1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.lang.ref.WeakReference;
10import java.util.AbstractQueue;
11import java.util.Arrays;
12import java.util.Collection;
13import java.util.Iterator;
14import java.util.NoSuchElementException;
15import java.util.Objects;
16import java.util.Spliterator;
17import java.util.Spliterators;
18import java.util.concurrent.locks.Condition;
19import java.util.concurrent.locks.ReentrantLock;
20
21// BEGIN android-note
22// removed link to collections framework docs
23// END android-note
24
25/**
26 * A bounded {@linkplain BlockingQueue blocking queue} backed by an
27 * array.  This queue orders elements FIFO (first-in-first-out).  The
28 * <em>head</em> of the queue is that element that has been on the
29 * queue the longest time.  The <em>tail</em> of the queue is that
30 * element that has been on the queue the shortest time. New elements
31 * are inserted at the tail of the queue, and the queue retrieval
32 * operations obtain elements at the head of the queue.
33 *
34 * <p>This is a classic &quot;bounded buffer&quot;, in which a
35 * fixed-sized array holds elements inserted by producers and
36 * extracted by consumers.  Once created, the capacity cannot be
37 * changed.  Attempts to {@code put} an element into a full queue
38 * will result in the operation blocking; attempts to {@code take} an
39 * element from an empty queue will similarly block.
40 *
41 * <p>This class supports an optional fairness policy for ordering
42 * waiting producer and consumer threads.  By default, this ordering
43 * is not guaranteed. However, a queue constructed with fairness set
44 * to {@code true} grants threads access in FIFO order. Fairness
45 * generally decreases throughput but reduces variability and avoids
46 * starvation.
47 *
48 * <p>This class and its iterator implement all of the
49 * <em>optional</em> methods of the {@link Collection} and {@link
50 * Iterator} interfaces.
51 *
52 * @since 1.5
53 * @author Doug Lea
54 * @param <E> the type of elements held in this queue
55 */
56public class ArrayBlockingQueue<E> extends AbstractQueue<E>
57        implements BlockingQueue<E>, java.io.Serializable {
58
59    /**
60     * Serialization ID. This class relies on default serialization
61     * even for the items array, which is default-serialized, even if
62     * it is empty. Otherwise it could not be declared final, which is
63     * necessary here.
64     */
65    private static final long serialVersionUID = -817911632652898426L;
66
67    /** The queued items */
68    final Object[] items;
69
70    /** items index for next take, poll, peek or remove */
71    int takeIndex;
72
73    /** items index for next put, offer, or add */
74    int putIndex;
75
76    /** Number of elements in the queue */
77    int count;
78
79    /*
80     * Concurrency control uses the classic two-condition algorithm
81     * found in any textbook.
82     */
83
84    /** Main lock guarding all access */
85    final ReentrantLock lock;
86
87    /** Condition for waiting takes */
88    private final Condition notEmpty;
89
90    /** Condition for waiting puts */
91    private final Condition notFull;
92
93    /**
94     * Shared state for currently active iterators, or null if there
95     * are known not to be any.  Allows queue operations to update
96     * iterator state.
97     */
98    transient Itrs itrs;
99
100    // Internal helper methods
101
102    /**
103     * Circularly decrements array index i.
104     */
105    final int dec(int i) {
106        return ((i == 0) ? items.length : i) - 1;
107    }
108
109    /**
110     * Returns item at index i.
111     */
112    @SuppressWarnings("unchecked")
113    final E itemAt(int i) {
114        return (E) items[i];
115    }
116
117    /**
118     * Inserts element at current put position, advances, and signals.
119     * Call only when holding lock.
120     */
121    private void enqueue(E x) {
122        // assert lock.getHoldCount() == 1;
123        // assert items[putIndex] == null;
124        final Object[] items = this.items;
125        items[putIndex] = x;
126        if (++putIndex == items.length) putIndex = 0;
127        count++;
128        notEmpty.signal();
129    }
130
131    /**
132     * Extracts element at current take position, advances, and signals.
133     * Call only when holding lock.
134     */
135    private E dequeue() {
136        // assert lock.getHoldCount() == 1;
137        // assert items[takeIndex] != null;
138        final Object[] items = this.items;
139        @SuppressWarnings("unchecked")
140        E x = (E) items[takeIndex];
141        items[takeIndex] = null;
142        if (++takeIndex == items.length) takeIndex = 0;
143        count--;
144        if (itrs != null)
145            itrs.elementDequeued();
146        notFull.signal();
147        return x;
148    }
149
150    /**
151     * Deletes item at array index removeIndex.
152     * Utility for remove(Object) and iterator.remove.
153     * Call only when holding lock.
154     */
155    void removeAt(final int removeIndex) {
156        // assert lock.getHoldCount() == 1;
157        // assert items[removeIndex] != null;
158        // assert removeIndex >= 0 && removeIndex < items.length;
159        final Object[] items = this.items;
160        if (removeIndex == takeIndex) {
161            // removing front item; just advance
162            items[takeIndex] = null;
163            if (++takeIndex == items.length) takeIndex = 0;
164            count--;
165            if (itrs != null)
166                itrs.elementDequeued();
167        } else {
168            // an "interior" remove
169
170            // slide over all others up through putIndex.
