Parcel.java revision 5ea06c59be1f7a0495378f703562ee02eaad99d8
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.ArrayMap;
21import android.util.Log;
22import android.util.SparseArray;
23import android.util.SparseBooleanArray;
24
25import java.io.ByteArrayInputStream;
26import java.io.ByteArrayOutputStream;
27import java.io.FileDescriptor;
28import java.io.FileNotFoundException;
29import java.io.IOException;
30import java.io.ObjectInputStream;
31import java.io.ObjectOutputStream;
32import java.io.ObjectStreamClass;
33import java.io.Serializable;
34import java.lang.reflect.Field;
35import java.util.ArrayList;
36import java.util.Arrays;
37import java.util.HashMap;
38import java.util.List;
39import java.util.Map;
40import java.util.Set;
41
42/**
43 * Container for a message (data and object references) that can
44 * be sent through an IBinder.  A Parcel can contain both flattened data
45 * that will be unflattened on the other side of the IPC (using the various
46 * methods here for writing specific types, or the general
47 * {@link Parcelable} interface), and references to live {@link IBinder}
48 * objects that will result in the other side receiving a proxy IBinder
49 * connected with the original IBinder in the Parcel.
50 *
51 * <p class="note">Parcel is <strong>not</strong> a general-purpose
52 * serialization mechanism.  This class (and the corresponding
53 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
54 * designed as a high-performance IPC transport.  As such, it is not
55 * appropriate to place any Parcel data in to persistent storage: changes
56 * in the underlying implementation of any of the data in the Parcel can
57 * render older data unreadable.</p>
58 *
59 * <p>The bulk of the Parcel API revolves around reading and writing data
60 * of various types.  There are six major classes of such functions available.</p>
61 *
62 * <h3>Primitives</h3>
63 *
64 * <p>The most basic data functions are for writing and reading primitive
65 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
66 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
67 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
68 * {@link #writeString}, {@link #readString}.  Most other
69 * data operations are built on top of these.  The given data is written and
70 * read using the endianess of the host CPU.</p>
71 *
72 * <h3>Primitive Arrays</h3>
73 *
74 * <p>There are a variety of methods for reading and writing raw arrays
75 * of primitive objects, which generally result in writing a 4-byte length
76 * followed by the primitive data items.  The methods for reading can either
77 * read the data into an existing array, or create and return a new array.
78 * These available types are:</p>
79 *
80 * <ul>
81 * <li> {@link #writeBooleanArray(boolean[])},
82 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
83 * <li> {@link #writeByteArray(byte[])},
84 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
85 * {@link #createByteArray()}
86 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
87 * {@link #createCharArray()}
88 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
89 * {@link #createDoubleArray()}
90 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
91 * {@link #createFloatArray()}
92 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
93 * {@link #createIntArray()}
94 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
95 * {@link #createLongArray()}
96 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
97 * {@link #createStringArray()}.
98 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
99 * {@link #readSparseBooleanArray()}.
100 * </ul>
101 *
102 * <h3>Parcelables</h3>
103 *
104 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
105 * low-level) protocol for objects to write and read themselves from Parcels.
106 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
107 * and {@link #readParcelable(ClassLoader)} or
108 * {@link #writeParcelableArray} and
109 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
110 * methods write both the class type and its data to the Parcel, allowing
111 * that class to be reconstructed from the appropriate class loader when
112 * later reading.</p>
113 *
114 * <p>There are also some methods that provide a more efficient way to work
115 * with Parcelables: {@link #writeTypedArray},
116 * {@link #writeTypedList(List)},
117 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
118 * do not write the class information of the original object: instead, the
119 * caller of the read function must know what type to expect and pass in the
120 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
121 * properly construct the new object and read its data.  (To more efficient
122 * write and read a single Parceable object, you can directly call
123 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
124 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
125 * yourself.)</p>
126 *
127 * <h3>Bundles</h3>
128 *
129 * <p>A special type-safe container, called {@link Bundle}, is available
130 * for key/value maps of heterogeneous values.  This has many optimizations
131 * for improved performance when reading and writing data, and its type-safe
132 * API avoids difficult to debug type errors when finally marshalling the
133 * data contents into a Parcel.  The methods to use are
134 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
135 * {@link #readBundle(ClassLoader)}.
136 *
137 * <h3>Active Objects</h3>
138 *
139 * <p>An unusual feature of Parcel is the ability to read and write active
140 * objects.  For these objects the actual contents of the object is not
141 * written, rather a special token referencing the object is written.  When
142 * reading the object back from the Parcel, you do not get a new instance of
143 * the object, but rather a handle that operates on the exact same object that
144 * was originally written.  There are two forms of active objects available.</p>
145 *
146 * <p>{@link Binder} objects are a core facility of Android's general cross-process
147 * communication system.  The {@link IBinder} interface describes an abstract
148 * protocol with a Binder object.  Any such interface can be written in to
149 * a Parcel, and upon reading you will receive either the original object
150 * implementing that interface or a special proxy implementation
151 * that communicates calls back to the original object.  The methods to use are
152 * {@link #writeStrongBinder(IBinder)},
153 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
154 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
155 * {@link #createBinderArray()},
156 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
157 * {@link #createBinderArrayList()}.</p>
158 *
159 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
160 * can be written and {@link ParcelFileDescriptor} objects returned to operate
161 * on the original file descriptor.  The returned file descriptor is a dup
162 * of the original file descriptor: the object and fd is different, but
163 * operating on the same underlying file stream, with the same position, etc.
164 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
165 * {@link #readFileDescriptor()}.
166 *
167 * <h3>Untyped Containers</h3>
168 *
169 * <p>A final class of methods are for writing and reading standard Java
170 * containers of arbitrary types.  These all revolve around the
171 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
172 * which define the types of objects allowed.  The container methods are
173 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
174 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
175 * {@link #readArrayList(ClassLoader)},
176 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
177 * {@link #writeSparseArray(SparseArray)},
178 * {@link #readSparseArray(ClassLoader)}.
179 */
180public final class Parcel {
181    private static final boolean DEBUG_RECYCLE = false;
182    private static final boolean DEBUG_ARRAY_MAP = false;
183    private static final String TAG = "Parcel";
184
185    @SuppressWarnings({"UnusedDeclaration"})
186    private long mNativePtr; // used by native code
187
188    /**
189     * Flag indicating if {@link #mNativePtr} was allocated by this object,
190     * indicating that we're responsible for its lifecycle.
191     */
192    private boolean mOwnsNativeParcelObject;
193
194    private RuntimeException mStack;
195
196    private static final int POOL_SIZE = 6;
197    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
198    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
199
200    private static final int VAL_NULL = -1;
201    private static final int VAL_STRING = 0;
202    private static final int VAL_INTEGER = 1;
203    private static final int VAL_MAP = 2;
204    private static final int VAL_BUNDLE = 3;
205    private static final int VAL_PARCELABLE = 4;
206    private static final int VAL_SHORT = 5;
207    private static final int VAL_LONG = 6;
208    private static final int VAL_FLOAT = 7;
209    private static final int VAL_DOUBLE = 8;
210    private static final int VAL_BOOLEAN = 9;
211    private static final int VAL_CHARSEQUENCE = 10;
212    private static final int VAL_LIST  = 11;
213    private static final int VAL_SPARSEARRAY = 12;
214    private static final int VAL_BYTEARRAY = 13;
215    private static final int VAL_STRINGARRAY = 14;
216    private static final int VAL_IBINDER = 15;
217    private static final int VAL_PARCELABLEARRAY = 16;
218    private static final int VAL_OBJECTARRAY = 17;
219    private static final int VAL_INTARRAY = 18;
220    private static final int VAL_LONGARRAY = 19;
221    private static final int VAL_BYTE = 20;
222    private static final int VAL_SERIALIZABLE = 21;
223    private static final int VAL_SPARSEBOOLEANARRAY = 22;
224    private static final int VAL_BOOLEANARRAY = 23;
225    private static final int VAL_CHARSEQUENCEARRAY = 24;
226
227    // The initial int32 in a Binder call's reply Parcel header:
228    private static final int EX_SECURITY = -1;
229    private static final int EX_BAD_PARCELABLE = -2;
230    private static final int EX_ILLEGAL_ARGUMENT = -3;
231    private static final int EX_NULL_POINTER = -4;
232    private static final int EX_ILLEGAL_STATE = -5;
233    private static final int EX_NETWORK_MAIN_THREAD = -6;
234    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
235
236    private static native int nativeDataSize(long nativePtr);
237    private static native int nativeDataAvail(long nativePtr);
238    private static native int nativeDataPosition(long nativePtr);
239    private static native int nativeDataCapacity(long nativePtr);
240    private static native void nativeSetDataSize(long nativePtr, int size);
241    private static native void nativeSetDataPosition(long nativePtr, int pos);
242    private static native void nativeSetDataCapacity(long nativePtr, int size);
243
244    private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
245    private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
246
247    private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
248    private static native void nativeWriteInt(long nativePtr, int val);
249    private static native void nativeWriteLong(long nativePtr, long val);
250    private static native void nativeWriteFloat(long nativePtr, float val);
251    private static native void nativeWriteDouble(long nativePtr, double val);
252    private static native void nativeWriteString(long nativePtr, String val);
253    private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
254    private static native void nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
255
256    private static native byte[] nativeCreateByteArray(long nativePtr);
257    private static native int nativeReadInt(long nativePtr);
258    private static native long nativeReadLong(long nativePtr);
259    private static native float nativeReadFloat(long nativePtr);
260    private static native double nativeReadDouble(long nativePtr);
261    private static native String nativeReadString(long nativePtr);
262    private static native IBinder nativeReadStrongBinder(long nativePtr);
263    private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
264
265    private static native long nativeCreate();
266    private static native void nativeFreeBuffer(long nativePtr);
267    private static native void nativeDestroy(long nativePtr);
268
269    private static native byte[] nativeMarshall(long nativePtr);
270    private static native void nativeUnmarshall(
271            long nativePtr, byte[] data, int offest, int length);
272    private static native void nativeAppendFrom(
273            long thisNativePtr, long otherNativePtr, int offset, int length);
274    private static native boolean nativeHasFileDescriptors(long nativePtr);
275    private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
276    private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
277
278    public final static Parcelable.Creator<String> STRING_CREATOR
279             = new Parcelable.Creator<String>() {
280        public String createFromParcel(Parcel source) {
281            return source.readString();
282        }
283        public String[] newArray(int size) {
284            return new String[size];
285        }
286    };
287
288    /**
289     * Retrieve a new Parcel object from the pool.
