Parcel.java revision 3c1363beec9c142c062d8704b8bef4230b42eae5
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.Log;
21import android.util.SparseArray;
22import android.util.SparseBooleanArray;
23
24import java.io.ByteArrayInputStream;
25import java.io.ByteArrayOutputStream;
26import java.io.FileDescriptor;
27import java.io.FileNotFoundException;
28import java.io.IOException;
29import java.io.ObjectInputStream;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Field;
33import java.util.ArrayList;
34import java.util.HashMap;
35import java.util.List;
36import java.util.Map;
37import java.util.Set;
38
39/**
40 * Container for a message (data and object references) that can
41 * be sent through an IBinder.  A Parcel can contain both flattened data
42 * that will be unflattened on the other side of the IPC (using the various
43 * methods here for writing specific types, or the general
44 * {@link Parcelable} interface), and references to live {@link IBinder}
45 * objects that will result in the other side receiving a proxy IBinder
46 * connected with the original IBinder in the Parcel.
47 *
48 * <p class="note">Parcel is <strong>not</strong> a general-purpose
49 * serialization mechanism.  This class (and the corresponding
50 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
51 * designed as a high-performance IPC transport.  As such, it is not
52 * appropriate to place any Parcel data in to persistent storage: changes
53 * in the underlying implementation of any of the data in the Parcel can
54 * render older data unreadable.</p>
55 *
56 * <p>The bulk of the Parcel API revolves around reading and writing data
57 * of various types.  There are six major classes of such functions available.</p>
58 *
59 * <h3>Primitives</h3>
60 *
61 * <p>The most basic data functions are for writing and reading primitive
62 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
63 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
64 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
65 * {@link #writeString}, {@link #readString}.  Most other
66 * data operations are built on top of these.  The given data is written and
67 * read using the endianess of the host CPU.</p>
68 *
69 * <h3>Primitive Arrays</h3>
70 *
71 * <p>There are a variety of methods for reading and writing raw arrays
72 * of primitive objects, which generally result in writing a 4-byte length
73 * followed by the primitive data items.  The methods for reading can either
74 * read the data into an existing array, or create and return a new array.
75 * These available types are:</p>
76 *
77 * <ul>
78 * <li> {@link #writeBooleanArray(boolean[])},
79 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
80 * <li> {@link #writeByteArray(byte[])},
81 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
82 * {@link #createByteArray()}
83 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
84 * {@link #createCharArray()}
85 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
86 * {@link #createDoubleArray()}
87 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
88 * {@link #createFloatArray()}
89 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
90 * {@link #createIntArray()}
91 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
92 * {@link #createLongArray()}
93 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
94 * {@link #createStringArray()}.
95 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
96 * {@link #readSparseBooleanArray()}.
97 * </ul>
98 *
99 * <h3>Parcelables</h3>
100 *
101 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
102 * low-level) protocol for objects to write and read themselves from Parcels.
103 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
104 * and {@link #readParcelable(ClassLoader)} or
105 * {@link #writeParcelableArray} and
106 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
107 * methods write both the class type and its data to the Parcel, allowing
108 * that class to be reconstructed from the appropriate class loader when
109 * later reading.</p>
110 *
111 * <p>There are also some methods that provide a more efficient way to work
112 * with Parcelables: {@link #writeTypedArray},
113 * {@link #writeTypedList(List)},
114 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
115 * do not write the class information of the original object: instead, the
116 * caller of the read function must know what type to expect and pass in the
117 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
118 * properly construct the new object and read its data.  (To more efficient
119 * write and read a single Parceable object, you can directly call
120 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
121 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
122 * yourself.)</p>
123 *
124 * <h3>Bundles</h3>
125 *
126 * <p>A special type-safe container, called {@link Bundle}, is available
127 * for key/value maps of heterogeneous values.  This has many optimizations
128 * for improved performance when reading and writing data, and its type-safe
129 * API avoids difficult to debug type errors when finally marshalling the
130 * data contents into a Parcel.  The methods to use are
131 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
132 * {@link #readBundle(ClassLoader)}.
133 *
134 * <h3>Active Objects</h3>
135 *
136 * <p>An unusual feature of Parcel is the ability to read and write active
137 * objects.  For these objects the actual contents of the object is not
138 * written, rather a special token referencing the object is written.  When
139 * reading the object back from the Parcel, you do not get a new instance of
140 * the object, but rather a handle that operates on the exact same object that
141 * was originally written.  There are two forms of active objects available.</p>
142 *
143 * <p>{@link Binder} objects are a core facility of Android's general cross-process
144 * communication system.  The {@link IBinder} interface describes an abstract
145 * protocol with a Binder object.  Any such interface can be written in to
146 * a Parcel, and upon reading you will receive either the original object
147 * implementing that interface or a special proxy implementation
148 * that communicates calls back to the original object.  The methods to use are
149 * {@link #writeStrongBinder(IBinder)},
150 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
151 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
152 * {@link #createBinderArray()},
153 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
154 * {@link #createBinderArrayList()}.</p>
155 *
156 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
157 * can be written and {@link ParcelFileDescriptor} objects returned to operate
158 * on the original file descriptor.  The returned file descriptor is a dup
159 * of the original file descriptor: the object and fd is different, but
160 * operating on the same underlying file stream, with the same position, etc.
161 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
162 * {@link #readFileDescriptor()}.
163 *
164 * <h3>Untyped Containers</h3>
165 *
166 * <p>A final class of methods are for writing and reading standard Java
167 * containers of arbitrary types.  These all revolve around the
168 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
169 * which define the types of objects allowed.  The container methods are
170 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
171 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
172 * {@link #readArrayList(ClassLoader)},
173 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
174 * {@link #writeSparseArray(SparseArray)},
175 * {@link #readSparseArray(ClassLoader)}.
176 */
177public final class Parcel {
178    private static final boolean DEBUG_RECYCLE = false;
179    private static final String TAG = "Parcel";
180
181    @SuppressWarnings({"UnusedDeclaration"})
182    private int mObject; // used by native code
183    @SuppressWarnings({"UnusedDeclaration"})
184    private int mOwnObject; // used by native code
185    private RuntimeException mStack;
186
187    private static final int POOL_SIZE = 6;
188    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
189    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
190
191    private static final int VAL_NULL = -1;
192    private static final int VAL_STRING = 0;
193    private static final int VAL_INTEGER = 1;
194    private static final int VAL_MAP = 2;
195    private static final int VAL_BUNDLE = 3;
196    private static final int VAL_PARCELABLE = 4;
197    private static final int VAL_SHORT = 5;
198    private static final int VAL_LONG = 6;
199    private static final int VAL_FLOAT = 7;
200    private static final int VAL_DOUBLE = 8;
201    private static final int VAL_BOOLEAN = 9;
202    private static final int VAL_CHARSEQUENCE = 10;
203    private static final int VAL_LIST  = 11;
204    private static final int VAL_SPARSEARRAY = 12;
205    private static final int VAL_BYTEARRAY = 13;
206    private static final int VAL_STRINGARRAY = 14;
207    private static final int VAL_IBINDER = 15;
208    private static final int VAL_PARCELABLEARRAY = 16;
209    private static final int VAL_OBJECTARRAY = 17;
210    private static final int VAL_INTARRAY = 18;
211    private static final int VAL_LONGARRAY = 19;
212    private static final int VAL_BYTE = 20;
213    private static final int VAL_SERIALIZABLE = 21;
214    private static final int VAL_SPARSEBOOLEANARRAY = 22;
215    private static final int VAL_BOOLEANARRAY = 23;
216    private static final int VAL_CHARSEQUENCEARRAY = 24;
217
218    // The initial int32 in a Binder call's reply Parcel header:
219    private static final int EX_SECURITY = -1;
220    private static final int EX_BAD_PARCELABLE = -2;
221    private static final int EX_ILLEGAL_ARGUMENT = -3;
222    private static final int EX_NULL_POINTER = -4;
223    private static final int EX_ILLEGAL_STATE = -5;
224    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
225
226    public final static Parcelable.Creator<String> STRING_CREATOR
227             = new Parcelable.Creator<String>() {
228        public String createFromParcel(Parcel source) {
229            return source.readString();
230        }
231        public String[] newArray(int size) {
232            return new String[size];
233        }
234    };
235
236    /**
237     * Retrieve a new Parcel object from the pool.