171            for (int i = removeIndex, putIndex = this.putIndex;;) {
172                int pred = i;
173                if (++i == items.length) i = 0;
174                if (i == putIndex) {
175                    items[pred] = null;
176                    this.putIndex = pred;
177                    break;
178                }
179                items[pred] = items[i];
180            }
181            count--;
182            if (itrs != null)
183                itrs.removedAt(removeIndex);
184        }
185        notFull.signal();
186    }
187
188    /**
189     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
190     * capacity and default access policy.
191     *
192     * @param capacity the capacity of this queue
193     * @throws IllegalArgumentException if {@code capacity < 1}
194     */
195    public ArrayBlockingQueue(int capacity) {
196        this(capacity, false);
197    }
198
199    /**
200     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
201     * capacity and the specified access policy.
202     *
203     * @param capacity the capacity of this queue
204     * @param fair if {@code true} then queue accesses for threads blocked
205     *        on insertion or removal, are processed in FIFO order;
206     *        if {@code false} the access order is unspecified.
207     * @throws IllegalArgumentException if {@code capacity < 1}
208     */
209    public ArrayBlockingQueue(int capacity, boolean fair) {
210        if (capacity <= 0)
211            throw new IllegalArgumentException();
212        this.items = new Object[capacity];
213        lock = new ReentrantLock(fair);
214        notEmpty = lock.newCondition();
215        notFull =  lock.newCondition();
216    }
217
218    /**
219     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
220     * capacity, the specified access policy and initially containing the
221     * elements of the given collection,
222     * added in traversal order of the collection's iterator.
223     *
224     * @param capacity the capacity of this queue
225     * @param fair if {@code true} then queue accesses for threads blocked
226     *        on insertion or removal, are processed in FIFO order;
227     *        if {@code false} the access order is unspecified.
228     * @param c the collection of elements to initially contain
229     * @throws IllegalArgumentException if {@code capacity} is less than
230     *         {@code c.size()}, or less than 1.
231     * @throws NullPointerException if the specified collection or any
232     *         of its elements are null
233     */
234    public ArrayBlockingQueue(int capacity, boolean fair,
235                              Collection<? extends E> c) {
236        this(capacity, fair);
237
238        final ReentrantLock lock = this.lock;
239        lock.lock(); // Lock only for visibility, not mutual exclusion
240        try {
241            int i = 0;
242            try {
243                for (E e : c)
244                    items[i++] = Objects.requireNonNull(e);
245            } catch (ArrayIndexOutOfBoundsException ex) {
246                throw new IllegalArgumentException();
247            }
248            count = i;
249            putIndex = (i == capacity) ? 0 : i;
250        } finally {
251            lock.unlock();
252        }
253    }
254
255    /**
256     * Inserts the specified element at the tail of this queue if it is
257     * possible to do so immediately without exceeding the queue's capacity,
258     * returning {@code true} upon success and throwing an
259     * {@code IllegalStateException} if this queue is full.
260     *
261     * @param e the element to add
262     * @return {@code true} (as specified by {@link Collection#add})
263     * @throws IllegalStateException if this queue is full
264     * @throws NullPointerException if the specified element is null
265     */
266    public boolean add(E e) {
267        return super.add(e);
268    }
269
270    /**
271     * Inserts the specified element at the tail of this queue if it is
272     * possible to do so immediately without exceeding the queue's capacity,
273     * returning {@code true} upon success and {@code false} if this queue
274     * is full.  This method is generally preferable to method {@link #add},
275     * which can fail to insert an element only by throwing an exception.
276     *
277     * @throws NullPointerException if the specified element is null
278     */
279    public boolean offer(E e) {
280        Objects.requireNonNull(e);
281        final ReentrantLock lock = this.lock;
282        lock.lock();
283        try {
284            if (count == items.length)
285                return false;
286            else {
287                enqueue(e);
288                return true;
289            }
290        } finally {
291            lock.unlock();
292        }
293    }
294
295    /**
296     * Inserts the specified element at the tail of this queue, waiting
297     * for space to become available if the queue is full.
298     *
299     * @throws InterruptedException {@inheritDoc}
300     * @throws NullPointerException {@inheritDoc}
301     */
302    public void put(E e) throws InterruptedException {
303        Objects.requireNonNull(e);
304        final ReentrantLock lock = this.lock;
305        lock.lockInterruptibly();
306        try {
307            while (count == items.length)
308                notFull.await();
309            enqueue(e);
310        } finally {
311            lock.unlock();
312        }
313    }
314
315    /**
316     * Inserts the specified element at the tail of this queue, waiting
317     * up to the specified wait time for space to become available if
318     * the queue is full.
