1/*
2**
3** Copyright 2007, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18#define LOG_TAG "AudioMixer"
19//#define LOG_NDEBUG 0
20
21#include "Configuration.h"
22#include <stdint.h>
23#include <string.h>
24#include <stdlib.h>
25#include <math.h>
26#include <sys/types.h>
27
28#include <utils/Errors.h>
29#include <utils/Log.h>
30
31#include <cutils/bitops.h>
32#include <cutils/compiler.h>
33#include <utils/Debug.h>
34
35#include <system/audio.h>
36
37#include <audio_utils/primitives.h>
38#include <audio_utils/format.h>
39
40#include "AudioMixerOps.h"
41#include "AudioMixer.h"
42
43// The FCC_2 macro refers to the Fixed Channel Count of 2 for the legacy integer mixer.
44#ifndef FCC_2
45#define FCC_2 2
46#endif
47
48// Look for MONO_HACK for any Mono hack involving legacy mono channel to
49// stereo channel conversion.
50
51/* VERY_VERY_VERBOSE_LOGGING will show exactly which process hook and track hook is
52 * being used. This is a considerable amount of log spam, so don't enable unless you
53 * are verifying the hook based code.
54 */
55//#define VERY_VERY_VERBOSE_LOGGING
56#ifdef VERY_VERY_VERBOSE_LOGGING
57#define ALOGVV ALOGV
58//define ALOGVV printf  // for test-mixer.cpp
59#else
60#define ALOGVV(a...) do { } while (0)
61#endif
62
63#ifndef ARRAY_SIZE
64#define ARRAY_SIZE(x) (sizeof(x)/sizeof((x)[0]))
65#endif
66
67// TODO: Move these macro/inlines to a header file.
68template <typename T>
69static inline
70T max(const T& x, const T& y) {
71    return x > y ? x : y;
72}
73
74// Set kUseNewMixer to true to use the new mixer engine always. Otherwise the
75// original code will be used for stereo sinks, the new mixer for multichannel.
76static const bool kUseNewMixer = true;
77
78// Set kUseFloat to true to allow floating input into the mixer engine.
79// If kUseNewMixer is false, this is ignored or may be overridden internally
80// because of downmix/upmix support.
81static const bool kUseFloat = true;
82
83// Set to default copy buffer size in frames for input processing.
84static const size_t kCopyBufferFrameCount = 256;
85
86namespace android {
87
88// ----------------------------------------------------------------------------
89
90template <typename T>
91T min(const T& a, const T& b)
92{
93    return a < b ? a : b;
94}
95
96// ----------------------------------------------------------------------------
97
98// Ensure mConfiguredNames bitmask is initialized properly on all architectures.
99// The value of 1 << x is undefined in C when x >= 32.
100
101AudioMixer::AudioMixer(size_t frameCount, uint32_t sampleRate, uint32_t maxNumTracks)
102    :   mTrackNames(0), mConfiguredNames((maxNumTracks >= 32 ? 0 : 1 << maxNumTracks) - 1),
103        mSampleRate(sampleRate)
104{
105    ALOG_ASSERT(maxNumTracks <= MAX_NUM_TRACKS, "maxNumTracks %u > MAX_NUM_TRACKS %u",
106            maxNumTracks, MAX_NUM_TRACKS);
107
108    // AudioMixer is not yet capable of more than 32 active track inputs
109    ALOG_ASSERT(32 >= MAX_NUM_TRACKS, "bad MAX_NUM_TRACKS %d", MAX_NUM_TRACKS);
110
111    pthread_once(&sOnceControl, &sInitRoutine);
112
113    mState.enabledTracks= 0;
114    mState.needsChanged = 0;
115    mState.frameCount   = frameCount;
116    mState.hook         = process__nop;
117    mState.outputTemp   = NULL;
118    mState.resampleTemp = NULL;
119    mState.mLog         = &mDummyLog;
120    // mState.reserved
121
122    // FIXME Most of the following initialization is probably redundant since
123    // tracks[i] should only be referenced if (mTrackNames & (1 << i)) != 0
124    // and mTrackNames is initially 0.  However, leave it here until that's verified.
125    track_t* t = mState.tracks;
126    for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) {
127        t->resampler = NULL;
128        t->downmixerBufferProvider = NULL;
129        t->mReformatBufferProvider = NULL;
130        t->mTimestretchBufferProvider = NULL;
131        t++;
132    }
133
134}
135
136AudioMixer::~AudioMixer()
137{
138    track_t* t = mState.tracks;
139    for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) {
140        delete t->resampler;
141        delete t->downmixerBufferProvider;
142        delete t->mReformatBufferProvider;
143        delete t->mTimestretchBufferProvider;
144        t++;
145    }
146    delete [] mState.outputTemp;
147    delete [] mState.resampleTemp;
148}
149
150void AudioMixer::setLog(NBLog::Writer *log)
151{
152    mState.mLog = log;
153}
154
155static inline audio_format_t selectMixerInFormat(audio_format_t inputFormat __unused) {
156    return kUseFloat && kUseNewMixer ? AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT;
157}
158
159int AudioMixer::getTrackName(audio_channel_mask_t channelMask,
160        audio_format_t format, int sessionId)
161{
162    if (!isValidPcmTrackFormat(format)) {
163        ALOGE("AudioMixer::getTrackName invalid format (%#x)", format);
164        return -1;
165    }
166    uint32_t names = (~mTrackNames) & mConfiguredNames;
167    if (names != 0) {
168        int n = __builtin_ctz(names);
169        ALOGV("add track (%d)", n);
170        // assume default parameters for the track, except where noted below
171        track_t* t = &mState.tracks[n];
172        t->needs = 0;
173
174        // Integer volume.
175        // Currently integer volume is kept for the legacy integer mixer.
176        // Will be removed when the legacy mixer path is removed.
177        t->volume[0] = UNITY_GAIN_INT;
178        t->volume[1] = UNITY_GAIN_INT;
179        t->prevVolume[0] = UNITY_GAIN_INT << 16;
180        t->prevVolume[1] = UNITY_GAIN_INT << 16;
181        t->volumeInc[0] = 0;
182        t->volumeInc[1] = 0;
183        t->auxLevel = 0;
184        t->auxInc = 0;
185        t->prevAuxLevel = 0;
186
187        // Floating point volume.
188        t->mVolume[0] = UNITY_GAIN_FLOAT;
189        t->mVolume[1] = UNITY_GAIN_FLOAT;
190        t->mPrevVolume[0] = UNITY_GAIN_FLOAT;
191        t->mPrevVolume[1] = UNITY_GAIN_FLOAT;
192        t->mVolumeInc[0] = 0.;
193        t->mVolumeInc[1] = 0.;
194        t->mAuxLevel = 0.;
195        t->mAuxInc = 0.;
196        t->mPrevAuxLevel = 0.;
197
198        // no initialization needed
199        // t->frameCount
200        t->channelCount = audio_channel_count_from_out_mask(channelMask);
201        t->enabled = false;
202        ALOGV_IF(audio_channel_mask_get_bits(channelMask) != AUDIO_CHANNEL_OUT_STEREO,
203                "Non-stereo channel mask: %d\n", channelMask);
204        t->channelMask = channelMask;
205        t->sessionId = sessionId;
206        // setBufferProvider(name, AudioBufferProvider *) is required before enable(name)
207        t->bufferProvider = NULL;
208        t->buffer.raw = NULL;
209        // no initialization needed
210        // t->buffer.frameCount
211        t->hook = NULL;
212        t->in = NULL;
213        t->resampler = NULL;
214        t->sampleRate = mSampleRate;
215        // setParameter(name, TRACK, MAIN_BUFFER, mixBuffer) is required before enable(name)
216        t->mainBuffer = NULL;
217        t->auxBuffer = NULL;
218        t->mInputBufferProvider = NULL;
219        t->mReformatBufferProvider = NULL;
220        t->downmixerBufferProvider = NULL;
221        t->mPostDownmixReformatBufferProvider = NULL;
222        t->mTimestretchBufferProvider = NULL;
223        t->mMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
224        t->mFormat = format;
225        t->mMixerInFormat = selectMixerInFormat(format);
226        t->mDownmixRequiresFormat = AUDIO_FORMAT_INVALID; // no format required
227        t->mMixerChannelMask = audio_channel_mask_from_representation_and_bits(
228                AUDIO_CHANNEL_REPRESENTATION_POSITION, AUDIO_CHANNEL_OUT_STEREO);
229        t->mMixerChannelCount = audio_channel_count_from_out_mask(t->mMixerChannelMask);
230        t->mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
231        // Check the downmixing (or upmixing) requirements.
232        status_t status = t->prepareForDownmix();
233        if (status != OK) {
234            ALOGE("AudioMixer::getTrackName invalid channelMask (%#x)", channelMask);
235            return -1;
236        }
237        // prepareForDownmix() may change mDownmixRequiresFormat
238        ALOGVV("mMixerFormat:%#x  mMixerInFormat:%#x\n", t->mMixerFormat, t->mMixerInFormat);
239        t->prepareForReformat();
240        mTrackNames |= 1 << n;
241        return TRACK0 + n;
242    }
243    ALOGE("AudioMixer::getTrackName out of available tracks");
244    return -1;
245}
246
247void AudioMixer::invalidateState(uint32_t mask)
248{
249    if (mask != 0) {
250        mState.needsChanged |= mask;
251        mState.hook = process__validate;
252    }
253 }
254
255// Called when channel masks have changed for a track name
256// TODO: Fix DownmixerBufferProvider not to (possibly) change mixer input format,
257// which will simplify this logic.
258bool AudioMixer::setChannelMasks(int name,
259        audio_channel_mask_t trackChannelMask, audio_channel_mask_t mixerChannelMask) {
260    track_t &track = mState.tracks[name];
261
262    if (trackChannelMask == track.channelMask
263            && mixerChannelMask == track.mMixerChannelMask) {
264        return false;  // no need to change
265    }
266    // always recompute for both channel masks even if only one has changed.
267    const uint32_t trackChannelCount = audio_channel_count_from_out_mask(trackChannelMask);
268    const uint32_t mixerChannelCount = audio_channel_count_from_out_mask(mixerChannelMask);
269    const bool mixerChannelCountChanged = track.mMixerChannelCount != mixerChannelCount;
270
271    ALOG_ASSERT((trackChannelCount <= MAX_NUM_CHANNELS_TO_DOWNMIX)
272            && trackChannelCount
273            && mixerChannelCount);
274    track.channelMask = trackChannelMask;
275    track.channelCount = trackChannelCount;
276    track.mMixerChannelMask = mixerChannelMask;
277    track.mMixerChannelCount = mixerChannelCount;
278
279    // channel masks have changed, does this track need a downmixer?