290     */
291    public static Parcel obtain() {
292        final Parcel[] pool = sOwnedPool;
293        synchronized (pool) {
294            Parcel p;
295            for (int i=0; i<POOL_SIZE; i++) {
296                p = pool[i];
297                if (p != null) {
298                    pool[i] = null;
299                    if (DEBUG_RECYCLE) {
300                        p.mStack = new RuntimeException();
301                    }
302                    return p;
303                }
304            }
305        }
306        return new Parcel(0);
307    }
308
309    /**
310     * Put a Parcel object back into the pool.  You must not touch
311     * the object after this call.
312     */
313    public final void recycle() {
314        if (DEBUG_RECYCLE) mStack = null;
315        freeBuffer();
316
317        final Parcel[] pool;
318        if (mOwnsNativeParcelObject) {
319            pool = sOwnedPool;
320        } else {
321            mNativePtr = 0;
322            pool = sHolderPool;
323        }
324
325        synchronized (pool) {
326            for (int i=0; i<POOL_SIZE; i++) {
327                if (pool[i] == null) {
328                    pool[i] = this;
329                    return;
330                }
331            }
332        }
333    }
334
335    /**
336     * Returns the total amount of data contained in the parcel.
337     */
338    public final int dataSize() {
339        return nativeDataSize(mNativePtr);
340    }
341
342    /**
343     * Returns the amount of data remaining to be read from the
344     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
345     */
346    public final int dataAvail() {
347        return nativeDataAvail(mNativePtr);
348    }
349
350    /**
351     * Returns the current position in the parcel data.  Never
352     * more than {@link #dataSize}.
353     */
354    public final int dataPosition() {
355        return nativeDataPosition(mNativePtr);
356    }
357
358    /**
359     * Returns the total amount of space in the parcel.  This is always
360     * >= {@link #dataSize}.  The difference between it and dataSize() is the
361     * amount of room left until the parcel needs to re-allocate its
362     * data buffer.
363     */
364    public final int dataCapacity() {
365        return nativeDataCapacity(mNativePtr);
366    }
367
368    /**
369     * Change the amount of data in the parcel.  Can be either smaller or
370     * larger than the current size.  If larger than the current capacity,
371     * more memory will be allocated.
372     *
373     * @param size The new number of bytes in the Parcel.
374     */
375    public final void setDataSize(int size) {
376        nativeSetDataSize(mNativePtr, size);
377    }
378
379    /**
380     * Move the current read/write position in the parcel.
381     * @param pos New offset in the parcel; must be between 0 and
382     * {@link #dataSize}.
383     */
384    public final void setDataPosition(int pos) {
385        nativeSetDataPosition(mNativePtr, pos);
386    }
387
388    /**
389     * Change the capacity (current available space) of the parcel.
390     *
391     * @param size The new capacity of the parcel, in bytes.  Can not be
392     * less than {@link #dataSize} -- that is, you can not drop existing data
393     * with this method.
394     */
395    public final void setDataCapacity(int size) {
396        nativeSetDataCapacity(mNativePtr, size);
397    }
398
399    /** @hide */
400    public final boolean pushAllowFds(boolean allowFds) {
401        return nativePushAllowFds(mNativePtr, allowFds);
402    }
403
404    /** @hide */
405    public final void restoreAllowFds(boolean lastValue) {
406        nativeRestoreAllowFds(mNativePtr, lastValue);
407    }
408
409    /**
410     * Returns the raw bytes of the parcel.
411     *
412     * <p class="note">The data you retrieve here <strong>must not</strong>
413     * be placed in any kind of persistent storage (on local disk, across
414     * a network, etc).  For that, you should use standard serialization
415     * or another kind of general serialization mechanism.  The Parcel
416     * marshalled representation is highly optimized for local IPC, and as
417     * such does not attempt to maintain compatibility with data created
418     * in different versions of the platform.
419     */
420    public final byte[] marshall() {
421        return nativeMarshall(mNativePtr);
422    }
423
424    /**
425     * Set the bytes in data to be the raw bytes of this Parcel.
426     */
427    public final void unmarshall(byte[] data, int offest, int length) {
428        nativeUnmarshall(mNativePtr, data, offest, length);
429    }
430
431    public final void appendFrom(Parcel parcel, int offset, int length) {
432        nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length);
433    }
434
435    /**
436     * Report whether the parcel contains any marshalled file descriptors.
437     */
438    public final boolean hasFileDescriptors() {
439        return nativeHasFileDescriptors(mNativePtr);
440    }
441
442    /**
443     * Store or read an IBinder interface token in the parcel at the current
444     * {@link #dataPosition}.  This is used to validate that the marshalled
445     * transaction is intended for the target interface.
446     */
447    public final void writeInterfaceToken(String interfaceName) {
448        nativeWriteInterfaceToken(mNativePtr, interfaceName);
449    }
450
451    public final void enforceInterface(String interfaceName) {
452        nativeEnforceInterface(mNativePtr, interfaceName);
453    }
454
455    /**
456     * Write a byte array into the parcel at the current {@link #dataPosition},
457     * growing {@link #dataCapacity} if needed.
458     * @param b Bytes to place into the parcel.
459     */
460    public final void writeByteArray(byte[] b) {
461        writeByteArray(b, 0, (b != null) ? b.length : 0);
462    }
463
464    /**
465     * Write a byte array into the parcel at the current {@link #dataPosition},
466     * growing {@link #dataCapacity} if needed.
467     * @param b Bytes to place into the parcel.
468     * @param offset Index of first byte to be written.
469     * @param len Number of bytes to write.
470     */
471    public final void writeByteArray(byte[] b, int offset, int len) {
472        if (b == null) {
473            writeInt(-1);
474            return;
475        }
476        Arrays.checkOffsetAndCount(b.length, offset, len);
477        nativeWriteByteArray(mNativePtr, b, offset, len);
478    }
479
480    /**
481     * Write an integer value into the parcel at the current dataPosition(),
482     * growing dataCapacity() if needed.
483     */
484    public final void writeInt(int val) {
485        nativeWriteInt(mNativePtr, val);
486    }
487
488    /**
489     * Write a long integer value into the parcel at the current dataPosition(),
490     * growing dataCapacity() if needed.
491     */
492    public final void writeLong(long val) {
493        nativeWriteLong(mNativePtr, val);
494    }
495
496    /**
497     * Write a floating point value into the parcel at the current
498     * dataPosition(), growing dataCapacity() if needed.
499     */
500    public final void writeFloat(float val) {
501        nativeWriteFloat(mNativePtr, val);
502    }
503
504    /**
505     * Write a double precision floating point value into the parcel at the
506     * current dataPosition(), growing dataCapacity() if needed.
507     */
508    public final void writeDouble(double val) {
509        nativeWriteDouble(mNativePtr, val);
510    }
511
512    /**
513     * Write a string value into the parcel at the current dataPosition(),
514     * growing dataCapacity() if needed.
515     */
516    public final void writeString(String val) {
517        nativeWriteString(mNativePtr, val);
518    }
519
520    /**
521     * Write a CharSequence value into the parcel at the current dataPosition(),
522     * growing dataCapacity() if needed.
523     * @hide
524     */
525    public final void writeCharSequence(CharSequence val) {
526        TextUtils.writeToParcel(val, this, 0);
527    }
528
529    /**
530     * Write an object into the parcel at the current dataPosition(),
531     * growing dataCapacity() if needed.
532     */
533    public final void writeStrongBinder(IBinder val) {
534        nativeWriteStrongBinder(mNativePtr, val);
535    }
536
537    /**
538     * Write an object into the parcel at the current dataPosition(),
539     * growing dataCapacity() if needed.
540     */
541    public final void writeStrongInterface(IInterface val) {
542        writeStrongBinder(val == null ? null : val.asBinder());
543    }
544
545    /**
546     * Write a FileDescriptor into the parcel at the current dataPosition(),
547     * growing dataCapacity() if needed.
548     *
549     * <p class="caution">The file descriptor will not be closed, which may
550     * result in file descriptor leaks when objects are returned from Binder
551     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
552     * accepts contextual flags and will close the original file descriptor
553     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
554     */
555    public final void writeFileDescriptor(FileDescriptor val) {
556        nativeWriteFileDescriptor(mNativePtr, val);
557    }
558
559    /**
560     * Write a byte value into the parcel at the current dataPosition(),
561     * growing dataCapacity() if needed.