238     */
239    public static Parcel obtain() {
240        final Parcel[] pool = sOwnedPool;
241        synchronized (pool) {
242            Parcel p;
243            for (int i=0; i<POOL_SIZE; i++) {
244                p = pool[i];
245                if (p != null) {
246                    pool[i] = null;
247                    if (DEBUG_RECYCLE) {
248                        p.mStack = new RuntimeException();
249                    }
250                    return p;
251                }
252            }
253        }
254        return new Parcel(0);
255    }
256
257    /**
258     * Put a Parcel object back into the pool.  You must not touch
259     * the object after this call.
260     */
261    public final void recycle() {
262        if (DEBUG_RECYCLE) mStack = null;
263        freeBuffer();
264        final Parcel[] pool = mOwnObject != 0 ? sOwnedPool : sHolderPool;
265        synchronized (pool) {
266            for (int i=0; i<POOL_SIZE; i++) {
267                if (pool[i] == null) {
268                    pool[i] = this;
269                    return;
270                }
271            }
272        }
273    }
274
275    /**
276     * Returns the total amount of data contained in the parcel.
277     */
278    public final native int dataSize();
279
280    /**
281     * Returns the amount of data remaining to be read from the
282     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
283     */
284    public final native int dataAvail();
285
286    /**
287     * Returns the current position in the parcel data.  Never
288     * more than {@link #dataSize}.
289     */
290    public final native int dataPosition();
291
292    /**
293     * Returns the total amount of space in the parcel.  This is always
294     * >= {@link #dataSize}.  The difference between it and dataSize() is the
295     * amount of room left until the parcel needs to re-allocate its
296     * data buffer.
297     */
298    public final native int dataCapacity();
299
300    /**
301     * Change the amount of data in the parcel.  Can be either smaller or
302     * larger than the current size.  If larger than the current capacity,
303     * more memory will be allocated.
304     *
305     * @param size The new number of bytes in the Parcel.
306     */
307    public final native void setDataSize(int size);
308
309    /**
310     * Move the current read/write position in the parcel.
311     * @param pos New offset in the parcel; must be between 0 and
312     * {@link #dataSize}.
313     */
314    public final native void setDataPosition(int pos);
315
316    /**
317     * Change the capacity (current available space) of the parcel.
318     *
319     * @param size The new capacity of the parcel, in bytes.  Can not be
320     * less than {@link #dataSize} -- that is, you can not drop existing data
321     * with this method.
322     */
323    public final native void setDataCapacity(int size);
324
325    /**
326     * Returns the raw bytes of the parcel.
327     *
328     * <p class="note">The data you retrieve here <strong>must not</strong>
329     * be placed in any kind of persistent storage (on local disk, across
330     * a network, etc).  For that, you should use standard serialization
331     * or another kind of general serialization mechanism.  The Parcel
332     * marshalled representation is highly optimized for local IPC, and as
333     * such does not attempt to maintain compatibility with data created
334     * in different versions of the platform.
335     */
336    public final native byte[] marshall();
337
338    /**
339     * Set the bytes in data to be the raw bytes of this Parcel.
340     */
341    public final native void unmarshall(byte[] data, int offest, int length);
342
343    public final native void appendFrom(Parcel parcel, int offset, int length);
344
345    /**
346     * Report whether the parcel contains any marshalled file descriptors.
347     */
348    public final native boolean hasFileDescriptors();
349
350    /**
351     * Store or read an IBinder interface token in the parcel at the current
352     * {@link #dataPosition}.  This is used to validate that the marshalled
353     * transaction is intended for the target interface.
354     */
355    public final native void writeInterfaceToken(String interfaceName);
356    public final native void enforceInterface(String interfaceName);
357
358    /**
359     * Write a byte array into the parcel at the current {#link #dataPosition},
360     * growing {@link #dataCapacity} if needed.
361     * @param b Bytes to place into the parcel.
362     */
363    public final void writeByteArray(byte[] b) {
364        writeByteArray(b, 0, (b != null) ? b.length : 0);
365    }
366
367    /**
368     * Write an byte array into the parcel at the current {#link #dataPosition},
369     * growing {@link #dataCapacity} if needed.
370     * @param b Bytes to place into the parcel.
371     * @param offset Index of first byte to be written.
372     * @param len Number of bytes to write.
373     */
374    public final void writeByteArray(byte[] b, int offset, int len) {
375        if (b == null) {
376            writeInt(-1);
377            return;
378        }
379        if (b.length < offset + len || len < 0 || offset < 0) {
380            throw new ArrayIndexOutOfBoundsException();
381        }
382        writeNative(b, offset, len);
383    }
384
385    private native void writeNative(byte[] b, int offset, int len);
386
387    /**
388     * Write an integer value into the parcel at the current dataPosition(),
389     * growing dataCapacity() if needed.
390     */
391    public final native void writeInt(int val);
392
393    /**
394     * Write a long integer value into the parcel at the current dataPosition(),
395     * growing dataCapacity() if needed.
396     */
397    public final native void writeLong(long val);
398
399    /**
400     * Write a floating point value into the parcel at the current
401     * dataPosition(), growing dataCapacity() if needed.
402     */
403    public final native void writeFloat(float val);
404
405    /**
406     * Write a double precision floating point value into the parcel at the
407     * current dataPosition(), growing dataCapacity() if needed.
408     */
409    public final native void writeDouble(double val);
410
411    /**
412     * Write a string value into the parcel at the current dataPosition(),
413     * growing dataCapacity() if needed.
414     */
415    public final native void writeString(String val);
416
417    /**
418     * Write a CharSequence value into the parcel at the current dataPosition(),
419     * growing dataCapacity() if needed.
420     * @hide
421     */
422    public final void writeCharSequence(CharSequence val) {
423        TextUtils.writeToParcel(val, this, 0);
424    }
425
426    /**
427     * Write an object into the parcel at the current dataPosition(),
428     * growing dataCapacity() if needed.
429     */
430    public final native void writeStrongBinder(IBinder val);
431
432    /**
433     * Write an object into the parcel at the current dataPosition(),
434     * growing dataCapacity() if needed.
435     */
436    public final void writeStrongInterface(IInterface val) {
437        writeStrongBinder(val == null ? null : val.asBinder());
438    }
439
440    /**
441     * Write a FileDescriptor into the parcel at the current dataPosition(),
442     * growing dataCapacity() if needed.
443     *
444     * <p class="caution">The file descriptor will not be closed, which may
445     * result in file descriptor leaks when objects are returned from Binder
446     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
447     * accepts contextual flags and will close the original file descriptor
448     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
449     */
450    public final native void writeFileDescriptor(FileDescriptor val);
451
452    /**
453     * Write an byte value into the parcel at the current dataPosition(),
454     * growing dataCapacity() if needed.
455     */
456    public final void writeByte(byte val) {
457        writeInt(val);
458    }
459
460    /**
461     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
462     * at the current dataPosition(),
463     * growing dataCapacity() if needed.  The Map keys must be String objects.
464     * The Map values are written using {@link #writeValue} and must follow
465     * the specification there.
466     *
467     * <p>It is strongly recommended to use {@link #writeBundle} instead of
468     * this method, since the Bundle class provides a type-safe API that
469     * allows you to avoid mysterious type errors at the point of marshalling.
470     */
471    public final void writeMap(Map val) {
472        writeMapInternal((Map<String,Object>) val);
473    }
474
475    /**
476     * Flatten a Map into the parcel at the current dataPosition(),
477     * growing dataCapacity() if needed.  The Map keys must be String objects.
478     */
479    /* package */ void writeMapInternal(Map<String,Object> val) {
480        if (val == null) {
481            writeInt(-1);
482            return;
483        }
484        Set<Map.Entry<String,Object>> entries = val.entrySet();
485        writeInt(entries.size());
486        for (Map.Entry<String,Object> e : entries) {
487            writeValue(e.getKey());
488            writeValue(e.getValue());
489        }
490    }
491
492    /**
493     * Flatten a Bundle into the parcel at the current dataPosition(),
494     * growing dataCapacity() if needed.
