ArrayBlockingQueue.java revision edf43d27e240d82106f39ae91404963c23987234
1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.lang.ref.WeakReference;
10import java.util.Arrays;
11import java.util.AbstractQueue;
12import java.util.Collection;
13import java.util.Iterator;
14import java.util.NoSuchElementException;
15import java.util.concurrent.locks.Condition;
16import java.util.concurrent.locks.ReentrantLock;
17
18// BEGIN android-note
19// removed link to collections framework docs
20// END android-note
21
22/**
23 * A bounded {@linkplain BlockingQueue blocking queue} backed by an
24 * array.  This queue orders elements FIFO (first-in-first-out).  The
25 * <em>head</em> of the queue is that element that has been on the
26 * queue the longest time.  The <em>tail</em> of the queue is that
27 * element that has been on the queue the shortest time. New elements
28 * are inserted at the tail of the queue, and the queue retrieval
29 * operations obtain elements at the head of the queue.
30 *
31 * <p>This is a classic &quot;bounded buffer&quot;, in which a
32 * fixed-sized array holds elements inserted by producers and
33 * extracted by consumers.  Once created, the capacity cannot be
34 * changed.  Attempts to {@code put} an element into a full queue
35 * will result in the operation blocking; attempts to {@code take} an
36 * element from an empty queue will similarly block.
37 *
38 * <p>This class supports an optional fairness policy for ordering
39 * waiting producer and consumer threads.  By default, this ordering
40 * is not guaranteed. However, a queue constructed with fairness set
41 * to {@code true} grants threads access in FIFO order. Fairness
42 * generally decreases throughput but reduces variability and avoids
43 * starvation.
44 *
45 * <p>This class and its iterator implement all of the
46 * <em>optional</em> methods of the {@link Collection} and {@link
47 * Iterator} interfaces.
48 *
49 * @since 1.5
50 * @author Doug Lea
51 * @param <E> the type of elements held in this queue
52 */
53public class ArrayBlockingQueue<E> extends AbstractQueue<E>
54        implements BlockingQueue<E>, java.io.Serializable {
55
56    /**
57     * Serialization ID. This class relies on default serialization
58     * even for the items array, which is default-serialized, even if
59     * it is empty. Otherwise it could not be declared final, which is
60     * necessary here.
61     */
62    private static final long serialVersionUID = -817911632652898426L;
63
64    /** The queued items */
65    final Object[] items;
66
67    /** items index for next take, poll, peek or remove */
68    int takeIndex;
69
70    /** items index for next put, offer, or add */
71    int putIndex;
72
73    /** Number of elements in the queue */
74    int count;
75
76    /*
77     * Concurrency control uses the classic two-condition algorithm
78     * found in any textbook.
79     */
80
81    /** Main lock guarding all access */
82    final ReentrantLock lock;
83
84    /** Condition for waiting takes */
85    private final Condition notEmpty;
86
87    /** Condition for waiting puts */
88    private final Condition notFull;
89
90    /**
91     * Shared state for currently active iterators, or null if there
92     * are known not to be any.  Allows queue operations to update
93     * iterator state.
94     */
95    transient Itrs itrs = null;
96
97    // Internal helper methods
98
99    /**
100     * Circularly decrements array index i.
101     */
102    final int dec(int i) {
103        return ((i == 0) ? items.length : i) - 1;
104    }
105
106    /**
107     * Returns item at index i.
108     */
109    @SuppressWarnings("unchecked")
110    final E itemAt(int i) {
111        return (E) items[i];
112    }
113
114    /**
115     * Inserts element at current put position, advances, and signals.
116     * Call only when holding lock.
117     */
118    private void enqueue(E x) {
119        // assert lock.getHoldCount() == 1;
120        // assert items[putIndex] == null;
121        final Object[] items = this.items;
122        items[putIndex] = x;
123        if (++putIndex == items.length) putIndex = 0;
124        count++;
125        notEmpty.signal();
126    }
127
128    /**
129     * Extracts element at current take position, advances, and signals.
130     * Call only when holding lock.
131     */
132    private E dequeue() {
133        // assert lock.getHoldCount() == 1;
134        // assert items[takeIndex] != null;
135        final Object[] items = this.items;
136        @SuppressWarnings("unchecked")
137        E x = (E) items[takeIndex];
138        items[takeIndex] = null;
139        if (++takeIndex == items.length) takeIndex = 0;
140        count--;
141        if (itrs != null)
142            itrs.elementDequeued();
143        notFull.signal();
144        return x;
145    }
146
147    /**
148     * Deletes item at array index removeIndex.