319     *
320     * @throws InterruptedException {@inheritDoc}
321     * @throws NullPointerException {@inheritDoc}
322     */
323    public boolean offer(E e, long timeout, TimeUnit unit)
324        throws InterruptedException {
325
326        Objects.requireNonNull(e);
327        long nanos = unit.toNanos(timeout);
328        final ReentrantLock lock = this.lock;
329        lock.lockInterruptibly();
330        try {
331            while (count == items.length) {
332                if (nanos <= 0L)
333                    return false;
334                nanos = notFull.awaitNanos(nanos);
335            }
336            enqueue(e);
337            return true;
338        } finally {
339            lock.unlock();
340        }
341    }
342
343    public E poll() {
344        final ReentrantLock lock = this.lock;
345        lock.lock();
346        try {
347            return (count == 0) ? null : dequeue();
348        } finally {
349            lock.unlock();
350        }
351    }
352
353    public E take() throws InterruptedException {
354        final ReentrantLock lock = this.lock;
355        lock.lockInterruptibly();
356        try {
357            while (count == 0)
358                notEmpty.await();
359            return dequeue();
360        } finally {
361            lock.unlock();
362        }
363    }
364
365    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
366        long nanos = unit.toNanos(timeout);
367        final ReentrantLock lock = this.lock;
368        lock.lockInterruptibly();
369        try {
370            while (count == 0) {
371                if (nanos <= 0L)
372                    return null;
373                nanos = notEmpty.awaitNanos(nanos);
374            }
375            return dequeue();
376        } finally {
377            lock.unlock();
378        }
379    }
380
381    public E peek() {
382        final ReentrantLock lock = this.lock;
383        lock.lock();
384        try {
385            return itemAt(takeIndex); // null when queue is empty
386        } finally {
387            lock.unlock();
388        }
389    }
390
391    // this doc comment is overridden to remove the reference to collections
392    // greater in size than Integer.MAX_VALUE
393    /**
394     * Returns the number of elements in this queue.
395     *
396     * @return the number of elements in this queue
397     */
398    public int size() {
399        final ReentrantLock lock = this.lock;
400        lock.lock();
401        try {
402            return count;
403        } finally {
404            lock.unlock();
405        }
406    }
407
408    // this doc comment is a modified copy of the inherited doc comment,
409    // without the reference to unlimited queues.
410    /**
411     * Returns the number of additional elements that this queue can ideally
412     * (in the absence of memory or resource constraints) accept without
413     * blocking. This is always equal to the initial capacity of this queue
414     * less the current {@code size} of this queue.
415     *
416     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
417     * an element will succeed by inspecting {@code remainingCapacity}
418     * because it may be the case that another thread is about to
419     * insert or remove an element.
420     */
421    public int remainingCapacity() {
422        final ReentrantLock lock = this.lock;
423        lock.lock();
424        try {
425            return items.length - count;
426        } finally {
427            lock.unlock();
428        }
429    }
430
431    /**
432     * Removes a single instance of the specified element from this queue,
433     * if it is present.  More formally, removes an element {@code e} such
434     * that {@code o.equals(e)}, if this queue contains one or more such
435     * elements.
436     * Returns {@code true} if this queue contained the specified element
437     * (or equivalently, if this queue changed as a result of the call).
438     *
439     * <p>Removal of interior elements in circular array based queues
440     * is an intrinsically slow and disruptive operation, so should
441     * be undertaken only in exceptional circumstances, ideally
442     * only when the queue is known not to be accessible by other
443     * threads.
444     *
445     * @param o element to be removed from this queue, if present
446     * @return {@code true} if this queue changed as a result of the call
447     */
448    public boolean remove(Object o) {
449        if (o == null) return false;
450        final ReentrantLock lock = this.lock;
451        lock.lock();
452        try {
453            if (count > 0) {
454                final Object[] items = this.items;
455                final int putIndex = this.putIndex;
456                int i = takeIndex;
457                do {
458                    if (o.equals(items[i])) {
459                        removeAt(i);
460                        return true;
461                    }
462                    if (++i == items.length) i = 0;
463                } while (i != putIndex);
464            }
465            return false;
466        } finally {
467            lock.unlock();
468        }
469    }
470
471    /**
472     * Returns {@code true} if this queue contains the specified element.
473     * More formally, returns {@code true} if and only if this queue contains
474     * at least one element {@code e} such that {@code o.equals(e)}.
475     *
476     * @param o object to be checked for containment in this queue
477     * @return {@code true} if this queue contains the specified element
478     */
479    public boolean contains(Object o) {
480        if (o == null) return false;
481        final ReentrantLock lock = this.lock;
482        lock.lock();
483        try {
484            if (count > 0) {
485                final Object[] items = this.items;
486                final int putIndex = this.putIndex;
487                int i = takeIndex;
488                do {
489                    if (o.equals(items[i]))
490                        return true;
491                    if (++i == items.length) i = 0;
492                } while (i != putIndex);
493            }
494            return false;
495        } finally {
496            lock.unlock();
497        }
498    }
499
500    /**
501     * Returns an array containing all of the elements in this queue, in
502     * proper sequence.
503     *
504     * <p>The returned array will be "safe" in that no references to it are
505     * maintained by this queue.  (In other words, this method must allocate
506     * a new array).  The caller is thus free to modify the returned array.
507     *
508     * <p>This method acts as bridge between array-based and collection-based
509     * APIs.
510     *
511     * @return an array containing all of the elements in this queue
512     */
513    public Object[] toArray() {
514        final ReentrantLock lock = this.lock;
515        lock.lock();
516        try {
517            final Object[] items = this.items;
518            final int end = takeIndex + count;
519            final Object[] a = Arrays.copyOfRange(items, takeIndex, end);
520            if (end != putIndex)
521                System.arraycopy(items, 0, a, items.length - takeIndex, putIndex);
522            return a;
523        } finally {
524            lock.unlock();
525        }
526    }
527
528    /**
529     * Returns an array containing all of the elements in this queue, in
530     * proper sequence; the runtime type of the returned array is that of
531     * the specified array.  If the queue fits in the specified array, it
532     * is returned therein.  Otherwise, a new array is allocated with the
533     * runtime type of the specified array and the size of this queue.
