Parcel.java revision b3e4ef37021a9e5518fdbc7d0cbb0a1709d5301b
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.Log;
21import android.util.SparseArray;
22import android.util.SparseBooleanArray;
23
24import java.io.ByteArrayInputStream;
25import java.io.ByteArrayOutputStream;
26import java.io.FileDescriptor;
27import java.io.FileNotFoundException;
28import java.io.IOException;
29import java.io.ObjectInputStream;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Field;
33import java.util.ArrayList;
34import java.util.HashMap;
35import java.util.List;
36import java.util.Map;
37import java.util.Set;
38
39/**
40 * Container for a message (data and object references) that can
41 * be sent through an IBinder.  A Parcel can contain both flattened data
42 * that will be unflattened on the other side of the IPC (using the various
43 * methods here for writing specific types, or the general
44 * {@link Parcelable} interface), and references to live {@link IBinder}
45 * objects that will result in the other side receiving a proxy IBinder
46 * connected with the original IBinder in the Parcel.
47 *
48 * <p class="note">Parcel is <strong>not</strong> a general-purpose
49 * serialization mechanism.  This class (and the corresponding
50 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
51 * designed as a high-performance IPC transport.  As such, it is not
52 * appropriate to place any Parcel data in to persistent storage: changes
53 * in the underlying implementation of any of the data in the Parcel can
54 * render older data unreadable.</p>
55 *
56 * <p>The bulk of the Parcel API revolves around reading and writing data
57 * of various types.  There are six major classes of such functions available.</p>
58 *
59 * <h3>Primitives</h3>
60 *
61 * <p>The most basic data functions are for writing and reading primitive
62 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
63 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
64 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
65 * {@link #writeString}, {@link #readString}.  Most other
66 * data operations are built on top of these.  The given data is written and
67 * read using the endianess of the host CPU.</p>
68 *
69 * <h3>Primitive Arrays</h3>
70 *
71 * <p>There are a variety of methods for reading and writing raw arrays
72 * of primitive objects, which generally result in writing a 4-byte length
73 * followed by the primitive data items.  The methods for reading can either
74 * read the data into an existing array, or create and return a new array.
75 * These available types are:</p>
76 *
77 * <ul>
78 * <li> {@link #writeBooleanArray(boolean[])},
79 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
80 * <li> {@link #writeByteArray(byte[])},
81 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
82 * {@link #createByteArray()}
83 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
84 * {@link #createCharArray()}
85 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
86 * {@link #createDoubleArray()}
87 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
88 * {@link #createFloatArray()}
89 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
90 * {@link #createIntArray()}
91 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
92 * {@link #createLongArray()}
93 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
94 * {@link #createStringArray()}.
95 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
96 * {@link #readSparseBooleanArray()}.
97 * </ul>
98 *
99 * <h3>Parcelables</h3>
100 *
101 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
102 * low-level) protocol for objects to write and read themselves from Parcels.
103 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
104 * and {@link #readParcelable(ClassLoader)} or
105 * {@link #writeParcelableArray} and
106 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
107 * methods write both the class type and its data to the Parcel, allowing
108 * that class to be reconstructed from the appropriate class loader when
109 * later reading.</p>
110 *
111 * <p>There are also some methods that provide a more efficient way to work
112 * with Parcelables: {@link #writeTypedArray},
113 * {@link #writeTypedList(List)},
114 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
115 * do not write the class information of the original object: instead, the
116 * caller of the read function must know what type to expect and pass in the
117 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
118 * properly construct the new object and read its data.  (To more efficient
119 * write and read a single Parceable object, you can directly call
120 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
121 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
122 * yourself.)</p>
123 *
124 * <h3>Bundles</h3>
125 *
126 * <p>A special type-safe container, called {@link Bundle}, is available
127 * for key/value maps of heterogeneous values.  This has many optimizations
128 * for improved performance when reading and writing data, and its type-safe
129 * API avoids difficult to debug type errors when finally marshalling the
130 * data contents into a Parcel.  The methods to use are
131 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
132 * {@link #readBundle(ClassLoader)}.
133 *
134 * <h3>Active Objects</h3>
135 *
136 * <p>An unusual feature of Parcel is the ability to read and write active
137 * objects.  For these objects the actual contents of the object is not
138 * written, rather a special token referencing the object is written.  When
139 * reading the object back from the Parcel, you do not get a new instance of
140 * the object, but rather a handle that operates on the exact same object that
141 * was originally written.  There are two forms of active objects available.</p>
142 *
143 * <p>{@link Binder} objects are a core facility of Android's general cross-process
144 * communication system.  The {@link IBinder} interface describes an abstract
145 * protocol with a Binder object.  Any such interface can be written in to
146 * a Parcel, and upon reading you will receive either the original object
147 * implementing that interface or a special proxy implementation
148 * that communicates calls back to the original object.  The methods to use are
149 * {@link #writeStrongBinder(IBinder)},
150 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
151 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
152 * {@link #createBinderArray()},
153 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
154 * {@link #createBinderArrayList()}.</p>
155 *
156 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
157 * can be written and {@link ParcelFileDescriptor} objects returned to operate
158 * on the original file descriptor.  The returned file descriptor is a dup
159 * of the original file descriptor: the object and fd is different, but
160 * operating on the same underlying file stream, with the same position, etc.
161 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
162 * {@link #readFileDescriptor()}.
163 *
164 * <h3>Untyped Containers</h3>
165 *
166 * <p>A final class of methods are for writing and reading standard Java
167 * containers of arbitrary types.  These all revolve around the
168 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
169 * which define the types of objects allowed.  The container methods are
170 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
171 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
172 * {@link #readArrayList(ClassLoader)},
173 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
174 * {@link #writeSparseArray(SparseArray)},
175 * {@link #readSparseArray(ClassLoader)}.
176 */
177public final class Parcel {
178    private static final boolean DEBUG_RECYCLE = false;
179
180    @SuppressWarnings({"UnusedDeclaration"})
181    private int mObject; // used by native code
182    @SuppressWarnings({"UnusedDeclaration"})
183    private int mOwnObject; // used by native code
184    private RuntimeException mStack;
185
186    private static final int POOL_SIZE = 6;
187    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
188    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
189
190    private static final int VAL_NULL = -1;
191    private static final int VAL_STRING = 0;
192    private static final int VAL_INTEGER = 1;
193    private static final int VAL_MAP = 2;
194    private static final int VAL_BUNDLE = 3;
195    private static final int VAL_PARCELABLE = 4;
196    private static final int VAL_SHORT = 5;
197    private static final int VAL_LONG = 6;
198    private static final int VAL_FLOAT = 7;
199    private static final int VAL_DOUBLE = 8;
200    private static final int VAL_BOOLEAN = 9;
201    private static final int VAL_CHARSEQUENCE = 10;
202    private static final int VAL_LIST  = 11;
203    private static final int VAL_SPARSEARRAY = 12;
204    private static final int VAL_BYTEARRAY = 13;
205    private static final int VAL_STRINGARRAY = 14;
206    private static final int VAL_IBINDER = 15;
207    private static final int VAL_PARCELABLEARRAY = 16;
208    private static final int VAL_OBJECTARRAY = 17;
209    private static final int VAL_INTARRAY = 18;
210    private static final int VAL_LONGARRAY = 19;
211    private static final int VAL_BYTE = 20;
212    private static final int VAL_SERIALIZABLE = 21;
213    private static final int VAL_SPARSEBOOLEANARRAY = 22;
214    private static final int VAL_BOOLEANARRAY = 23;
215    private static final int VAL_CHARSEQUENCEARRAY = 24;
216
217    private static final int EX_SECURITY = -1;
218    private static final int EX_BAD_PARCELABLE = -2;
219    private static final int EX_ILLEGAL_ARGUMENT = -3;
220    private static final int EX_NULL_POINTER = -4;
221    private static final int EX_ILLEGAL_STATE = -5;
222
223    public final static Parcelable.Creator<String> STRING_CREATOR
224             = new Parcelable.Creator<String>() {
225        public String createFromParcel(Parcel source) {
226            return source.readString();
227        }
228        public String[] newArray(int size) {
229            return new String[size];
230        }
231    };
232
233    /**
234     * Retrieve a new Parcel object from the pool.