280    // update to try using our desired format (if we aren't already using it)
281    const audio_format_t prevDownmixerFormat = track.mDownmixRequiresFormat;
282    const status_t status = mState.tracks[name].prepareForDownmix();
283    ALOGE_IF(status != OK,
284            "prepareForDownmix error %d, track channel mask %#x, mixer channel mask %#x",
285            status, track.channelMask, track.mMixerChannelMask);
286
287    if (prevDownmixerFormat != track.mDownmixRequiresFormat) {
288        track.prepareForReformat(); // because of downmixer, track format may change!
289    }
290
291    if (track.resampler && mixerChannelCountChanged) {
292        // resampler channels may have changed.
293        const uint32_t resetToSampleRate = track.sampleRate;
294        delete track.resampler;
295        track.resampler = NULL;
296        track.sampleRate = mSampleRate; // without resampler, track rate is device sample rate.
297        // recreate the resampler with updated format, channels, saved sampleRate.
298        track.setResampler(resetToSampleRate /*trackSampleRate*/, mSampleRate /*devSampleRate*/);
299    }
300    return true;
301}
302
303void AudioMixer::track_t::unprepareForDownmix() {
304    ALOGV("AudioMixer::unprepareForDownmix(%p)", this);
305
306    mDownmixRequiresFormat = AUDIO_FORMAT_INVALID;
307    if (downmixerBufferProvider != NULL) {
308        // this track had previously been configured with a downmixer, delete it
309        ALOGV(" deleting old downmixer");
310        delete downmixerBufferProvider;
311        downmixerBufferProvider = NULL;
312        reconfigureBufferProviders();
313    } else {
314        ALOGV(" nothing to do, no downmixer to delete");
315    }
316}
317
318status_t AudioMixer::track_t::prepareForDownmix()
319{
320    ALOGV("AudioMixer::prepareForDownmix(%p) with mask 0x%x",
321            this, channelMask);
322
323    // discard the previous downmixer if there was one
324    unprepareForDownmix();
325    // MONO_HACK Only remix (upmix or downmix) if the track and mixer/device channel masks
326    // are not the same and not handled internally, as mono -> stereo currently is.
327    if (channelMask == mMixerChannelMask
328            || (channelMask == AUDIO_CHANNEL_OUT_MONO
329                    && mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO)) {
330        return NO_ERROR;
331    }
332    // DownmixerBufferProvider is only used for position masks.
333    if (audio_channel_mask_get_representation(channelMask)
334                == AUDIO_CHANNEL_REPRESENTATION_POSITION
335            && DownmixerBufferProvider::isMultichannelCapable()) {
336        DownmixerBufferProvider* pDbp = new DownmixerBufferProvider(channelMask,
337                mMixerChannelMask,
338                AUDIO_FORMAT_PCM_16_BIT /* TODO: use mMixerInFormat, now only PCM 16 */,
339                sampleRate, sessionId, kCopyBufferFrameCount);
340
341        if (pDbp->isValid()) { // if constructor completed properly
342            mDownmixRequiresFormat = AUDIO_FORMAT_PCM_16_BIT; // PCM 16 bit required for downmix
343            downmixerBufferProvider = pDbp;
344            reconfigureBufferProviders();
345            return NO_ERROR;
346        }
347        delete pDbp;
348    }
349
350    // Effect downmixer does not accept the channel conversion.  Let's use our remixer.
351    RemixBufferProvider* pRbp = new RemixBufferProvider(channelMask,
352            mMixerChannelMask, mMixerInFormat, kCopyBufferFrameCount);
353    // Remix always finds a conversion whereas Downmixer effect above may fail.
354    downmixerBufferProvider = pRbp;
355    reconfigureBufferProviders();
356    return NO_ERROR;
357}
358
359void AudioMixer::track_t::unprepareForReformat() {
360    ALOGV("AudioMixer::unprepareForReformat(%p)", this);
361    bool requiresReconfigure = false;
362    if (mReformatBufferProvider != NULL) {
363        delete mReformatBufferProvider;
364        mReformatBufferProvider = NULL;
365        requiresReconfigure = true;
366    }
367    if (mPostDownmixReformatBufferProvider != NULL) {
368        delete mPostDownmixReformatBufferProvider;
369        mPostDownmixReformatBufferProvider = NULL;
370        requiresReconfigure = true;
371    }
372    if (requiresReconfigure) {
373        reconfigureBufferProviders();
374    }
375}
376
377status_t AudioMixer::track_t::prepareForReformat()
378{
379    ALOGV("AudioMixer::prepareForReformat(%p) with format %#x", this, mFormat);
380    // discard previous reformatters
381    unprepareForReformat();
382    // only configure reformatters as needed
383    const audio_format_t targetFormat = mDownmixRequiresFormat != AUDIO_FORMAT_INVALID
384            ? mDownmixRequiresFormat : mMixerInFormat;
385    bool requiresReconfigure = false;
386    if (mFormat != targetFormat) {
387        mReformatBufferProvider = new ReformatBufferProvider(
388                audio_channel_count_from_out_mask(channelMask),
389                mFormat,
390                targetFormat,
391                kCopyBufferFrameCount);
392        requiresReconfigure = true;
393    }
394    if (targetFormat != mMixerInFormat) {
395        mPostDownmixReformatBufferProvider = new ReformatBufferProvider(
396                audio_channel_count_from_out_mask(mMixerChannelMask),
397                targetFormat,
398                mMixerInFormat,
399                kCopyBufferFrameCount);
400        requiresReconfigure = true;
401    }
402    if (requiresReconfigure) {
403        reconfigureBufferProviders();
404    }
405    return NO_ERROR;
406}
407
408void AudioMixer::track_t::reconfigureBufferProviders()
409{
410    bufferProvider = mInputBufferProvider;
411    if (mReformatBufferProvider) {
412        mReformatBufferProvider->setBufferProvider(bufferProvider);
413        bufferProvider = mReformatBufferProvider;
414    }
415    if (downmixerBufferProvider) {
416        downmixerBufferProvider->setBufferProvider(bufferProvider);
417        bufferProvider = downmixerBufferProvider;
418    }
419    if (mPostDownmixReformatBufferProvider) {
420        mPostDownmixReformatBufferProvider->setBufferProvider(bufferProvider);
421        bufferProvider = mPostDownmixReformatBufferProvider;
422    }
423    if (mTimestretchBufferProvider) {
424        mTimestretchBufferProvider->setBufferProvider(bufferProvider);
425        bufferProvider = mTimestretchBufferProvider;
426    }
427}
428
429void AudioMixer::deleteTrackName(int name)
430{
431    ALOGV("AudioMixer::deleteTrackName(%d)", name);
432    name -= TRACK0;
433    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
434    ALOGV("deleteTrackName(%d)", name);
435    track_t& track(mState.tracks[ name ]);
436    if (track.enabled) {
437        track.enabled = false;
438        invalidateState(1<<name);
439    }
440    // delete the resampler
441    delete track.resampler;
442    track.resampler = NULL;
443    // delete the downmixer
444    mState.tracks[name].unprepareForDownmix();
445    // delete the reformatter
446    mState.tracks[name].unprepareForReformat();
447    // delete the timestretch provider
448    delete track.mTimestretchBufferProvider;
449    track.mTimestretchBufferProvider = NULL;
450    mTrackNames &= ~(1<<name);
451}
452
453void AudioMixer::enable(int name)
454{
455    name -= TRACK0;
456    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
457    track_t& track = mState.tracks[name];
458
459    if (!track.enabled) {
460        track.enabled = true;
461        ALOGV("enable(%d)", name);
462        invalidateState(1 << name);
463    }
464}
465
466void AudioMixer::disable(int name)
467{
468    name -= TRACK0;
469    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
470    track_t& track = mState.tracks[name];
471
472    if (track.enabled) {
473        track.enabled = false;
474        ALOGV("disable(%d)", name);
475        invalidateState(1 << name);
476    }
477}
478
479/* Sets the volume ramp variables for the AudioMixer.
480 *
481 * The volume ramp variables are used to transition from the previous
482 * volume to the set volume.  ramp controls the duration of the transition.
483 * Its value is typically one state framecount period, but may also be 0,
484 * meaning "immediate."
485 *
486 * FIXME: 1) Volume ramp is enabled only if there is a nonzero integer increment
487 * even if there is a nonzero floating point increment (in that case, the volume
488 * change is immediate).  This restriction should be changed when the legacy mixer
489 * is removed (see #2).
490 * FIXME: 2) Integer volume variables are used for Legacy mixing and should be removed
491 * when no longer needed.
492 *
493 * @param newVolume set volume target in floating point [0.0, 1.0].
494 * @param ramp number of frames to increment over. if ramp is 0, the volume
495 * should be set immediately.  Currently ramp should not exceed 65535 (frames).
496 * @param pIntSetVolume pointer to the U4.12 integer target volume, set on return.
497 * @param pIntPrevVolume pointer to the U4.28 integer previous volume, set on return.
498 * @param pIntVolumeInc pointer to the U4.28 increment per output audio frame, set on return.
499 * @param pSetVolume pointer to the float target volume, set on return.
500 * @param pPrevVolume pointer to the float previous volume, set on return.
501 * @param pVolumeInc pointer to the float increment per output audio frame, set on return.
502 * @return true if the volume has changed, false if volume is same.
503 */
504static inline bool setVolumeRampVariables(float newVolume, int32_t ramp,
505        int16_t *pIntSetVolume, int32_t *pIntPrevVolume, int32_t *pIntVolumeInc,
506        float *pSetVolume, float *pPrevVolume, float *pVolumeInc) {
507    // check floating point volume to see if it is identical to the previously
508    // set volume.
509    // We do not use a tolerance here (and reject changes too small)
510    // as it may be confusing to use a different value than the one set.
511    // If the resulting volume is too small to ramp, it is a direct set of the volume.
512    if (newVolume == *pSetVolume) {
513        return false;
514    }
515    if (newVolume < 0) {
516        newVolume = 0; // should not have negative volumes
517    } else {
518        switch (fpclassify(newVolume)) {
519        case FP_SUBNORMAL:
520        case FP_NAN:
521            newVolume = 0;
522            break;
523        case FP_ZERO:
524            break; // zero volume is fine
525        case FP_INFINITE:
526            // Infinite volume could be handled consistently since
527            // floating point math saturates at infinities,
528            // but we limit volume to unity gain float.
529            // ramp = 0; break;
530            //
531            newVolume = AudioMixer::UNITY_GAIN_FLOAT;
532            break;
533        case FP_NORMAL:
534        default:
535            // Floating point does not have problems with overflow wrap
536            // that integer has.  However, we limit the volume to
537            // unity gain here.