534     *
535     * <p>If this queue fits in the specified array with room to spare
536     * (i.e., the array has more elements than this queue), the element in
537     * the array immediately following the end of the queue is set to
538     * {@code null}.
539     *
540     * <p>Like the {@link #toArray()} method, this method acts as bridge between
541     * array-based and collection-based APIs.  Further, this method allows
542     * precise control over the runtime type of the output array, and may,
543     * under certain circumstances, be used to save allocation costs.
544     *
545     * <p>Suppose {@code x} is a queue known to contain only strings.
546     * The following code can be used to dump the queue into a newly
547     * allocated array of {@code String}:
548     *
549     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
550     *
551     * Note that {@code toArray(new Object[0])} is identical in function to
552     * {@code toArray()}.
553     *
554     * @param a the array into which the elements of the queue are to
555     *          be stored, if it is big enough; otherwise, a new array of the
556     *          same runtime type is allocated for this purpose
557     * @return an array containing all of the elements in this queue
558     * @throws ArrayStoreException if the runtime type of the specified array
559     *         is not a supertype of the runtime type of every element in
560     *         this queue
561     * @throws NullPointerException if the specified array is null
562     */
563    @SuppressWarnings("unchecked")
564    public <T> T[] toArray(T[] a) {
565        final ReentrantLock lock = this.lock;
566        lock.lock();
567        try {
568            final Object[] items = this.items;
569            final int count = this.count;
570            final int firstLeg = Math.min(items.length - takeIndex, count);
571            if (a.length < count) {
572                a = (T[]) Arrays.copyOfRange(items, takeIndex, takeIndex + count,
573                                             a.getClass());
574            } else {
575                System.arraycopy(items, takeIndex, a, 0, firstLeg);
576                if (a.length > count)
577                    a[count] = null;
578            }
579            if (firstLeg < count)
580                System.arraycopy(items, 0, a, firstLeg, putIndex);
581            return a;
582        } finally {
583            lock.unlock();
584        }
585    }
586
587    public String toString() {
588        return Helpers.collectionToString(this);
589    }
590
591    /**
592     * Atomically removes all of the elements from this queue.
593     * The queue will be empty after this call returns.
594     */
595    public void clear() {
596        final ReentrantLock lock = this.lock;
597        lock.lock();
598        try {
599            int k = count;
600            if (k > 0) {
601                final Object[] items = this.items;
602                final int putIndex = this.putIndex;
603                int i = takeIndex;
604                do {
605                    items[i] = null;
606                    if (++i == items.length) i = 0;
607                } while (i != putIndex);
608                takeIndex = putIndex;
609                count = 0;
610                if (itrs != null)
611                    itrs.queueIsEmpty();
612                for (; k > 0 && lock.hasWaiters(notFull); k--)
613                    notFull.signal();
614            }
615        } finally {
616            lock.unlock();
617        }
618    }
619
620    /**
621     * @throws UnsupportedOperationException {@inheritDoc}
622     * @throws ClassCastException            {@inheritDoc}
623     * @throws NullPointerException          {@inheritDoc}
624     * @throws IllegalArgumentException      {@inheritDoc}
625     */
626    public int drainTo(Collection<? super E> c) {
627        return drainTo(c, Integer.MAX_VALUE);
628    }
629
630    /**
631     * @throws UnsupportedOperationException {@inheritDoc}
632     * @throws ClassCastException            {@inheritDoc}
633     * @throws NullPointerException          {@inheritDoc}
634     * @throws IllegalArgumentException      {@inheritDoc}
635     */
636    public int drainTo(Collection<? super E> c, int maxElements) {
637        Objects.requireNonNull(c);
638        if (c == this)
639            throw new IllegalArgumentException();
640        if (maxElements <= 0)
641            return 0;
642        final Object[] items = this.items;
643        final ReentrantLock lock = this.lock;
644        lock.lock();
645        try {
646            int n = Math.min(maxElements, count);
647            int take = takeIndex;
648            int i = 0;
649            try {
650                while (i < n) {
651                    @SuppressWarnings("unchecked")
652                    E x = (E) items[take];
653                    c.add(x);
654                    items[take] = null;
655                    if (++take == items.length) take = 0;
656                    i++;
657                }
658                return n;
659            } finally {
660                // Restore invariants even if c.add() threw
661                if (i > 0) {
662                    count -= i;
663                    takeIndex = take;
664                    if (itrs != null) {
665                        if (count == 0)
666                            itrs.queueIsEmpty();
667                        else if (i > take)
668                            itrs.takeIndexWrapped();
669                    }
670                    for (; i > 0 && lock.hasWaiters(notFull); i--)
671                        notFull.signal();
672                }
673            }
674        } finally {
675            lock.unlock();
676        }
677    }
678
679    /**
680     * Returns an iterator over the elements in this queue in proper sequence.
681     * The elements will be returned in order from first (head) to last (tail).
682     *
683     * <p>The returned iterator is
684     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
685     *
686     * @return an iterator over the elements in this queue in proper sequence
687     */
688    public Iterator<E> iterator() {
689        return new Itr();
690    }
691
692    /**
693     * Shared data between iterators and their queue, allowing queue
694     * modifications to update iterators when elements are removed.