562     */
563    public final void writeByte(byte val) {
564        writeInt(val);
565    }
566
567    /**
568     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
569     * at the current dataPosition(),
570     * growing dataCapacity() if needed.  The Map keys must be String objects.
571     * The Map values are written using {@link #writeValue} and must follow
572     * the specification there.
573     *
574     * <p>It is strongly recommended to use {@link #writeBundle} instead of
575     * this method, since the Bundle class provides a type-safe API that
576     * allows you to avoid mysterious type errors at the point of marshalling.
577     */
578    public final void writeMap(Map val) {
579        writeMapInternal((Map<String, Object>) val);
580    }
581
582    /**
583     * Flatten a Map into the parcel at the current dataPosition(),
584     * growing dataCapacity() if needed.  The Map keys must be String objects.
585     */
586    /* package */ void writeMapInternal(Map<String,Object> val) {
587        if (val == null) {
588            writeInt(-1);
589            return;
590        }
591        Set<Map.Entry<String,Object>> entries = val.entrySet();
592        writeInt(entries.size());
593        for (Map.Entry<String,Object> e : entries) {
594            writeValue(e.getKey());
595            writeValue(e.getValue());
596        }
597    }
598
599    /**
600     * Flatten an ArrayMap into the parcel at the current dataPosition(),
601     * growing dataCapacity() if needed.  The Map keys must be String objects.
602     */
603    /* package */ void writeArrayMapInternal(ArrayMap<String,Object> val) {
604        if (val == null) {
605            writeInt(-1);
606            return;
607        }
608        final int N = val.size();
609        writeInt(N);
610        if (DEBUG_ARRAY_MAP) {
611            RuntimeException here =  new RuntimeException("here");
612            here.fillInStackTrace();
613            Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
614        }
615        int startPos;
616        for (int i=0; i<N; i++) {
617            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
618            writeValue(val.keyAt(i));
619            writeValue(val.valueAt(i));
620            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
621                    + (dataPosition()-startPos) + " bytes: key=0x"
622                    + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
623                    + " " + val.keyAt(i));
624        }
625    }
626
627    /**
628     * Flatten a Bundle into the parcel at the current dataPosition(),
629     * growing dataCapacity() if needed.
630     */
631    public final void writeBundle(Bundle val) {
632        if (val == null) {
633            writeInt(-1);
634            return;
635        }
636
637        val.writeToParcel(this, 0);
638    }
639
640    /**
641     * Flatten a List into the parcel at the current dataPosition(), growing
642     * dataCapacity() if needed.  The List values are written using
643     * {@link #writeValue} and must follow the specification there.
644     */
645    public final void writeList(List val) {
646        if (val == null) {
647            writeInt(-1);
648            return;
649        }
650        int N = val.size();
651        int i=0;
652        writeInt(N);
653        while (i < N) {
654            writeValue(val.get(i));
655            i++;
656        }
657    }
658
659    /**
660     * Flatten an Object array into the parcel at the current dataPosition(),
661     * growing dataCapacity() if needed.  The array values are written using
662     * {@link #writeValue} and must follow the specification there.
663     */
664    public final void writeArray(Object[] val) {
665        if (val == null) {
666            writeInt(-1);
667            return;
668        }
669        int N = val.length;
670        int i=0;
671        writeInt(N);
672        while (i < N) {
673            writeValue(val[i]);
674            i++;
675        }
676    }
677
678    /**
679     * Flatten a generic SparseArray into the parcel at the current
680     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
681     * values are written using {@link #writeValue} and must follow the
682     * specification there.
683     */
684    public final void writeSparseArray(SparseArray<Object> val) {
685        if (val == null) {
686            writeInt(-1);
687            return;
688        }
689        int N = val.size();
690        writeInt(N);
691        int i=0;
692        while (i < N) {
693            writeInt(val.keyAt(i));
694            writeValue(val.valueAt(i));
695            i++;
696        }
697    }
698
699    public final void writeSparseBooleanArray(SparseBooleanArray val) {
700        if (val == null) {
701            writeInt(-1);
702            return;
703        }
704        int N = val.size();
705        writeInt(N);
706        int i=0;
707        while (i < N) {
708            writeInt(val.keyAt(i));
709            writeByte((byte)(val.valueAt(i) ? 1 : 0));
710            i++;
711        }
712    }
713
714    public final void writeBooleanArray(boolean[] val) {
715        if (val != null) {
716            int N = val.length;
717            writeInt(N);
718            for (int i=0; i<N; i++) {
719                writeInt(val[i] ? 1 : 0);
720            }
721        } else {
722            writeInt(-1);
723        }
724    }
725
726    public final boolean[] createBooleanArray() {
727        int N = readInt();
728        // >>2 as a fast divide-by-4 works in the create*Array() functions
729        // because dataAvail() will never return a negative number.  4 is
730        // the size of a stored boolean in the stream.
731        if (N >= 0 && N <= (dataAvail() >> 2)) {
732            boolean[] val = new boolean[N];
733            for (int i=0; i<N; i++) {
734                val[i] = readInt() != 0;
735            }
736            return val;
737        } else {
738            return null;
739        }
740    }
741
742    public final void readBooleanArray(boolean[] val) {
743        int N = readInt();
744        if (N == val.length) {
745            for (int i=0; i<N; i++) {
746                val[i] = readInt() != 0;
747            }
748        } else {
749            throw new RuntimeException("bad array lengths");
750        }
751    }
752
753    public final void writeCharArray(char[] val) {
754        if (val != null) {
755            int N = val.length;
756            writeInt(N);
757            for (int i=0; i<N; i++) {
758                writeInt((int)val[i]);
759            }
760        } else {
761            writeInt(-1);
762        }
763    }
764
765    public final char[] createCharArray() {
766        int N = readInt();
767        if (N >= 0 && N <= (dataAvail() >> 2)) {
768            char[] val = new char[N];
769            for (int i=0; i<N; i++) {
770                val[i] = (char)readInt();
771            }
772            return val;
773        } else {
774            return null;
775        }
776    }
777
778    public final void readCharArray(char[] val) {
779        int N = readInt();
780        if (N == val.length) {
781            for (int i=0; i<N; i++) {
782                val[i] = (char)readInt();
783            }
784        } else {
785            throw new RuntimeException("bad array lengths");
786        }
787    }
788
789    public final void writeIntArray(int[] val) {
790        if (val != null) {
791            int N = val.length;
792            writeInt(N);
793            for (int i=0; i<N; i++) {
794                writeInt(val[i]);
795            }
796        } else {
797            writeInt(-1);
798        }
799    }
800
801    public final int[] createIntArray() {
802        int N = readInt();
803        if (N >= 0 && N <= (dataAvail() >> 2)) {
804            int[] val = new int[N];
805            for (int i=0; i<N; i++) {
806                val[i] = readInt();
807            }
808            return val;
809        } else {
810            return null;
811        }
812    }
813
814    public final void readIntArray(int[] val) {
815        int N = readInt();
816        if (N == val.length) {
817            for (int i=0; i<N; i++) {
818                val[i] = readInt();
819            }
820        } else {
821            throw new RuntimeException("bad array lengths");
822        }
823    }
824
825    public final void writeLongArray(long[] val) {
826        if (val != null) {
827            int N = val.length;
828            writeInt(N);
829            for (int i=0; i<N; i++) {
830                writeLong(val[i]);
831            }
832        } else {
833            writeInt(-1);
834        }
835    }
836
837    public final long[] createLongArray() {
838        int N = readInt();
839        // >>3 because stored longs are 64 bits
840        if (N >= 0 && N <= (dataAvail() >> 3)) {
841            long[] val = new long[N];
842            for (int i=0; i<N; i++) {
843                val[i] = readLong();
844            }
845            return val;
846        } else {
847            return null;
848        }
849    }
850
851    public final void readLongArray(long[] val) {
852        int N = readInt();
853        if (N == val.length) {
854            for (int i=0; i<N; i++) {
855                val[i] = readLong();
856            }
857        } else {
858            throw new RuntimeException("bad array lengths");
859        }
860    }
861
862    public final void writeFloatArray(float[] val) {
863        if (val != null) {
864            int N = val.length;
865            writeInt(N);
866            for (int i=0; i<N; i++) {
867                writeFloat(val[i]);
868            }
869        } else {
870            writeInt(-1);
871        }
872    }
873
874    public final float[] createFloatArray() {
875        int N = readInt();
876        // >>2 because stored floats are 4 bytes