495     */
496    public final void writeBundle(Bundle val) {
497        if (val == null) {
498            writeInt(-1);
499            return;
500        }
501
502        val.writeToParcel(this, 0);
503    }
504
505    /**
506     * Flatten a List into the parcel at the current dataPosition(), growing
507     * dataCapacity() if needed.  The List values are written using
508     * {@link #writeValue} and must follow the specification there.
509     */
510    public final void writeList(List val) {
511        if (val == null) {
512            writeInt(-1);
513            return;
514        }
515        int N = val.size();
516        int i=0;
517        writeInt(N);
518        while (i < N) {
519            writeValue(val.get(i));
520            i++;
521        }
522    }
523
524    /**
525     * Flatten an Object array into the parcel at the current dataPosition(),
526     * growing dataCapacity() if needed.  The array values are written using
527     * {@link #writeValue} and must follow the specification there.
528     */
529    public final void writeArray(Object[] val) {
530        if (val == null) {
531            writeInt(-1);
532            return;
533        }
534        int N = val.length;
535        int i=0;
536        writeInt(N);
537        while (i < N) {
538            writeValue(val[i]);
539            i++;
540        }
541    }
542
543    /**
544     * Flatten a generic SparseArray into the parcel at the current
545     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
546     * values are written using {@link #writeValue} and must follow the
547     * specification there.
548     */
549    public final void writeSparseArray(SparseArray<Object> val) {
550        if (val == null) {
551            writeInt(-1);
552            return;
553        }
554        int N = val.size();
555        writeInt(N);
556        int i=0;
557        while (i < N) {
558            writeInt(val.keyAt(i));
559            writeValue(val.valueAt(i));
560            i++;
561        }
562    }
563
564    public final void writeSparseBooleanArray(SparseBooleanArray val) {
565        if (val == null) {
566            writeInt(-1);
567            return;
568        }
569        int N = val.size();
570        writeInt(N);
571        int i=0;
572        while (i < N) {
573            writeInt(val.keyAt(i));
574            writeByte((byte)(val.valueAt(i) ? 1 : 0));
575            i++;
576        }
577    }
578
579    public final void writeBooleanArray(boolean[] val) {
580        if (val != null) {
581            int N = val.length;
582            writeInt(N);
583            for (int i=0; i<N; i++) {
584                writeInt(val[i] ? 1 : 0);
585            }
586        } else {
587            writeInt(-1);
588        }
589    }
590
591    public final boolean[] createBooleanArray() {
592        int N = readInt();
593        // >>2 as a fast divide-by-4 works in the create*Array() functions
594        // because dataAvail() will never return a negative number.  4 is
595        // the size of a stored boolean in the stream.
596        if (N >= 0 && N <= (dataAvail() >> 2)) {
597            boolean[] val = new boolean[N];
598            for (int i=0; i<N; i++) {
599                val[i] = readInt() != 0;
600            }
601            return val;
602        } else {
603            return null;
604        }
605    }
606
607    public final void readBooleanArray(boolean[] val) {
608        int N = readInt();
609        if (N == val.length) {
610            for (int i=0; i<N; i++) {
611                val[i] = readInt() != 0;
612            }
613        } else {
614            throw new RuntimeException("bad array lengths");
615        }
616    }
617
618    public final void writeCharArray(char[] val) {
619        if (val != null) {
620            int N = val.length;
621            writeInt(N);
622            for (int i=0; i<N; i++) {
623                writeInt((int)val[i]);
624            }
625        } else {
626            writeInt(-1);
627        }
628    }
629
630    public final char[] createCharArray() {
631        int N = readInt();
632        if (N >= 0 && N <= (dataAvail() >> 2)) {
633            char[] val = new char[N];
634            for (int i=0; i<N; i++) {
635                val[i] = (char)readInt();
636            }
637            return val;
638        } else {
639            return null;
640        }
641    }
642
643    public final void readCharArray(char[] val) {
644        int N = readInt();
645        if (N == val.length) {
646            for (int i=0; i<N; i++) {
647                val[i] = (char)readInt();
648            }
649        } else {
650            throw new RuntimeException("bad array lengths");
651        }
652    }
653
654    public final void writeIntArray(int[] val) {
655        if (val != null) {
656            int N = val.length;
657            writeInt(N);
658            for (int i=0; i<N; i++) {
659                writeInt(val[i]);
660            }
661        } else {
662            writeInt(-1);
663        }
664    }
665
666    public final int[] createIntArray() {
667        int N = readInt();
668        if (N >= 0 && N <= (dataAvail() >> 2)) {
669            int[] val = new int[N];
670            for (int i=0; i<N; i++) {
671                val[i] = readInt();
672            }
673            return val;
674        } else {
675            return null;
676        }
677    }
678
679    public final void readIntArray(int[] val) {
680        int N = readInt();
681        if (N == val.length) {
682            for (int i=0; i<N; i++) {
683                val[i] = readInt();
684            }
685        } else {
686            throw new RuntimeException("bad array lengths");
687        }
688    }
689
690    public final void writeLongArray(long[] val) {
691        if (val != null) {
692            int N = val.length;
693            writeInt(N);
694            for (int i=0; i<N; i++) {
695                writeLong(val[i]);
696            }
697        } else {
698            writeInt(-1);
699        }
700    }
701
702    public final long[] createLongArray() {
703        int N = readInt();
704        // >>3 because stored longs are 64 bits
705        if (N >= 0 && N <= (dataAvail() >> 3)) {
706            long[] val = new long[N];
707            for (int i=0; i<N; i++) {
708                val[i] = readLong();
709            }
710            return val;
711        } else {
712            return null;
713        }
714    }
715
716    public final void readLongArray(long[] val) {
717        int N = readInt();
718        if (N == val.length) {
719            for (int i=0; i<N; i++) {
720                val[i] = readLong();
721            }
722        } else {
723            throw new RuntimeException("bad array lengths");
724        }
725    }
726
727    public final void writeFloatArray(float[] val) {
728        if (val != null) {
729            int N = val.length;
730            writeInt(N);
731            for (int i=0; i<N; i++) {
732                writeFloat(val[i]);
733            }
734        } else {
735            writeInt(-1);
736        }
737    }
738
739    public final float[] createFloatArray() {
740        int N = readInt();
741        // >>2 because stored floats are 4 bytes
742        if (N >= 0 && N <= (dataAvail() >> 2)) {
743            float[] val = new float[N];
744            for (int i=0; i<N; i++) {
745                val[i] = readFloat();
746            }
747            return val;
748        } else {
749            return null;
750        }
751    }
752
753    public final void readFloatArray(float[] val) {
754        int N = readInt();
755        if (N == val.length) {
756            for (int i=0; i<N; i++) {
757                val[i] = readFloat();
758            }
759        } else {
760            throw new RuntimeException("bad array lengths");
761        }
762    }
763
764    public final void writeDoubleArray(double[] val) {
765        if (val != null) {
766            int N = val.length;
767            writeInt(N);
768            for (int i=0; i<N; i++) {
769                writeDouble(val[i]);
770            }
771        } else {
772            writeInt(-1);
773        }
774    }
775
776    public final double[] createDoubleArray() {
777        int N = readInt();
778        // >>3 because stored doubles are 8 bytes
779        if (N >= 0 && N <= (dataAvail() >> 3)) {
780            double[] val = new double[N];
781            for (int i=0; i<N; i++) {
782                val[i] = readDouble();
783            }
784            return val;
785        } else {
786            return null;
787        }
788    }
789
790    public final void readDoubleArray(double[] val) {
791        int N = readInt();
792        if (N == val.length) {
793            for (int i=0; i<N; i++) {
794                val[i] = readDouble();
795            }
796        } else {
797            throw new RuntimeException("bad array lengths");
798        }
799    }
800
801    public final void writeStringArray(String[] val) {
802        if (val != null) {
803            int N = val.length;
804            writeInt(N);
805            for (int i=0; i<N; i++) {
806                writeString(val[i]);
807            }
808        } else {
809            writeInt(-1);
810        }
811    }
812
813    public final String[] createStringArray() {
814        int N = readInt();
815        if (N >= 0) {
816            String[] val = new String[N];
817            for (int i=0; i<N; i++) {
818                val[i] = readString();
819            }
820            return val;
821        } else {
822            return null;
823        }
824    }
825
826    public final void readStringArray(String[] val) {
827        int N = readInt();
828        if (N == val.length) {
829            for (int i=0; i<N; i++) {
830                val[i] = readString();
831            }
832        } else {
833            throw new RuntimeException("bad array lengths");
834        }
835    }
836
837    public final void writeBinderArray(IBinder[] val) {
838        if (val != null) {
839            int N = val.length;
840            writeInt(N);
841            for (int i=0; i<N; i++) {
842                writeStrongBinder(val[i]);
843            }
844        } else {
845            writeInt(-1);
846        }
847    }
848
849    /**
850     * @hide
851     */
852    public final void writeCharSequenceArray(CharSequence[] val) {
853        if (val != null) {
854            int N = val.length;
855            writeInt(N);
856            for (int i=0; i<N; i++) {
857                writeCharSequence(val[i]);
858            }
859        } else {
860            writeInt(-1);
861        }
862    }
863
864    public final IBinder[] createBinderArray() {
865        int N = readInt();
866        if (N >= 0) {
867            IBinder[] val = new IBinder[N];
868            for (int i=0; i<N; i++) {
869                val[i] = readStrongBinder();
870            }
871            return val;
872        } else {
873            return null;
874        }
875    }
876
877    public final void readBinderArray(IBinder[] val) {
878        int N = readInt();
879        if (N == val.length) {
880            for (int i=0; i<N; i++) {
881                val[i] = readStrongBinder();
882            }
883        } else {
884            throw new RuntimeException("bad array lengths");
885        }
886    }
887
888    /**
889     * Flatten a List containing a particular object type into the parcel, at
890     * the current dataPosition() and growing dataCapacity() if needed.  The
891     * type of the objects in the list must be one that implements Parcelable.