695     *
696     * This adds a lot of complexity for the sake of correctly
697     * handling some uncommon operations, but the combination of
698     * circular-arrays and supporting interior removes (i.e., those
699     * not at head) would cause iterators to sometimes lose their
700     * places and/or (re)report elements they shouldn't.  To avoid
701     * this, when a queue has one or more iterators, it keeps iterator
702     * state consistent by:
703     *
704     * (1) keeping track of the number of "cycles", that is, the
705     *     number of times takeIndex has wrapped around to 0.
706     * (2) notifying all iterators via the callback removedAt whenever
707     *     an interior element is removed (and thus other elements may
708     *     be shifted).
709     *
710     * These suffice to eliminate iterator inconsistencies, but
711     * unfortunately add the secondary responsibility of maintaining
712     * the list of iterators.  We track all active iterators in a
713     * simple linked list (accessed only when the queue's lock is
714     * held) of weak references to Itr.  The list is cleaned up using
715     * 3 different mechanisms:
716     *
717     * (1) Whenever a new iterator is created, do some O(1) checking for
718     *     stale list elements.
719     *
720     * (2) Whenever takeIndex wraps around to 0, check for iterators
721     *     that have been unused for more than one wrap-around cycle.
722     *
723     * (3) Whenever the queue becomes empty, all iterators are notified
724     *     and this entire data structure is discarded.
725     *
726     * So in addition to the removedAt callback that is necessary for
727     * correctness, iterators have the shutdown and takeIndexWrapped
728     * callbacks that help remove stale iterators from the list.
729     *
730     * Whenever a list element is examined, it is expunged if either
731     * the GC has determined that the iterator is discarded, or if the
732     * iterator reports that it is "detached" (does not need any
733     * further state updates).  Overhead is maximal when takeIndex
734     * never advances, iterators are discarded before they are
735     * exhausted, and all removals are interior removes, in which case
736     * all stale iterators are discovered by the GC.  But even in this
737     * case we don't increase the amortized complexity.
738     *
739     * Care must be taken to keep list sweeping methods from
740     * reentrantly invoking another such method, causing subtle
741     * corruption bugs.
742     */
743    class Itrs {
744
745        /**
746         * Node in a linked list of weak iterator references.
747         */
748        private class Node extends WeakReference<Itr> {
749            Node next;
750
751            Node(Itr iterator, Node next) {
752                super(iterator);
753                this.next = next;
754            }
755        }
756
757        /** Incremented whenever takeIndex wraps around to 0 */
758        int cycles;
759
760        /** Linked list of weak iterator references */
761        private Node head;
762
763        /** Used to expunge stale iterators */
764        private Node sweeper;
765
766        private static final int SHORT_SWEEP_PROBES = 4;
767        private static final int LONG_SWEEP_PROBES = 16;
768
769        Itrs(Itr initial) {
770            register(initial);
771        }
772
773        /**
774         * Sweeps itrs, looking for and expunging stale iterators.
775         * If at least one was found, tries harder to find more.
776         * Called only from iterating thread.
777         *
778         * @param tryHarder whether to start in try-harder mode, because
779         * there is known to be at least one iterator to collect
780         */
781        void doSomeSweeping(boolean tryHarder) {
782            // assert lock.getHoldCount() == 1;
783            // assert head != null;
784            int probes = tryHarder ? LONG_SWEEP_PROBES : SHORT_SWEEP_PROBES;
785            Node o, p;
786            final Node sweeper = this.sweeper;
787            boolean passedGo;   // to limit search to one full sweep
788
789            if (sweeper == null) {
790                o = null;
791                p = head;
792                passedGo = true;
793            } else {
794                o = sweeper;
795                p = o.next;
796                passedGo = false;
797            }
798
799            for (; probes > 0; probes--) {
800                if (p == null) {
801                    if (passedGo)
802                        break;
803                    o = null;
804                    p = head;
805                    passedGo = true;
806                }
807                final Itr it = p.get();
808                final Node next = p.next;
809                if (it == null || it.isDetached()) {
810                    // found a discarded/exhausted iterator
811                    probes = LONG_SWEEP_PROBES; // "try harder"
812                    // unlink p
813                    p.clear();
814                    p.next = null;
815                    if (o == null) {
816                        head = next;
817                        if (next == null) {
818                            // We've run out of iterators to track; retire
819                            itrs = null;
820                            return;
821                        }
822                    }
823                    else
824                        o.next = next;
825                } else {
826                    o = p;
827                }
828                p = next;
829            }
830
831            this.sweeper = (p == null) ? null : o;
832        }
833
834        /**
835         * Adds a new iterator to the linked list of tracked iterators.
836         */
837        void register(Itr itr) {
838            // assert lock.getHoldCount() == 1;
839            head = new Node(itr, head);
840        }
841
842        /**
843         * Called whenever takeIndex wraps around to 0.
844         *
845         * Notifies all iterators, and expunges any that are now stale.
846         */
847        void takeIndexWrapped() {
848            // assert lock.getHoldCount() == 1;
849            cycles++;
850            for (Node o = null, p = head; p != null;) {
851                final Itr it = p.get();
852                final Node next = p.next;
853                if (it == null || it.takeIndexWrapped()) {
854                    // unlink p
855                    // assert it == null || it.isDetached();
856                    p.clear();
857                    p.next = null;
858                    if (o == null)
859                        head = next;
860                    else
861                        o.next = next;
862                } else {
863                    o = p;
864                }
865                p = next;
866            }
867            if (head == null)   // no more iterators to track
868                itrs = null;
869        }
870
871        /**
872         * Called whenever an interior remove (not at takeIndex) occurred.