538            // TODO: Revisit the volume limitation and perhaps parameterize.
539            if (newVolume > AudioMixer::UNITY_GAIN_FLOAT) {
540                newVolume = AudioMixer::UNITY_GAIN_FLOAT;
541            }
542            break;
543        }
544    }
545
546    // set floating point volume ramp
547    if (ramp != 0) {
548        // when the ramp completes, *pPrevVolume is set to *pSetVolume, so there
549        // is no computational mismatch; hence equality is checked here.
550        ALOGD_IF(*pPrevVolume != *pSetVolume, "previous float ramp hasn't finished,"
551                " prev:%f  set_to:%f", *pPrevVolume, *pSetVolume);
552        const float inc = (newVolume - *pPrevVolume) / ramp; // could be inf, nan, subnormal
553        const float maxv = max(newVolume, *pPrevVolume); // could be inf, cannot be nan, subnormal
554
555        if (isnormal(inc) // inc must be a normal number (no subnormals, infinite, nan)
556                && maxv + inc != maxv) { // inc must make forward progress
557            *pVolumeInc = inc;
558            // ramp is set now.
559            // Note: if newVolume is 0, then near the end of the ramp,
560            // it may be possible that the ramped volume may be subnormal or
561            // temporarily negative by a small amount or subnormal due to floating
562            // point inaccuracies.
563        } else {
564            ramp = 0; // ramp not allowed
565        }
566    }
567
568    // compute and check integer volume, no need to check negative values
569    // The integer volume is limited to "unity_gain" to avoid wrapping and other
570    // audio artifacts, so it never reaches the range limit of U4.28.
571    // We safely use signed 16 and 32 bit integers here.
572    const float scaledVolume = newVolume * AudioMixer::UNITY_GAIN_INT; // not neg, subnormal, nan
573    const int32_t intVolume = (scaledVolume >= (float)AudioMixer::UNITY_GAIN_INT) ?
574            AudioMixer::UNITY_GAIN_INT : (int32_t)scaledVolume;
575
576    // set integer volume ramp
577    if (ramp != 0) {
578        // integer volume is U4.12 (to use 16 bit multiplies), but ramping uses U4.28.
579        // when the ramp completes, *pIntPrevVolume is set to *pIntSetVolume << 16, so there
580        // is no computational mismatch; hence equality is checked here.
581        ALOGD_IF(*pIntPrevVolume != *pIntSetVolume << 16, "previous int ramp hasn't finished,"
582                " prev:%d  set_to:%d", *pIntPrevVolume, *pIntSetVolume << 16);
583        const int32_t inc = ((intVolume << 16) - *pIntPrevVolume) / ramp;
584
585        if (inc != 0) { // inc must make forward progress
586            *pIntVolumeInc = inc;
587        } else {
588            ramp = 0; // ramp not allowed
589        }
590    }
591
592    // if no ramp, or ramp not allowed, then clear float and integer increments
593    if (ramp == 0) {
594        *pVolumeInc = 0;
595        *pPrevVolume = newVolume;
596        *pIntVolumeInc = 0;
597        *pIntPrevVolume = intVolume << 16;
598    }
599    *pSetVolume = newVolume;
600    *pIntSetVolume = intVolume;
601    return true;
602}
603
604void AudioMixer::setParameter(int name, int target, int param, void *value)
605{
606    name -= TRACK0;
607    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
608    track_t& track = mState.tracks[name];
609
610    int valueInt = static_cast<int>(reinterpret_cast<uintptr_t>(value));
611    int32_t *valueBuf = reinterpret_cast<int32_t*>(value);
612
613    switch (target) {
614
615    case TRACK:
616        switch (param) {
617        case CHANNEL_MASK: {
618            const audio_channel_mask_t trackChannelMask =
619                static_cast<audio_channel_mask_t>(valueInt);
620            if (setChannelMasks(name, trackChannelMask, track.mMixerChannelMask)) {
621                ALOGV("setParameter(TRACK, CHANNEL_MASK, %x)", trackChannelMask);
622                invalidateState(1 << name);
623            }
624            } break;
625        case MAIN_BUFFER:
626            if (track.mainBuffer != valueBuf) {
627                track.mainBuffer = valueBuf;
628                ALOGV("setParameter(TRACK, MAIN_BUFFER, %p)", valueBuf);
629                invalidateState(1 << name);
630            }
631            break;
632        case AUX_BUFFER:
633            if (track.auxBuffer != valueBuf) {
634                track.auxBuffer = valueBuf;
635                ALOGV("setParameter(TRACK, AUX_BUFFER, %p)", valueBuf);
636                invalidateState(1 << name);
637            }
638            break;
639        case FORMAT: {
640            audio_format_t format = static_cast<audio_format_t>(valueInt);
641            if (track.mFormat != format) {
642                ALOG_ASSERT(audio_is_linear_pcm(format), "Invalid format %#x", format);
643                track.mFormat = format;
644                ALOGV("setParameter(TRACK, FORMAT, %#x)", format);
645                track.prepareForReformat();
646                invalidateState(1 << name);
647            }
648            } break;
649        // FIXME do we want to support setting the downmix type from AudioFlinger?
650        //         for a specific track? or per mixer?
651        /* case DOWNMIX_TYPE:
652            break          */
653        case MIXER_FORMAT: {
654            audio_format_t format = static_cast<audio_format_t>(valueInt);
655            if (track.mMixerFormat != format) {
656                track.mMixerFormat = format;
657                ALOGV("setParameter(TRACK, MIXER_FORMAT, %#x)", format);
658            }
659            } break;
660        case MIXER_CHANNEL_MASK: {
661            const audio_channel_mask_t mixerChannelMask =
662                    static_cast<audio_channel_mask_t>(valueInt);
663            if (setChannelMasks(name, track.channelMask, mixerChannelMask)) {
664                ALOGV("setParameter(TRACK, MIXER_CHANNEL_MASK, %#x)", mixerChannelMask);
665                invalidateState(1 << name);
666            }
667            } break;
668        default:
669            LOG_ALWAYS_FATAL("setParameter track: bad param %d", param);
670        }
671        break;
672
673    case RESAMPLE:
674        switch (param) {
675        case SAMPLE_RATE:
676            ALOG_ASSERT(valueInt > 0, "bad sample rate %d", valueInt);
677            if (track.setResampler(uint32_t(valueInt), mSampleRate)) {
678                ALOGV("setParameter(RESAMPLE, SAMPLE_RATE, %u)",
679                        uint32_t(valueInt));
680                invalidateState(1 << name);
681            }
682            break;
683        case RESET:
684            track.resetResampler();
685            invalidateState(1 << name);
686            break;
687        case REMOVE:
688            delete track.resampler;
689            track.resampler = NULL;
690            track.sampleRate = mSampleRate;
691            invalidateState(1 << name);
692            break;
693        default:
694            LOG_ALWAYS_FATAL("setParameter resample: bad param %d", param);
695        }
696        break;
697
698    case RAMP_VOLUME:
699    case VOLUME:
700        switch (param) {
701        case AUXLEVEL:
702            if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
703                    target == RAMP_VOLUME ? mState.frameCount : 0,
704                    &track.auxLevel, &track.prevAuxLevel, &track.auxInc,
705                    &track.mAuxLevel, &track.mPrevAuxLevel, &track.mAuxInc)) {
706                ALOGV("setParameter(%s, AUXLEVEL: %04x)",
707                        target == VOLUME ? "VOLUME" : "RAMP_VOLUME", track.auxLevel);
708                invalidateState(1 << name);
709            }
710            break;
711        default:
712            if ((unsigned)param >= VOLUME0 && (unsigned)param < VOLUME0 + MAX_NUM_VOLUMES) {
713                if (setVolumeRampVariables(*reinterpret_cast<float*>(value),
714                        target == RAMP_VOLUME ? mState.frameCount : 0,
715                        &track.volume[param - VOLUME0], &track.prevVolume[param - VOLUME0],
716                        &track.volumeInc[param - VOLUME0],
717                        &track.mVolume[param - VOLUME0], &track.mPrevVolume[param - VOLUME0],
718                        &track.mVolumeInc[param - VOLUME0])) {
719                    ALOGV("setParameter(%s, VOLUME%d: %04x)",
720                            target == VOLUME ? "VOLUME" : "RAMP_VOLUME", param - VOLUME0,
721                                    track.volume[param - VOLUME0]);
722                    invalidateState(1 << name);
723                }
724            } else {
725                LOG_ALWAYS_FATAL("setParameter volume: bad param %d", param);
726            }
727        }
728        break;
729        case TIMESTRETCH:
730            switch (param) {
731            case PLAYBACK_RATE: {
732                const AudioPlaybackRate *playbackRate =
733                        reinterpret_cast<AudioPlaybackRate*>(value);
734                ALOGW_IF(!isAudioPlaybackRateValid(*playbackRate),
735                        "bad parameters speed %f, pitch %f",playbackRate->mSpeed,
736                        playbackRate->mPitch);
737                if (track.setPlaybackRate(*playbackRate)) {
738                    ALOGV("setParameter(TIMESTRETCH, PLAYBACK_RATE, STRETCH_MODE, FALLBACK_MODE "
739                            "%f %f %d %d",
740                            playbackRate->mSpeed,
741                            playbackRate->mPitch,
742                            playbackRate->mStretchMode,
743                            playbackRate->mFallbackMode);
744                    // invalidateState(1 << name);
745                }
746            } break;
747            default:
748                LOG_ALWAYS_FATAL("setParameter timestretch: bad param %d", param);
749            }
750            break;
751
752    default:
753        LOG_ALWAYS_FATAL("setParameter: bad target %d", target);
754    }
755}
756
757bool AudioMixer::track_t::setResampler(uint32_t trackSampleRate, uint32_t devSampleRate)
758{
759    if (trackSampleRate != devSampleRate || resampler != NULL) {
760        if (sampleRate != trackSampleRate) {
761            sampleRate = trackSampleRate;
762            if (resampler == NULL) {
763                ALOGV("Creating resampler from track %d Hz to device %d Hz",
764                        trackSampleRate, devSampleRate);
765                AudioResampler::src_quality quality;
766                // force lowest quality level resampler if use case isn't music or video
767                // FIXME this is flawed for dynamic sample rates, as we choose the resampler
768                // quality level based on the initial ratio, but that could change later.
769                // Should have a way to distinguish tracks with static ratios vs. dynamic ratios.
770                if (isMusicRate(trackSampleRate)) {
771                    quality = AudioResampler::DEFAULT_QUALITY;
772                } else {
773                    quality = AudioResampler::DYN_LOW_QUALITY;
774                }
775
776                // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer
777                // but if none exists, it is the channel count (1 for mono).