892     * Unlike the generic writeList() method, however, only the raw data of the
893     * objects is written and not their type, so you must use the corresponding
894     * readTypedList() to unmarshall them.
895     *
896     * @param val The list of objects to be written.
897     *
898     * @see #createTypedArrayList
899     * @see #readTypedList
900     * @see Parcelable
901     */
902    public final <T extends Parcelable> void writeTypedList(List<T> val) {
903        if (val == null) {
904            writeInt(-1);
905            return;
906        }
907        int N = val.size();
908        int i=0;
909        writeInt(N);
910        while (i < N) {
911            T item = val.get(i);
912            if (item != null) {
913                writeInt(1);
914                item.writeToParcel(this, 0);
915            } else {
916                writeInt(0);
917            }
918            i++;
919        }
920    }
921
922    /**
923     * Flatten a List containing String objects into the parcel, at
924     * the current dataPosition() and growing dataCapacity() if needed.  They
925     * can later be retrieved with {@link #createStringArrayList} or
926     * {@link #readStringList}.
927     *
928     * @param val The list of strings to be written.
929     *
930     * @see #createStringArrayList
931     * @see #readStringList
932     */
933    public final void writeStringList(List<String> val) {
934        if (val == null) {
935            writeInt(-1);
936            return;
937        }
938        int N = val.size();
939        int i=0;
940        writeInt(N);
941        while (i < N) {
942            writeString(val.get(i));
943            i++;
944        }
945    }
946
947    /**
948     * Flatten a List containing IBinder objects into the parcel, at
949     * the current dataPosition() and growing dataCapacity() if needed.  They
950     * can later be retrieved with {@link #createBinderArrayList} or
951     * {@link #readBinderList}.
952     *
953     * @param val The list of strings to be written.
954     *
955     * @see #createBinderArrayList
956     * @see #readBinderList
957     */
958    public final void writeBinderList(List<IBinder> val) {
959        if (val == null) {
960            writeInt(-1);
961            return;
962        }
963        int N = val.size();
964        int i=0;
965        writeInt(N);
966        while (i < N) {
967            writeStrongBinder(val.get(i));
968            i++;
969        }
970    }
971
972    /**
973     * Flatten a heterogeneous array containing a particular object type into
974     * the parcel, at
975     * the current dataPosition() and growing dataCapacity() if needed.  The
976     * type of the objects in the array must be one that implements Parcelable.
977     * Unlike the {@link #writeParcelableArray} method, however, only the
978     * raw data of the objects is written and not their type, so you must use
979     * {@link #readTypedArray} with the correct corresponding
980     * {@link Parcelable.Creator} implementation to unmarshall them.
981     *
982     * @param val The array of objects to be written.
983     * @param parcelableFlags Contextual flags as per
984     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
985     *
986     * @see #readTypedArray
987     * @see #writeParcelableArray
988     * @see Parcelable.Creator
989     */
990    public final <T extends Parcelable> void writeTypedArray(T[] val,
991            int parcelableFlags) {
992        if (val != null) {
993            int N = val.length;
994            writeInt(N);
995            for (int i=0; i<N; i++) {
996                T item = val[i];
997                if (item != null) {
998                    writeInt(1);
999                    item.writeToParcel(this, parcelableFlags);
1000                } else {
1001                    writeInt(0);
1002                }
1003            }
1004        } else {
1005            writeInt(-1);
1006        }
1007    }
1008
1009    /**
1010     * Flatten a generic object in to a parcel.  The given Object value may
1011     * currently be one of the following types:
1012     *
1013     * <ul>
1014     * <li> null
1015     * <li> String
1016     * <li> Byte
1017     * <li> Short
1018     * <li> Integer
1019     * <li> Long
1020     * <li> Float
1021     * <li> Double
1022     * <li> Boolean
1023     * <li> String[]
1024     * <li> boolean[]
1025     * <li> byte[]
1026     * <li> int[]
1027     * <li> long[]
1028     * <li> Object[] (supporting objects of the same type defined here).
1029     * <li> {@link Bundle}
1030     * <li> Map (as supported by {@link #writeMap}).
1031     * <li> Any object that implements the {@link Parcelable} protocol.
1032     * <li> Parcelable[]
1033     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1034     * <li> List (as supported by {@link #writeList}).
1035     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1036     * <li> {@link IBinder}
1037     * <li> Any object that implements Serializable (but see
1038     *      {@link #writeSerializable} for caveats).  Note that all of the
1039     *      previous types have relatively efficient implementations for
1040     *      writing to a Parcel; having to rely on the generic serialization
1041     *      approach is much less efficient and should be avoided whenever
1042     *      possible.