873         *
874         * Notifies all iterators, and expunges any that are now stale.
875         */
876        void removedAt(int removedIndex) {
877            for (Node o = null, p = head; p != null;) {
878                final Itr it = p.get();
879                final Node next = p.next;
880                if (it == null || it.removedAt(removedIndex)) {
881                    // unlink p
882                    // assert it == null || it.isDetached();
883                    p.clear();
884                    p.next = null;
885                    if (o == null)
886                        head = next;
887                    else
888                        o.next = next;
889                } else {
890                    o = p;
891                }
892                p = next;
893            }
894            if (head == null)   // no more iterators to track
895                itrs = null;
896        }
897
898        /**
899         * Called whenever the queue becomes empty.
900         *
901         * Notifies all active iterators that the queue is empty,
902         * clears all weak refs, and unlinks the itrs datastructure.
903         */
904        void queueIsEmpty() {
905            // assert lock.getHoldCount() == 1;
906            for (Node p = head; p != null; p = p.next) {
907                Itr it = p.get();
908                if (it != null) {
909                    p.clear();
910                    it.shutdown();
911                }
912            }
913            head = null;
914            itrs = null;
915        }
916
917        /**
918         * Called whenever an element has been dequeued (at takeIndex).
919         */
920        void elementDequeued() {
921            // assert lock.getHoldCount() == 1;
922            if (count == 0)
923                queueIsEmpty();
924            else if (takeIndex == 0)
925                takeIndexWrapped();
926        }
927    }
928
929    /**
930     * Iterator for ArrayBlockingQueue.
931     *
932     * To maintain weak consistency with respect to puts and takes, we
933     * read ahead one slot, so as to not report hasNext true but then
934     * not have an element to return.
935     *
936     * We switch into "detached" mode (allowing prompt unlinking from
937     * itrs without help from the GC) when all indices are negative, or
938     * when hasNext returns false for the first time.  This allows the
939     * iterator to track concurrent updates completely accurately,
940     * except for the corner case of the user calling Iterator.remove()
941     * after hasNext() returned false.  Even in this case, we ensure
942     * that we don't remove the wrong element by keeping track of the
943     * expected element to remove, in lastItem.  Yes, we may fail to
944     * remove lastItem from the queue if it moved due to an interleaved
945     * interior remove while in detached mode.
946     */
947    private class Itr implements Iterator<E> {
948        /** Index to look for new nextItem; NONE at end */
949        private int cursor;
950
951        /** Element to be returned by next call to next(); null if none */
952        private E nextItem;
953
954        /** Index of nextItem; NONE if none, REMOVED if removed elsewhere */
955        private int nextIndex;
956
957        /** Last element returned; null if none or not detached. */
958        private E lastItem;
959
960        /** Index of lastItem, NONE if none, REMOVED if removed elsewhere */
961        private int lastRet;
962
963        /** Previous value of takeIndex, or DETACHED when detached */
964        private int prevTakeIndex;
965
966        /** Previous value of iters.cycles */
967        private int prevCycles;
968
969        /** Special index value indicating "not available" or "undefined" */
970        private static final int NONE = -1;
971
972        /**
973         * Special index value indicating "removed elsewhere", that is,
974         * removed by some operation other than a call to this.remove().
975         */
976        private static final int REMOVED = -2;
977
978        /** Special value for prevTakeIndex indicating "detached mode" */
979        private static final int DETACHED = -3;
980
981        Itr() {
982            // assert lock.getHoldCount() == 0;
983            lastRet = NONE;
984            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
985            lock.lock();
986            try {
987                if (count == 0) {
988                    // assert itrs == null;
989                    cursor = NONE;
990                    nextIndex = NONE;
991                    prevTakeIndex = DETACHED;
992                } else {
993                    final int takeIndex = ArrayBlockingQueue.this.takeIndex;
994                    prevTakeIndex = takeIndex;
995                    nextItem = itemAt(nextIndex = takeIndex);
996                    cursor = incCursor(takeIndex);
997                    if (itrs == null) {
998                        itrs = new Itrs(this);
999                    } else {
1000                        itrs.register(this); // in this order
1001                        itrs.doSomeSweeping(false);
1002                    }
1003                    prevCycles = itrs.cycles;
1004                    // assert takeIndex >= 0;
1005                    // assert prevTakeIndex == takeIndex;
1006                    // assert nextIndex >= 0;
1007                    // assert nextItem != null;
1008                }
1009            } finally {
1010                lock.unlock();
1011            }
1012        }
1013
1014        boolean isDetached() {
1015            // assert lock.getHoldCount() == 1;
1016            return prevTakeIndex < 0;
1017        }
1018
1019        private int incCursor(int index) {
1020            // assert lock.getHoldCount() == 1;
1021            if (++index == items.length) index = 0;
1022            if (index == putIndex) index = NONE;
1023            return index;
1024        }
1025
1026        /**
1027         * Returns true if index is invalidated by the given number of
1028         * dequeues, starting from prevTakeIndex.