778                const int resamplerChannelCount = downmixerBufferProvider != NULL
779                        ? mMixerChannelCount : channelCount;
780                ALOGVV("Creating resampler:"
781                        " format(%#x) channels(%d) devSampleRate(%u) quality(%d)\n",
782                        mMixerInFormat, resamplerChannelCount, devSampleRate, quality);
783                resampler = AudioResampler::create(
784                        mMixerInFormat,
785                        resamplerChannelCount,
786                        devSampleRate, quality);
787            }
788            return true;
789        }
790    }
791    return false;
792}
793
794bool AudioMixer::track_t::setPlaybackRate(const AudioPlaybackRate &playbackRate)
795{
796    if ((mTimestretchBufferProvider == NULL &&
797            fabs(playbackRate.mSpeed - mPlaybackRate.mSpeed) < AUDIO_TIMESTRETCH_SPEED_MIN_DELTA &&
798            fabs(playbackRate.mPitch - mPlaybackRate.mPitch) < AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) ||
799            isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
800        return false;
801    }
802    mPlaybackRate = playbackRate;
803    if (mTimestretchBufferProvider == NULL) {
804        // TODO: Remove MONO_HACK. Resampler sees #channels after the downmixer
805        // but if none exists, it is the channel count (1 for mono).
806        const int timestretchChannelCount = downmixerBufferProvider != NULL
807                ? mMixerChannelCount : channelCount;
808        mTimestretchBufferProvider = new TimestretchBufferProvider(timestretchChannelCount,
809                mMixerInFormat, sampleRate, playbackRate);
810        reconfigureBufferProviders();
811    } else {
812        reinterpret_cast<TimestretchBufferProvider*>(mTimestretchBufferProvider)
813                ->setPlaybackRate(playbackRate);
814    }
815    return true;
816}
817
818/* Checks to see if the volume ramp has completed and clears the increment
819 * variables appropriately.
820 *
821 * FIXME: There is code to handle int/float ramp variable switchover should it not
822 * complete within a mixer buffer processing call, but it is preferred to avoid switchover
823 * due to precision issues.  The switchover code is included for legacy code purposes
824 * and can be removed once the integer volume is removed.
825 *
826 * It is not sufficient to clear only the volumeInc integer variable because
827 * if one channel requires ramping, all channels are ramped.
828 *
829 * There is a bit of duplicated code here, but it keeps backward compatibility.
830 */
831inline void AudioMixer::track_t::adjustVolumeRamp(bool aux, bool useFloat)
832{
833    if (useFloat) {
834        for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
835            if ((mVolumeInc[i] > 0 && mPrevVolume[i] + mVolumeInc[i] >= mVolume[i]) ||
836                     (mVolumeInc[i] < 0 && mPrevVolume[i] + mVolumeInc[i] <= mVolume[i])) {
837                volumeInc[i] = 0;
838                prevVolume[i] = volume[i] << 16;
839                mVolumeInc[i] = 0.;
840                mPrevVolume[i] = mVolume[i];
841            } else {
842                //ALOGV("ramp: %f %f %f", mVolume[i], mPrevVolume[i], mVolumeInc[i]);
843                prevVolume[i] = u4_28_from_float(mPrevVolume[i]);
844            }
845        }
846    } else {
847        for (uint32_t i = 0; i < MAX_NUM_VOLUMES; i++) {
848            if (((volumeInc[i]>0) && (((prevVolume[i]+volumeInc[i])>>16) >= volume[i])) ||
849                    ((volumeInc[i]<0) && (((prevVolume[i]+volumeInc[i])>>16) <= volume[i]))) {
850                volumeInc[i] = 0;
851                prevVolume[i] = volume[i] << 16;
852                mVolumeInc[i] = 0.;
853                mPrevVolume[i] = mVolume[i];
854            } else {
855                //ALOGV("ramp: %d %d %d", volume[i] << 16, prevVolume[i], volumeInc[i]);
856                mPrevVolume[i]  = float_from_u4_28(prevVolume[i]);
857            }
858        }
859    }
860    /* TODO: aux is always integer regardless of output buffer type */
861    if (aux) {
862        if (((auxInc>0) && (((prevAuxLevel+auxInc)>>16) >= auxLevel)) ||
863                ((auxInc<0) && (((prevAuxLevel+auxInc)>>16) <= auxLevel))) {
864            auxInc = 0;
865            prevAuxLevel = auxLevel << 16;
866            mAuxInc = 0.;
867            mPrevAuxLevel = mAuxLevel;
868        } else {
869            //ALOGV("aux ramp: %d %d %d", auxLevel << 16, prevAuxLevel, auxInc);
870        }
871    }
872}
873
874size_t AudioMixer::getUnreleasedFrames(int name) const
875{
876    name -= TRACK0;
877    if (uint32_t(name) < MAX_NUM_TRACKS) {
878        return mState.tracks[name].getUnreleasedFrames();
879    }
880    return 0;
881}
882
883void AudioMixer::setBufferProvider(int name, AudioBufferProvider* bufferProvider)
884{
885    name -= TRACK0;
886    ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name);
887
888    if (mState.tracks[name].mInputBufferProvider == bufferProvider) {
889        return; // don't reset any buffer providers if identical.
890    }
891    if (mState.tracks[name].mReformatBufferProvider != NULL) {
892        mState.tracks[name].mReformatBufferProvider->reset();
893    } else if (mState.tracks[name].downmixerBufferProvider != NULL) {
894        mState.tracks[name].downmixerBufferProvider->reset();
895    } else if (mState.tracks[name].mPostDownmixReformatBufferProvider != NULL) {
896        mState.tracks[name].mPostDownmixReformatBufferProvider->reset();
897    } else if (mState.tracks[name].mTimestretchBufferProvider != NULL) {
898        mState.tracks[name].mTimestretchBufferProvider->reset();
899    }
900
901    mState.tracks[name].mInputBufferProvider = bufferProvider;
902    mState.tracks[name].reconfigureBufferProviders();
903}
904
905
906void AudioMixer::process()
907{
908    mState.hook(&mState);
909}
910
911
912void AudioMixer::process__validate(state_t* state)
913{
914    ALOGW_IF(!state->needsChanged,
915        "in process__validate() but nothing's invalid");
916
917    uint32_t changed = state->needsChanged;
918    state->needsChanged = 0; // clear the validation flag
919
920    // recompute which tracks are enabled / disabled
921    uint32_t enabled = 0;
922    uint32_t disabled = 0;
923    while (changed) {
924        const int i = 31 - __builtin_clz(changed);
925        const uint32_t mask = 1<<i;
926        changed &= ~mask;
927        track_t& t = state->tracks[i];
928        (t.enabled ? enabled : disabled) |= mask;
929    }
930    state->enabledTracks &= ~disabled;
931    state->enabledTracks |=  enabled;
932
933    // compute everything we need...
934    int countActiveTracks = 0;
935    // TODO: fix all16BitsStereNoResample logic to
936    // either properly handle muted tracks (it should ignore them)
937    // or remove altogether as an obsolete optimization.
938    bool all16BitsStereoNoResample = true;
939    bool resampling = false;
940    bool volumeRamp = false;
941    uint32_t en = state->enabledTracks;
942    while (en) {
943        const int i = 31 - __builtin_clz(en);
944        en &= ~(1<<i);
945
946        countActiveTracks++;
947        track_t& t = state->tracks[i];
948        uint32_t n = 0;
949        // FIXME can overflow (mask is only 3 bits)
950        n |= NEEDS_CHANNEL_1 + t.channelCount - 1;
951        if (t.doesResample()) {
952            n |= NEEDS_RESAMPLE;
953        }
954        if (t.auxLevel != 0 && t.auxBuffer != NULL) {
955            n |= NEEDS_AUX;
956        }
957
958        if (t.volumeInc[0]|t.volumeInc[1]) {
959            volumeRamp = true;
960        } else if (!t.doesResample() && t.volumeRL == 0) {
961            n |= NEEDS_MUTE;
962        }
963        t.needs = n;
964
965        if (n & NEEDS_MUTE) {
966            t.hook = track__nop;
967        } else {
968            if (n & NEEDS_AUX) {
969                all16BitsStereoNoResample = false;
970            }
971            if (n & NEEDS_RESAMPLE) {
972                all16BitsStereoNoResample = false;
973                resampling = true;
974                t.hook = getTrackHook(TRACKTYPE_RESAMPLE, t.mMixerChannelCount,
975                        t.mMixerInFormat, t.mMixerFormat);
976                ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
977                        "Track %d needs downmix + resample", i);
978            } else {
979                if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){
980                    t.hook = getTrackHook(
981                            (t.mMixerChannelMask == AUDIO_CHANNEL_OUT_STEREO  // TODO: MONO_HACK
982                                    && t.channelMask == AUDIO_CHANNEL_OUT_MONO)
983                                ? TRACKTYPE_NORESAMPLEMONO : TRACKTYPE_NORESAMPLE,
984                            t.mMixerChannelCount,
985                            t.mMixerInFormat, t.mMixerFormat);
986                    all16BitsStereoNoResample = false;
987                }
988                if ((n & NEEDS_CHANNEL_COUNT__MASK) >= NEEDS_CHANNEL_2){
989                    t.hook = getTrackHook(TRACKTYPE_NORESAMPLE, t.mMixerChannelCount,
990                            t.mMixerInFormat, t.mMixerFormat);
991                    ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2,
992                            "Track %d needs downmix", i);
993                }
994            }
995        }
996    }
997
998    // select the processing hooks
999    state->hook = process__nop;
1000    if (countActiveTracks > 0) {
1001        if (resampling) {
1002            if (!state->outputTemp) {
1003                state->outputTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount];
1004            }
1005            if (!state->resampleTemp) {
1006                state->resampleTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount];
1007            }
1008            state->hook = process__genericResampling;
1009        } else {
1010            if (state->outputTemp) {
1011                delete [] state->outputTemp;
1012                state->outputTemp = NULL;
1013            }
1014            if (state->resampleTemp) {
1015                delete [] state->resampleTemp;
1016                state->resampleTemp = NULL;
1017            }
1018            state->hook = process__genericNoResampling;
1019            if (all16BitsStereoNoResample && !volumeRamp) {
1020                if (countActiveTracks == 1) {
1021                    const int i = 31 - __builtin_clz(state->enabledTracks);
1022                    track_t& t = state->tracks[i];
1023                    if ((t.needs & NEEDS_MUTE) == 0) {
1024                        // The check prevents a muted track from acquiring a process hook.
1025                        //
1026                        // This is dangerous if the track is MONO as that requires
1027                        // special case handling due to implicit channel duplication.
