sae->tmp->peer_commit_element_ffc,
767				 sae->tmp->prime, K) < 0 ||
768	    crypto_bignum_exptmod(K, sae->tmp->sae_rand, sae->tmp->prime, K) < 0
769	    ||
770	    crypto_bignum_is_one(K) ||
771	    crypto_bignum_to_bin(K, k, SAE_MAX_PRIME_LEN, sae->tmp->prime_len) <
772	    0) {
773		wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
774		goto fail;
775	}
776
777	wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
778
779	ret = 0;
780fail:
781	crypto_bignum_deinit(K, 1);
782	return ret;
783}
784
785
786static int sae_derive_keys(struct sae_data *sae, const u8 *k)
787{
788	u8 null_key[SAE_KEYSEED_KEY_LEN], val[SAE_MAX_PRIME_LEN];
789	u8 keyseed[SHA256_MAC_LEN];
790	u8 keys[SAE_KCK_LEN + SAE_PMK_LEN];
791	struct crypto_bignum *tmp;
792	int ret = -1;
793
794	tmp = crypto_bignum_init();
795	if (tmp == NULL)
796		goto fail;
797
798	/* keyseed = H(<0>32, k)
799	 * KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
800	 *                      (commit-scalar + peer-commit-scalar) modulo r)
801	 * PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
802	 */
803
804	os_memset(null_key, 0, sizeof(null_key));
805	hmac_sha256(null_key, sizeof(null_key), k, sae->tmp->prime_len,
806		    keyseed);
807	wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
808
809	crypto_bignum_add(sae->tmp->own_commit_scalar, sae->peer_commit_scalar,
810			  tmp);
811	crypto_bignum_mod(tmp, sae->tmp->order, tmp);
812	crypto_bignum_to_bin(tmp, val, sizeof(val), sae->tmp->prime_len);
813	wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, SAE_PMKID_LEN);
814	if (sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
815		       val, sae->tmp->prime_len, keys, sizeof(keys)) < 0)
816		goto fail;
817	os_memset(keyseed, 0, sizeof(keyseed));
818	os_memcpy(sae->tmp->kck, keys, SAE_KCK_LEN);
819	os_memcpy(sae->pmk, keys + SAE_KCK_LEN, SAE_PMK_LEN);
820	os_memcpy(sae->pmkid, val, SAE_PMKID_LEN);
821	os_memset(keys, 0, sizeof(keys));
822	wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->tmp->kck, SAE_KCK_LEN);
823	wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, SAE_PMK_LEN);
824
825	ret = 0;
826fail:
827	crypto_bignum_deinit(tmp, 0);
828	return ret;
829}
830
831
832int sae_process_commit(struct sae_data *sae)
833{
834	u8 k[SAE_MAX_PRIME_LEN];
835	if (sae->tmp == NULL ||
836	    (sae->tmp->ec && sae_derive_k_ecc(sae, k) < 0) ||
837	    (sae->tmp->dh && sae_derive_k_ffc(sae, k) < 0) ||
838	    sae_derive_keys(sae, k) < 0)
839		return -1;
840	return 0;
841}
842
843
844void sae_write_commit(struct sae_data *sae, struct wpabuf *buf,
845		      const struct wpabuf *token)
846{
847	u8 *pos;
848
849	if (sae->tmp == NULL)
850		return;
851
852	wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */
853	if (token) {
854		wpabuf_put_buf(buf, token);
855		wpa_hexdump(MSG_DEBUG, "SAE: Anti-clogging token",
856			    wpabuf_head(token), wpabuf_len(token));
857	}
858	pos = wpabuf_put(buf, sae->tmp->prime_len);
859	crypto_bignum_to_bin(sae->tmp->own_commit_scalar, pos,
860			     sae->tmp->prime_len, sae->tmp->prime_len);
861	wpa_hexdump(MSG_DEBUG, "SAE: own commit-scalar",
862		    pos, sae->tmp->prime_len);
863	if (sae->tmp->ec) {
864		pos = wpabuf_put(buf, 2 * sae->tmp->prime_len);
865		crypto_ec_point_to_bin(sae->tmp->ec,