1043     * </ul>
1044     *
1045     * <p class="caution">{@link Parcelable} objects are written with
1046     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1047     * serializing objects containing {@link ParcelFileDescriptor}s,
1048     * this may result in file descriptor leaks when they are returned from
1049     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1050     * should be used).</p>
1051     */
1052    public final void writeValue(Object v) {
1053        if (v == null) {
1054            writeInt(VAL_NULL);
1055        } else if (v instanceof String) {
1056            writeInt(VAL_STRING);
1057            writeString((String) v);
1058        } else if (v instanceof Integer) {
1059            writeInt(VAL_INTEGER);
1060            writeInt((Integer) v);
1061        } else if (v instanceof Map) {
1062            writeInt(VAL_MAP);
1063            writeMap((Map) v);
1064        } else if (v instanceof Bundle) {
1065            // Must be before Parcelable
1066            writeInt(VAL_BUNDLE);
1067            writeBundle((Bundle) v);
1068        } else if (v instanceof Parcelable) {
1069            writeInt(VAL_PARCELABLE);
1070            writeParcelable((Parcelable) v, 0);
1071        } else if (v instanceof Short) {
1072            writeInt(VAL_SHORT);
1073            writeInt(((Short) v).intValue());
1074        } else if (v instanceof Long) {
1075            writeInt(VAL_LONG);
1076            writeLong((Long) v);
1077        } else if (v instanceof Float) {
1078            writeInt(VAL_FLOAT);
1079            writeFloat((Float) v);
1080        } else if (v instanceof Double) {
1081            writeInt(VAL_DOUBLE);
1082            writeDouble((Double) v);
1083        } else if (v instanceof Boolean) {
1084            writeInt(VAL_BOOLEAN);
1085            writeInt((Boolean) v ? 1 : 0);
1086        } else if (v instanceof CharSequence) {
1087            // Must be after String
1088            writeInt(VAL_CHARSEQUENCE);
1089            writeCharSequence((CharSequence) v);
1090        } else if (v instanceof List) {
1091            writeInt(VAL_LIST);
1092            writeList((List) v);
1093        } else if (v instanceof SparseArray) {
1094            writeInt(VAL_SPARSEARRAY);
1095            writeSparseArray((SparseArray) v);
1096        } else if (v instanceof boolean[]) {
1097            writeInt(VAL_BOOLEANARRAY);
1098            writeBooleanArray((boolean[]) v);
1099        } else if (v instanceof byte[]) {
1100            writeInt(VAL_BYTEARRAY);
1101            writeByteArray((byte[]) v);
1102        } else if (v instanceof String[]) {
1103            writeInt(VAL_STRINGARRAY);
1104            writeStringArray((String[]) v);
1105        } else if (v instanceof CharSequence[]) {
1106            // Must be after String[] and before Object[]
1107            writeInt(VAL_CHARSEQUENCEARRAY);
1108            writeCharSequenceArray((CharSequence[]) v);
1109        } else if (v instanceof IBinder) {
1110            writeInt(VAL_IBINDER);
1111            writeStrongBinder((IBinder) v);
1112        } else if (v instanceof Parcelable[]) {
1113            writeInt(VAL_PARCELABLEARRAY);
1114            writeParcelableArray((Parcelable[]) v, 0);
1115        } else if (v instanceof Object[]) {
1116            writeInt(VAL_OBJECTARRAY);
1117            writeArray((Object[]) v);
1118        } else if (v instanceof int[]) {
1119            writeInt(VAL_INTARRAY);
1120            writeIntArray((int[]) v);
1121        } else if (v instanceof long[]) {
1122            writeInt(VAL_LONGARRAY);
1123            writeLongArray((long[]) v);
1124        } else if (v instanceof Byte) {
1125            writeInt(VAL_BYTE);
1126            writeInt((Byte) v);
1127        } else if (v instanceof Serializable) {
1128            // Must be last
1129            writeInt(VAL_SERIALIZABLE);
1130            writeSerializable((Serializable) v);
1131        } else {
1132            throw new RuntimeException("Parcel: unable to marshal value " + v);
1133        }
1134    }
1135
1136    /**
1137     * Flatten the name of the class of the Parcelable and its contents
1138     * into the parcel.
1139     *
1140     * @param p The Parcelable object to be written.
1141     * @param parcelableFlags Contextual flags as per
1142     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1143     */
1144    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1145        if (p == null) {
1146            writeString(null);
1147            return;
1148        }
1149        String name = p.getClass().getName();
1150        writeString(name);
1151        p.writeToParcel(this, parcelableFlags);
1152    }
1153
1154    /**
1155     * Write a generic serializable object in to a Parcel.  It is strongly
1156     * recommended that this method be avoided, since the serialization
1157     * overhead is extremely large, and this approach will be much slower than
1158     * using the other approaches to writing data in to a Parcel.
1159     */
1160    public final void writeSerializable(Serializable s) {
1161        if (s == null) {
1162            writeString(null);
1163            return;
1164        }
1165        String name = s.getClass().getName();
1166        writeString(name);
1167
1168        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1169        try {
1170            ObjectOutputStream oos = new ObjectOutputStream(baos);
1171            oos.writeObject(s);
1172            oos.close();
1173
1174            writeByteArray(baos.toByteArray());
1175        } catch (IOException ioe) {
1176            throw new RuntimeException("Parcelable encountered " +
1177                "IOException writing serializable object (name = " + name +
1178                ")", ioe);
1179        }
1180    }
1181
1182    /**
1183     * Special function for writing an exception result at the header of
1184     * a parcel, to be used when returning an exception from a transaction.
1185     * Note that this currently only supports a few exception types; any other
1186     * exception will be re-thrown by this function as a RuntimeException
1187     * (to be caught by the system's last-resort exception handling when
1188     * dispatching a transaction).
1189     *
1190     * <p>The supported exception types are:
1191     * <ul>
1192     * <li>{@link BadParcelableException}
1193     * <li>{@link IllegalArgumentException}
1194     * <li>{@link IllegalStateException}
1195     * <li>{@link NullPointerException}
1196     * <li>{@link SecurityException}
1197     * </ul>
1198     *
1199     * @param e The Exception to be written.
1200     *
1201     * @see #writeNoException
1202     * @see #readException
1203     */
1204    public final void writeException(Exception e) {
1205        int code = 0;
1206        if (e instanceof SecurityException) {
1207            code = EX_SECURITY;
1208        } else if (e instanceof BadParcelableException) {
1209            code = EX_BAD_PARCELABLE;
1210        } else if (e instanceof IllegalArgumentException) {
1211            code = EX_ILLEGAL_ARGUMENT;
1212        } else if (e instanceof NullPointerException) {
1213            code = EX_NULL_POINTER;
1214        } else if (e instanceof IllegalStateException) {
1215            code = EX_ILLEGAL_STATE;
1216        }
1217        writeInt(code);
1218        StrictMode.clearGatheredViolations();
1219        if (code == 0) {
1220            if (e instanceof RuntimeException) {
1221                throw (RuntimeException) e;
1222            }
1223            throw new RuntimeException(e);
1224        }
1225        writeString(e.getMessage());
1226    }
1227
1228    /**
1229     * Special function for writing information at the front of the Parcel
1230     * indicating that no exception occurred.
1231     *
1232     * @see #writeException
1233     * @see #readException
1234     */
1235    public final void writeNoException() {
1236        // Despite the name of this function ("write no exception"),
1237        // it should instead be thought of as "write the RPC response
1238        // header", but because this function name is written out by
1239        // the AIDL compiler, we're not going to rename it.
1240        //
1241        // The response header, in the non-exception case (see also
1242        // writeException above, also called by the AIDL compiler), is
1243        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1244        // StrictMode has gathered up violations that have occurred
1245        // during a Binder call, in which case we write out the number
1246        // of violations and their details, serialized, before the
1247        // actual RPC respons data.  The receiving end of this is
1248        // readException(), below.
1249        if (StrictMode.hasGatheredViolations()) {
1250            writeInt(EX_HAS_REPLY_HEADER);
1251            final int sizePosition = dataPosition();
1252            writeInt(0);  // total size of fat header, to be filled in later
1253            StrictMode.writeGatheredViolationsToParcel(this);
1254            final int payloadPosition = dataPosition();
1255            setDataPosition(sizePosition);
1256            writeInt(payloadPosition - sizePosition);  // header size
1257            setDataPosition(payloadPosition);
1258        } else {
1259            writeInt(0);
1260        }
1261    }
1262
1263    /**
1264     * Special function for reading an exception result from the header of
1265     * a parcel, to be used after receiving the result of a transaction.  This
1266     * will throw the exception for you if it had been written to the Parcel,
1267     * otherwise return and let you read the normal result data from the Parcel.
1268     *
1269     * @see #writeException
1270     * @see #writeNoException
1271     */
1272    public final void readException() {
1273        int code = readExceptionCode();
1274        if (code != 0) {
1275            String msg = readString();
1276            readException(code, msg);
1277        }
1278    }
1279
1280    /**
1281     * Parses the header of a Binder call's response Parcel and
1282     * returns the exception code.  Deals with lite or fat headers.
1283     * In the common successful case, this header is generally zero.
1284     * In less common cases, it's a small negative number and will be
1285     * followed by an error string.
1286     *
1287     * This exists purely for android.database.DatabaseUtils and
1288     * insulating it from having to handle fat headers as returned by
1289     * e.g. StrictMode-induced RPC responses.
1290     *
1291     * @hide
1292     */
1293    public final int readExceptionCode() {
1294        int code = readInt();
1295        if (code == EX_HAS_REPLY_HEADER) {
1296            int headerSize = readInt();
1297            if (headerSize == 0) {
1298                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1299            } else {
1300                // Currently the only thing in the header is StrictMode stacks,
1301                // but discussions around event/RPC tracing suggest we might
1302                // put that here too.  If so, switch on sub-header tags here.
1303                // But for now, just parse out the StrictMode stuff.