1028                        // Stereo or Multichannel should actually be fine here.
1029                        state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
1030                                t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat);
1031                    }
1032                }
1033            }
1034        }
1035    }
1036
1037    ALOGV("mixer configuration change: %d activeTracks (%08x) "
1038        "all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d",
1039        countActiveTracks, state->enabledTracks,
1040        all16BitsStereoNoResample, resampling, volumeRamp);
1041
1042   state->hook(state);
1043
1044    // Now that the volume ramp has been done, set optimal state and
1045    // track hooks for subsequent mixer process
1046    if (countActiveTracks > 0) {
1047        bool allMuted = true;
1048        uint32_t en = state->enabledTracks;
1049        while (en) {
1050            const int i = 31 - __builtin_clz(en);
1051            en &= ~(1<<i);
1052            track_t& t = state->tracks[i];
1053            if (!t.doesResample() && t.volumeRL == 0) {
1054                t.needs |= NEEDS_MUTE;
1055                t.hook = track__nop;
1056            } else {
1057                allMuted = false;
1058            }
1059        }
1060        if (allMuted) {
1061            state->hook = process__nop;
1062        } else if (all16BitsStereoNoResample) {
1063            if (countActiveTracks == 1) {
1064                const int i = 31 - __builtin_clz(state->enabledTracks);
1065                track_t& t = state->tracks[i];
1066                // Muted single tracks handled by allMuted above.
1067                state->hook = getProcessHook(PROCESSTYPE_NORESAMPLEONETRACK,
1068                        t.mMixerChannelCount, t.mMixerInFormat, t.mMixerFormat);
1069            }
1070        }
1071    }
1072}
1073
1074
1075void AudioMixer::track__genericResample(track_t* t, int32_t* out, size_t outFrameCount,
1076        int32_t* temp, int32_t* aux)
1077{
1078    ALOGVV("track__genericResample\n");
1079    t->resampler->setSampleRate(t->sampleRate);
1080
1081    // ramp gain - resample to temp buffer and scale/mix in 2nd step
1082    if (aux != NULL) {
1083        // always resample with unity gain when sending to auxiliary buffer to be able
1084        // to apply send level after resampling
1085        t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
1086        memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(int32_t));
1087        t->resampler->resample(temp, outFrameCount, t->bufferProvider);
1088        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
1089            volumeRampStereo(t, out, outFrameCount, temp, aux);
1090        } else {
1091            volumeStereo(t, out, outFrameCount, temp, aux);
1092        }
1093    } else {
1094        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
1095            t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
1096            memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t));
1097            t->resampler->resample(temp, outFrameCount, t->bufferProvider);
1098            volumeRampStereo(t, out, outFrameCount, temp, aux);
1099        }
1100
1101        // constant gain
1102        else {
1103            t->resampler->setVolume(t->mVolume[0], t->mVolume[1]);
1104            t->resampler->resample(out, outFrameCount, t->bufferProvider);
1105        }
1106    }
1107}
1108
1109void AudioMixer::track__nop(track_t* t __unused, int32_t* out __unused,
1110        size_t outFrameCount __unused, int32_t* temp __unused, int32_t* aux __unused)
1111{
1112}
1113
1114void AudioMixer::volumeRampStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp,
1115        int32_t* aux)
1116{
1117    int32_t vl = t->prevVolume[0];
1118    int32_t vr = t->prevVolume[1];
1119    const int32_t vlInc = t->volumeInc[0];
1120    const int32_t vrInc = t->volumeInc[1];
1121
1122    //ALOGD("[0] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1123    //        t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1124    //       (vl + vlInc*frameCount)/65536.0f, frameCount);
1125
1126    // ramp volume
1127    if (CC_UNLIKELY(aux != NULL)) {
1128        int32_t va = t->prevAuxLevel;
1129        const int32_t vaInc = t->auxInc;
1130        int32_t l;
1131        int32_t r;
1132
1133        do {
1134            l = (*temp++ >> 12);
1135            r = (*temp++ >> 12);
1136            *out++ += (vl >> 16) * l;
1137            *out++ += (vr >> 16) * r;
1138            *aux++ += (va >> 17) * (l + r);
1139            vl += vlInc;
1140            vr += vrInc;
1141            va += vaInc;
1142        } while (--frameCount);
1143        t->prevAuxLevel = va;
1144    } else {
1145        do {
1146            *out++ += (vl >> 16) * (*temp++ >> 12);
1147            *out++ += (vr >> 16) * (*temp++ >> 12);
1148            vl += vlInc;
1149            vr += vrInc;
1150        } while (--frameCount);
1151    }
1152    t->prevVolume[0] = vl;
1153    t->prevVolume[1] = vr;
1154    t->adjustVolumeRamp(aux != NULL);
1155}
1156
1157void AudioMixer::volumeStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp,
1158        int32_t* aux)
1159{
1160    const int16_t vl = t->volume[0];
1161    const int16_t vr = t->volume[1];
1162
1163    if (CC_UNLIKELY(aux != NULL)) {
1164        const int16_t va = t->auxLevel;
1165        do {
1166            int16_t l = (int16_t)(*temp++ >> 12);
1167            int16_t r = (int16_t)(*temp++ >> 12);
1168            out[0] = mulAdd(l, vl, out[0]);
1169            int16_t a = (int16_t)(((int32_t)l + r) >> 1);
1170            out[1] = mulAdd(r, vr, out[1]);
1171            out += 2;
1172            aux[0] = mulAdd(a, va, aux[0]);
1173            aux++;
1174        } while (--frameCount);
1175    } else {
1176        do {
1177            int16_t l = (int16_t)(*temp++ >> 12);
1178            int16_t r = (int16_t)(*temp++ >> 12);
1179            out[0] = mulAdd(l, vl, out[0]);
1180            out[1] = mulAdd(r, vr, out[1]);
1181            out += 2;
1182        } while (--frameCount);
1183    }
1184}
1185
1186void AudioMixer::track__16BitsStereo(track_t* t, int32_t* out, size_t frameCount,
1187        int32_t* temp __unused, int32_t* aux)
1188{
1189    ALOGVV("track__16BitsStereo\n");
1190    const int16_t *in = static_cast<const int16_t *>(t->in);
1191
1192    if (CC_UNLIKELY(aux != NULL)) {
1193        int32_t l;
1194        int32_t r;
1195        // ramp gain
1196        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
1197            int32_t vl = t->prevVolume[0];
1198            int32_t vr = t->prevVolume[1];
1199            int32_t va = t->prevAuxLevel;
1200            const int32_t vlInc = t->volumeInc[0];
1201            const int32_t vrInc = t->volumeInc[1];
1202            const int32_t vaInc = t->auxInc;
1203            // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1204            //        t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1205            //        (vl + vlInc*frameCount)/65536.0f, frameCount);
1206
1207            do {
1208                l = (int32_t)*in++;
1209                r = (int32_t)*in++;
1210                *out++ += (vl >> 16) * l;
1211                *out++ += (vr >> 16) * r;
1212                *aux++ += (va >> 17) * (l + r);
1213                vl += vlInc;
1214                vr += vrInc;
1215                va += vaInc;
1216            } while (--frameCount);
1217
1218            t->prevVolume[0] = vl;
1219            t->prevVolume[1] = vr;
1220            t->prevAuxLevel = va;
1221            t->adjustVolumeRamp(true);
1222        }
1223
1224        // constant gain
1225        else {
1226            const uint32_t vrl = t->volumeRL;
1227            const int16_t va = (int16_t)t->auxLevel;
1228            do {
1229                uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1230                int16_t a = (int16_t)(((int32_t)in[0] + in[1]) >> 1);
1231                in += 2;
1232                out[0] = mulAddRL(1, rl, vrl, out[0]);
1233                out[1] = mulAddRL(0, rl, vrl, out[1]);
1234                out += 2;
1235                aux[0] = mulAdd(a, va, aux[0]);
1236                aux++;
1237            } while (--frameCount);
1238        }
1239    } else {
1240        // ramp gain
1241        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
1242            int32_t vl = t->prevVolume[0];
1243            int32_t vr = t->prevVolume[1];
1244            const int32_t vlInc = t->volumeInc[0];
1245            const int32_t vrInc = t->volumeInc[1];
1246
1247            // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1248            //        t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1249            //        (vl + vlInc*frameCount)/65536.0f, frameCount);
1250
1251            do {
1252                *out++ += (vl >> 16) * (int32_t) *in++;
1253                *out++ += (vr >> 16) * (int32_t) *in++;
1254                vl += vlInc;
1255                vr += vrInc;
1256            } while (--frameCount);
1257
1258            t->prevVolume[0] = vl;
1259            t->prevVolume[1] = vr;
1260            t->adjustVolumeRamp(false);
1261        }
1262
1263        // constant gain
1264        else {
1265            const uint32_t vrl = t->volumeRL;
1266            do {
1267                uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1268                in += 2;
1269                out[0] = mulAddRL(1, rl, vrl, out[0]);
1270                out[1] = mulAddRL(0, rl, vrl, out[1]);
1271                out += 2;
1272            } while (--frameCount);
1273        }
1274    }
1275    t->in = in;
1276}
1277
1278void AudioMixer::track__16BitsMono(track_t* t, int32_t* out, size_t frameCount,
1279        int32_t* temp __unused, int32_t* aux)
1280{
1281    ALOGVV("track__16BitsMono\n");
1282    const int16_t *in = static_cast<int16_t const *>(t->in);
1283
1284    if (CC_UNLIKELY(aux != NULL)) {
1285        // ramp gain
1286        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) {
1287            int32_t vl = t->prevVolume[0];
1288            int32_t vr = t->prevVolume[1];
1289            int32_t va = t->prevAuxLevel;
1290            const int32_t vlInc = t->volumeInc[0];
1291            const int32_t vrInc = t->volumeInc[1];
1292            const int32_t vaInc = t->auxInc;
1293
1294            // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1295            //         t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1296            //         (vl + vlInc*frameCount)/65536.0f, frameCount);
1297
1298            do {
1299                int32_t l = *in++;
1300                *out++ += (vl >> 16) * l;
1301                *out++ += (vr >> 16) * l;
1302                *aux++ += (va >> 16) * l;
1303                vl += vlInc;
1304                vr += vrInc;
1305                va += vaInc;
1306            } while (--frameCount);
1307
1308            t->prevVolume[0] = vl;
1309            t->prevVolume[1] = vr;
1310            t->prevAuxLevel = va;
1311            t->adjustVolumeRamp(true);
1312        }
1313        // constant gain
1314        else {
1315            const int16_t vl = t->volume[0];
1316            const int16_t vr = t->volume[1];