866				       sae->tmp->own_commit_element_ecc,
867				       pos, pos + sae->tmp->prime_len);
868		wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(x)",
869			    pos, sae->tmp->prime_len);
870		wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(y)",
871			    pos + sae->tmp->prime_len, sae->tmp->prime_len);
872	} else {
873		pos = wpabuf_put(buf, sae->tmp->prime_len);
874		crypto_bignum_to_bin(sae->tmp->own_commit_element_ffc, pos,
875				     sae->tmp->prime_len, sae->tmp->prime_len);
876		wpa_hexdump(MSG_DEBUG, "SAE: own commit-element",
877			    pos, sae->tmp->prime_len);
878	}
879}
880
881
882u16 sae_group_allowed(struct sae_data *sae, int *allowed_groups, u16 group)
883{
884	if (allowed_groups) {
885		int i;
886		for (i = 0; allowed_groups[i] > 0; i++) {
887			if (allowed_groups[i] == group)
888				break;
889		}
890		if (allowed_groups[i] != group) {
891			wpa_printf(MSG_DEBUG, "SAE: Proposed group %u not "
892				   "enabled in the current configuration",
893				   group);
894			return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
895		}
896	}
897
898	if (sae->state == SAE_COMMITTED && group != sae->group) {
899		wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed");
900		return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
901	}
902
903	if (group != sae->group && sae_set_group(sae, group) < 0) {
904		wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
905			   group);
906		return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
907	}
908
909	if (sae->tmp == NULL) {
910		wpa_printf(MSG_DEBUG, "SAE: Group information not yet initialized");
911		return WLAN_STATUS_UNSPECIFIED_FAILURE;
912	}
913
914	if (sae->tmp->dh && !allowed_groups) {
915		wpa_printf(MSG_DEBUG, "SAE: Do not allow FFC group %u without "
916			   "explicit configuration enabling it", group);
917		return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
918	}
919
920	return WLAN_STATUS_SUCCESS;
921}
922
923
924static void sae_parse_commit_token(struct sae_data *sae, const u8 **pos,
925				   const u8 *end, const u8 **token,
926				   size_t *token_len)
927{
928	if ((sae->tmp->ec ? 3 : 2) * sae->tmp->prime_len < end - *pos) {
929		size_t tlen = end - (*pos + (sae->tmp->ec ? 3 : 2) *
930				     sae->tmp->prime_len);
931		wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", *pos, tlen);
932		if (token)
933			*token = *pos;
934		if (token_len)
935			*token_len = tlen;
936		*pos += tlen;
937	} else {
938		if (token)
939			*token = NULL;
940		if (token_len)
941			*token_len = 0;
942	}
943}
944
945
946static u16 sae_parse_commit_scalar(struct sae_data *sae, const u8 **pos,
947				   const u8 *end)
948{
949	struct crypto_bignum *peer_scalar;
950
951	if (sae->tmp->prime_len > end - *pos) {
952		wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
953		return WLAN_STATUS_UNSPECIFIED_FAILURE;
954	}
955
956	peer_scalar = crypto_bignum_init_set(*pos, sae->tmp->prime_len);
957	if (peer_scalar == NULL)
958		return WLAN_STATUS_UNSPECIFIED_FAILURE;
959
960	/*
961	 * IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for
962	 * the peer and it is in Authenticated state, the new Commit Message
963	 * shall be dropped if the peer-scalar is identical to the one used in
964	 * the existing protocol instance.