1304                StrictMode.readAndHandleBinderCallViolations(this);
1305            }
1306            // And fat response headers are currently only used when
1307            // there are no exceptions, so return no error:
1308            return 0;
1309        }
1310        return code;
1311    }
1312
1313    /**
1314     * Use this function for customized exception handling.
1315     * customized method call this method for all unknown case
1316     * @param code exception code
1317     * @param msg exception message
1318     */
1319    public final void readException(int code, String msg) {
1320        switch (code) {
1321            case EX_SECURITY:
1322                throw new SecurityException(msg);
1323            case EX_BAD_PARCELABLE:
1324                throw new BadParcelableException(msg);
1325            case EX_ILLEGAL_ARGUMENT:
1326                throw new IllegalArgumentException(msg);
1327            case EX_NULL_POINTER:
1328                throw new NullPointerException(msg);
1329            case EX_ILLEGAL_STATE:
1330                throw new IllegalStateException(msg);
1331        }
1332        throw new RuntimeException("Unknown exception code: " + code
1333                + " msg " + msg);
1334    }
1335
1336    /**
1337     * Read an integer value from the parcel at the current dataPosition().
1338     */
1339    public final native int readInt();
1340
1341    /**
1342     * Read a long integer value from the parcel at the current dataPosition().
1343     */
1344    public final native long readLong();
1345
1346    /**
1347     * Read a floating point value from the parcel at the current
1348     * dataPosition().
1349     */
1350    public final native float readFloat();
1351
1352    /**
1353     * Read a double precision floating point value from the parcel at the
1354     * current dataPosition().
1355     */
1356    public final native double readDouble();
1357
1358    /**
1359     * Read a string value from the parcel at the current dataPosition().
1360     */
1361    public final native String readString();
1362
1363    /**
1364     * Read a CharSequence value from the parcel at the current dataPosition().
1365     * @hide
1366     */
1367    public final CharSequence readCharSequence() {
1368        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1369    }
1370
1371    /**
1372     * Read an object from the parcel at the current dataPosition().
1373     */
1374    public final native IBinder readStrongBinder();
1375
1376    /**
1377     * Read a FileDescriptor from the parcel at the current dataPosition().
1378     */
1379    public final ParcelFileDescriptor readFileDescriptor() {
1380        FileDescriptor fd = internalReadFileDescriptor();
1381        return fd != null ? new ParcelFileDescriptor(fd) : null;
1382    }
1383
1384    private native FileDescriptor internalReadFileDescriptor();
1385    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1386            int mode) throws FileNotFoundException;
1387    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1388            throws IOException;
1389
1390    /**
1391     * Read a byte value from the parcel at the current dataPosition().
1392     */
1393    public final byte readByte() {
1394        return (byte)(readInt() & 0xff);
1395    }
1396
1397    /**
1398     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1399     * been written with {@link #writeBundle}.  Read into an existing Map object
1400     * from the parcel at the current dataPosition().
1401     */
1402    public final void readMap(Map outVal, ClassLoader loader) {
1403        int N = readInt();
1404        readMapInternal(outVal, N, loader);
1405    }
1406
1407    /**
1408     * Read into an existing List object from the parcel at the current
1409     * dataPosition(), using the given class loader to load any enclosed
1410     * Parcelables.  If it is null, the default class loader is used.
1411     */
1412    public final void readList(List outVal, ClassLoader loader) {
1413        int N = readInt();
1414        readListInternal(outVal, N, loader);
1415    }
1416
1417    /**
1418     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1419     * been written with {@link #writeBundle}.  Read and return a new HashMap
1420     * object from the parcel at the current dataPosition(), using the given
1421     * class loader to load any enclosed Parcelables.  Returns null if
1422     * the previously written map object was null.
1423     */
1424    public final HashMap readHashMap(ClassLoader loader)
1425    {
1426        int N = readInt();
1427        if (N < 0) {
1428            return null;
1429        }
1430        HashMap m = new HashMap(N);
1431        readMapInternal(m, N, loader);
1432        return m;
1433    }
1434
1435    /**
1436     * Read and return a new Bundle object from the parcel at the current
1437     * dataPosition().  Returns null if the previously written Bundle object was
1438     * null.
1439     */
1440    public final Bundle readBundle() {
1441        return readBundle(null);
1442    }
1443
1444    /**
1445     * Read and return a new Bundle object from the parcel at the current
1446     * dataPosition(), using the given class loader to initialize the class
1447     * loader of the Bundle for later retrieval of Parcelable objects.
1448     * Returns null if the previously written Bundle object was null.
1449     */
1450    public final Bundle readBundle(ClassLoader loader) {
1451        int length = readInt();
1452        if (length < 0) {
1453            return null;
1454        }
1455
1456        final Bundle bundle = new Bundle(this, length);
1457        if (loader != null) {
1458            bundle.setClassLoader(loader);
1459        }
1460        return bundle;
1461    }
1462
1463    /**
1464     * Read and return a byte[] object from the parcel.
1465     */
1466    public final native byte[] createByteArray();
1467
1468    /**
1469     * Read a byte[] object from the parcel and copy it into the
1470     * given byte array.
1471     */
1472    public final void readByteArray(byte[] val) {
1473        // TODO: make this a native method to avoid the extra copy.
1474        byte[] ba = createByteArray();
1475        if (ba.length == val.length) {
1476           System.arraycopy(ba, 0, val, 0, ba.length);
1477        } else {
1478            throw new RuntimeException("bad array lengths");
1479        }
1480    }
1481
1482    /**
1483     * Read and return a String[] object from the parcel.
1484     * {@hide}
1485     */
1486    public final String[] readStringArray() {
1487        String[] array = null;
1488
1489        int length = readInt();
1490        if (length >= 0)
1491        {
1492            array = new String[length];
1493
1494            for (int i = 0 ; i < length ; i++)
1495            {
1496                array[i] = readString();
1497            }
1498        }
1499
1500        return array;
1501    }
1502
1503    /**
1504     * Read and return a CharSequence[] object from the parcel.
1505     * {@hide}
1506     */
1507    public final CharSequence[] readCharSequenceArray() {
1508        CharSequence[] array = null;
1509
1510        int length = readInt();
1511        if (length >= 0)
1512        {
1513            array = new CharSequence[length];
1514
1515            for (int i = 0 ; i < length ; i++)
1516            {
1517                array[i] = readCharSequence();
1518            }
1519        }
1520
1521        return array;
1522    }
1523
1524    /**
1525     * Read and return a new ArrayList object from the parcel at the current
1526     * dataPosition().  Returns null if the previously written list object was
1527     * null.  The given class loader will be used to load any enclosed
1528     * Parcelables.
1529     */
1530    public final ArrayList readArrayList(ClassLoader loader) {
1531        int N = readInt();
1532        if (N < 0) {
1533            return null;
1534        }
1535        ArrayList l = new ArrayList(N);
1536        readListInternal(l, N, loader);
1537        return l;
1538    }
1539
1540    /**
1541     * Read and return a new Object array from the parcel at the current
1542     * dataPosition().  Returns null if the previously written array was
1543     * null.  The given class loader will be used to load any enclosed
1544     * Parcelables.
1545     */
1546    public final Object[] readArray(ClassLoader loader) {
1547        int N = readInt();
1548        if (N < 0) {
1549            return null;
1550        }
1551        Object[] l = new Object[N];
1552        readArrayInternal(l, N, loader);
1553        return l;
1554    }
1555
1556    /**
1557     * Read and return a new SparseArray object from the parcel at the current
1558     * dataPosition().  Returns null if the previously written list object was
1559     * null.  The given class loader will be used to load any enclosed
1560     * Parcelables.
1561     */
1562    public final SparseArray readSparseArray(ClassLoader loader) {
1563        int N = readInt();
1564        if (N < 0) {
1565            return null;
1566        }
1567        SparseArray sa = new SparseArray(N);
1568        readSparseArrayInternal(sa, N, loader);
1569        return sa;
1570    }
1571
1572    /**
1573     * Read and return a new SparseBooleanArray object from the parcel at the current
1574     * dataPosition().  Returns null if the previously written list object was
1575     * null.