1317            const int16_t va = (int16_t)t->auxLevel;
1318            do {
1319                int16_t l = *in++;
1320                out[0] = mulAdd(l, vl, out[0]);
1321                out[1] = mulAdd(l, vr, out[1]);
1322                out += 2;
1323                aux[0] = mulAdd(l, va, aux[0]);
1324                aux++;
1325            } while (--frameCount);
1326        }
1327    } else {
1328        // ramp gain
1329        if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) {
1330            int32_t vl = t->prevVolume[0];
1331            int32_t vr = t->prevVolume[1];
1332            const int32_t vlInc = t->volumeInc[0];
1333            const int32_t vrInc = t->volumeInc[1];
1334
1335            // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d",
1336            //         t, vlInc/65536.0f, vl/65536.0f, t->volume[0],
1337            //         (vl + vlInc*frameCount)/65536.0f, frameCount);
1338
1339            do {
1340                int32_t l = *in++;
1341                *out++ += (vl >> 16) * l;
1342                *out++ += (vr >> 16) * l;
1343                vl += vlInc;
1344                vr += vrInc;
1345            } while (--frameCount);
1346
1347            t->prevVolume[0] = vl;
1348            t->prevVolume[1] = vr;
1349            t->adjustVolumeRamp(false);
1350        }
1351        // constant gain
1352        else {
1353            const int16_t vl = t->volume[0];
1354            const int16_t vr = t->volume[1];
1355            do {
1356                int16_t l = *in++;
1357                out[0] = mulAdd(l, vl, out[0]);
1358                out[1] = mulAdd(l, vr, out[1]);
1359                out += 2;
1360            } while (--frameCount);
1361        }
1362    }
1363    t->in = in;
1364}
1365
1366// no-op case
1367void AudioMixer::process__nop(state_t* state)
1368{
1369    ALOGVV("process__nop\n");
1370    uint32_t e0 = state->enabledTracks;
1371    while (e0) {
1372        // process by group of tracks with same output buffer to
1373        // avoid multiple memset() on same buffer
1374        uint32_t e1 = e0, e2 = e0;
1375        int i = 31 - __builtin_clz(e1);
1376        {
1377            track_t& t1 = state->tracks[i];
1378            e2 &= ~(1<<i);
1379            while (e2) {
1380                i = 31 - __builtin_clz(e2);
1381                e2 &= ~(1<<i);
1382                track_t& t2 = state->tracks[i];
1383                if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
1384                    e1 &= ~(1<<i);
1385                }
1386            }
1387            e0 &= ~(e1);
1388
1389            memset(t1.mainBuffer, 0, state->frameCount * t1.mMixerChannelCount
1390                    * audio_bytes_per_sample(t1.mMixerFormat));
1391        }
1392
1393        while (e1) {
1394            i = 31 - __builtin_clz(e1);
1395            e1 &= ~(1<<i);
1396            {
1397                track_t& t3 = state->tracks[i];
1398                size_t outFrames = state->frameCount;
1399                while (outFrames) {
1400                    t3.buffer.frameCount = outFrames;
1401                    t3.bufferProvider->getNextBuffer(&t3.buffer);
1402                    if (t3.buffer.raw == NULL) break;
1403                    outFrames -= t3.buffer.frameCount;
1404                    t3.bufferProvider->releaseBuffer(&t3.buffer);
1405                }
1406            }
1407        }
1408    }
1409}
1410
1411// generic code without resampling
1412void AudioMixer::process__genericNoResampling(state_t* state)
1413{
1414    ALOGVV("process__genericNoResampling\n");
1415    int32_t outTemp[BLOCKSIZE * MAX_NUM_CHANNELS] __attribute__((aligned(32)));
1416
1417    // acquire each track's buffer
1418    uint32_t enabledTracks = state->enabledTracks;
1419    uint32_t e0 = enabledTracks;
1420    while (e0) {
1421        const int i = 31 - __builtin_clz(e0);
1422        e0 &= ~(1<<i);
1423        track_t& t = state->tracks[i];
1424        t.buffer.frameCount = state->frameCount;
1425        t.bufferProvider->getNextBuffer(&t.buffer);
1426        t.frameCount = t.buffer.frameCount;
1427        t.in = t.buffer.raw;
1428    }
1429
1430    e0 = enabledTracks;
1431    while (e0) {
1432        // process by group of tracks with same output buffer to
1433        // optimize cache use
1434        uint32_t e1 = e0, e2 = e0;
1435        int j = 31 - __builtin_clz(e1);
1436        track_t& t1 = state->tracks[j];
1437        e2 &= ~(1<<j);
1438        while (e2) {
1439            j = 31 - __builtin_clz(e2);
1440            e2 &= ~(1<<j);
1441            track_t& t2 = state->tracks[j];
1442            if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
1443                e1 &= ~(1<<j);
1444            }
1445        }
1446        e0 &= ~(e1);
1447        // this assumes output 16 bits stereo, no resampling
1448        int32_t *out = t1.mainBuffer;
1449        size_t numFrames = 0;
1450        do {
1451            memset(outTemp, 0, sizeof(outTemp));
1452            e2 = e1;
1453            while (e2) {
1454                const int i = 31 - __builtin_clz(e2);
1455                e2 &= ~(1<<i);
1456                track_t& t = state->tracks[i];
1457                size_t outFrames = BLOCKSIZE;
1458                int32_t *aux = NULL;
1459                if (CC_UNLIKELY(t.needs & NEEDS_AUX)) {
1460                    aux = t.auxBuffer + numFrames;
1461                }
1462                while (outFrames) {
1463                    // t.in == NULL can happen if the track was flushed just after having
1464                    // been enabled for mixing.
1465                   if (t.in == NULL) {
1466                        enabledTracks &= ~(1<<i);
1467                        e1 &= ~(1<<i);
1468                        break;
1469                    }
1470                    size_t inFrames = (t.frameCount > outFrames)?outFrames:t.frameCount;
1471                    if (inFrames > 0) {
1472                        t.hook(&t, outTemp + (BLOCKSIZE - outFrames) * t.mMixerChannelCount,
1473                                inFrames, state->resampleTemp, aux);
1474                        t.frameCount -= inFrames;
1475                        outFrames -= inFrames;
1476                        if (CC_UNLIKELY(aux != NULL)) {
1477                            aux += inFrames;
1478                        }
1479                    }
1480                    if (t.frameCount == 0 && outFrames) {
1481                        t.bufferProvider->releaseBuffer(&t.buffer);
1482                        t.buffer.frameCount = (state->frameCount - numFrames) -
1483                                (BLOCKSIZE - outFrames);
1484                        t.bufferProvider->getNextBuffer(&t.buffer);
1485                        t.in = t.buffer.raw;
1486                        if (t.in == NULL) {
1487                            enabledTracks &= ~(1<<i);
1488                            e1 &= ~(1<<i);
1489                            break;
1490                        }
1491                        t.frameCount = t.buffer.frameCount;
1492                    }
1493                }
1494            }
1495
1496            convertMixerFormat(out, t1.mMixerFormat, outTemp, t1.mMixerInFormat,
1497                    BLOCKSIZE * t1.mMixerChannelCount);
1498            // TODO: fix ugly casting due to choice of out pointer type
1499            out = reinterpret_cast<int32_t*>((uint8_t*)out
1500                    + BLOCKSIZE * t1.mMixerChannelCount
1501                        * audio_bytes_per_sample(t1.mMixerFormat));
1502            numFrames += BLOCKSIZE;
1503        } while (numFrames < state->frameCount);
1504    }
1505
1506    // release each track's buffer
1507    e0 = enabledTracks;
1508    while (e0) {
1509        const int i = 31 - __builtin_clz(e0);
1510        e0 &= ~(1<<i);
1511        track_t& t = state->tracks[i];
1512        t.bufferProvider->releaseBuffer(&t.buffer);
1513    }
1514}
1515
1516
1517// generic code with resampling
1518void AudioMixer::process__genericResampling(state_t* state)
1519{
1520    ALOGVV("process__genericResampling\n");
1521    // this const just means that local variable outTemp doesn't change
1522    int32_t* const outTemp = state->outputTemp;
1523    size_t numFrames = state->frameCount;
1524
1525    uint32_t e0 = state->enabledTracks;
1526    while (e0) {
1527        // process by group of tracks with same output buffer
1528        // to optimize cache use
1529        uint32_t e1 = e0, e2 = e0;
1530        int j = 31 - __builtin_clz(e1);
1531        track_t& t1 = state->tracks[j];
1532        e2 &= ~(1<<j);
1533        while (e2) {
1534            j = 31 - __builtin_clz(e2);
1535            e2 &= ~(1<<j);
1536            track_t& t2 = state->tracks[j];
1537            if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) {
1538                e1 &= ~(1<<j);
1539            }
1540        }
1541        e0 &= ~(e1);
1542        int32_t *out = t1.mainBuffer;
1543        memset(outTemp, 0, sizeof(*outTemp) * t1.mMixerChannelCount * state->frameCount);
1544        while (e1) {
1545            const int i = 31 - __builtin_clz(e1);
1546            e1 &= ~(1<<i);
1547            track_t& t = state->tracks[i];
1548            int32_t *aux = NULL;
1549            if (CC_UNLIKELY(t.needs & NEEDS_AUX)) {
1550                aux = t.auxBuffer;
1551            }
1552
1553            // this is a little goofy, on the resampling case we don't
1554            // acquire/release the buffers because it's done by
1555            // the resampler.
1556            if (t.needs & NEEDS_RESAMPLE) {
1557                t.hook(&t, outTemp, numFrames, state->resampleTemp, aux);
1558            } else {
1559
1560                size_t outFrames = 0;
1561
1562                while (outFrames < numFrames) {
1563                    t.buffer.frameCount = numFrames - outFrames;
1564                    t.bufferProvider->getNextBuffer(&t.buffer);
1565                    t.in = t.buffer.raw;
1566                    // t.in == NULL can happen if the track was flushed just after having
1567                    // been enabled for mixing.
1568                    if (t.in == NULL) break;
1569
1570                    if (CC_UNLIKELY(aux != NULL)) {
1571                        aux += outFrames;
1572                    }
1573                    t.hook(&t, outTemp + outFrames * t.mMixerChannelCount, t.buffer.frameCount,
1574                            state->resampleTemp, aux);
1575                    outFrames += t.buffer.frameCount;
1576                    t.bufferProvider->releaseBuffer(&t.buffer);
1577                }
1578            }
1579        }
1580        convertMixerFormat(out, t1.mMixerFormat,
1581                outTemp, t1.mMixerInFormat, numFrames * t1.mMixerChannelCount);
1582    }
1583}
1584
1585// one track, 16 bits stereo without resampling is the most common case
1586void AudioMixer::process__OneTrack16BitsStereoNoResampling(state_t* state)
1587{
1588    ALOGVV("process__OneTrack16BitsStereoNoResampling\n");
1589    // This method is only called when state->enabledTracks has exactly
1590    // one bit set.  The asserts below would verify this, but are commented out
1591    // since the whole point of this method is to optimize performance.