965	 */
966	if (sae->state == SAE_ACCEPTED && sae->peer_commit_scalar &&
967	    crypto_bignum_cmp(sae->peer_commit_scalar, peer_scalar) == 0) {
968		wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous "
969			   "peer-commit-scalar");
970		crypto_bignum_deinit(peer_scalar, 0);
971		return WLAN_STATUS_UNSPECIFIED_FAILURE;
972	}
973
974	/* 1 < scalar < r */
975	if (crypto_bignum_is_zero(peer_scalar) ||
976	    crypto_bignum_is_one(peer_scalar) ||
977	    crypto_bignum_cmp(peer_scalar, sae->tmp->order) >= 0) {
978		wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
979		crypto_bignum_deinit(peer_scalar, 0);
980		return WLAN_STATUS_UNSPECIFIED_FAILURE;
981	}
982
983
984	crypto_bignum_deinit(sae->peer_commit_scalar, 0);
985	sae->peer_commit_scalar = peer_scalar;
986	wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar",
987		    *pos, sae->tmp->prime_len);
988	*pos += sae->tmp->prime_len;
989
990	return WLAN_STATUS_SUCCESS;
991}
992
993
994static u16 sae_parse_commit_element_ecc(struct sae_data *sae, const u8 *pos,
995					const u8 *end)
996{
997	u8 prime[SAE_MAX_ECC_PRIME_LEN];
998
999	if (2 * sae->tmp->prime_len > end - pos) {
1000		wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
1001			   "commit-element");
1002		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1003	}
1004
1005	if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
1006				 sae->tmp->prime_len) < 0)
1007		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1008
1009	/* element x and y coordinates < p */
1010	if (os_memcmp(pos, prime, sae->tmp->prime_len) >= 0 ||
1011	    os_memcmp(pos + sae->tmp->prime_len, prime,
1012		      sae->tmp->prime_len) >= 0) {
1013		wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
1014			   "element");
1015		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1016	}
1017
1018	wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
1019		    pos, sae->tmp->prime_len);
1020	wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
1021		    pos + sae->tmp->prime_len, sae->tmp->prime_len);
1022
1023	crypto_ec_point_deinit(sae->tmp->peer_commit_element_ecc, 0);
1024	sae->tmp->peer_commit_element_ecc =
1025		crypto_ec_point_from_bin(sae->tmp->ec, pos);
1026	if (sae->tmp->peer_commit_element_ecc == NULL)
1027		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1028
1029	if (!crypto_ec_point_is_on_curve(sae->tmp->ec,
1030					 sae->tmp->peer_commit_element_ecc)) {
1031		wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
1032		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1033	}
1034
1035	return WLAN_STATUS_SUCCESS;
1036}
1037
1038
1039static u16 sae_parse_commit_element_ffc(struct sae_data *sae, const u8 *pos,
1040					const u8 *end)
1041{
1042	struct crypto_bignum *res, *one;
1043	const u8 one_bin[1] = { 0x01 };
1044
1045	if (sae->tmp->prime_len > end - pos) {
1046		wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
1047			   "commit-element");
1048		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1049	}
1050	wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element", pos,
1051		    sae->tmp->prime_len);
1052
1053	crypto_bignum_deinit(sae->tmp->peer_commit_element_ffc, 0);
1054	sae->tmp->peer_commit_element_ffc =
1055		crypto_bignum_init_set(pos, sae->tmp->prime_len);
1056	if (sae->tmp->peer_commit_element_ffc == NULL)
1057		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1058	/* 1 < element < p - 1 */
1059	res = crypto_bignum_init();
1060	one = crypto_bignum_init_set(one_bin, sizeof(one_bin));
1061	if (!res || !one ||
1062	    crypto_bignum_sub(sae->tmp->prime, one, res) ||
1063	    crypto_bignum_is_zero(sae->tmp->peer_commit_element_ffc) ||
1064	    crypto_bignum_is_one(sae->tmp->peer_commit_element_ffc) ||
1065	    crypto_bignum_cmp(sae->tmp->peer_commit_element_ffc, res) >= 0) {
1066		crypto_bignum_deinit(res, 0);
1067		crypto_bignum_deinit(one, 0);
1068		wpa_printf(MSG_DEBUG, "SAE: Invalid peer element");
1069		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1070	}
1071	crypto_bignum_deinit(one, 0);
1072
1073	/* scalar-op(r, ELEMENT) = 1 modulo p */
1074	if (crypto_bignum_exptmod(sae->tmp->peer_commit_element_ffc,
1075				  sae->tmp->order, sae->tmp->prime, res) < 0 ||
1076	    !crypto_bignum_is_one(res)) {
1077		wpa_printf(MSG_DEBUG, "SAE: Invalid peer element (scalar-op)");
1078		crypto_bignum_deinit(res, 0);
1079		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1080	}
1081	crypto_bignum_deinit(res, 0);
1082
1083	return WLAN_STATUS_SUCCESS;
1084}
1085
1086
1087static u16 sae_parse_commit_element(struct sae_data *sae, const u8 *pos,
1088				    const u8 *end)
1089{
1090	if (sae->tmp->dh)
1091		return sae_parse_commit_element_ffc(sae, pos, end);
1092	return sae_parse_commit_element_ecc(sae, pos, end);
1093}
1094
1095
1096u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len,
1097		     const u8 **token, size_t *token_len, int *allowed_groups)
1098{
1099	const u8 *pos = data, *end = data + len;
1100	u16 res;
1101
1102	/* Check Finite Cyclic Group */
1103	if (end - pos < 2)
1104		return WLAN_STATUS_UNSPECIFIED_FAILURE;
1105	res = sae_group_allowed(sae, allowed_groups, WPA_GET_LE16(pos));
1106	if (res != WLAN_STATUS_SUCCESS)
1107		return res;
1108	pos += 2;
1109
1110	/* Optional Anti-Clogging Token */
1111	sae_parse_commit_token(sae, &pos, end, token, token_len);
1112
1113	/* commit-scalar */
1114	res = sae_parse_commit_scalar(sae, &pos, end);
1115	if (res != WLAN_STATUS_SUCCESS)
1116		return res;
1117
1118	/* commit-element */
1119	res = sae_parse_commit_element(sae, pos, end);
1120	if (res != WLAN_STATUS_SUCCESS)
1121		return res;
1122
1123	/*
1124	 * Check whether peer-commit-scalar and PEER-COMMIT-ELEMENT are same as
1125	 * the values we sent which would be evidence of a reflection attack.