1576     */
1577    public final SparseBooleanArray readSparseBooleanArray() {
1578        int N = readInt();
1579        if (N < 0) {
1580            return null;
1581        }
1582        SparseBooleanArray sa = new SparseBooleanArray(N);
1583        readSparseBooleanArrayInternal(sa, N);
1584        return sa;
1585    }
1586
1587    /**
1588     * Read and return a new ArrayList containing a particular object type from
1589     * the parcel that was written with {@link #writeTypedList} at the
1590     * current dataPosition().  Returns null if the
1591     * previously written list object was null.  The list <em>must</em> have
1592     * previously been written via {@link #writeTypedList} with the same object
1593     * type.
1594     *
1595     * @return A newly created ArrayList containing objects with the same data
1596     *         as those that were previously written.
1597     *
1598     * @see #writeTypedList
1599     */
1600    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1601        int N = readInt();
1602        if (N < 0) {
1603            return null;
1604        }
1605        ArrayList<T> l = new ArrayList<T>(N);
1606        while (N > 0) {
1607            if (readInt() != 0) {
1608                l.add(c.createFromParcel(this));
1609            } else {
1610                l.add(null);
1611            }
1612            N--;
1613        }
1614        return l;
1615    }
1616
1617    /**
1618     * Read into the given List items containing a particular object type
1619     * that were written with {@link #writeTypedList} at the
1620     * current dataPosition().  The list <em>must</em> have
1621     * previously been written via {@link #writeTypedList} with the same object
1622     * type.
1623     *
1624     * @return A newly created ArrayList containing objects with the same data
1625     *         as those that were previously written.
1626     *
1627     * @see #writeTypedList
1628     */
1629    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1630        int M = list.size();
1631        int N = readInt();
1632        int i = 0;
1633        for (; i < M && i < N; i++) {
1634            if (readInt() != 0) {
1635                list.set(i, c.createFromParcel(this));
1636            } else {
1637                list.set(i, null);
1638            }
1639        }
1640        for (; i<N; i++) {
1641            if (readInt() != 0) {
1642                list.add(c.createFromParcel(this));
1643            } else {
1644                list.add(null);
1645            }
1646        }
1647        for (; i<M; i++) {
1648            list.remove(N);
1649        }
1650    }
1651
1652    /**
1653     * Read and return a new ArrayList containing String objects from
1654     * the parcel that was written with {@link #writeStringList} at the
1655     * current dataPosition().  Returns null if the
1656     * previously written list object was null.
1657     *
1658     * @return A newly created ArrayList containing strings with the same data
1659     *         as those that were previously written.
1660     *
1661     * @see #writeStringList
1662     */
1663    public final ArrayList<String> createStringArrayList() {
1664        int N = readInt();
1665        if (N < 0) {
1666            return null;
1667        }
1668        ArrayList<String> l = new ArrayList<String>(N);
1669        while (N > 0) {
1670            l.add(readString());
1671            N--;
1672        }
1673        return l;
1674    }
1675
1676    /**
1677     * Read and return a new ArrayList containing IBinder objects from
1678     * the parcel that was written with {@link #writeBinderList} at the
1679     * current dataPosition().  Returns null if the
1680     * previously written list object was null.
1681     *
1682     * @return A newly created ArrayList containing strings with the same data
1683     *         as those that were previously written.
1684     *
1685     * @see #writeBinderList
1686     */
1687    public final ArrayList<IBinder> createBinderArrayList() {
1688        int N = readInt();
1689        if (N < 0) {
1690            return null;
1691        }
1692        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1693        while (N > 0) {
1694            l.add(readStrongBinder());
1695            N--;
1696        }
1697        return l;
1698    }
1699
1700    /**
1701     * Read into the given List items String objects that were written with
1702     * {@link #writeStringList} at the current dataPosition().
1703     *
1704     * @return A newly created ArrayList containing strings with the same data
1705     *         as those that were previously written.
1706     *
1707     * @see #writeStringList
1708     */
1709    public final void readStringList(List<String> list) {
1710        int M = list.size();
1711        int N = readInt();
1712        int i = 0;
1713        for (; i < M && i < N; i++) {
1714            list.set(i, readString());
1715        }
1716        for (; i<N; i++) {
1717            list.add(readString());
1718        }
1719        for (; i<M; i++) {
1720            list.remove(N);
1721        }
1722    }
1723
1724    /**
1725     * Read into the given List items IBinder objects that were written with
1726     * {@link #writeBinderList} at the current dataPosition().
1727     *
1728     * @return A newly created ArrayList containing strings with the same data
1729     *         as those that were previously written.
1730     *
1731     * @see #writeBinderList
1732     */
1733    public final void readBinderList(List<IBinder> list) {
1734        int M = list.size();
1735        int N = readInt();
1736        int i = 0;
1737        for (; i < M && i < N; i++) {
1738            list.set(i, readStrongBinder());
1739        }
1740        for (; i<N; i++) {
1741            list.add(readStrongBinder());
1742        }
1743        for (; i<M; i++) {
1744            list.remove(N);
1745        }
1746    }
1747
1748    /**
1749     * Read and return a new array containing a particular object type from
1750     * the parcel at the current dataPosition().  Returns null if the
1751     * previously written array was null.  The array <em>must</em> have
1752     * previously been written via {@link #writeTypedArray} with the same
1753     * object type.
1754     *
1755     * @return A newly created array containing objects with the same data
1756     *         as those that were previously written.
1757     *
1758     * @see #writeTypedArray
1759     */
1760    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1761        int N = readInt();
1762        if (N < 0) {
1763            return null;
1764        }
1765        T[] l = c.newArray(N);
1766        for (int i=0; i<N; i++) {
1767            if (readInt() != 0) {
1768                l[i] = c.createFromParcel(this);
1769            }
1770        }
1771        return l;
1772    }
1773
1774    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1775        int N = readInt();
1776        if (N == val.length) {
1777            for (int i=0; i<N; i++) {
1778                if (readInt() != 0) {
1779                    val[i] = c.createFromParcel(this);
1780                } else {
1781                    val[i] = null;
1782                }
1783            }
1784        } else {
1785            throw new RuntimeException("bad array lengths");
1786        }
1787    }
1788
1789    /**
1790     * @deprecated
1791     * @hide
1792     */
1793    @Deprecated
1794    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1795        return createTypedArray(c);
1796    }
1797
1798    /**
1799     * Write a heterogeneous array of Parcelable objects into the Parcel.
1800     * Each object in the array is written along with its class name, so
1801     * that the correct class can later be instantiated.  As a result, this
1802     * has significantly more overhead than {@link #writeTypedArray}, but will
1803     * correctly handle an array containing more than one type of object.
1804     *
1805     * @param value The array of objects to be written.
1806     * @param parcelableFlags Contextual flags as per
1807     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1808     *
1809     * @see #writeTypedArray
1810     */
1811    public final <T extends Parcelable> void writeParcelableArray(T[] value,
1812            int parcelableFlags) {
1813        if (value != null) {
1814            int N = value.length;
1815            writeInt(N);
1816            for (int i=0; i<N; i++) {
1817                writeParcelable(value[i], parcelableFlags);
1818            }
1819        } else {
1820            writeInt(-1);
1821        }
1822    }
1823
1824    /**
1825     * Read a typed object from a parcel.  The given class loader will be
1826     * used to load any enclosed Parcelables.  If it is null, the default class
1827     * loader will be used.