235     */
236    public static Parcel obtain() {
237        final Parcel[] pool = sOwnedPool;
238        synchronized (pool) {
239            Parcel p;
240            for (int i=0; i<POOL_SIZE; i++) {
241                p = pool[i];
242                if (p != null) {
243                    pool[i] = null;
244                    if (DEBUG_RECYCLE) {
245                        p.mStack = new RuntimeException();
246                    }
247                    return p;
248                }
249            }
250        }
251        return new Parcel(0);
252    }
253
254    /**
255     * Put a Parcel object back into the pool.  You must not touch
256     * the object after this call.
257     */
258    public final void recycle() {
259        if (DEBUG_RECYCLE) mStack = null;
260        freeBuffer();
261        final Parcel[] pool = mOwnObject != 0 ? sOwnedPool : sHolderPool;
262        synchronized (pool) {
263            for (int i=0; i<POOL_SIZE; i++) {
264                if (pool[i] == null) {
265                    pool[i] = this;
266                    return;
267                }
268            }
269        }
270    }
271
272    /**
273     * Returns the total amount of data contained in the parcel.
274     */
275    public final native int dataSize();
276
277    /**
278     * Returns the amount of data remaining to be read from the
279     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
280     */
281    public final native int dataAvail();
282
283    /**
284     * Returns the current position in the parcel data.  Never
285     * more than {@link #dataSize}.
286     */
287    public final native int dataPosition();
288
289    /**
290     * Returns the total amount of space in the parcel.  This is always
291     * >= {@link #dataSize}.  The difference between it and dataSize() is the
292     * amount of room left until the parcel needs to re-allocate its
293     * data buffer.
294     */
295    public final native int dataCapacity();
296
297    /**
298     * Change the amount of data in the parcel.  Can be either smaller or
299     * larger than the current size.  If larger than the current capacity,
300     * more memory will be allocated.
301     *
302     * @param size The new number of bytes in the Parcel.
303     */
304    public final native void setDataSize(int size);
305
306    /**
307     * Move the current read/write position in the parcel.
308     * @param pos New offset in the parcel; must be between 0 and
309     * {@link #dataSize}.
310     */
311    public final native void setDataPosition(int pos);
312
313    /**
314     * Change the capacity (current available space) of the parcel.
315     *
316     * @param size The new capacity of the parcel, in bytes.  Can not be
317     * less than {@link #dataSize} -- that is, you can not drop existing data
318     * with this method.
319     */
320    public final native void setDataCapacity(int size);
321
322    /**
323     * Returns the raw bytes of the parcel.
324     *
325     * <p class="note">The data you retrieve here <strong>must not</strong>
326     * be placed in any kind of persistent storage (on local disk, across
327     * a network, etc).  For that, you should use standard serialization
328     * or another kind of general serialization mechanism.  The Parcel
329     * marshalled representation is highly optimized for local IPC, and as
330     * such does not attempt to maintain compatibility with data created
331     * in different versions of the platform.
332     */
333    public final native byte[] marshall();
334
335    /**
336     * Set the bytes in data to be the raw bytes of this Parcel.
337     */
338    public final native void unmarshall(byte[] data, int offest, int length);
339
340    public final native void appendFrom(Parcel parcel, int offset, int length);
341
342    /**
343     * Report whether the parcel contains any marshalled file descriptors.
344     */
345    public final native boolean hasFileDescriptors();
346
347    /**
348     * Store or read an IBinder interface token in the parcel at the current
349     * {@link #dataPosition}.  This is used to validate that the marshalled
350     * transaction is intended for the target interface.
351     */
352    public final native void writeInterfaceToken(String interfaceName);
353    public final native void enforceInterface(String interfaceName);
354
355    /**
356     * Write a byte array into the parcel at the current {#link #dataPosition},
357     * growing {@link #dataCapacity} if needed.
358     * @param b Bytes to place into the parcel.
359     */
360    public final void writeByteArray(byte[] b) {
361        writeByteArray(b, 0, (b != null) ? b.length : 0);
362    }
363
364    /**
365     * Write an byte array into the parcel at the current {#link #dataPosition},
366     * growing {@link #dataCapacity} if needed.
367     * @param b Bytes to place into the parcel.
368     * @param offset Index of first byte to be written.
369     * @param len Number of bytes to write.
370     */
371    public final void writeByteArray(byte[] b, int offset, int len) {
372        if (b == null) {
373            writeInt(-1);
374            return;
375        }
376        if (b.length < offset + len || len < 0 || offset < 0) {
377            throw new ArrayIndexOutOfBoundsException();
378        }
379        writeNative(b, offset, len);
380    }
381
382    private native void writeNative(byte[] b, int offset, int len);
383
384    /**
385     * Write an integer value into the parcel at the current dataPosition(),
386     * growing dataCapacity() if needed.
387     */
388    public final native void writeInt(int val);
389
390    /**
391     * Write a long integer value into the parcel at the current dataPosition(),
392     * growing dataCapacity() if needed.
393     */
394    public final native void writeLong(long val);
395
396    /**
397     * Write a floating point value into the parcel at the current
398     * dataPosition(), growing dataCapacity() if needed.
399     */
400    public final native void writeFloat(float val);
401
402    /**
403     * Write a double precision floating point value into the parcel at the
404     * current dataPosition(), growing dataCapacity() if needed.
405     */
406    public final native void writeDouble(double val);
407
408    /**
409     * Write a string value into the parcel at the current dataPosition(),
410     * growing dataCapacity() if needed.
411     */
412    public final native void writeString(String val);
413
414    /**
415     * Write a CharSequence value into the parcel at the current dataPosition(),
416     * growing dataCapacity() if needed.
417     * @hide
418     */
419    public final void writeCharSequence(CharSequence val) {
420        TextUtils.writeToParcel(val, this, 0);
421    }
422
423    /**
424     * Write an object into the parcel at the current dataPosition(),
425     * growing dataCapacity() if needed.
426     */
427    public final native void writeStrongBinder(IBinder val);
428
429    /**
430     * Write an object into the parcel at the current dataPosition(),
431     * growing dataCapacity() if needed.
432     */
433    public final void writeStrongInterface(IInterface val) {
434        writeStrongBinder(val == null ? null : val.asBinder());
435    }
436
437    /**
438     * Write a FileDescriptor into the parcel at the current dataPosition(),
439     * growing dataCapacity() if needed.
440     *
441     * <p class="caution">The file descriptor will not be closed, which may
442     * result in file descriptor leaks when objects are returned from Binder
443     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
444     * accepts contextual flags and will close the original file descriptor
445     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
446     */
447    public final native void writeFileDescriptor(FileDescriptor val);
448
449    /**
450     * Write an byte value into the parcel at the current dataPosition(),
451     * growing dataCapacity() if needed.
452     */
453    public final void writeByte(byte val) {
454        writeInt(val);
455    }
456
457    /**
458     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
459     * at the current dataPosition(),
460     * growing dataCapacity() if needed.  The Map keys must be String objects.
461     * The Map values are written using {@link #writeValue} and must follow
462     * the specification there.
463     *
464     * <p>It is strongly recommended to use {@link #writeBundle} instead of
465     * this method, since the Bundle class provides a type-safe API that
466     * allows you to avoid mysterious type errors at the point of marshalling.
467     */
468    public final void writeMap(Map val) {
469        writeMapInternal((Map<String,Object>) val);
470    }
471
472    /**
473     * Flatten a Map into the parcel at the current dataPosition(),
474     * growing dataCapacity() if needed.  The Map keys must be String objects.