877        if (N >= 0 && N <= (dataAvail() >> 2)) {
878            float[] val = new float[N];
879            for (int i=0; i<N; i++) {
880                val[i] = readFloat();
881            }
882            return val;
883        } else {
884            return null;
885        }
886    }
887
888    public final void readFloatArray(float[] val) {
889        int N = readInt();
890        if (N == val.length) {
891            for (int i=0; i<N; i++) {
892                val[i] = readFloat();
893            }
894        } else {
895            throw new RuntimeException("bad array lengths");
896        }
897    }
898
899    public final void writeDoubleArray(double[] val) {
900        if (val != null) {
901            int N = val.length;
902            writeInt(N);
903            for (int i=0; i<N; i++) {
904                writeDouble(val[i]);
905            }
906        } else {
907            writeInt(-1);
908        }
909    }
910
911    public final double[] createDoubleArray() {
912        int N = readInt();
913        // >>3 because stored doubles are 8 bytes
914        if (N >= 0 && N <= (dataAvail() >> 3)) {
915            double[] val = new double[N];
916            for (int i=0; i<N; i++) {
917                val[i] = readDouble();
918            }
919            return val;
920        } else {
921            return null;
922        }
923    }
924
925    public final void readDoubleArray(double[] val) {
926        int N = readInt();
927        if (N == val.length) {
928            for (int i=0; i<N; i++) {
929                val[i] = readDouble();
930            }
931        } else {
932            throw new RuntimeException("bad array lengths");
933        }
934    }
935
936    public final void writeStringArray(String[] val) {
937        if (val != null) {
938            int N = val.length;
939            writeInt(N);
940            for (int i=0; i<N; i++) {
941                writeString(val[i]);
942            }
943        } else {
944            writeInt(-1);
945        }
946    }
947
948    public final String[] createStringArray() {
949        int N = readInt();
950        if (N >= 0) {
951            String[] val = new String[N];
952            for (int i=0; i<N; i++) {
953                val[i] = readString();
954            }
955            return val;
956        } else {
957            return null;
958        }
959    }
960
961    public final void readStringArray(String[] val) {
962        int N = readInt();
963        if (N == val.length) {
964            for (int i=0; i<N; i++) {
965                val[i] = readString();
966            }
967        } else {
968            throw new RuntimeException("bad array lengths");
969        }
970    }
971
972    public final void writeBinderArray(IBinder[] val) {
973        if (val != null) {
974            int N = val.length;
975            writeInt(N);
976            for (int i=0; i<N; i++) {
977                writeStrongBinder(val[i]);
978            }
979        } else {
980            writeInt(-1);
981        }
982    }
983
984    /**
985     * @hide
986     */
987    public final void writeCharSequenceArray(CharSequence[] val) {
988        if (val != null) {
989            int N = val.length;
990            writeInt(N);
991            for (int i=0; i<N; i++) {
992                writeCharSequence(val[i]);
993            }
994        } else {
995            writeInt(-1);
996        }
997    }
998
999    public final IBinder[] createBinderArray() {
1000        int N = readInt();
1001        if (N >= 0) {
1002            IBinder[] val = new IBinder[N];
1003            for (int i=0; i<N; i++) {
1004                val[i] = readStrongBinder();
1005            }
1006            return val;
1007        } else {
1008            return null;
1009        }
1010    }
1011
1012    public final void readBinderArray(IBinder[] val) {
1013        int N = readInt();
1014        if (N == val.length) {
1015            for (int i=0; i<N; i++) {
1016                val[i] = readStrongBinder();
1017            }
1018        } else {
1019            throw new RuntimeException("bad array lengths");
1020        }
1021    }
1022
1023    /**
1024     * Flatten a List containing a particular object type into the parcel, at
1025     * the current dataPosition() and growing dataCapacity() if needed.  The
1026     * type of the objects in the list must be one that implements Parcelable.
1027     * Unlike the generic writeList() method, however, only the raw data of the
1028     * objects is written and not their type, so you must use the corresponding
1029     * readTypedList() to unmarshall them.
1030     *
1031     * @param val The list of objects to be written.
1032     *
1033     * @see #createTypedArrayList
1034     * @see #readTypedList
1035     * @see Parcelable
1036     */
1037    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1038        if (val == null) {
1039            writeInt(-1);
1040            return;
1041        }
1042        int N = val.size();
1043        int i=0;
1044        writeInt(N);
1045        while (i < N) {
1046            T item = val.get(i);
1047            if (item != null) {
1048                writeInt(1);
1049                item.writeToParcel(this, 0);
1050            } else {
1051                writeInt(0);
1052            }
1053            i++;
1054        }
1055    }
1056
1057    /**
1058     * Flatten a List containing String objects into the parcel, at
1059     * the current dataPosition() and growing dataCapacity() if needed.  They
1060     * can later be retrieved with {@link #createStringArrayList} or
1061     * {@link #readStringList}.
1062     *
1063     * @param val The list of strings to be written.
1064     *
1065     * @see #createStringArrayList
1066     * @see #readStringList
1067     */
1068    public final void writeStringList(List<String> val) {
1069        if (val == null) {
1070            writeInt(-1);
1071            return;
1072        }
1073        int N = val.size();
1074        int i=0;
1075        writeInt(N);
1076        while (i < N) {
1077            writeString(val.get(i));
1078            i++;
1079        }
1080    }
1081
1082    /**
1083     * Flatten a List containing IBinder objects into the parcel, at
1084     * the current dataPosition() and growing dataCapacity() if needed.  They
1085     * can later be retrieved with {@link #createBinderArrayList} or
1086     * {@link #readBinderList}.
1087     *
1088     * @param val The list of strings to be written.
1089     *
1090     * @see #createBinderArrayList
1091     * @see #readBinderList
1092     */
1093    public final void writeBinderList(List<IBinder> val) {
1094        if (val == null) {
1095            writeInt(-1);
1096            return;
1097        }
1098        int N = val.size();
1099        int i=0;
1100        writeInt(N);
1101        while (i < N) {
1102            writeStrongBinder(val.get(i));
1103            i++;
1104        }
1105    }
1106
1107    /**
1108     * Flatten a heterogeneous array containing a particular object type into
1109     * the parcel, at
1110     * the current dataPosition() and growing dataCapacity() if needed.  The
1111     * type of the objects in the array must be one that implements Parcelable.
1112     * Unlike the {@link #writeParcelableArray} method, however, only the
1113     * raw data of the objects is written and not their type, so you must use
1114     * {@link #readTypedArray} with the correct corresponding
1115     * {@link Parcelable.Creator} implementation to unmarshall them.
1116     *
1117     * @param val The array of objects to be written.
1118     * @param parcelableFlags Contextual flags as per
1119     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1120     *
1121     * @see #readTypedArray
1122     * @see #writeParcelableArray
1123     * @see Parcelable.Creator
1124     */
1125    public final <T extends Parcelable> void writeTypedArray(T[] val,
1126            int parcelableFlags) {
1127        if (val != null) {
1128            int N = val.length;
1129            writeInt(N);
1130            for (int i=0; i<N; i++) {
1131                T item = val[i];
1132                if (item != null) {
1133                    writeInt(1);
1134                    item.writeToParcel(this, parcelableFlags);
1135                } else {
1136                    writeInt(0);
1137                }
1138            }
1139        } else {
1140            writeInt(-1);
1141        }
1142    }
1143
1144    /**
1145     * Flatten a generic object in to a parcel.  The given Object value may
1146     * currently be one of the following types:
1147     *
1148     * <ul>
1149     * <li> null
1150     * <li> String
1151     * <li> Byte
1152     * <li> Short
1153     * <li> Integer
1154     * <li> Long
1155     * <li> Float
1156     * <li> Double
1157     * <li> Boolean
1158     * <li> String[]
1159     * <li> boolean[]
1160     * <li> byte[]
1161     * <li> int[]
1162     * <li> long[]
1163     * <li> Object[] (supporting objects of the same type defined here).
1164     * <li> {@link Bundle}
1165     * <li> Map (as supported by {@link #writeMap}).
1166     * <li> Any object that implements the {@link Parcelable} protocol.
1167     * <li> Parcelable[]
1168     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1169     * <li> List (as supported by {@link #writeList}).
1170     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1171     * <li> {@link IBinder}
1172     * <li> Any object that implements Serializable (but see
1173     *      {@link #writeSerializable} for caveats).  Note that all of the
1174     *      previous types have relatively efficient implementations for
1175     *      writing to a Parcel; having to rely on the generic serialization
1176     *      approach is much less efficient and should be avoided whenever
1177     *      possible.