1029         */
1030        private boolean invalidated(int index, int prevTakeIndex,
1031                                    long dequeues, int length) {
1032            if (index < 0)
1033                return false;
1034            int distance = index - prevTakeIndex;
1035            if (distance < 0)
1036                distance += length;
1037            return dequeues > distance;
1038        }
1039
1040        /**
1041         * Adjusts indices to incorporate all dequeues since the last
1042         * operation on this iterator.  Call only from iterating thread.
1043         */
1044        private void incorporateDequeues() {
1045            // assert lock.getHoldCount() == 1;
1046            // assert itrs != null;
1047            // assert !isDetached();
1048            // assert count > 0;
1049
1050            final int cycles = itrs.cycles;
1051            final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1052            final int prevCycles = this.prevCycles;
1053            final int prevTakeIndex = this.prevTakeIndex;
1054
1055            if (cycles != prevCycles || takeIndex != prevTakeIndex) {
1056                final int len = items.length;
1057                // how far takeIndex has advanced since the previous
1058                // operation of this iterator
1059                long dequeues = (cycles - prevCycles) * len
1060                    + (takeIndex - prevTakeIndex);
1061
1062                // Check indices for invalidation
1063                if (invalidated(lastRet, prevTakeIndex, dequeues, len))
1064                    lastRet = REMOVED;
1065                if (invalidated(nextIndex, prevTakeIndex, dequeues, len))
1066                    nextIndex = REMOVED;
1067                if (invalidated(cursor, prevTakeIndex, dequeues, len))
1068                    cursor = takeIndex;
1069
1070                if (cursor < 0 && nextIndex < 0 && lastRet < 0)
1071                    detach();
1072                else {
1073                    this.prevCycles = cycles;
1074                    this.prevTakeIndex = takeIndex;
1075                }
1076            }
1077        }
1078
1079        /**
1080         * Called when itrs should stop tracking this iterator, either
1081         * because there are no more indices to update (cursor < 0 &&
1082         * nextIndex < 0 && lastRet < 0) or as a special exception, when
1083         * lastRet >= 0, because hasNext() is about to return false for the
1084         * first time.  Call only from iterating thread.
1085         */
1086        private void detach() {
1087            // Switch to detached mode
1088            // assert lock.getHoldCount() == 1;
1089            // assert cursor == NONE;
1090            // assert nextIndex < 0;
1091            // assert lastRet < 0 || nextItem == null;
1092            // assert lastRet < 0 ^ lastItem != null;
1093            if (prevTakeIndex >= 0) {
1094                // assert itrs != null;
1095                prevTakeIndex = DETACHED;
1096                // try to unlink from itrs (but not too hard)
1097                itrs.doSomeSweeping(true);
1098            }
1099        }
1100
1101        /**
1102         * For performance reasons, we would like not to acquire a lock in
1103         * hasNext in the common case.  To allow for this, we only access
1104         * fields (i.e. nextItem) that are not modified by update operations
1105         * triggered by queue modifications.
1106         */
1107        public boolean hasNext() {
1108            // assert lock.getHoldCount() == 0;
1109            if (nextItem != null)
1110                return true;
1111            noNext();
1112            return false;
1113        }
1114
1115        private void noNext() {
1116            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1117            lock.lock();
1118            try {
1119                // assert cursor == NONE;
1120                // assert nextIndex == NONE;
1121                if (!isDetached()) {
1122                    // assert lastRet >= 0;
1123                    incorporateDequeues(); // might update lastRet
1124                    if (lastRet >= 0) {
1125                        lastItem = itemAt(lastRet);
1126                        // assert lastItem != null;
1127                        detach();
1128                    }
1129                }
1130                // assert isDetached();
1131                // assert lastRet < 0 ^ lastItem != null;
1132            } finally {
1133                lock.unlock();
1134            }
1135        }
1136
1137        public E next() {
1138            // assert lock.getHoldCount() == 0;
1139            final E x = nextItem;
1140            if (x == null)
1141                throw new NoSuchElementException();
1142            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1143            lock.lock();
1144            try {
1145                if (!isDetached())
1146                    incorporateDequeues();
1147                // assert nextIndex != NONE;
1148                // assert lastItem == null;
1149                lastRet = nextIndex;
1150                final int cursor = this.cursor;
1151                if (cursor >= 0) {
1152                    nextItem = itemAt(nextIndex = cursor);
1153                    // assert nextItem != null;
1154                    this.cursor = incCursor(cursor);
1155                } else {
1156                    nextIndex = NONE;
1157                    nextItem = null;
1158                }
1159            } finally {
1160                lock.unlock();
1161            }
1162            return x;
1163        }
1164
1165        public void remove() {
1166            // assert lock.getHoldCount() == 0;
1167            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1168            lock.lock();
1169            try {
1170                if (!isDetached())
1171                    incorporateDequeues(); // might update lastRet or detach
1172                final int lastRet = this.lastRet;
1173                this.lastRet = NONE;
1174                if (lastRet >= 0) {
1175                    if (!isDetached())
1176                        removeAt(lastRet);
1177                    else {
1178                        final E lastItem = this.lastItem;
1179                        // assert lastItem != null;
1180                        this.lastItem = null;
1181                        if (itemAt(lastRet) == lastItem)
1182                            removeAt(lastRet);
1183                    }
1184                } else if (lastRet == NONE)
1185                    throw new IllegalStateException();
1186                // else lastRet == REMOVED and the last returned element was
1187                // previously asynchronously removed via an operation other
1188                // than this.remove(), so nothing to do.