475     */
476    /* package */ void writeMapInternal(Map<String,Object> val) {
477        if (val == null) {
478            writeInt(-1);
479            return;
480        }
481        Set<Map.Entry<String,Object>> entries = val.entrySet();
482        writeInt(entries.size());
483        for (Map.Entry<String,Object> e : entries) {
484            writeValue(e.getKey());
485            writeValue(e.getValue());
486        }
487    }
488
489    /**
490     * Flatten a Bundle into the parcel at the current dataPosition(),
491     * growing dataCapacity() if needed.
492     */
493    public final void writeBundle(Bundle val) {
494        if (val == null) {
495            writeInt(-1);
496            return;
497        }
498
499        val.writeToParcel(this, 0);
500    }
501
502    /**
503     * Flatten a List into the parcel at the current dataPosition(), growing
504     * dataCapacity() if needed.  The List values are written using
505     * {@link #writeValue} and must follow the specification there.
506     */
507    public final void writeList(List val) {
508        if (val == null) {
509            writeInt(-1);
510            return;
511        }
512        int N = val.size();
513        int i=0;
514        writeInt(N);
515        while (i < N) {
516            writeValue(val.get(i));
517            i++;
518        }
519    }
520
521    /**
522     * Flatten an Object array into the parcel at the current dataPosition(),
523     * growing dataCapacity() if needed.  The array values are written using
524     * {@link #writeValue} and must follow the specification there.
525     */
526    public final void writeArray(Object[] val) {
527        if (val == null) {
528            writeInt(-1);
529            return;
530        }
531        int N = val.length;
532        int i=0;
533        writeInt(N);
534        while (i < N) {
535            writeValue(val[i]);
536            i++;
537        }
538    }
539
540    /**
541     * Flatten a generic SparseArray into the parcel at the current
542     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
543     * values are written using {@link #writeValue} and must follow the
544     * specification there.
545     */
546    public final void writeSparseArray(SparseArray<Object> val) {
547        if (val == null) {
548            writeInt(-1);
549            return;
550        }
551        int N = val.size();
552        writeInt(N);
553        int i=0;
554        while (i < N) {
555            writeInt(val.keyAt(i));
556            writeValue(val.valueAt(i));
557            i++;
558        }
559    }
560
561    public final void writeSparseBooleanArray(SparseBooleanArray val) {
562        if (val == null) {
563            writeInt(-1);
564            return;
565        }
566        int N = val.size();
567        writeInt(N);
568        int i=0;
569        while (i < N) {
570            writeInt(val.keyAt(i));
571            writeByte((byte)(val.valueAt(i) ? 1 : 0));
572            i++;
573        }
574    }
575
576    public final void writeBooleanArray(boolean[] val) {
577        if (val != null) {
578            int N = val.length;
579            writeInt(N);
580            for (int i=0; i<N; i++) {
581                writeInt(val[i] ? 1 : 0);
582            }
583        } else {
584            writeInt(-1);
585        }
586    }
587
588    public final boolean[] createBooleanArray() {
589        int N = readInt();
590        // >>2 as a fast divide-by-4 works in the create*Array() functions
591        // because dataAvail() will never return a negative number.  4 is
592        // the size of a stored boolean in the stream.
593        if (N >= 0 && N <= (dataAvail() >> 2)) {
594            boolean[] val = new boolean[N];
595            for (int i=0; i<N; i++) {
596                val[i] = readInt() != 0;
597            }
598            return val;
599        } else {
600            return null;
601        }
602    }
603
604    public final void readBooleanArray(boolean[] val) {
605        int N = readInt();
606        if (N == val.length) {
607            for (int i=0; i<N; i++) {
608                val[i] = readInt() != 0;
609            }
610        } else {
611            throw new RuntimeException("bad array lengths");
612        }
613    }
614
615    public final void writeCharArray(char[] val) {
616        if (val != null) {
617            int N = val.length;
618            writeInt(N);
619            for (int i=0; i<N; i++) {
620                writeInt((int)val[i]);
621            }
622        } else {
623            writeInt(-1);
624        }
625    }
626
627    public final char[] createCharArray() {
628        int N = readInt();
629        if (N >= 0 && N <= (dataAvail() >> 2)) {
630            char[] val = new char[N];
631            for (int i=0; i<N; i++) {
632                val[i] = (char)readInt();
633            }
634            return val;
635        } else {
636            return null;
637        }
638    }
639
640    public final void readCharArray(char[] val) {
641        int N = readInt();
642        if (N == val.length) {
643            for (int i=0; i<N; i++) {
644                val[i] = (char)readInt();
645            }
646        } else {
647            throw new RuntimeException("bad array lengths");
648        }
649    }
650
651    public final void writeIntArray(int[] val) {
652        if (val != null) {
653            int N = val.length;
654            writeInt(N);
655            for (int i=0; i<N; i++) {
656                writeInt(val[i]);
657            }
658        } else {
659            writeInt(-1);
660        }
661    }
662
663    public final int[] createIntArray() {
664        int N = readInt();
665        if (N >= 0 && N <= (dataAvail() >> 2)) {
666            int[] val = new int[N];
667            for (int i=0; i<N; i++) {
668                val[i] = readInt();
669            }
670            return val;
671        } else {
672            return null;
673        }
674    }
675
676    public final void readIntArray(int[] val) {
677        int N = readInt();
678        if (N == val.length) {
679            for (int i=0; i<N; i++) {
680                val[i] = readInt();
681            }
682        } else {
683            throw new RuntimeException("bad array lengths");
684        }
685    }
686
687    public final void writeLongArray(long[] val) {
688        if (val != null) {
689            int N = val.length;
690            writeInt(N);
691            for (int i=0; i<N; i++) {
692                writeLong(val[i]);
693            }
694        } else {
695            writeInt(-1);
696        }
697    }
698
699    public final long[] createLongArray() {
700        int N = readInt();
701        // >>3 because stored longs are 64 bits
702        if (N >= 0 && N <= (dataAvail() >> 3)) {
703            long[] val = new long[N];
704            for (int i=0; i<N; i++) {
705                val[i] = readLong();
706            }
707            return val;
708        } else {
709            return null;
710        }
711    }
712
713    public final void readLongArray(long[] val) {
714        int N = readInt();
715        if (N == val.length) {
716            for (int i=0; i<N; i++) {
717                val[i] = readLong();
718            }
719        } else {
720            throw new RuntimeException("bad array lengths");
721        }
722    }
723
724    public final void writeFloatArray(float[] val) {
725        if (val != null) {
726            int N = val.length;
727            writeInt(N);
728            for (int i=0; i<N; i++) {
729                writeFloat(val[i]);
730            }
731        } else {
732            writeInt(-1);
733        }
734    }
735
736    public final float[] createFloatArray() {
737        int N = readInt();
738        // >>2 because stored floats are 4 bytes
739        if (N >= 0 && N <= (dataAvail() >> 2)) {
740            float[] val = new float[N];
741            for (int i=0; i<N; i++) {
742                val[i] = readFloat();
743            }
744            return val;
745        } else {
746            return null;
747        }
748    }
749
750    public final void readFloatArray(float[] val) {
751        int N = readInt();
752        if (N == val.length) {
753            for (int i=0; i<N; i++) {
754                val[i] = readFloat();
755            }
756        } else {
757            throw new RuntimeException("bad array lengths");
758        }
759    }
760
761    public final void writeDoubleArray(double[] val) {
762        if (val != null) {
763            int N = val.length;
764            writeInt(N);
765            for (int i=0; i<N; i++) {
766                writeDouble(val[i]);
767            }
768        } else {
769            writeInt(-1);
770        }
771    }
772