1178     * </ul>
1179     *
1180     * <p class="caution">{@link Parcelable} objects are written with
1181     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1182     * serializing objects containing {@link ParcelFileDescriptor}s,
1183     * this may result in file descriptor leaks when they are returned from
1184     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1185     * should be used).</p>
1186     */
1187    public final void writeValue(Object v) {
1188        if (v == null) {
1189            writeInt(VAL_NULL);
1190        } else if (v instanceof String) {
1191            writeInt(VAL_STRING);
1192            writeString((String) v);
1193        } else if (v instanceof Integer) {
1194            writeInt(VAL_INTEGER);
1195            writeInt((Integer) v);
1196        } else if (v instanceof Map) {
1197            writeInt(VAL_MAP);
1198            writeMap((Map) v);
1199        } else if (v instanceof Bundle) {
1200            // Must be before Parcelable
1201            writeInt(VAL_BUNDLE);
1202            writeBundle((Bundle) v);
1203        } else if (v instanceof Parcelable) {
1204            writeInt(VAL_PARCELABLE);
1205            writeParcelable((Parcelable) v, 0);
1206        } else if (v instanceof Short) {
1207            writeInt(VAL_SHORT);
1208            writeInt(((Short) v).intValue());
1209        } else if (v instanceof Long) {
1210            writeInt(VAL_LONG);
1211            writeLong((Long) v);
1212        } else if (v instanceof Float) {
1213            writeInt(VAL_FLOAT);
1214            writeFloat((Float) v);
1215        } else if (v instanceof Double) {
1216            writeInt(VAL_DOUBLE);
1217            writeDouble((Double) v);
1218        } else if (v instanceof Boolean) {
1219            writeInt(VAL_BOOLEAN);
1220            writeInt((Boolean) v ? 1 : 0);
1221        } else if (v instanceof CharSequence) {
1222            // Must be after String
1223            writeInt(VAL_CHARSEQUENCE);
1224            writeCharSequence((CharSequence) v);
1225        } else if (v instanceof List) {
1226            writeInt(VAL_LIST);
1227            writeList((List) v);
1228        } else if (v instanceof SparseArray) {
1229            writeInt(VAL_SPARSEARRAY);
1230            writeSparseArray((SparseArray) v);
1231        } else if (v instanceof boolean[]) {
1232            writeInt(VAL_BOOLEANARRAY);
1233            writeBooleanArray((boolean[]) v);
1234        } else if (v instanceof byte[]) {
1235            writeInt(VAL_BYTEARRAY);
1236            writeByteArray((byte[]) v);
1237        } else if (v instanceof String[]) {
1238            writeInt(VAL_STRINGARRAY);
1239            writeStringArray((String[]) v);
1240        } else if (v instanceof CharSequence[]) {
1241            // Must be after String[] and before Object[]
1242            writeInt(VAL_CHARSEQUENCEARRAY);
1243            writeCharSequenceArray((CharSequence[]) v);
1244        } else if (v instanceof IBinder) {
1245            writeInt(VAL_IBINDER);
1246            writeStrongBinder((IBinder) v);
1247        } else if (v instanceof Parcelable[]) {
1248            writeInt(VAL_PARCELABLEARRAY);
1249            writeParcelableArray((Parcelable[]) v, 0);
1250        } else if (v instanceof int[]) {
1251            writeInt(VAL_INTARRAY);
1252            writeIntArray((int[]) v);
1253        } else if (v instanceof long[]) {
1254            writeInt(VAL_LONGARRAY);
1255            writeLongArray((long[]) v);
1256        } else if (v instanceof Byte) {
1257            writeInt(VAL_BYTE);
1258            writeInt((Byte) v);
1259        } else {
1260            Class<?> clazz = v.getClass();
1261            if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1262                // Only pure Object[] are written here, Other arrays of non-primitive types are
1263                // handled by serialization as this does not record the component type.
1264                writeInt(VAL_OBJECTARRAY);
1265                writeArray((Object[]) v);
1266            } else if (v instanceof Serializable) {
1267                // Must be last
1268                writeInt(VAL_SERIALIZABLE);
1269                writeSerializable((Serializable) v);
1270            } else {
1271                throw new RuntimeException("Parcel: unable to marshal value " + v);
1272            }
1273        }
1274    }
1275
1276    /**
1277     * Flatten the name of the class of the Parcelable and its contents
1278     * into the parcel.
1279     *
1280     * @param p The Parcelable object to be written.
1281     * @param parcelableFlags Contextual flags as per
1282     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1283     */
1284    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1285        if (p == null) {
1286            writeString(null);
1287            return;
1288        }
1289        String name = p.getClass().getName();
1290        writeString(name);
1291        p.writeToParcel(this, parcelableFlags);
1292    }
1293
1294    /** @hide */
1295    public final void writeParcelableCreator(Parcelable p) {
1296        String name = p.getClass().getName();
1297        writeString(name);
1298    }
1299
1300    /**
1301     * Write a generic serializable object in to a Parcel.  It is strongly
1302     * recommended that this method be avoided, since the serialization
1303     * overhead is extremely large, and this approach will be much slower than
1304     * using the other approaches to writing data in to a Parcel.
1305     */
1306    public final void writeSerializable(Serializable s) {
1307        if (s == null) {
1308            writeString(null);
1309            return;
1310        }
1311        String name = s.getClass().getName();
1312        writeString(name);
1313
1314        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1315        try {
1316            ObjectOutputStream oos = new ObjectOutputStream(baos);
1317            oos.writeObject(s);
1318            oos.close();
1319
1320            writeByteArray(baos.toByteArray());
1321        } catch (IOException ioe) {
1322            throw new RuntimeException("Parcelable encountered " +
1323                "IOException writing serializable object (name = " + name +
1324                ")", ioe);
1325        }
1326    }
1327
1328    /**
1329     * Special function for writing an exception result at the header of
1330     * a parcel, to be used when returning an exception from a transaction.
1331     * Note that this currently only supports a few exception types; any other
1332     * exception will be re-thrown by this function as a RuntimeException
1333     * (to be caught by the system's last-resort exception handling when
1334     * dispatching a transaction).
1335     *
1336     * <p>The supported exception types are:
1337     * <ul>
1338     * <li>{@link BadParcelableException}
1339     * <li>{@link IllegalArgumentException}
1340     * <li>{@link IllegalStateException}
1341     * <li>{@link NullPointerException}
1342     * <li>{@link SecurityException}
1343     * <li>{@link NetworkOnMainThreadException}
1344     * </ul>
1345     *
1346     * @param e The Exception to be written.
1347     *
1348     * @see #writeNoException
1349     * @see #readException
1350     */
1351    public final void writeException(Exception e) {
1352        int code = 0;
1353        if (e instanceof SecurityException) {
1354            code = EX_SECURITY;
1355        } else if (e instanceof BadParcelableException) {
1356            code = EX_BAD_PARCELABLE;
1357        } else if (e instanceof IllegalArgumentException) {
1358            code = EX_ILLEGAL_ARGUMENT;
1359        } else if (e instanceof NullPointerException) {
1360            code = EX_NULL_POINTER;
1361        } else if (e instanceof IllegalStateException) {
1362            code = EX_ILLEGAL_STATE;
1363        } else if (e instanceof NetworkOnMainThreadException) {
1364            code = EX_NETWORK_MAIN_THREAD;
1365        }
1366        writeInt(code);
1367        StrictMode.clearGatheredViolations();
1368        if (code == 0) {
1369            if (e instanceof RuntimeException) {
1370                throw (RuntimeException) e;
1371            }
1372            throw new RuntimeException(e);
1373        }
1374        writeString(e.getMessage());
1375    }
1376
1377    /**
1378     * Special function for writing information at the front of the Parcel
1379     * indicating that no exception occurred.
1380     *
1381     * @see #writeException
1382     * @see #readException
1383     */
1384    public final void writeNoException() {
1385        // Despite the name of this function ("write no exception"),
1386        // it should instead be thought of as "write the RPC response
1387        // header", but because this function name is written out by
1388        // the AIDL compiler, we're not going to rename it.
1389        //
1390        // The response header, in the non-exception case (see also
1391        // writeException above, also called by the AIDL compiler), is
1392        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1393        // StrictMode has gathered up violations that have occurred
1394        // during a Binder call, in which case we write out the number
1395        // of violations and their details, serialized, before the
1396        // actual RPC respons data.  The receiving end of this is
1397        // readException(), below.
1398        if (StrictMode.hasGatheredViolations()) {
1399            writeInt(EX_HAS_REPLY_HEADER);
1400            final int sizePosition = dataPosition();
1401            writeInt(0);  // total size of fat header, to be filled in later
1402            StrictMode.writeGatheredViolationsToParcel(this);
1403            final int payloadPosition = dataPosition();
1404            setDataPosition(sizePosition);
1405            writeInt(payloadPosition - sizePosition);  // header size
1406            setDataPosition(payloadPosition);
1407        } else {
1408            writeInt(0);
1409        }
1410    }
1411
1412    /**
1413     * Special function for reading an exception result from the header of
1414     * a parcel, to be used after receiving the result of a transaction.  This
1415     * will throw the exception for you if it had been written to the Parcel,
1416     * otherwise return and let you read the normal result data from the Parcel.
1417     *
1418     * @see #writeException
1419     * @see #writeNoException
1420     */
1421    public final void readException() {
1422        int code = readExceptionCode();
1423        if (code != 0) {
1424            String msg = readString();
1425            readException(code, msg);
1426        }
1427    }
1428
1429    /**
1430     * Parses the header of a Binder call's response Parcel and
1431     * returns the exception code.  Deals with lite or fat headers.
1432     * In the common successful case, this header is generally zero.
1433     * In less common cases, it's a small negative number and will be
1434     * followed by an error string.
1435     *
1436     * This exists purely for android.database.DatabaseUtils and
1437     * insulating it from having to handle fat headers as returned by
1438     * e.g. StrictMode-induced RPC responses.
1439     *
1440     * @hide
1441     */
1442    public final int readExceptionCode() {
1443        int code = readInt();
1444        if (code == EX_HAS_REPLY_HEADER) {
1445            int headerSize = readInt();
1446            if (headerSize == 0) {
1447                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1448            } else {
1449                // Currently the only thing in the header is StrictMode stacks,
1450                // but discussions around event/RPC tracing suggest we might
1451                // put that here too.  If so, switch on sub-header tags here.
1452                // But for now, just parse out the StrictMode stuff.
1453                StrictMode.readAndHandleBinderCallViolations(this);
1454            }
1455            // And fat response headers are currently only used when
1456            // there are no exceptions, so return no error:
1457            return 0;
1458        }
1459        return code;
1460    }
1461
1462    /**
1463     * Use this function for customized exception handling.