1592    //ALOG_ASSERT(0 != state->enabledTracks, "no tracks enabled");
1593    const int i = 31 - __builtin_clz(state->enabledTracks);
1594    //ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled");
1595    const track_t& t = state->tracks[i];
1596
1597    AudioBufferProvider::Buffer& b(t.buffer);
1598
1599    int32_t* out = t.mainBuffer;
1600    float *fout = reinterpret_cast<float*>(out);
1601    size_t numFrames = state->frameCount;
1602
1603    const int16_t vl = t.volume[0];
1604    const int16_t vr = t.volume[1];
1605    const uint32_t vrl = t.volumeRL;
1606    while (numFrames) {
1607        b.frameCount = numFrames;
1608        t.bufferProvider->getNextBuffer(&b);
1609        const int16_t *in = b.i16;
1610
1611        // in == NULL can happen if the track was flushed just after having
1612        // been enabled for mixing.
1613        if (in == NULL || (((uintptr_t)in) & 3)) {
1614            memset(out, 0, numFrames
1615                    * t.mMixerChannelCount * audio_bytes_per_sample(t.mMixerFormat));
1616            ALOGE_IF((((uintptr_t)in) & 3),
1617                    "process__OneTrack16BitsStereoNoResampling: misaligned buffer"
1618                    " %p track %d, channels %d, needs %08x, volume %08x vfl %f vfr %f",
1619                    in, i, t.channelCount, t.needs, vrl, t.mVolume[0], t.mVolume[1]);
1620            return;
1621        }
1622        size_t outFrames = b.frameCount;
1623
1624        switch (t.mMixerFormat) {
1625        case AUDIO_FORMAT_PCM_FLOAT:
1626            do {
1627                uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1628                in += 2;
1629                int32_t l = mulRL(1, rl, vrl);
1630                int32_t r = mulRL(0, rl, vrl);
1631                *fout++ = float_from_q4_27(l);
1632                *fout++ = float_from_q4_27(r);
1633                // Note: In case of later int16_t sink output,
1634                // conversion and clamping is done by memcpy_to_i16_from_float().
1635            } while (--outFrames);
1636            break;
1637        case AUDIO_FORMAT_PCM_16_BIT:
1638            if (CC_UNLIKELY(uint32_t(vl) > UNITY_GAIN_INT || uint32_t(vr) > UNITY_GAIN_INT)) {
1639                // volume is boosted, so we might need to clamp even though
1640                // we process only one track.
1641                do {
1642                    uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1643                    in += 2;
1644                    int32_t l = mulRL(1, rl, vrl) >> 12;
1645                    int32_t r = mulRL(0, rl, vrl) >> 12;
1646                    // clamping...
1647                    l = clamp16(l);
1648                    r = clamp16(r);
1649                    *out++ = (r<<16) | (l & 0xFFFF);
1650                } while (--outFrames);
1651            } else {
1652                do {
1653                    uint32_t rl = *reinterpret_cast<const uint32_t *>(in);
1654                    in += 2;
1655                    int32_t l = mulRL(1, rl, vrl) >> 12;
1656                    int32_t r = mulRL(0, rl, vrl) >> 12;
1657                    *out++ = (r<<16) | (l & 0xFFFF);
1658                } while (--outFrames);
1659            }
1660            break;
1661        default:
1662            LOG_ALWAYS_FATAL("bad mixer format: %d", t.mMixerFormat);
1663        }
1664        numFrames -= b.frameCount;
1665        t.bufferProvider->releaseBuffer(&b);
1666    }
1667}
1668
1669/*static*/ pthread_once_t AudioMixer::sOnceControl = PTHREAD_ONCE_INIT;
1670
1671/*static*/ void AudioMixer::sInitRoutine()
1672{
1673    DownmixerBufferProvider::init(); // for the downmixer
1674}
1675
1676/* TODO: consider whether this level of optimization is necessary.
1677 * Perhaps just stick with a single for loop.
1678 */
1679
1680// Needs to derive a compile time constant (constexpr).  Could be targeted to go
1681// to a MONOVOL mixtype based on MAX_NUM_VOLUMES, but that's an unnecessary complication.
1682#define MIXTYPE_MONOVOL(mixtype) (mixtype == MIXTYPE_MULTI ? MIXTYPE_MULTI_MONOVOL : \
1683        mixtype == MIXTYPE_MULTI_SAVEONLY ? MIXTYPE_MULTI_SAVEONLY_MONOVOL : mixtype)
1684
1685/* MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1686 * TO: int32_t (Q4.27) or float
1687 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1688 * TA: int32_t (Q4.27)
1689 */
1690template <int MIXTYPE,
1691        typename TO, typename TI, typename TV, typename TA, typename TAV>
1692static void volumeRampMulti(uint32_t channels, TO* out, size_t frameCount,
1693        const TI* in, TA* aux, TV *vol, const TV *volinc, TAV *vola, TAV volainc)
1694{
1695    switch (channels) {
1696    case 1:
1697        volumeRampMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, volinc, vola, volainc);
1698        break;
1699    case 2:
1700        volumeRampMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, volinc, vola, volainc);
1701        break;
1702    case 3:
1703        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out,
1704                frameCount, in, aux, vol, volinc, vola, volainc);
1705        break;
1706    case 4:
1707        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out,
1708                frameCount, in, aux, vol, volinc, vola, volainc);
1709        break;
1710    case 5:
1711        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out,
1712                frameCount, in, aux, vol, volinc, vola, volainc);
1713        break;
1714    case 6:
1715        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out,
1716                frameCount, in, aux, vol, volinc, vola, volainc);
1717        break;
1718    case 7:
1719        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out,
1720                frameCount, in, aux, vol, volinc, vola, volainc);
1721        break;
1722    case 8:
1723        volumeRampMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out,
1724                frameCount, in, aux, vol, volinc, vola, volainc);
1725        break;
1726    }
1727}
1728
1729/* MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1730 * TO: int32_t (Q4.27) or float
1731 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1732 * TA: int32_t (Q4.27)
1733 */
1734template <int MIXTYPE,
1735        typename TO, typename TI, typename TV, typename TA, typename TAV>
1736static void volumeMulti(uint32_t channels, TO* out, size_t frameCount,
1737        const TI* in, TA* aux, const TV *vol, TAV vola)
1738{
1739    switch (channels) {
1740    case 1:
1741        volumeMulti<MIXTYPE, 1>(out, frameCount, in, aux, vol, vola);
1742        break;
1743    case 2:
1744        volumeMulti<MIXTYPE, 2>(out, frameCount, in, aux, vol, vola);
1745        break;
1746    case 3:
1747        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 3>(out, frameCount, in, aux, vol, vola);
1748        break;
1749    case 4:
1750        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 4>(out, frameCount, in, aux, vol, vola);
1751        break;
1752    case 5:
1753        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 5>(out, frameCount, in, aux, vol, vola);
1754        break;
1755    case 6:
1756        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 6>(out, frameCount, in, aux, vol, vola);
1757        break;
1758    case 7:
1759        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 7>(out, frameCount, in, aux, vol, vola);
1760        break;
1761    case 8:
1762        volumeMulti<MIXTYPE_MONOVOL(MIXTYPE), 8>(out, frameCount, in, aux, vol, vola);
1763        break;
1764    }
1765}
1766
1767/* MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1768 * USEFLOATVOL (set to true if float volume is used)
1769 * ADJUSTVOL   (set to true if volume ramp parameters needs adjustment afterwards)
1770 * TO: int32_t (Q4.27) or float
1771 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1772 * TA: int32_t (Q4.27)
1773 */
1774template <int MIXTYPE, bool USEFLOATVOL, bool ADJUSTVOL,
1775    typename TO, typename TI, typename TA>
1776void AudioMixer::volumeMix(TO *out, size_t outFrames,
1777        const TI *in, TA *aux, bool ramp, AudioMixer::track_t *t)
1778{
1779    if (USEFLOATVOL) {
1780        if (ramp) {
1781            volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1782                    t->mPrevVolume, t->mVolumeInc, &t->prevAuxLevel, t->auxInc);
1783            if (ADJUSTVOL) {
1784                t->adjustVolumeRamp(aux != NULL, true);
1785            }
1786        } else {
1787            volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1788                    t->mVolume, t->auxLevel);
1789        }
1790    } else {
1791        if (ramp) {
1792            volumeRampMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1793                    t->prevVolume, t->volumeInc, &t->prevAuxLevel, t->auxInc);
1794            if (ADJUSTVOL) {
1795                t->adjustVolumeRamp(aux != NULL);
1796            }
1797        } else {
1798            volumeMulti<MIXTYPE>(t->mMixerChannelCount, out, outFrames, in, aux,
1799                    t->volume, t->auxLevel);
1800        }
1801    }
1802}
1803
1804/* This process hook is called when there is a single track without
1805 * aux buffer, volume ramp, or resampling.
1806 * TODO: Update the hook selection: this can properly handle aux and ramp.
1807 *
1808 * MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1809 * TO: int32_t (Q4.27) or float
1810 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1811 * TA: int32_t (Q4.27)
1812 */
1813template <int MIXTYPE, typename TO, typename TI, typename TA>
1814void AudioMixer::process_NoResampleOneTrack(state_t* state)
1815{
1816    ALOGVV("process_NoResampleOneTrack\n");
1817    // CLZ is faster than CTZ on ARM, though really not sure if true after 31 - clz.
1818    const int i = 31 - __builtin_clz(state->enabledTracks);
1819    ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled");
1820    track_t *t = &state->tracks[i];
1821    const uint32_t channels = t->mMixerChannelCount;
1822    TO* out = reinterpret_cast<TO*>(t->mainBuffer);
1823    TA* aux = reinterpret_cast<TA*>(t->auxBuffer);
1824    const bool ramp = t->needsRamp();
1825
1826    for (size_t numFrames = state->frameCount; numFrames; ) {
1827        AudioBufferProvider::Buffer& b(t->buffer);
1828        // get input buffer
1829        b.frameCount = numFrames;
1830        t->bufferProvider->getNextBuffer(&b);
1831        const TI *in = reinterpret_cast<TI*>(b.raw);
1832
1833        // in == NULL can happen if the track was flushed just after having
1834        // been enabled for mixing.