1189
1190                if (cursor < 0 && nextIndex < 0)
1191                    detach();
1192            } finally {
1193                lock.unlock();
1194                // assert lastRet == NONE;
1195                // assert lastItem == null;
1196            }
1197        }
1198
1199        /**
1200         * Called to notify the iterator that the queue is empty, or that it
1201         * has fallen hopelessly behind, so that it should abandon any
1202         * further iteration, except possibly to return one more element
1203         * from next(), as promised by returning true from hasNext().
1204         */
1205        void shutdown() {
1206            // assert lock.getHoldCount() == 1;
1207            cursor = NONE;
1208            if (nextIndex >= 0)
1209                nextIndex = REMOVED;
1210            if (lastRet >= 0) {
1211                lastRet = REMOVED;
1212                lastItem = null;
1213            }
1214            prevTakeIndex = DETACHED;
1215            // Don't set nextItem to null because we must continue to be
1216            // able to return it on next().
1217            //
1218            // Caller will unlink from itrs when convenient.
1219        }
1220
1221        private int distance(int index, int prevTakeIndex, int length) {
1222            int distance = index - prevTakeIndex;
1223            if (distance < 0)
1224                distance += length;
1225            return distance;
1226        }
1227
1228        /**
1229         * Called whenever an interior remove (not at takeIndex) occurred.
1230         *
1231         * @return true if this iterator should be unlinked from itrs
1232         */
1233        boolean removedAt(int removedIndex) {
1234            // assert lock.getHoldCount() == 1;
1235            if (isDetached())
1236                return true;
1237
1238            final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1239            final int prevTakeIndex = this.prevTakeIndex;
1240            final int len = items.length;
1241            // distance from prevTakeIndex to removedIndex
1242            final int removedDistance =
1243                len * (itrs.cycles - this.prevCycles
1244                       + ((removedIndex < takeIndex) ? 1 : 0))
1245                + (removedIndex - prevTakeIndex);
1246            // assert itrs.cycles - this.prevCycles >= 0;
1247            // assert itrs.cycles - this.prevCycles <= 1;
1248            // assert removedDistance > 0;
1249            // assert removedIndex != takeIndex;
1250            int cursor = this.cursor;
1251            if (cursor >= 0) {
1252                int x = distance(cursor, prevTakeIndex, len);
1253                if (x == removedDistance) {
1254                    if (cursor == putIndex)
1255                        this.cursor = cursor = NONE;
1256                }
1257                else if (x > removedDistance) {
1258                    // assert cursor != prevTakeIndex;
1259                    this.cursor = cursor = dec(cursor);
1260                }
1261            }
1262            int lastRet = this.lastRet;
1263            if (lastRet >= 0) {
1264                int x = distance(lastRet, prevTakeIndex, len);
1265                if (x == removedDistance)
1266                    this.lastRet = lastRet = REMOVED;
1267                else if (x > removedDistance)
1268                    this.lastRet = lastRet = dec(lastRet);
1269            }
1270            int nextIndex = this.nextIndex;
1271            if (nextIndex >= 0) {
1272                int x = distance(nextIndex, prevTakeIndex, len);
1273                if (x == removedDistance)
1274                    this.nextIndex = nextIndex = REMOVED;
1275                else if (x > removedDistance)
1276                    this.nextIndex = nextIndex = dec(nextIndex);
1277            }
1278            if (cursor < 0 && nextIndex < 0 && lastRet < 0) {
1279                this.prevTakeIndex = DETACHED;
1280                return true;
1281            }
1282            return false;
1283        }
1284
1285        /**
1286         * Called whenever takeIndex wraps around to zero.
1287         *
1288         * @return true if this iterator should be unlinked from itrs
1289         */
1290        boolean takeIndexWrapped() {
1291            // assert lock.getHoldCount() == 1;
1292            if (isDetached())
1293                return true;
1294            if (itrs.cycles - prevCycles > 1) {
1295                // All the elements that existed at the time of the last
1296                // operation are gone, so abandon further iteration.
1297                shutdown();
1298                return true;
1299            }
1300            return false;
1301        }
1302
1303//         /** Uncomment for debugging. */
1304//         public String toString() {
1305//             return ("cursor=" + cursor + " " +
1306//                     "nextIndex=" + nextIndex + " " +
1307//                     "lastRet=" + lastRet + " " +
1308//                     "nextItem=" + nextItem + " " +
1309//                     "lastItem=" + lastItem + " " +
1310//                     "prevCycles=" + prevCycles + " " +
1311//                     "prevTakeIndex=" + prevTakeIndex + " " +
1312//                     "size()=" + size() + " " +
1313//                     "remainingCapacity()=" + remainingCapacity());
1314//         }
1315    }
1316
1317    /**
1318     * Returns a {@link Spliterator} over the elements in this queue.
1319     *
1320     * <p>The returned spliterator is
1321     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1322     *
1323     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1324     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1325     *
1326     * @implNote
1327     * The {@code Spliterator} implements {@code trySplit} to permit limited
1328     * parallelism.
1329     *
1330     * @return a {@code Spliterator} over the elements in this queue
1331     * @since 1.8
1332     */
1333    public Spliterator<E> spliterator() {
1334        return Spliterators.spliterator
1335            (this, (Spliterator.ORDERED |
1336                    Spliterator.NONNULL |
1337                    Spliterator.CONCURRENT));
1338    }
1339
1340}
1341