1464     * customized method call this method for all unknown case
1465     * @param code exception code
1466     * @param msg exception message
1467     */
1468    public final void readException(int code, String msg) {
1469        switch (code) {
1470            case EX_SECURITY:
1471                throw new SecurityException(msg);
1472            case EX_BAD_PARCELABLE:
1473                throw new BadParcelableException(msg);
1474            case EX_ILLEGAL_ARGUMENT:
1475                throw new IllegalArgumentException(msg);
1476            case EX_NULL_POINTER:
1477                throw new NullPointerException(msg);
1478            case EX_ILLEGAL_STATE:
1479                throw new IllegalStateException(msg);
1480            case EX_NETWORK_MAIN_THREAD:
1481                throw new NetworkOnMainThreadException();
1482        }
1483        throw new RuntimeException("Unknown exception code: " + code
1484                + " msg " + msg);
1485    }
1486
1487    /**
1488     * Read an integer value from the parcel at the current dataPosition().
1489     */
1490    public final int readInt() {
1491        return nativeReadInt(mNativePtr);
1492    }
1493
1494    /**
1495     * Read a long integer value from the parcel at the current dataPosition().
1496     */
1497    public final long readLong() {
1498        return nativeReadLong(mNativePtr);
1499    }
1500
1501    /**
1502     * Read a floating point value from the parcel at the current
1503     * dataPosition().
1504     */
1505    public final float readFloat() {
1506        return nativeReadFloat(mNativePtr);
1507    }
1508
1509    /**
1510     * Read a double precision floating point value from the parcel at the
1511     * current dataPosition().
1512     */
1513    public final double readDouble() {
1514        return nativeReadDouble(mNativePtr);
1515    }
1516
1517    /**
1518     * Read a string value from the parcel at the current dataPosition().
1519     */
1520    public final String readString() {
1521        return nativeReadString(mNativePtr);
1522    }
1523
1524    /**
1525     * Read a CharSequence value from the parcel at the current dataPosition().
1526     * @hide
1527     */
1528    public final CharSequence readCharSequence() {
1529        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1530    }
1531
1532    /**
1533     * Read an object from the parcel at the current dataPosition().
1534     */
1535    public final IBinder readStrongBinder() {
1536        return nativeReadStrongBinder(mNativePtr);
1537    }
1538
1539    /**
1540     * Read a FileDescriptor from the parcel at the current dataPosition().
1541     */
1542    public final ParcelFileDescriptor readFileDescriptor() {
1543        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1544        return fd != null ? new ParcelFileDescriptor(fd) : null;
1545    }
1546
1547    /** {@hide} */
1548    public final FileDescriptor readRawFileDescriptor() {
1549        return nativeReadFileDescriptor(mNativePtr);
1550    }
1551
1552    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1553            int mode) throws FileNotFoundException;
1554    /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1555            throws IOException;
1556    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1557            throws IOException;
1558    /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1559
1560    /**
1561     * Read a byte value from the parcel at the current dataPosition().
1562     */
1563    public final byte readByte() {
1564        return (byte)(readInt() & 0xff);
1565    }
1566
1567    /**
1568     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1569     * been written with {@link #writeBundle}.  Read into an existing Map object
1570     * from the parcel at the current dataPosition().
1571     */
1572    public final void readMap(Map outVal, ClassLoader loader) {
1573        int N = readInt();
1574        readMapInternal(outVal, N, loader);
1575    }
1576
1577    /**
1578     * Read into an existing List object from the parcel at the current
1579     * dataPosition(), using the given class loader to load any enclosed
1580     * Parcelables.  If it is null, the default class loader is used.
1581     */
1582    public final void readList(List outVal, ClassLoader loader) {
1583        int N = readInt();
1584        readListInternal(outVal, N, loader);
1585    }
1586
1587    /**
1588     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1589     * been written with {@link #writeBundle}.  Read and return a new HashMap
1590     * object from the parcel at the current dataPosition(), using the given
1591     * class loader to load any enclosed Parcelables.  Returns null if
1592     * the previously written map object was null.
1593     */
1594    public final HashMap readHashMap(ClassLoader loader)
1595    {
1596        int N = readInt();
1597        if (N < 0) {
1598            return null;
1599        }
1600        HashMap m = new HashMap(N);
1601        readMapInternal(m, N, loader);
1602        return m;
1603    }
1604
1605    /**
1606     * Read and return a new Bundle object from the parcel at the current
1607     * dataPosition().  Returns null if the previously written Bundle object was
1608     * null.
1609     */
1610    public final Bundle readBundle() {
1611        return readBundle(null);
1612    }
1613
1614    /**
1615     * Read and return a new Bundle object from the parcel at the current
1616     * dataPosition(), using the given class loader to initialize the class
1617     * loader of the Bundle for later retrieval of Parcelable objects.
1618     * Returns null if the previously written Bundle object was null.
1619     */
1620    public final Bundle readBundle(ClassLoader loader) {
1621        int length = readInt();
1622        if (length < 0) {
1623            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1624            return null;
1625        }
1626
1627        final Bundle bundle = new Bundle(this, length);
1628        if (loader != null) {
1629            bundle.setClassLoader(loader);
1630        }
1631        return bundle;
1632    }
1633
1634    /**
1635     * Read and return a byte[] object from the parcel.
1636     */
1637    public final byte[] createByteArray() {
1638        return nativeCreateByteArray(mNativePtr);
1639    }
1640
1641    /**
1642     * Read a byte[] object from the parcel and copy it into the
1643     * given byte array.
1644     */
1645    public final void readByteArray(byte[] val) {
1646        // TODO: make this a native method to avoid the extra copy.
1647        byte[] ba = createByteArray();
1648        if (ba.length == val.length) {
1649           System.arraycopy(ba, 0, val, 0, ba.length);
1650        } else {
1651            throw new RuntimeException("bad array lengths");
1652        }
1653    }
1654
1655    /**
1656     * Read and return a String[] object from the parcel.
1657     * {@hide}
1658     */
1659    public final String[] readStringArray() {
1660        String[] array = null;
1661
1662        int length = readInt();
1663        if (length >= 0)
1664        {
1665            array = new String[length];
1666
1667            for (int i = 0 ; i < length ; i++)
1668            {
1669                array[i] = readString();
1670            }
1671        }
1672
1673        return array;
1674    }
1675
1676    /**
1677     * Read and return a CharSequence[] object from the parcel.
1678     * {@hide}
1679     */
1680    public final CharSequence[] readCharSequenceArray() {
1681        CharSequence[] array = null;
1682
1683        int length = readInt();
1684        if (length >= 0)
1685        {
1686            array = new CharSequence[length];
1687
1688            for (int i = 0 ; i < length ; i++)
1689            {
1690                array[i] = readCharSequence();
1691            }
1692        }
1693
1694        return array;
1695    }
1696
1697    /**
1698     * Read and return a new ArrayList object from the parcel at the current
1699     * dataPosition().  Returns null if the previously written list object was
1700     * null.  The given class loader will be used to load any enclosed
1701     * Parcelables.
1702     */
1703    public final ArrayList readArrayList(ClassLoader loader) {
1704        int N = readInt();
1705        if (N < 0) {
1706            return null;
1707        }
1708        ArrayList l = new ArrayList(N);
1709        readListInternal(l, N, loader);
1710        return l;
1711    }
1712
1713    /**
1714     * Read and return a new Object array from the parcel at the current
1715     * dataPosition().  Returns null if the previously written array was
1716     * null.  The given class loader will be used to load any enclosed
1717     * Parcelables.
1718     */
1719    public final Object[] readArray(ClassLoader loader) {
1720        int N = readInt();
1721        if (N < 0) {
1722            return null;
1723        }
1724        Object[] l = new Object[N];
1725        readArrayInternal(l, N, loader);
1726        return l;
1727    }
1728
1729    /**
1730     * Read and return a new SparseArray object from the parcel at the current
1731     * dataPosition().  Returns null if the previously written list object was
1732     * null.  The given class loader will be used to load any enclosed
1733     * Parcelables.
1734     */
1735    public final SparseArray readSparseArray(ClassLoader loader) {
1736        int N = readInt();
1737        if (N < 0) {
1738            return null;
1739        }
1740        SparseArray sa = new SparseArray(N);
1741        readSparseArrayInternal(sa, N, loader);
1742        return sa;
1743    }
1744
1745    /**
1746     * Read and return a new SparseBooleanArray object from the parcel at the current
1747     * dataPosition().  Returns null if the previously written list object was
1748     * null.
1749     */
1750    public final SparseBooleanArray readSparseBooleanArray() {
1751        int N = readInt();
1752        if (N < 0) {
1753            return null;
1754        }
1755        SparseBooleanArray sa = new SparseBooleanArray(N);
1756        readSparseBooleanArrayInternal(sa, N);
1757        return sa;
1758    }
1759
1760    /**
1761     * Read and return a new ArrayList containing a particular object type from
1762     * the parcel that was written with {@link #writeTypedList} at the
1763     * current dataPosition().  Returns null if the
1764     * previously written list object was null.  The list <em>must</em> have
1765     * previously been written via {@link #writeTypedList} with the same object
1766     * type.
1767     *
1768     * @return A newly created ArrayList containing objects with the same data
1769     *         as those that were previously written.