1835        if (in == NULL || (((uintptr_t)in) & 3)) {
1836            memset(out, 0, numFrames
1837                    * channels * audio_bytes_per_sample(t->mMixerFormat));
1838            ALOGE_IF((((uintptr_t)in) & 3), "process_NoResampleOneTrack: bus error: "
1839                    "buffer %p track %p, channels %d, needs %#x",
1840                    in, t, t->channelCount, t->needs);
1841            return;
1842        }
1843
1844        const size_t outFrames = b.frameCount;
1845        volumeMix<MIXTYPE, is_same<TI, float>::value, false> (
1846                out, outFrames, in, aux, ramp, t);
1847
1848        out += outFrames * channels;
1849        if (aux != NULL) {
1850            aux += channels;
1851        }
1852        numFrames -= b.frameCount;
1853
1854        // release buffer
1855        t->bufferProvider->releaseBuffer(&b);
1856    }
1857    if (ramp) {
1858        t->adjustVolumeRamp(aux != NULL, is_same<TI, float>::value);
1859    }
1860}
1861
1862/* This track hook is called to do resampling then mixing,
1863 * pulling from the track's upstream AudioBufferProvider.
1864 *
1865 * MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1866 * TO: int32_t (Q4.27) or float
1867 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1868 * TA: int32_t (Q4.27)
1869 */
1870template <int MIXTYPE, typename TO, typename TI, typename TA>
1871void AudioMixer::track__Resample(track_t* t, TO* out, size_t outFrameCount, TO* temp, TA* aux)
1872{
1873    ALOGVV("track__Resample\n");
1874    t->resampler->setSampleRate(t->sampleRate);
1875    const bool ramp = t->needsRamp();
1876    if (ramp || aux != NULL) {
1877        // if ramp:        resample with unity gain to temp buffer and scale/mix in 2nd step.
1878        // if aux != NULL: resample with unity gain to temp buffer then apply send level.
1879
1880        t->resampler->setVolume(UNITY_GAIN_FLOAT, UNITY_GAIN_FLOAT);
1881        memset(temp, 0, outFrameCount * t->mMixerChannelCount * sizeof(TO));
1882        t->resampler->resample((int32_t*)temp, outFrameCount, t->bufferProvider);
1883
1884        volumeMix<MIXTYPE, is_same<TI, float>::value, true>(
1885                out, outFrameCount, temp, aux, ramp, t);
1886
1887    } else { // constant volume gain
1888        t->resampler->setVolume(t->mVolume[0], t->mVolume[1]);
1889        t->resampler->resample((int32_t*)out, outFrameCount, t->bufferProvider);
1890    }
1891}
1892
1893/* This track hook is called to mix a track, when no resampling is required.
1894 * The input buffer should be present in t->in.
1895 *
1896 * MIXTYPE     (see AudioMixerOps.h MIXTYPE_* enumeration)
1897 * TO: int32_t (Q4.27) or float
1898 * TI: int32_t (Q4.27) or int16_t (Q0.15) or float
1899 * TA: int32_t (Q4.27)
1900 */
1901template <int MIXTYPE, typename TO, typename TI, typename TA>
1902void AudioMixer::track__NoResample(track_t* t, TO* out, size_t frameCount,
1903        TO* temp __unused, TA* aux)
1904{
1905    ALOGVV("track__NoResample\n");
1906    const TI *in = static_cast<const TI *>(t->in);
1907
1908    volumeMix<MIXTYPE, is_same<TI, float>::value, true>(
1909            out, frameCount, in, aux, t->needsRamp(), t);
1910
1911    // MIXTYPE_MONOEXPAND reads a single input channel and expands to NCHAN output channels.
1912    // MIXTYPE_MULTI reads NCHAN input channels and places to NCHAN output channels.
1913    in += (MIXTYPE == MIXTYPE_MONOEXPAND) ? frameCount : frameCount * t->mMixerChannelCount;
1914    t->in = in;
1915}
1916
1917/* The Mixer engine generates either int32_t (Q4_27) or float data.
1918 * We use this function to convert the engine buffers
1919 * to the desired mixer output format, either int16_t (Q.15) or float.
1920 */
1921void AudioMixer::convertMixerFormat(void *out, audio_format_t mixerOutFormat,
1922        void *in, audio_format_t mixerInFormat, size_t sampleCount)
1923{
1924    switch (mixerInFormat) {
1925    case AUDIO_FORMAT_PCM_FLOAT:
1926        switch (mixerOutFormat) {
1927        case AUDIO_FORMAT_PCM_FLOAT:
1928            memcpy(out, in, sampleCount * sizeof(float)); // MEMCPY. TODO optimize out
1929            break;
1930        case AUDIO_FORMAT_PCM_16_BIT:
1931            memcpy_to_i16_from_float((int16_t*)out, (float*)in, sampleCount);
1932            break;
1933        default:
1934            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
1935            break;
1936        }
1937        break;
1938    case AUDIO_FORMAT_PCM_16_BIT:
1939        switch (mixerOutFormat) {
1940        case AUDIO_FORMAT_PCM_FLOAT:
1941            memcpy_to_float_from_q4_27((float*)out, (int32_t*)in, sampleCount);
1942            break;
1943        case AUDIO_FORMAT_PCM_16_BIT:
1944            // two int16_t are produced per iteration
1945            ditherAndClamp((int32_t*)out, (int32_t*)in, sampleCount >> 1);
1946            break;
1947        default:
1948            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
1949            break;
1950        }
1951        break;
1952    default:
1953        LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
1954        break;
1955    }
1956}
1957
1958/* Returns the proper track hook to use for mixing the track into the output buffer.
1959 */
1960AudioMixer::hook_t AudioMixer::getTrackHook(int trackType, uint32_t channelCount,
1961        audio_format_t mixerInFormat, audio_format_t mixerOutFormat __unused)
1962{
1963    if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
1964        switch (trackType) {
1965        case TRACKTYPE_NOP:
1966            return track__nop;
1967        case TRACKTYPE_RESAMPLE:
1968            return track__genericResample;
1969        case TRACKTYPE_NORESAMPLEMONO:
1970            return track__16BitsMono;
1971        case TRACKTYPE_NORESAMPLE:
1972            return track__16BitsStereo;
1973        default:
1974            LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
1975            break;
1976        }
1977    }
1978    LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
1979    switch (trackType) {
1980    case TRACKTYPE_NOP:
1981        return track__nop;
1982    case TRACKTYPE_RESAMPLE:
1983        switch (mixerInFormat) {
1984        case AUDIO_FORMAT_PCM_FLOAT:
1985            return (AudioMixer::hook_t)
1986                    track__Resample<MIXTYPE_MULTI, float /*TO*/, float /*TI*/, int32_t /*TA*/>;
1987        case AUDIO_FORMAT_PCM_16_BIT:
1988            return (AudioMixer::hook_t)\
1989                    track__Resample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>;
1990        default:
1991            LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
1992            break;
1993        }
1994        break;
1995    case TRACKTYPE_NORESAMPLEMONO:
1996        switch (mixerInFormat) {
1997        case AUDIO_FORMAT_PCM_FLOAT:
1998            return (AudioMixer::hook_t)
1999                    track__NoResample<MIXTYPE_MONOEXPAND, float, float, int32_t>;
2000        case AUDIO_FORMAT_PCM_16_BIT:
2001            return (AudioMixer::hook_t)
2002                    track__NoResample<MIXTYPE_MONOEXPAND, int32_t, int16_t, int32_t>;
2003        default:
2004            LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2005            break;
2006        }
2007        break;
2008    case TRACKTYPE_NORESAMPLE:
2009        switch (mixerInFormat) {
2010        case AUDIO_FORMAT_PCM_FLOAT:
2011            return (AudioMixer::hook_t)
2012                    track__NoResample<MIXTYPE_MULTI, float, float, int32_t>;
2013        case AUDIO_FORMAT_PCM_16_BIT:
2014            return (AudioMixer::hook_t)
2015                    track__NoResample<MIXTYPE_MULTI, int32_t, int16_t, int32_t>;
2016        default:
2017            LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2018            break;
2019        }
2020        break;
2021    default:
2022        LOG_ALWAYS_FATAL("bad trackType: %d", trackType);
2023        break;
2024    }
2025    return NULL;
2026}
2027
2028/* Returns the proper process hook for mixing tracks. Currently works only for
2029 * PROCESSTYPE_NORESAMPLEONETRACK, a mix involving one track, no resampling.
2030 *
2031 * TODO: Due to the special mixing considerations of duplicating to
2032 * a stereo output track, the input track cannot be MONO.  This should be
2033 * prevented by the caller.
2034 */
2035AudioMixer::process_hook_t AudioMixer::getProcessHook(int processType, uint32_t channelCount,
2036        audio_format_t mixerInFormat, audio_format_t mixerOutFormat)
2037{
2038    if (processType != PROCESSTYPE_NORESAMPLEONETRACK) { // Only NORESAMPLEONETRACK
2039        LOG_ALWAYS_FATAL("bad processType: %d", processType);
2040        return NULL;
2041    }
2042    if (!kUseNewMixer && channelCount == FCC_2 && mixerInFormat == AUDIO_FORMAT_PCM_16_BIT) {
2043        return process__OneTrack16BitsStereoNoResampling;
2044    }
2045    LOG_ALWAYS_FATAL_IF(channelCount > MAX_NUM_CHANNELS);
2046    switch (mixerInFormat) {
2047    case AUDIO_FORMAT_PCM_FLOAT:
2048        switch (mixerOutFormat) {
2049        case AUDIO_FORMAT_PCM_FLOAT:
2050            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2051                    float /*TO*/, float /*TI*/, int32_t /*TA*/>;
2052        case AUDIO_FORMAT_PCM_16_BIT:
2053            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2054                    int16_t, float, int32_t>;
2055        default:
2056            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
2057            break;
2058        }
2059        break;
2060    case AUDIO_FORMAT_PCM_16_BIT:
2061        switch (mixerOutFormat) {
2062        case AUDIO_FORMAT_PCM_FLOAT:
2063            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2064                    float, int16_t, int32_t>;
2065        case AUDIO_FORMAT_PCM_16_BIT:
2066            return process_NoResampleOneTrack<MIXTYPE_MULTI_SAVEONLY,
2067                    int16_t, int16_t, int32_t>;
2068        default:
2069            LOG_ALWAYS_FATAL("bad mixerOutFormat: %#x", mixerOutFormat);
2070            break;
2071        }
2072        break;
2073    default:
2074        LOG_ALWAYS_FATAL("bad mixerInFormat: %#x", mixerInFormat);
2075        break;
2076    }
2077    return NULL;
2078}
2079
2080// ----------------------------------------------------------------------------
2081} // namespace android
2082