773    public final double[] createDoubleArray() {
774        int N = readInt();
775        // >>3 because stored doubles are 8 bytes
776        if (N >= 0 && N <= (dataAvail() >> 3)) {
777            double[] val = new double[N];
778            for (int i=0; i<N; i++) {
779                val[i] = readDouble();
780            }
781            return val;
782        } else {
783            return null;
784        }
785    }
786
787    public final void readDoubleArray(double[] val) {
788        int N = readInt();
789        if (N == val.length) {
790            for (int i=0; i<N; i++) {
791                val[i] = readDouble();
792            }
793        } else {
794            throw new RuntimeException("bad array lengths");
795        }
796    }
797
798    public final void writeStringArray(String[] val) {
799        if (val != null) {
800            int N = val.length;
801            writeInt(N);
802            for (int i=0; i<N; i++) {
803                writeString(val[i]);
804            }
805        } else {
806            writeInt(-1);
807        }
808    }
809
810    public final String[] createStringArray() {
811        int N = readInt();
812        if (N >= 0) {
813            String[] val = new String[N];
814            for (int i=0; i<N; i++) {
815                val[i] = readString();
816            }
817            return val;
818        } else {
819            return null;
820        }
821    }
822
823    public final void readStringArray(String[] val) {
824        int N = readInt();
825        if (N == val.length) {
826            for (int i=0; i<N; i++) {
827                val[i] = readString();
828            }
829        } else {
830            throw new RuntimeException("bad array lengths");
831        }
832    }
833
834    public final void writeBinderArray(IBinder[] val) {
835        if (val != null) {
836            int N = val.length;
837            writeInt(N);
838            for (int i=0; i<N; i++) {
839                writeStrongBinder(val[i]);
840            }
841        } else {
842            writeInt(-1);
843        }
844    }
845
846    /**
847     * @hide
848     */
849    public final void writeCharSequenceArray(CharSequence[] val) {
850        if (val != null) {
851            int N = val.length;
852            writeInt(N);
853            for (int i=0; i<N; i++) {
854                writeCharSequence(val[i]);
855            }
856        } else {
857            writeInt(-1);
858        }
859    }
860
861    public final IBinder[] createBinderArray() {
862        int N = readInt();
863        if (N >= 0) {
864            IBinder[] val = new IBinder[N];
865            for (int i=0; i<N; i++) {
866                val[i] = readStrongBinder();
867            }
868            return val;
869        } else {
870            return null;
871        }
872    }
873
874    public final void readBinderArray(IBinder[] val) {
875        int N = readInt();
876        if (N == val.length) {
877            for (int i=0; i<N; i++) {
878                val[i] = readStrongBinder();
879            }
880        } else {
881            throw new RuntimeException("bad array lengths");
882        }
883    }
884
885    /**
886     * Flatten a List containing a particular object type into the parcel, at
887     * the current dataPosition() and growing dataCapacity() if needed.  The
888     * type of the objects in the list must be one that implements Parcelable.
889     * Unlike the generic writeList() method, however, only the raw data of the
890     * objects is written and not their type, so you must use the corresponding
891     * readTypedList() to unmarshall them.
892     *
893     * @param val The list of objects to be written.
894     *
895     * @see #createTypedArrayList
896     * @see #readTypedList
897     * @see Parcelable
898     */
899    public final <T extends Parcelable> void writeTypedList(List<T> val) {
900        if (val == null) {
901            writeInt(-1);
902            return;
903        }
904        int N = val.size();
905        int i=0;
906        writeInt(N);
907        while (i < N) {
908            T item = val.get(i);
909            if (item != null) {
910                writeInt(1);
911                item.writeToParcel(this, 0);
912            } else {
913                writeInt(0);
914            }
915            i++;
916        }
917    }
918
919    /**
920     * Flatten a List containing String objects into the parcel, at
921     * the current dataPosition() and growing dataCapacity() if needed.  They
922     * can later be retrieved with {@link #createStringArrayList} or
923     * {@link #readStringList}.
924     *
925     * @param val The list of strings to be written.
926     *
927     * @see #createStringArrayList
928     * @see #readStringList
929     */
930    public final void writeStringList(List<String> val) {
931        if (val == null) {
932            writeInt(-1);
933            return;
934        }
935        int N = val.size();
936        int i=0;
937        writeInt(N);
938        while (i < N) {
939            writeString(val.get(i));
940            i++;
941        }
942    }
943
944    /**
945     * Flatten a List containing IBinder objects into the parcel, at
946     * the current dataPosition() and growing dataCapacity() if needed.  They
947     * can later be retrieved with {@link #createBinderArrayList} or
948     * {@link #readBinderList}.
949     *
950     * @param val The list of strings to be written.
951     *
952     * @see #createBinderArrayList
953     * @see #readBinderList
954     */
955    public final void writeBinderList(List<IBinder> val) {
956        if (val == null) {
957            writeInt(-1);
958            return;
959        }
960        int N = val.size();
961        int i=0;
962        writeInt(N);
963        while (i < N) {
964            writeStrongBinder(val.get(i));
965            i++;
966        }
967    }
968
969    /**
970     * Flatten a heterogeneous array containing a particular object type into
971     * the parcel, at
972     * the current dataPosition() and growing dataCapacity() if needed.  The
973     * type of the objects in the array must be one that implements Parcelable.
974     * Unlike the {@link #writeParcelableArray} method, however, only the
975     * raw data of the objects is written and not their type, so you must use
976     * {@link #readTypedArray} with the correct corresponding
977     * {@link Parcelable.Creator} implementation to unmarshall them.
978     *
979     * @param val The array of objects to be written.
980     * @param parcelableFlags Contextual flags as per
981     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
982     *
983     * @see #readTypedArray
984     * @see #writeParcelableArray
985     * @see Parcelable.Creator
986     */
987    public final <T extends Parcelable> void writeTypedArray(T[] val,
988            int parcelableFlags) {
989        if (val != null) {
990            int N = val.length;
991            writeInt(N);
992            for (int i=0; i<N; i++) {
993                T item = val[i];
994                if (item != null) {
995                    writeInt(1);
996                    item.writeToParcel(this, parcelableFlags);
997                } else {
998                    writeInt(0);
999                }
1000            }
1001        } else {
1002            writeInt(-1);
1003        }
1004    }
1005
1006    /**
1007     * Flatten a generic object in to a parcel.  The given Object value may
1008     * currently be one of the following types:
1009     *
1010     * <ul>
1011     * <li> null
1012     * <li> String
1013     * <li> Byte
1014     * <li> Short
1015     * <li> Integer
1016     * <li> Long
1017     * <li> Float
1018     * <li> Double
1019     * <li> Boolean
1020     * <li> String[]
1021     * <li> boolean[]
1022     * <li> byte[]
1023     * <li> int[]
1024     * <li> long[]
1025     * <li> Object[] (supporting objects of the same type defined here).
1026     * <li> {@link Bundle}
1027     * <li> Map (as supported by {@link #writeMap}).
1028     * <li> Any object that implements the {@link Parcelable} protocol.
1029     * <li> Parcelable[]
1030     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1031     * <li> List (as supported by {@link #writeList}).
1032     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1033     * <li> {@link IBinder}
1034     * <li> Any object that implements Serializable (but see
1035     *      {@link #writeSerializable} for caveats).  Note that all of the
1036     *      previous types have relatively efficient implementations for
1037     *      writing to a Parcel; having to rely on the generic serialization
1038     *      approach is much less efficient and should be avoided whenever
1039     *      possible.