1770     *
1771     * @see #writeTypedList
1772     */
1773    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1774        int N = readInt();
1775        if (N < 0) {
1776            return null;
1777        }
1778        ArrayList<T> l = new ArrayList<T>(N);
1779        while (N > 0) {
1780            if (readInt() != 0) {
1781                l.add(c.createFromParcel(this));
1782            } else {
1783                l.add(null);
1784            }
1785            N--;
1786        }
1787        return l;
1788    }
1789
1790    /**
1791     * Read into the given List items containing a particular object type
1792     * that were written with {@link #writeTypedList} at the
1793     * current dataPosition().  The list <em>must</em> have
1794     * previously been written via {@link #writeTypedList} with the same object
1795     * type.
1796     *
1797     * @return A newly created ArrayList containing objects with the same data
1798     *         as those that were previously written.
1799     *
1800     * @see #writeTypedList
1801     */
1802    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1803        int M = list.size();
1804        int N = readInt();
1805        int i = 0;
1806        for (; i < M && i < N; i++) {
1807            if (readInt() != 0) {
1808                list.set(i, c.createFromParcel(this));
1809            } else {
1810                list.set(i, null);
1811            }
1812        }
1813        for (; i<N; i++) {
1814            if (readInt() != 0) {
1815                list.add(c.createFromParcel(this));
1816            } else {
1817                list.add(null);
1818            }
1819        }
1820        for (; i<M; i++) {
1821            list.remove(N);
1822        }
1823    }
1824
1825    /**
1826     * Read and return a new ArrayList containing String objects from
1827     * the parcel that was written with {@link #writeStringList} at the
1828     * current dataPosition().  Returns null if the
1829     * previously written list object was null.
1830     *
1831     * @return A newly created ArrayList containing strings with the same data
1832     *         as those that were previously written.
1833     *
1834     * @see #writeStringList
1835     */
1836    public final ArrayList<String> createStringArrayList() {
1837        int N = readInt();
1838        if (N < 0) {
1839            return null;
1840        }
1841        ArrayList<String> l = new ArrayList<String>(N);
1842        while (N > 0) {
1843            l.add(readString());
1844            N--;
1845        }
1846        return l;
1847    }
1848
1849    /**
1850     * Read and return a new ArrayList containing IBinder objects from
1851     * the parcel that was written with {@link #writeBinderList} at the
1852     * current dataPosition().  Returns null if the
1853     * previously written list object was null.
1854     *
1855     * @return A newly created ArrayList containing strings with the same data
1856     *         as those that were previously written.
1857     *
1858     * @see #writeBinderList
1859     */
1860    public final ArrayList<IBinder> createBinderArrayList() {
1861        int N = readInt();
1862        if (N < 0) {
1863            return null;
1864        }
1865        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1866        while (N > 0) {
1867            l.add(readStrongBinder());
1868            N--;
1869        }
1870        return l;
1871    }
1872
1873    /**
1874     * Read into the given List items String objects that were written with
1875     * {@link #writeStringList} at the current dataPosition().
1876     *
1877     * @return A newly created ArrayList containing strings with the same data
1878     *         as those that were previously written.
1879     *
1880     * @see #writeStringList
1881     */
1882    public final void readStringList(List<String> list) {
1883        int M = list.size();
1884        int N = readInt();
1885        int i = 0;
1886        for (; i < M && i < N; i++) {
1887            list.set(i, readString());
1888        }
1889        for (; i<N; i++) {
1890            list.add(readString());
1891        }
1892        for (; i<M; i++) {
1893            list.remove(N);
1894        }
1895    }
1896
1897    /**
1898     * Read into the given List items IBinder objects that were written with
1899     * {@link #writeBinderList} at the current dataPosition().
1900     *
1901     * @return A newly created ArrayList containing strings with the same data
1902     *         as those that were previously written.
1903     *
1904     * @see #writeBinderList
1905     */
1906    public final void readBinderList(List<IBinder> list) {
1907        int M = list.size();
1908        int N = readInt();
1909        int i = 0;
1910        for (; i < M && i < N; i++) {
1911            list.set(i, readStrongBinder());
1912        }
1913        for (; i<N; i++) {
1914            list.add(readStrongBinder());
1915        }
1916        for (; i<M; i++) {
1917            list.remove(N);
1918        }
1919    }
1920
1921    /**
1922     * Read and return a new array containing a particular object type from
1923     * the parcel at the current dataPosition().  Returns null if the
1924     * previously written array was null.  The array <em>must</em> have
1925     * previously been written via {@link #writeTypedArray} with the same
1926     * object type.
1927     *
1928     * @return A newly created array containing objects with the same data
1929     *         as those that were previously written.
1930     *
1931     * @see #writeTypedArray
1932     */
1933    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1934        int N = readInt();
1935        if (N < 0) {
1936            return null;
1937        }
1938        T[] l = c.newArray(N);
1939        for (int i=0; i<N; i++) {
1940            if (readInt() != 0) {
1941                l[i] = c.createFromParcel(this);
1942            }
1943        }
1944        return l;
1945    }
1946
1947    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1948        int N = readInt();
1949        if (N == val.length) {
1950            for (int i=0; i<N; i++) {
1951                if (readInt() != 0) {
1952                    val[i] = c.createFromParcel(this);
1953                } else {
1954                    val[i] = null;
1955                }
1956            }
1957        } else {
1958            throw new RuntimeException("bad array lengths");
1959        }
1960    }
1961
1962    /**
1963     * @deprecated
1964     * @hide
1965     */
1966    @Deprecated
1967    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1968        return createTypedArray(c);
1969    }
1970
1971    /**
1972     * Write a heterogeneous array of Parcelable objects into the Parcel.
1973     * Each object in the array is written along with its class name, so
1974     * that the correct class can later be instantiated.  As a result, this
1975     * has significantly more overhead than {@link #writeTypedArray}, but will
1976     * correctly handle an array containing more than one type of object.
1977     *
1978     * @param value The array of objects to be written.
1979     * @param parcelableFlags Contextual flags as per
1980     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1981     *
1982     * @see #writeTypedArray
1983     */
1984    public final <T extends Parcelable> void writeParcelableArray(T[] value,
1985            int parcelableFlags) {
1986        if (value != null) {
1987            int N = value.length;
1988            writeInt(N);
1989            for (int i=0; i<N; i++) {
1990                writeParcelable(value[i], parcelableFlags);
1991            }
1992        } else {
1993            writeInt(-1);
1994        }
1995    }
1996
1997    /**
1998     * Read a typed object from a parcel.  The given class loader will be
1999     * used to load any enclosed Parcelables.  If it is null, the default class
2000     * loader will be used.
2001     */
2002    public final Object readValue(ClassLoader loader) {
2003        int type = readInt();
2004
2005        switch (type) {
2006        case VAL_NULL:
2007            return null;
2008
2009        case VAL_STRING:
2010            return readString();
2011
2012        case VAL_INTEGER:
2013            return readInt();
2014
2015        case VAL_MAP:
2016            return readHashMap(loader);
2017
2018        case VAL_PARCELABLE:
2019            return readParcelable(loader);
2020
2021        case VAL_SHORT:
2022            return (short) readInt();
2023
2024        case VAL_LONG:
2025            return readLong();
2026
2027        case VAL_FLOAT:
2028            return readFloat();
2029
2030        case VAL_DOUBLE:
2031            return readDouble();
2032
2033        case VAL_BOOLEAN:
2034            return readInt() == 1;
2035
2036        case VAL_CHARSEQUENCE:
2037            return readCharSequence();
2038
2039        case VAL_LIST:
2040            return readArrayList(loader);
2041
2042        case VAL_BOOLEANARRAY:
2043            return createBooleanArray();
2044
2045        case VAL_BYTEARRAY:
2046            return createByteArray();
2047
2048        case VAL_STRINGARRAY:
2049            return readStringArray();
2050
2051        case VAL_CHARSEQUENCEARRAY:
2052            return readCharSequenceArray();
2053
2054        case VAL_IBINDER:
2055            return readStrongBinder();
2056
2057        case VAL_OBJECTARRAY:
2058            return readArray(loader);
2059
2060        case VAL_INTARRAY:
2061            return createIntArray();
2062
2063        case VAL_LONGARRAY:
2064            return createLongArray();
2065
2066        case VAL_BYTE:
2067            return readByte();
2068
2069        case VAL_SERIALIZABLE:
2070            return readSerializable(loader);
2071
2072        case VAL_PARCELABLEARRAY:
2073            return readParcelableArray(loader);
2074
2075        case VAL_SPARSEARRAY:
2076            return readSparseArray(loader);
2077
2078        case VAL_SPARSEBOOLEANARRAY:
2079            return readSparseBooleanArray();
2080
2081        case VAL_BUNDLE:
2082            return readBundle(loader); // loading will be deferred
2083
2084        default:
2085            int off = dataPosition() - 4;
2086            throw new RuntimeException(
2087                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2088        }
2089    }
2090
2091    /**
2092     * Read and return a new Parcelable from the parcel.  The given class loader
2093     * will be used to load any enclosed Parcelables.  If it is null, the default
2094     * class loader will be used.
2095     * @param loader A ClassLoader from which to instantiate the Parcelable
2096     * object, or null for the default class loader.
2097     * @return Returns the newly created Parcelable, or null if a null
2098     * object has been written.
2099     * @throws BadParcelableException Throws BadParcelableException if there
2100     * was an error trying to instantiate the Parcelable.