1828     */
1829    public final Object readValue(ClassLoader loader) {
1830        int type = readInt();
1831
1832        switch (type) {
1833        case VAL_NULL:
1834            return null;
1835
1836        case VAL_STRING:
1837            return readString();
1838
1839        case VAL_INTEGER:
1840            return readInt();
1841
1842        case VAL_MAP:
1843            return readHashMap(loader);
1844
1845        case VAL_PARCELABLE:
1846            return readParcelable(loader);
1847
1848        case VAL_SHORT:
1849            return (short) readInt();
1850
1851        case VAL_LONG:
1852            return readLong();
1853
1854        case VAL_FLOAT:
1855            return readFloat();
1856
1857        case VAL_DOUBLE:
1858            return readDouble();
1859
1860        case VAL_BOOLEAN:
1861            return readInt() == 1;
1862
1863        case VAL_CHARSEQUENCE:
1864            return readCharSequence();
1865
1866        case VAL_LIST:
1867            return readArrayList(loader);
1868
1869        case VAL_BOOLEANARRAY:
1870            return createBooleanArray();
1871
1872        case VAL_BYTEARRAY:
1873            return createByteArray();
1874
1875        case VAL_STRINGARRAY:
1876            return readStringArray();
1877
1878        case VAL_CHARSEQUENCEARRAY:
1879            return readCharSequenceArray();
1880
1881        case VAL_IBINDER:
1882            return readStrongBinder();
1883
1884        case VAL_OBJECTARRAY:
1885            return readArray(loader);
1886
1887        case VAL_INTARRAY:
1888            return createIntArray();
1889
1890        case VAL_LONGARRAY:
1891            return createLongArray();
1892
1893        case VAL_BYTE:
1894            return readByte();
1895
1896        case VAL_SERIALIZABLE:
1897            return readSerializable();
1898
1899        case VAL_PARCELABLEARRAY:
1900            return readParcelableArray(loader);
1901
1902        case VAL_SPARSEARRAY:
1903            return readSparseArray(loader);
1904
1905        case VAL_SPARSEBOOLEANARRAY:
1906            return readSparseBooleanArray();
1907
1908        case VAL_BUNDLE:
1909            return readBundle(loader); // loading will be deferred
1910
1911        default:
1912            int off = dataPosition() - 4;
1913            throw new RuntimeException(
1914                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
1915        }
1916    }
1917
1918    /**
1919     * Read and return a new Parcelable from the parcel.  The given class loader
1920     * will be used to load any enclosed Parcelables.  If it is null, the default
1921     * class loader will be used.
1922     * @param loader A ClassLoader from which to instantiate the Parcelable
1923     * object, or null for the default class loader.
1924     * @return Returns the newly created Parcelable, or null if a null
1925     * object has been written.
1926     * @throws BadParcelableException Throws BadParcelableException if there
1927     * was an error trying to instantiate the Parcelable.
1928     */
1929    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
1930        String name = readString();
1931        if (name == null) {
1932            return null;
1933        }
1934        Parcelable.Creator<T> creator;
1935        synchronized (mCreators) {
1936            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
1937            if (map == null) {
1938                map = new HashMap<String,Parcelable.Creator>();
1939                mCreators.put(loader, map);
1940            }
1941            creator = map.get(name);
1942            if (creator == null) {
1943                try {
1944                    Class c = loader == null ?
1945                        Class.forName(name) : Class.forName(name, true, loader);
1946                    Field f = c.getField("CREATOR");
1947                    creator = (Parcelable.Creator)f.get(null);
1948                }
1949                catch (IllegalAccessException e) {
1950                    Log.e(TAG, "Class not found when unmarshalling: "
1951                                        + name + ", e: " + e);
1952                    throw new BadParcelableException(
1953                            "IllegalAccessException when unmarshalling: " + name);
1954                }
1955                catch (ClassNotFoundException e) {
1956                    Log.e(TAG, "Class not found when unmarshalling: "
1957                                        + name + ", e: " + e);
1958                    throw new BadParcelableException(
1959                            "ClassNotFoundException when unmarshalling: " + name);
1960                }
1961                catch (ClassCastException e) {
1962                    throw new BadParcelableException("Parcelable protocol requires a "
1963                                        + "Parcelable.Creator object called "
1964                                        + " CREATOR on class " + name);
1965                }
1966                catch (NoSuchFieldException e) {
1967                    throw new BadParcelableException("Parcelable protocol requires a "
1968                                        + "Parcelable.Creator object called "
1969                                        + " CREATOR on class " + name);
1970                }
1971                if (creator == null) {
1972                    throw new BadParcelableException("Parcelable protocol requires a "
1973                                        + "Parcelable.Creator object called "
1974                                        + " CREATOR on class " + name);
1975                }
1976
1977                map.put(name, creator);
1978            }
1979        }
1980
1981        return creator.createFromParcel(this);
1982    }
1983
1984    /**
1985     * Read and return a new Parcelable array from the parcel.
1986     * The given class loader will be used to load any enclosed
1987     * Parcelables.
1988     * @return the Parcelable array, or null if the array is null
1989     */
1990    public final Parcelable[] readParcelableArray(ClassLoader loader) {
1991        int N = readInt();
1992        if (N < 0) {
1993            return null;
1994        }
1995        Parcelable[] p = new Parcelable[N];
1996        for (int i = 0; i < N; i++) {
1997            p[i] = (Parcelable) readParcelable(loader);
1998        }
1999        return p;
2000    }
2001
2002    /**
2003     * Read and return a new Serializable object from the parcel.
2004     * @return the Serializable object, or null if the Serializable name
2005     * wasn't found in the parcel.
2006     */
2007    public final Serializable readSerializable() {
2008        String name = readString();
2009        if (name == null) {
2010            // For some reason we were unable to read the name of the Serializable (either there
2011            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2012            // return null, which indicates that the name wasn't found in the parcel.
2013            return null;
2014        }
2015
2016        byte[] serializedData = createByteArray();
2017        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2018        try {
2019            ObjectInputStream ois = new ObjectInputStream(bais);
2020            return (Serializable) ois.readObject();
2021        } catch (IOException ioe) {
2022            throw new RuntimeException("Parcelable encountered " +
2023                "IOException reading a Serializable object (name = " + name +
2024                ")", ioe);
2025        } catch (ClassNotFoundException cnfe) {
2026            throw new RuntimeException("Parcelable encountered" +
2027                "ClassNotFoundException reading a Serializable object (name = "
2028                + name + ")", cnfe);
2029        }
2030    }
2031
2032    // Cache of previously looked up CREATOR.createFromParcel() methods for
2033    // particular classes.  Keys are the names of the classes, values are
2034    // Method objects.
2035    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
2036        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
2037
2038    static protected final Parcel obtain(int obj) {
2039        final Parcel[] pool = sHolderPool;
2040        synchronized (pool) {
2041            Parcel p;
2042            for (int i=0; i<POOL_SIZE; i++) {
2043                p = pool[i];
2044                if (p != null) {
2045                    pool[i] = null;
2046                    if (DEBUG_RECYCLE) {
2047                        p.mStack = new RuntimeException();
2048                    }
2049                    p.init(obj);
2050                    return p;
2051                }
2052            }
2053        }
2054        return new Parcel(obj);
2055    }
2056
2057    private Parcel(int obj) {
2058        if (DEBUG_RECYCLE) {
2059            mStack = new RuntimeException();
2060        }
2061        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2062        init(obj);
2063    }
2064
2065    @Override
2066    protected void finalize() throws Throwable {
2067        if (DEBUG_RECYCLE) {
2068            if (mStack != null) {
2069                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2070            }
2071        }
2072        destroy();
2073    }
2074
2075    private native void freeBuffer();
2076    private native void init(int obj);
2077    private native void destroy();
2078
2079    /* package */ void readMapInternal(Map outVal, int N,
2080        ClassLoader loader) {
2081        while (N > 0) {
2082            Object key = readValue(loader);
2083            Object value = readValue(loader);
2084            outVal.put(key, value);
2085            N--;
2086        }
2087    }
2088
2089    private void readListInternal(List outVal, int N,
2090        ClassLoader loader) {
2091        while (N > 0) {
2092            Object value = readValue(loader);
2093            //Log.d(TAG, "Unmarshalling value=" + value);
2094            outVal.add(value);
2095            N--;
2096        }
2097    }
2098
2099    private void readArrayInternal(Object[] outVal, int N,
2100        ClassLoader loader) {
2101        for (int i = 0; i < N; i++) {
2102            Object value = readValue(loader);
2103            //Log.d(TAG, "Unmarshalling value=" + value);
2104            outVal[i] = value;
2105        }
2106    }
2107
2108    private void readSparseArrayInternal(SparseArray outVal, int N,
2109        ClassLoader loader) {
2110        while (N > 0) {
2111            int key = readInt();
2112            Object value = readValue(loader);
2113            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2114            outVal.append(key, value);
2115            N--;
2116        }
2117    }
2118
2119
2120    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2121        while (N > 0) {
2122            int key = readInt();
2123            boolean value = this.readByte() == 1;
2124            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2125            outVal.append(key, value);
2126            N--;
2127        }
2128    }
2129}
2130