1040     * </ul>
1041     *
1042     * <p class="caution">{@link Parcelable} objects are written with
1043     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1044     * serializing objects containing {@link ParcelFileDescriptor}s,
1045     * this may result in file descriptor leaks when they are returned from
1046     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1047     * should be used).</p>
1048     */
1049    public final void writeValue(Object v) {
1050        if (v == null) {
1051            writeInt(VAL_NULL);
1052        } else if (v instanceof String) {
1053            writeInt(VAL_STRING);
1054            writeString((String) v);
1055        } else if (v instanceof Integer) {
1056            writeInt(VAL_INTEGER);
1057            writeInt((Integer) v);
1058        } else if (v instanceof Map) {
1059            writeInt(VAL_MAP);
1060            writeMap((Map) v);
1061        } else if (v instanceof Bundle) {
1062            // Must be before Parcelable
1063            writeInt(VAL_BUNDLE);
1064            writeBundle((Bundle) v);
1065        } else if (v instanceof Parcelable) {
1066            writeInt(VAL_PARCELABLE);
1067            writeParcelable((Parcelable) v, 0);
1068        } else if (v instanceof Short) {
1069            writeInt(VAL_SHORT);
1070            writeInt(((Short) v).intValue());
1071        } else if (v instanceof Long) {
1072            writeInt(VAL_LONG);
1073            writeLong((Long) v);
1074        } else if (v instanceof Float) {
1075            writeInt(VAL_FLOAT);
1076            writeFloat((Float) v);
1077        } else if (v instanceof Double) {
1078            writeInt(VAL_DOUBLE);
1079            writeDouble((Double) v);
1080        } else if (v instanceof Boolean) {
1081            writeInt(VAL_BOOLEAN);
1082            writeInt((Boolean) v ? 1 : 0);
1083        } else if (v instanceof CharSequence) {
1084            // Must be after String
1085            writeInt(VAL_CHARSEQUENCE);
1086            writeCharSequence((CharSequence) v);
1087        } else if (v instanceof List) {
1088            writeInt(VAL_LIST);
1089            writeList((List) v);
1090        } else if (v instanceof SparseArray) {
1091            writeInt(VAL_SPARSEARRAY);
1092            writeSparseArray((SparseArray) v);
1093        } else if (v instanceof boolean[]) {
1094            writeInt(VAL_BOOLEANARRAY);
1095            writeBooleanArray((boolean[]) v);
1096        } else if (v instanceof byte[]) {
1097            writeInt(VAL_BYTEARRAY);
1098            writeByteArray((byte[]) v);
1099        } else if (v instanceof String[]) {
1100            writeInt(VAL_STRINGARRAY);
1101            writeStringArray((String[]) v);
1102        } else if (v instanceof CharSequence[]) {
1103            // Must be after String[] and before Object[]
1104            writeInt(VAL_CHARSEQUENCEARRAY);
1105            writeCharSequenceArray((CharSequence[]) v);
1106        } else if (v instanceof IBinder) {
1107            writeInt(VAL_IBINDER);
1108            writeStrongBinder((IBinder) v);
1109        } else if (v instanceof Parcelable[]) {
1110            writeInt(VAL_PARCELABLEARRAY);
1111            writeParcelableArray((Parcelable[]) v, 0);
1112        } else if (v instanceof Object[]) {
1113            writeInt(VAL_OBJECTARRAY);
1114            writeArray((Object[]) v);
1115        } else if (v instanceof int[]) {
1116            writeInt(VAL_INTARRAY);
1117            writeIntArray((int[]) v);
1118        } else if (v instanceof long[]) {
1119            writeInt(VAL_LONGARRAY);
1120            writeLongArray((long[]) v);
1121        } else if (v instanceof Byte) {
1122            writeInt(VAL_BYTE);
1123            writeInt((Byte) v);
1124        } else if (v instanceof Serializable) {
1125            // Must be last
1126            writeInt(VAL_SERIALIZABLE);
1127            writeSerializable((Serializable) v);
1128        } else {
1129            throw new RuntimeException("Parcel: unable to marshal value " + v);
1130        }
1131    }
1132
1133    /**
1134     * Flatten the name of the class of the Parcelable and its contents
1135     * into the parcel.
1136     *
1137     * @param p The Parcelable object to be written.
1138     * @param parcelableFlags Contextual flags as per
1139     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1140     */
1141    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1142        if (p == null) {
1143            writeString(null);
1144            return;
1145        }
1146        String name = p.getClass().getName();
1147        writeString(name);
1148        p.writeToParcel(this, parcelableFlags);
1149    }
1150
1151    /**
1152     * Write a generic serializable object in to a Parcel.  It is strongly
1153     * recommended that this method be avoided, since the serialization
1154     * overhead is extremely large, and this approach will be much slower than
1155     * using the other approaches to writing data in to a Parcel.
1156     */
1157    public final void writeSerializable(Serializable s) {
1158        if (s == null) {
1159            writeString(null);
1160            return;
1161        }
1162        String name = s.getClass().getName();
1163        writeString(name);
1164
1165        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1166        try {
1167            ObjectOutputStream oos = new ObjectOutputStream(baos);
1168            oos.writeObject(s);
1169            oos.close();
1170
1171            writeByteArray(baos.toByteArray());
1172        } catch (IOException ioe) {
1173            throw new RuntimeException("Parcelable encountered " +
1174                "IOException writing serializable object (name = " + name +
1175                ")", ioe);
1176        }
1177    }
1178
1179    /**
1180     * Special function for writing an exception result at the header of
1181     * a parcel, to be used when returning an exception from a transaction.
1182     * Note that this currently only supports a few exception types; any other
1183     * exception will be re-thrown by this function as a RuntimeException
1184     * (to be caught by the system's last-resort exception handling when
1185     * dispatching a transaction).
1186     *
1187     * <p>The supported exception types are:
1188     * <ul>
1189     * <li>{@link BadParcelableException}
1190     * <li>{@link IllegalArgumentException}
1191     * <li>{@link IllegalStateException}
1192     * <li>{@link NullPointerException}
1193     * <li>{@link SecurityException}
1194     * </ul>
1195     *
1196     * @param e The Exception to be written.
1197     *
1198     * @see #writeNoException
1199     * @see #readException
1200     */
1201    public final void writeException(Exception e) {
1202        int code = 0;
1203        if (e instanceof SecurityException) {
1204            code = EX_SECURITY;
1205        } else if (e instanceof BadParcelableException) {
1206            code = EX_BAD_PARCELABLE;
1207        } else if (e instanceof IllegalArgumentException) {
1208            code = EX_ILLEGAL_ARGUMENT;
1209        } else if (e instanceof NullPointerException) {
1210            code = EX_NULL_POINTER;
1211        } else if (e instanceof IllegalStateException) {
1212            code = EX_ILLEGAL_STATE;
1213        }
1214        writeInt(code);
1215        if (code == 0) {
1216            if (e instanceof RuntimeException) {
1217                throw (RuntimeException) e;
1218            }
1219            throw new RuntimeException(e);
1220        }
1221        writeString(e.getMessage());
1222    }
1223
1224    /**
1225     * Special function for writing information at the front of the Parcel
1226     * indicating that no exception occurred.
1227     *
1228     * @see #writeException
1229     * @see #readException
1230     */
1231    public final void writeNoException() {
1232        writeInt(0);
1233    }
1234
1235    /**
1236     * Special function for reading an exception result from the header of
1237     * a parcel, to be used after receiving the result of a transaction.  This
1238     * will throw the exception for you if it had been written to the Parcel,
1239     * otherwise return and let you read the normal result data from the Parcel.
1240     *
1241     * @see #writeException
1242     * @see #writeNoException
1243     */
1244    public final void readException() {
1245        int code = readInt();
1246        if (code == 0) return;
1247        String msg = readString();
1248        readException(code, msg);
1249    }
1250
1251    /**
1252     * Use this function for customized exception handling.
1253     * customized method call this method for all unknown case
1254     * @param code exception code
1255     * @param msg exception message
1256     */
1257    public final void readException(int code, String msg) {
1258        switch (code) {
1259            case EX_SECURITY:
1260                throw new SecurityException(msg);
1261            case EX_BAD_PARCELABLE:
1262                throw new BadParcelableException(msg);
1263            case EX_ILLEGAL_ARGUMENT:
1264                throw new IllegalArgumentException(msg);
1265            case EX_NULL_POINTER:
1266                throw new NullPointerException(msg);
1267            case EX_ILLEGAL_STATE:
1268                throw new IllegalStateException(msg);
1269        }
1270        throw new RuntimeException("Unknown exception code: " + code
1271                + " msg " + msg);
1272    }
1273
1274    /**
1275     * Read an integer value from the parcel at the current dataPosition().
1276     */
1277    public final native int readInt();
1278
1279    /**
1280     * Read a long integer value from the parcel at the current dataPosition().