1126	 */
1127	if (!sae->tmp->own_commit_scalar ||
1128	    crypto_bignum_cmp(sae->tmp->own_commit_scalar,
1129			      sae->peer_commit_scalar) != 0 ||
1130	    (sae->tmp->dh &&
1131	     (!sae->tmp->own_commit_element_ffc ||
1132	      crypto_bignum_cmp(sae->tmp->own_commit_element_ffc,
1133				sae->tmp->peer_commit_element_ffc) != 0)) ||
1134	    (sae->tmp->ec &&
1135	     (!sae->tmp->own_commit_element_ecc ||
1136	      crypto_ec_point_cmp(sae->tmp->ec,
1137				  sae->tmp->own_commit_element_ecc,
1138				  sae->tmp->peer_commit_element_ecc) != 0)))
1139		return WLAN_STATUS_SUCCESS; /* scalars/elements are different */
1140
1141	/*
1142	 * This is a reflection attack - return special value to trigger caller
1143	 * to silently discard the frame instead of replying with a specific
1144	 * status code.
1145	 */
1146	return SAE_SILENTLY_DISCARD;
1147}
1148
1149
1150static void sae_cn_confirm(struct sae_data *sae, const u8 *sc,
1151			   const struct crypto_bignum *scalar1,
1152			   const u8 *element1, size_t element1_len,
1153			   const struct crypto_bignum *scalar2,
1154			   const u8 *element2, size_t element2_len,
1155			   u8 *confirm)
1156{
1157	const u8 *addr[5];
1158	size_t len[5];
1159	u8 scalar_b1[SAE_MAX_PRIME_LEN], scalar_b2[SAE_MAX_PRIME_LEN];
1160
1161	/* Confirm
1162	 * CN(key, X, Y, Z, ...) =
1163	 *    HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
1164	 * confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
1165	 *              peer-commit-scalar, PEER-COMMIT-ELEMENT)
1166	 * verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
1167	 *               PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
1168	 */
1169	addr[0] = sc;
1170	len[0] = 2;
1171	crypto_bignum_to_bin(scalar1, scalar_b1, sizeof(scalar_b1),
1172			     sae->tmp->prime_len);
1173	addr[1] = scalar_b1;
1174	len[1] = sae->tmp->prime_len;
1175	addr[2] = element1;
1176	len[2] = element1_len;
1177	crypto_bignum_to_bin(scalar2, scalar_b2, sizeof(scalar_b2),
1178			     sae->tmp->prime_len);
1179	addr[3] = scalar_b2;
1180	len[3] = sae->tmp->prime_len;
1181	addr[4] = element2;
1182	len[4] = element2_len;
1183	hmac_sha256_vector(sae->tmp->kck, sizeof(sae->tmp->kck), 5, addr, len,
1184			   confirm);
1185}
1186
1187
1188static void sae_cn_confirm_ecc(struct sae_data *sae, const u8 *sc,
1189			       const struct crypto_bignum *scalar1,
1190			       const struct crypto_ec_point *element1,
1191			       const struct crypto_bignum *scalar2,
1192			       const struct crypto_ec_point *element2,
1193			       u8 *confirm)
1194{
1195	u8 element_b1[2 * SAE_MAX_ECC_PRIME_LEN];
1196	u8 element_b2[2 * SAE_MAX_ECC_PRIME_LEN];
1197
1198	crypto_ec_point_to_bin(sae->tmp->ec, element1, element_b1,
1199			       element_b1 + sae->tmp->prime_len);
1200	crypto_ec_point_to_bin(sae->tmp->ec, element2, element_b2,
1201			       element_b2 + sae->tmp->prime_len);
1202
1203	sae_cn_confirm(sae, sc, scalar1, element_b1, 2 * sae->tmp->prime_len,