2101     */
2102    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2103        Parcelable.Creator<T> creator = readParcelableCreator(loader);
2104        if (creator == null) {
2105            return null;
2106        }
2107        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2108            return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2109        }
2110        return creator.createFromParcel(this);
2111    }
2112
2113    /** @hide */
2114    public final <T extends Parcelable> T readCreator(Parcelable.Creator<T> creator,
2115            ClassLoader loader) {
2116        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2117            return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2118        }
2119        return creator.createFromParcel(this);
2120    }
2121
2122    /** @hide */
2123    public final <T extends Parcelable> Parcelable.Creator<T> readParcelableCreator(
2124            ClassLoader loader) {
2125        String name = readString();
2126        if (name == null) {
2127            return null;
2128        }
2129        Parcelable.Creator<T> creator;
2130        synchronized (mCreators) {
2131            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
2132            if (map == null) {
2133                map = new HashMap<String,Parcelable.Creator>();
2134                mCreators.put(loader, map);
2135            }
2136            creator = map.get(name);
2137            if (creator == null) {
2138                try {
2139                    Class c = loader == null ?
2140                        Class.forName(name) : Class.forName(name, true, loader);
2141                    Field f = c.getField("CREATOR");
2142                    creator = (Parcelable.Creator)f.get(null);
2143                }
2144                catch (IllegalAccessException e) {
2145                    Log.e(TAG, "Illegal access when unmarshalling: "
2146                                        + name, e);
2147                    throw new BadParcelableException(
2148                            "IllegalAccessException when unmarshalling: " + name);
2149                }
2150                catch (ClassNotFoundException e) {
2151                    Log.e(TAG, "Class not found when unmarshalling: "
2152                                        + name, e);
2153                    throw new BadParcelableException(
2154                            "ClassNotFoundException when unmarshalling: " + name);
2155                }
2156                catch (ClassCastException e) {
2157                    throw new BadParcelableException("Parcelable protocol requires a "
2158                                        + "Parcelable.Creator object called "
2159                                        + " CREATOR on class " + name);
2160                }
2161                catch (NoSuchFieldException e) {
2162                    throw new BadParcelableException("Parcelable protocol requires a "
2163                                        + "Parcelable.Creator object called "
2164                                        + " CREATOR on class " + name);
2165                }
2166                catch (NullPointerException e) {
2167                    throw new BadParcelableException("Parcelable protocol requires "
2168                            + "the CREATOR object to be static on class " + name);
2169                }
2170                if (creator == null) {
2171                    throw new BadParcelableException("Parcelable protocol requires a "
2172                                        + "Parcelable.Creator object called "
2173                                        + " CREATOR on class " + name);
2174                }
2175
2176                map.put(name, creator);
2177            }
2178        }
2179
2180        return creator;
2181    }
2182
2183    /**
2184     * Read and return a new Parcelable array from the parcel.
2185     * The given class loader will be used to load any enclosed
2186     * Parcelables.
2187     * @return the Parcelable array, or null if the array is null
2188     */
2189    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2190        int N = readInt();
2191        if (N < 0) {
2192            return null;
2193        }
2194        Parcelable[] p = new Parcelable[N];
2195        for (int i = 0; i < N; i++) {
2196            p[i] = (Parcelable) readParcelable(loader);
2197        }
2198        return p;
2199    }
2200
2201    /**
2202     * Read and return a new Serializable object from the parcel.
2203     * @return the Serializable object, or null if the Serializable name
2204     * wasn't found in the parcel.
2205     */
2206    public final Serializable readSerializable() {
2207        return readSerializable(null);
2208    }
2209
2210    private final Serializable readSerializable(final ClassLoader loader) {
2211        String name = readString();
2212        if (name == null) {
2213            // For some reason we were unable to read the name of the Serializable (either there
2214            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2215            // return null, which indicates that the name wasn't found in the parcel.
2216            return null;
2217        }
2218
2219        byte[] serializedData = createByteArray();
2220        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2221        try {
2222            ObjectInputStream ois = new ObjectInputStream(bais) {
2223                @Override
2224                protected Class<?> resolveClass(ObjectStreamClass osClass)
2225                        throws IOException, ClassNotFoundException {
2226                    // try the custom classloader if provided
2227                    if (loader != null) {
2228                        Class<?> c = Class.forName(osClass.getName(), false, loader);
2229                        if (c != null) {
2230                            return c;
2231                        }
2232                    }
2233                    return super.resolveClass(osClass);
2234                }
2235            };
2236            return (Serializable) ois.readObject();
2237        } catch (IOException ioe) {
2238            throw new RuntimeException("Parcelable encountered " +
2239                "IOException reading a Serializable object (name = " + name +
2240                ")", ioe);
2241        } catch (ClassNotFoundException cnfe) {
2242            throw new RuntimeException("Parcelable encountered " +
2243                "ClassNotFoundException reading a Serializable object (name = "
2244                + name + ")", cnfe);
2245        }
2246    }
2247
2248    // Cache of previously looked up CREATOR.createFromParcel() methods for
2249    // particular classes.  Keys are the names of the classes, values are
2250    // Method objects.
2251    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
2252        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
2253
2254    /** @hide for internal use only. */
2255    static protected final Parcel obtain(int obj) {
2256        throw new UnsupportedOperationException();
2257    }
2258
2259    /** @hide */
2260    static protected final Parcel obtain(long obj) {
2261        final Parcel[] pool = sHolderPool;
2262        synchronized (pool) {
2263            Parcel p;
2264            for (int i=0; i<POOL_SIZE; i++) {
2265                p = pool[i];
2266                if (p != null) {
2267                    pool[i] = null;
2268                    if (DEBUG_RECYCLE) {
2269                        p.mStack = new RuntimeException();
2270                    }
2271                    p.init(obj);
2272                    return p;
2273                }
2274            }
2275        }
2276        return new Parcel(obj);
2277    }
2278
2279    private Parcel(long nativePtr) {
2280        if (DEBUG_RECYCLE) {
2281            mStack = new RuntimeException();
2282        }
2283        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2284        init(nativePtr);
2285    }
2286
2287    private void init(long nativePtr) {
2288        if (nativePtr != 0) {
2289            mNativePtr = nativePtr;
2290            mOwnsNativeParcelObject = false;
2291        } else {
2292            mNativePtr = nativeCreate();
2293            mOwnsNativeParcelObject = true;
2294        }
2295    }
2296
2297    private void freeBuffer() {
2298        if (mOwnsNativeParcelObject) {
2299            nativeFreeBuffer(mNativePtr);
2300        }
2301    }
2302
2303    private void destroy() {
2304        if (mNativePtr != 0) {
2305            if (mOwnsNativeParcelObject) {
2306                nativeDestroy(mNativePtr);
2307            }
2308            mNativePtr = 0;
2309        }
2310    }
2311
2312    @Override
2313    protected void finalize() throws Throwable {
2314        if (DEBUG_RECYCLE) {
2315            if (mStack != null) {
2316                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2317            }
2318        }
2319        destroy();
2320    }
2321
2322    /* package */ void readMapInternal(Map outVal, int N,
2323        ClassLoader loader) {
2324        while (N > 0) {
2325            Object key = readValue(loader);
2326            Object value = readValue(loader);
2327            outVal.put(key, value);
2328            N--;
2329        }
2330    }
2331
2332    /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
2333        ClassLoader loader) {
2334        if (DEBUG_ARRAY_MAP) {
2335            RuntimeException here =  new RuntimeException("here");
2336            here.fillInStackTrace();
2337            Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
2338        }
2339        int startPos;
2340        while (N > 0) {
2341            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
2342            Object key = readValue(loader);
2343            Object value = readValue(loader);
2344            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
2345                    + (dataPosition()-startPos) + " bytes: key=0x"
2346                    + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
2347            outVal.append(key, value);
2348            N--;
2349        }
2350    }
2351
2352    /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
2353        ClassLoader loader) {
2354        if (DEBUG_ARRAY_MAP) {
2355            RuntimeException here =  new RuntimeException("here");
2356            here.fillInStackTrace();
2357            Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
2358        }
2359        while (N > 0) {
2360            Object key = readValue(loader);
2361            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
2362                    + (key != null ? key.hashCode() : 0) + " " + key);
2363            Object value = readValue(loader);
2364            outVal.put(key, value);
2365            N--;
2366        }
2367    }
2368
2369    private void readListInternal(List outVal, int N,
2370        ClassLoader loader) {
2371        while (N > 0) {
2372            Object value = readValue(loader);
2373            //Log.d(TAG, "Unmarshalling value=" + value);
2374            outVal.add(value);
2375            N--;
2376        }
2377    }
2378
2379    private void readArrayInternal(Object[] outVal, int N,
2380        ClassLoader loader) {
2381        for (int i = 0; i < N; i++) {
2382            Object value = readValue(loader);
2383            //Log.d(TAG, "Unmarshalling value=" + value);
2384            outVal[i] = value;
2385        }
2386    }
2387
2388    private void readSparseArrayInternal(SparseArray outVal, int N,
2389        ClassLoader loader) {
2390        while (N > 0) {
2391            int key = readInt();
2392            Object value = readValue(loader);
2393            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2394            outVal.append(key, value);
2395            N--;
2396        }
2397    }
2398
2399
2400    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2401        while (N > 0) {
2402            int key = readInt();
2403            boolean value = this.readByte() == 1;
2404            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2405            outVal.append(key, value);
2406            N--;
2407        }
2408    }
2409}
2410