1281     */
1282    public final native long readLong();
1283
1284    /**
1285     * Read a floating point value from the parcel at the current
1286     * dataPosition().
1287     */
1288    public final native float readFloat();
1289
1290    /**
1291     * Read a double precision floating point value from the parcel at the
1292     * current dataPosition().
1293     */
1294    public final native double readDouble();
1295
1296    /**
1297     * Read a string value from the parcel at the current dataPosition().
1298     */
1299    public final native String readString();
1300
1301    /**
1302     * Read a CharSequence value from the parcel at the current dataPosition().
1303     * @hide
1304     */
1305    public final CharSequence readCharSequence() {
1306        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1307    }
1308
1309    /**
1310     * Read an object from the parcel at the current dataPosition().
1311     */
1312    public final native IBinder readStrongBinder();
1313
1314    /**
1315     * Read a FileDescriptor from the parcel at the current dataPosition().
1316     */
1317    public final ParcelFileDescriptor readFileDescriptor() {
1318        FileDescriptor fd = internalReadFileDescriptor();
1319        return fd != null ? new ParcelFileDescriptor(fd) : null;
1320    }
1321
1322    private native FileDescriptor internalReadFileDescriptor();
1323    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1324            int mode) throws FileNotFoundException;
1325    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1326            throws IOException;
1327
1328    /**
1329     * Read a byte value from the parcel at the current dataPosition().
1330     */
1331    public final byte readByte() {
1332        return (byte)(readInt() & 0xff);
1333    }
1334
1335    /**
1336     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1337     * been written with {@link #writeBundle}.  Read into an existing Map object
1338     * from the parcel at the current dataPosition().
1339     */
1340    public final void readMap(Map outVal, ClassLoader loader) {
1341        int N = readInt();
1342        readMapInternal(outVal, N, loader);
1343    }
1344
1345    /**
1346     * Read into an existing List object from the parcel at the current
1347     * dataPosition(), using the given class loader to load any enclosed
1348     * Parcelables.  If it is null, the default class loader is used.
1349     */
1350    public final void readList(List outVal, ClassLoader loader) {
1351        int N = readInt();
1352        readListInternal(outVal, N, loader);
1353    }
1354
1355    /**
1356     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1357     * been written with {@link #writeBundle}.  Read and return a new HashMap
1358     * object from the parcel at the current dataPosition(), using the given
1359     * class loader to load any enclosed Parcelables.  Returns null if
1360     * the previously written map object was null.
1361     */
1362    public final HashMap readHashMap(ClassLoader loader)
1363    {
1364        int N = readInt();
1365        if (N < 0) {
1366            return null;
1367        }
1368        HashMap m = new HashMap(N);
1369        readMapInternal(m, N, loader);
1370        return m;
1371    }
1372
1373    /**
1374     * Read and return a new Bundle object from the parcel at the current
1375     * dataPosition().  Returns null if the previously written Bundle object was
1376     * null.
1377     */
1378    public final Bundle readBundle() {
1379        return readBundle(null);
1380    }
1381
1382    /**
1383     * Read and return a new Bundle object from the parcel at the current
1384     * dataPosition(), using the given class loader to initialize the class
1385     * loader of the Bundle for later retrieval of Parcelable objects.
1386     * Returns null if the previously written Bundle object was null.
1387     */
1388    public final Bundle readBundle(ClassLoader loader) {
1389        int length = readInt();
1390        if (length < 0) {
1391            return null;
1392        }
1393
1394        final Bundle bundle = new Bundle(this, length);
1395        if (loader != null) {
1396            bundle.setClassLoader(loader);
1397        }
1398        return bundle;
1399    }
1400
1401    /**
1402     * Read and return a byte[] object from the parcel.
1403     */
1404    public final native byte[] createByteArray();
1405
1406    /**
1407     * Read a byte[] object from the parcel and copy it into the
1408     * given byte array.
1409     */
1410    public final void readByteArray(byte[] val) {
1411        // TODO: make this a native method to avoid the extra copy.
1412        byte[] ba = createByteArray();
1413        if (ba.length == val.length) {
1414           System.arraycopy(ba, 0, val, 0, ba.length);
1415        } else {
1416            throw new RuntimeException("bad array lengths");
1417        }
1418    }
1419
1420    /**
1421     * Read and return a String[] object from the parcel.
1422     * {@hide}
1423     */
1424    public final String[] readStringArray() {
1425        String[] array = null;
1426
1427        int length = readInt();
1428        if (length >= 0)
1429        {
1430            array = new String[length];
1431
1432            for (int i = 0 ; i < length ; i++)
1433            {
1434                array[i] = readString();
1435            }
1436        }
1437
1438        return array;
1439    }
1440
1441    /**
1442     * Read and return a CharSequence[] object from the parcel.
1443     * {@hide}
1444     */
1445    public final CharSequence[] readCharSequenceArray() {
1446        CharSequence[] array = null;
1447
1448        int length = readInt();
1449        if (length >= 0)
1450        {
1451            array = new CharSequence[length];
1452
1453            for (int i = 0 ; i < length ; i++)
1454            {
1455                array[i] = readCharSequence();
1456            }
1457        }
1458
1459        return array;
1460    }
1461
1462    /**
1463     * Read and return a new ArrayList object from the parcel at the current
1464     * dataPosition().  Returns null if the previously written list object was
1465     * null.  The given class loader will be used to load any enclosed
1466     * Parcelables.
1467     */
1468    public final ArrayList readArrayList(ClassLoader loader) {
1469        int N = readInt();
1470        if (N < 0) {
1471            return null;
1472        }
1473        ArrayList l = new ArrayList(N);
1474        readListInternal(l, N, loader);
1475        return l;
1476    }
1477
1478    /**
1479     * Read and return a new Object array from the parcel at the current
1480     * dataPosition().  Returns null if the previously written array was
1481     * null.  The given class loader will be used to load any enclosed
1482     * Parcelables.
1483     */
1484    public final Object[] readArray(ClassLoader loader) {
1485        int N = readInt();
1486        if (N < 0) {
1487            return null;
1488        }
1489        Object[] l = new Object[N];
1490        readArrayInternal(l, N, loader);
1491        return l;
1492    }
1493
1494    /**
1495     * Read and return a new SparseArray object from the parcel at the current
1496     * dataPosition().  Returns null if the previously written list object was
1497     * null.  The given class loader will be used to load any enclosed
1498     * Parcelables.
1499     */
1500    public final SparseArray readSparseArray(ClassLoader loader) {
1501        int N = readInt();
1502        if (N < 0) {
1503            return null;
1504        }
1505        SparseArray sa = new SparseArray(N);
1506        readSparseArrayInternal(sa, N, loader);
1507        return sa;
1508    }
1509
1510    /**
1511     * Read and return a new SparseBooleanArray object from the parcel at the current
1512     * dataPosition().  Returns null if the previously written list object was
1513     * null.
1514     */
1515    public final SparseBooleanArray readSparseBooleanArray() {
1516        int N = readInt();
1517        if (N < 0) {
1518            return null;
1519        }
1520        SparseBooleanArray sa = new SparseBooleanArray(N);
1521        readSparseBooleanArrayInternal(sa, N);
1522        return sa;
1523    }
1524
1525    /**
1526     * Read and return a new ArrayList containing a particular object type from
1527     * the parcel that was written with {@link #writeTypedList} at the
1528     * current dataPosition().  Returns null if the
1529     * previously written list object was null.  The list <em>must</em> have
1530     * previously been written via {@link #writeTypedList} with the same object
1531     * type.
1532     *
1533     * @return A newly created ArrayList containing objects with the same data
1534     *         as those that were previously written.