1204		       scalar2, element_b2, 2 * sae->tmp->prime_len, confirm);
1205}
1206
1207
1208static void sae_cn_confirm_ffc(struct sae_data *sae, const u8 *sc,
1209			       const struct crypto_bignum *scalar1,
1210			       const struct crypto_bignum *element1,
1211			       const struct crypto_bignum *scalar2,
1212			       const struct crypto_bignum *element2,
1213			       u8 *confirm)
1214{
1215	u8 element_b1[SAE_MAX_PRIME_LEN];
1216	u8 element_b2[SAE_MAX_PRIME_LEN];
1217
1218	crypto_bignum_to_bin(element1, element_b1, sizeof(element_b1),
1219			     sae->tmp->prime_len);
1220	crypto_bignum_to_bin(element2, element_b2, sizeof(element_b2),
1221			     sae->tmp->prime_len);
1222
1223	sae_cn_confirm(sae, sc, scalar1, element_b1, sae->tmp->prime_len,
1224		       scalar2, element_b2, sae->tmp->prime_len, confirm);
1225}
1226
1227
1228void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
1229{
1230	const u8 *sc;
1231
1232	if (sae->tmp == NULL)
1233		return;
1234
1235	/* Send-Confirm */
1236	sc = wpabuf_put(buf, 0);
1237	wpabuf_put_le16(buf, sae->send_confirm);
1238	sae->send_confirm++;
1239
1240	if (sae->tmp->ec)
1241		sae_cn_confirm_ecc(sae, sc, sae->tmp->own_commit_scalar,
1242				   sae->tmp->own_commit_element_ecc,
1243				   sae->peer_commit_scalar,
1244				   sae->tmp->peer_commit_element_ecc,
1245				   wpabuf_put(buf, SHA256_MAC_LEN));
1246	else
1247		sae_cn_confirm_ffc(sae, sc, sae->tmp->own_commit_scalar,
1248				   sae->tmp->own_commit_element_ffc,
1249				   sae->peer_commit_scalar,
1250				   sae->tmp->peer_commit_element_ffc,
1251				   wpabuf_put(buf, SHA256_MAC_LEN));
1252}
1253
1254
1255int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len)
1256{
1257	u8 verifier[SHA256_MAC_LEN];
1258
1259	if (len < 2 + SHA256_MAC_LEN) {
1260		wpa_printf(MSG_DEBUG, "SAE: Too short confirm message");
1261		return -1;
1262	}
1263
1264	wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", WPA_GET_LE16(data));
1265
1266	if (sae->tmp == NULL) {
1267		wpa_printf(MSG_DEBUG, "SAE: Temporary data not yet available");
1268		return -1;
1269	}
1270
1271	if (sae->tmp->ec)
1272		sae_cn_confirm_ecc(sae, data, sae->peer_commit_scalar,
1273				   sae->tmp->peer_commit_element_ecc,
1274				   sae->tmp->own_commit_scalar,
1275				   sae->tmp->own_commit_element_ecc,
1276				   verifier);
1277	else
1278		sae_cn_confirm_ffc(sae, data, sae->peer_commit_scalar,
1279				   sae->tmp->peer_commit_element_ffc,
1280				   sae->tmp->own_commit_scalar,
1281				   sae->tmp->own_commit_element_ffc,
1282				   verifier);
1283
1284	if (os_memcmp_const(verifier, data + 2, SHA256_MAC_LEN) != 0) {
1285		wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch");
1286		wpa_hexdump(MSG_DEBUG, "SAE: Received confirm",
1287			    data + 2, SHA256_MAC_LEN);
1288		wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier",
1289			    verifier, SHA256_MAC_LEN);
1290		return -1;
1291	}
1292
1293	return 0;
1294}
1295