1535     *
1536     * @see #writeTypedList
1537     */
1538    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1539        int N = readInt();
1540        if (N < 0) {
1541            return null;
1542        }
1543        ArrayList<T> l = new ArrayList<T>(N);
1544        while (N > 0) {
1545            if (readInt() != 0) {
1546                l.add(c.createFromParcel(this));
1547            } else {
1548                l.add(null);
1549            }
1550            N--;
1551        }
1552        return l;
1553    }
1554
1555    /**
1556     * Read into the given List items containing a particular object type
1557     * that were written with {@link #writeTypedList} at the
1558     * current dataPosition().  The list <em>must</em> have
1559     * previously been written via {@link #writeTypedList} with the same object
1560     * type.
1561     *
1562     * @return A newly created ArrayList containing objects with the same data
1563     *         as those that were previously written.
1564     *
1565     * @see #writeTypedList
1566     */
1567    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1568        int M = list.size();
1569        int N = readInt();
1570        int i = 0;
1571        for (; i < M && i < N; i++) {
1572            if (readInt() != 0) {
1573                list.set(i, c.createFromParcel(this));
1574            } else {
1575                list.set(i, null);
1576            }
1577        }
1578        for (; i<N; i++) {
1579            if (readInt() != 0) {
1580                list.add(c.createFromParcel(this));
1581            } else {
1582                list.add(null);
1583            }
1584        }
1585        for (; i<M; i++) {
1586            list.remove(N);
1587        }
1588    }
1589
1590    /**
1591     * Read and return a new ArrayList containing String objects from
1592     * the parcel that was written with {@link #writeStringList} at the
1593     * current dataPosition().  Returns null if the
1594     * previously written list object was null.
1595     *
1596     * @return A newly created ArrayList containing strings with the same data
1597     *         as those that were previously written.
1598     *
1599     * @see #writeStringList
1600     */
1601    public final ArrayList<String> createStringArrayList() {
1602        int N = readInt();
1603        if (N < 0) {
1604            return null;
1605        }
1606        ArrayList<String> l = new ArrayList<String>(N);
1607        while (N > 0) {
1608            l.add(readString());
1609            N--;
1610        }
1611        return l;
1612    }
1613
1614    /**
1615     * Read and return a new ArrayList containing IBinder objects from
1616     * the parcel that was written with {@link #writeBinderList} at the
1617     * current dataPosition().  Returns null if the
1618     * previously written list object was null.
1619     *
1620     * @return A newly created ArrayList containing strings with the same data
1621     *         as those that were previously written.
1622     *
1623     * @see #writeBinderList
1624     */
1625    public final ArrayList<IBinder> createBinderArrayList() {
1626        int N = readInt();
1627        if (N < 0) {
1628            return null;
1629        }
1630        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1631        while (N > 0) {
1632            l.add(readStrongBinder());
1633            N--;
1634        }
1635        return l;
1636    }
1637
1638    /**
1639     * Read into the given List items String objects that were written with
1640     * {@link #writeStringList} at the current dataPosition().
1641     *
1642     * @return A newly created ArrayList containing strings with the same data
1643     *         as those that were previously written.
1644     *
1645     * @see #writeStringList
1646     */
1647    public final void readStringList(List<String> list) {
1648        int M = list.size();
1649        int N = readInt();
1650        int i = 0;
1651        for (; i < M && i < N; i++) {
1652            list.set(i, readString());
1653        }
1654        for (; i<N; i++) {
1655            list.add(readString());
1656        }
1657        for (; i<M; i++) {
1658            list.remove(N);
1659        }
1660    }
1661
1662    /**
1663     * Read into the given List items IBinder objects that were written with
1664     * {@link #writeBinderList} at the current dataPosition().
1665     *
1666     * @return A newly created ArrayList containing strings with the same data
1667     *         as those that were previously written.
1668     *
1669     * @see #writeBinderList
1670     */
1671    public final void readBinderList(List<IBinder> list) {
1672        int M = list.size();
1673        int N = readInt();
1674        int i = 0;
1675        for (; i < M && i < N; i++) {
1676            list.set(i, readStrongBinder());
1677        }
1678        for (; i<N; i++) {
1679            list.add(readStrongBinder());
1680        }
1681        for (; i<M; i++) {
1682            list.remove(N);
1683        }
1684    }
1685
1686    /**
1687     * Read and return a new array containing a particular object type from
1688     * the parcel at the current dataPosition().  Returns null if the
1689     * previously written array was null.  The array <em>must</em> have
1690     * previously been written via {@link #writeTypedArray} with the same
1691     * object type.
1692     *
1693     * @return A newly created array containing objects with the same data
1694     *         as those that were previously written.
1695     *
1696     * @see #writeTypedArray
1697     */
1698    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1699        int N = readInt();
1700        if (N < 0) {
1701            return null;
1702        }
1703        T[] l = c.newArray(N);
1704        for (int i=0; i<N; i++) {
1705            if (readInt() != 0) {
1706                l[i] = c.createFromParcel(this);
1707            }
1708        }
1709        return l;
1710    }
1711
1712    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1713        int N = readInt();
1714        if (N == val.length) {
1715            for (int i=0; i<N; i++) {
1716                if (readInt() != 0) {
1717                    val[i] = c.createFromParcel(this);
1718                } else {
1719                    val[i] = null;
1720                }
1721            }
1722        } else {
1723            throw new RuntimeException("bad array lengths");
1724        }
1725    }
1726
1727    /**
1728     * @deprecated
1729     * @hide
1730     */
1731    @Deprecated
1732    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1733        return createTypedArray(c);
1734    }
1735
1736    /**
1737     * Write a heterogeneous array of Parcelable objects into the Parcel.
1738     * Each object in the array is written along with its class name, so
1739     * that the correct class can later be instantiated.  As a result, this
1740     * has significantly more overhead than {@link #writeTypedArray}, but will
1741     * correctly handle an array containing more than one type of object.
1742     *
1743     * @param value The array of objects to be written.
1744     * @param parcelableFlags Contextual flags as per
1745     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1746     *
1747     * @see #writeTypedArray
1748     */
1749    public final <T extends Parcelable> void writeParcelableArray(T[] value,
1750            int parcelableFlags) {
1751        if (value != null) {
1752            int N = value.length;
1753            writeInt(N);
1754            for (int i=0; i<N; i++) {
1755                writeParcelable(value[i], parcelableFlags);
1756            }
1757        } else {
1758            writeInt(-1);
1759        }
1760    }
1761
1762    /**
1763     * Read a typed object from a parcel.  The given class loader will be
1764     * used to load any enclosed Parcelables.  If it is null, the default class
1765     * loader will be used.
1766     */
1767    public final Object readValue(ClassLoader loader) {
1768        int type = readInt();
1769
1770        switch (type) {
1771        case VAL_NULL:
1772            return null;
1773
1774        case VAL_STRING:
1775            return readString();
1776
1777        case VAL_INTEGER:
1778            return readInt();
1779
1780        case VAL_MAP:
1781            return readHashMap(loader);
1782
1783        case VAL_PARCELABLE:
1784            return readParcelable(loader);
1785
1786        case VAL_SHORT:
1787            return (short) readInt();
1788
1789        case VAL_LONG:
1790            return readLong();
1791
1792        case VAL_FLOAT:
1793            return readFloat();
1794
1795        case VAL_DOUBLE:
1796            return readDouble();
1797
1798        case VAL_BOOLEAN:
1799            return readInt() == 1;
1800
1801        case VAL_CHARSEQUENCE:
1802            return readCharSequence();
1803
1804        case VAL_LIST:
1805            return readArrayList(loader);
1806
1807        case VAL_BOOLEANARRAY:
1808            return createBooleanArray();
1809
1810        case VAL_BYTEARRAY:
1811            return createByteArray();
1812
1813        case VAL_STRINGARRAY:
1814            return readStringArray();
1815
1816        case VAL_CHARSEQUENCEARRAY:
1817            return readCharSequenceArray();
1818
1819        case VAL_IBINDER:
1820            return readStrongBinder();
1821
1822        case VAL_OBJECTARRAY:
1823            return readArray(loader);
1824
1825        case VAL_INTARRAY:
1826            return createIntArray();
1827
1828        case VAL_LONGARRAY:
1829            return createLongArray();
1830
1831        case VAL_BYTE:
1832            return readByte();
1833
1834        case VAL_SERIALIZABLE:
1835            return readSerializable();
1836
1837        case VAL_PARCELABLEARRAY:
1838            return readParcelableArray(loader);
1839
1840        case VAL_SPARSEARRAY:
1841            return readSparseArray(loader);
1842
1843        case VAL_SPARSEBOOLEANARRAY:
1844            return readSparseBooleanArray();
1845
1846        case VAL_BUNDLE:
1847            return readBundle(loader); // loading will be deferred
1848
1849        default:
1850            int off = dataPosition() - 4;
1851            throw new RuntimeException(
1852                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
1853        }
1854    }
1855
1856    /**
1857     * Read and return a new Parcelable from the parcel.  The given class loader
1858     * will be used to load any enclosed Parcelables.  If it is null, the default
1859     * class loader will be used.
1860     * @param loader A ClassLoader from which to instantiate the Parcelable
1861     * object, or null for the default class loader.
1862     * @return Returns the newly created Parcelable, or null if a null
1863     * object has been written.
1864     * @throws BadParcelableException Throws BadParcelableException if there
1865     * was an error trying to instantiate the Parcelable.
1866     */
1867    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
1868        String name = readString();
1869        if (name == null) {
1870            return null;
1871        }
1872        Parcelable.Creator<T> creator;
1873        synchronized (mCreators) {
1874            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
1875            if (map == null) {
1876                map = new HashMap<String,Parcelable.Creator>();
1877                mCreators.put(loader, map);
1878            }
1879            creator = map.get(name);
1880            if (creator == null) {
1881                try {
1882                    Class c = loader == null ?
1883                        Class.forName(name) : Class.forName(name, true, loader);
1884                    Field f = c.getField("CREATOR");
1885                    creator = (Parcelable.Creator)f.get(null);
1886                }
1887                catch (IllegalAccessException e) {
1888                    Log.e("Parcel", "Class not found when unmarshalling: "
1889                                        + name + ", e: " + e);
1890                    throw new BadParcelableException(
1891                            "IllegalAccessException when unmarshalling: " + name);
1892                }
1893                catch (ClassNotFoundException e) {
1894                    Log.e("Parcel", "Class not found when unmarshalling: "
1895                                        + name + ", e: " + e);
1896                    throw new BadParcelableException(
1897                            "ClassNotFoundException when unmarshalling: " + name);
1898                }
1899                catch (ClassCastException e) {
1900                    throw new BadParcelableException("Parcelable protocol requires a "
1901                                        + "Parcelable.Creator object called "
1902                                        + " CREATOR on class " + name);
1903                }
1904                catch (NoSuchFieldException e) {
1905                    throw new BadParcelableException("Parcelable protocol requires a "
1906                                        + "Parcelable.Creator object called "
1907                                        + " CREATOR on class " + name);
1908                }
1909                if (creator == null) {
1910                    throw new BadParcelableException("Parcelable protocol requires a "
1911                                        + "Parcelable.Creator object called "
1912                                        + " CREATOR on class " + name);
1913                }
1914
1915                map.put(name, creator);
1916            }
1917        }
1918
1919        return creator.createFromParcel(this);
1920    }
1921
1922    /**
1923     * Read and return a new Parcelable array from the parcel.
1924     * The given class loader will be used to load any enclosed
1925     * Parcelables.
1926     * @return the Parcelable array, or null if the array is null
1927     */
1928    public final Parcelable[] readParcelableArray(ClassLoader loader) {
1929        int N = readInt();
1930        if (N < 0) {
1931            return null;
1932        }
1933        Parcelable[] p = new Parcelable[N];
1934        for (int i = 0; i < N; i++) {
1935            p[i] = (Parcelable) readParcelable(loader);
1936        }
1937        return p;
1938    }
1939
1940    /**
1941     * Read and return a new Serializable object from the parcel.
1942     * @return the Serializable object, or null if the Serializable name
1943     * wasn't found in the parcel.
1944     */
1945    public final Serializable readSerializable() {
1946        String name = readString();
1947        if (name == null) {
1948            // For some reason we were unable to read the name of the Serializable (either there
1949            // is nothing left in the Parcel to read, or the next value wasn't a String), so
1950            // return null, which indicates that the name wasn't found in the parcel.
1951            return null;
1952        }
1953
1954        byte[] serializedData = createByteArray();
1955        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
1956        try {
1957            ObjectInputStream ois = new ObjectInputStream(bais);
1958            return (Serializable) ois.readObject();
1959        } catch (IOException ioe) {
1960            throw new RuntimeException("Parcelable encountered " +
1961                "IOException reading a Serializable object (name = " + name +
1962                ")", ioe);
1963        } catch (ClassNotFoundException cnfe) {
1964            throw new RuntimeException("Parcelable encountered" +
1965                "ClassNotFoundException reading a Serializable object (name = "
1966                + name + ")", cnfe);
1967        }
1968    }
1969
1970    // Cache of previously looked up CREATOR.createFromParcel() methods for
1971    // particular classes.  Keys are the names of the classes, values are
1972    // Method objects.
1973    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
1974        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
1975
1976    static protected final Parcel obtain(int obj) {
1977        final Parcel[] pool = sHolderPool;
1978        synchronized (pool) {
1979            Parcel p;
1980            for (int i=0; i<POOL_SIZE; i++) {
1981                p = pool[i];
1982                if (p != null) {
1983                    pool[i] = null;
1984                    if (DEBUG_RECYCLE) {
1985                        p.mStack = new RuntimeException();
1986                    }
1987                    p.init(obj);
1988                    return p;
1989                }
1990            }
1991        }
1992        return new Parcel(obj);
1993    }
1994
1995    private Parcel(int obj) {
1996        if (DEBUG_RECYCLE) {
1997            mStack = new RuntimeException();
1998        }
1999        //Log.i("Parcel", "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2000        init(obj);
2001    }
2002
2003    @Override
2004    protected void finalize() throws Throwable {
2005        if (DEBUG_RECYCLE) {
2006            if (mStack != null) {
2007                Log.w("Parcel", "Client did not call Parcel.recycle()", mStack);
2008            }
2009        }
2010        destroy();
2011    }
2012
2013    private native void freeBuffer();
2014    private native void init(int obj);
2015    private native void destroy();
2016
2017    /* package */ void readMapInternal(Map outVal, int N,
2018        ClassLoader loader) {
2019        while (N > 0) {
2020            Object key = readValue(loader);
2021            Object value = readValue(loader);
2022            outVal.put(key, value);
2023            N--;
2024        }
2025    }
2026
2027    private void readListInternal(List outVal, int N,
2028        ClassLoader loader) {
2029        while (N > 0) {
2030            Object value = readValue(loader);
2031            //Log.d("Parcel", "Unmarshalling value=" + value);
2032            outVal.add(value);
2033            N--;
2034        }
2035    }
2036
2037    private void readArrayInternal(Object[] outVal, int N,
2038        ClassLoader loader) {
2039        for (int i = 0; i < N; i++) {
2040            Object value = readValue(loader);
2041            //Log.d("Parcel", "Unmarshalling value=" + value);
2042            outVal[i] = value;
2043        }
2044    }
2045
2046    private void readSparseArrayInternal(SparseArray outVal, int N,
2047        ClassLoader loader) {
2048        while (N > 0) {
2049            int key = readInt();
2050            Object value = readValue(loader);
2051            //Log.i("Parcel", "Unmarshalling key=" + key + " value=" + value);
2052            outVal.append(key, value);
2053            N--;
2054        }
2055    }
2056
2057
2058    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2059        while (N > 0) {
2060            int key = readInt();
2061            boolean value = this.readByte() == 1;
2062            //Log.i("Parcel", "Unmarshalling key=" + key + " value=" + value);
2063            outVal.append(key, value);
2064            N--;
2065        }
2066    }
2067}
2068