149     * Utility for remove(Object) and iterator.remove.
150     * Call only when holding lock.
151     */
152    void removeAt(final int removeIndex) {
153        // assert lock.getHoldCount() == 1;
154        // assert items[removeIndex] != null;
155        // assert removeIndex >= 0 && removeIndex < items.length;
156        final Object[] items = this.items;
157        if (removeIndex == takeIndex) {
158            // removing front item; just advance
159            items[takeIndex] = null;
160            if (++takeIndex == items.length) takeIndex = 0;
161            count--;
162            if (itrs != null)
163                itrs.elementDequeued();
164        } else {
165            // an "interior" remove
166
167            // slide over all others up through putIndex.
168            for (int i = removeIndex, putIndex = this.putIndex;;) {
169                int pred = i;
170                if (++i == items.length) i = 0;
171                if (i == putIndex) {
172                    items[pred] = null;
173                    this.putIndex = pred;
174                    break;
175                }
176                items[pred] = items[i];
177            }
178            count--;
179            if (itrs != null)
180                itrs.removedAt(removeIndex);
181        }
182        notFull.signal();
183    }
184
185    /**
186     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
187     * capacity and default access policy.
188     *
189     * @param capacity the capacity of this queue
190     * @throws IllegalArgumentException if {@code capacity < 1}
191     */
192    public ArrayBlockingQueue(int capacity) {
193        this(capacity, false);
194    }
195
196    /**
197     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
198     * capacity and the specified access policy.
199     *
200     * @param capacity the capacity of this queue
201     * @param fair if {@code true} then queue accesses for threads blocked
202     *        on insertion or removal, are processed in FIFO order;
203     *        if {@code false} the access order is unspecified.
204     * @throws IllegalArgumentException if {@code capacity < 1}
205     */
206    public ArrayBlockingQueue(int capacity, boolean fair) {
207        if (capacity <= 0)
208            throw new IllegalArgumentException();
209        this.items = new Object[capacity];
210        lock = new ReentrantLock(fair);
211        notEmpty = lock.newCondition();
212        notFull =  lock.newCondition();
213    }
214
215    /**
216     * Creates an {@code ArrayBlockingQueue} with the given (fixed)
217     * capacity, the specified access policy and initially containing the
218     * elements of the given collection,
219     * added in traversal order of the collection's iterator.
220     *
221     * @param capacity the capacity of this queue
222     * @param fair if {@code true} then queue accesses for threads blocked
223     *        on insertion or removal, are processed in FIFO order;
224     *        if {@code false} the access order is unspecified.
225     * @param c the collection of elements to initially contain
226     * @throws IllegalArgumentException if {@code capacity} is less than
227     *         {@code c.size()}, or less than 1.
228     * @throws NullPointerException if the specified collection or any
229     *         of its elements are null
230     */
231    public ArrayBlockingQueue(int capacity, boolean fair,
232                              Collection<? extends E> c) {
233        this(capacity, fair);
234
235        final ReentrantLock lock = this.lock;
236        lock.lock(); // Lock only for visibility, not mutual exclusion
237        try {
238            int i = 0;
239            try {
240                for (E e : c) {
241                    if (e == null) throw new NullPointerException();
242                    items[i++] = e;
243                }
244            } catch (ArrayIndexOutOfBoundsException ex) {
245                throw new IllegalArgumentException();
246            }
247            count = i;
248            putIndex = (i == capacity) ? 0 : i;
249        } finally {
250            lock.unlock();
251        }
252    }
253
254    /**
255     * Inserts the specified element at the tail of this queue if it is
256     * possible to do so immediately without exceeding the queue's capacity,
257     * returning {@code true} upon success and throwing an
258     * {@code IllegalStateException} if this queue is full.
259     *
260     * @param e the element to add
261     * @return {@code true} (as specified by {@link Collection#add})
262     * @throws IllegalStateException if this queue is full
263     * @throws NullPointerException if the specified element is null
264     */
265    public boolean add(E e) {
266        return super.add(e);
267    }
268
269    /**
270     * Inserts the specified element at the tail of this queue if it is
271     * possible to do so immediately without exceeding the queue's capacity,
272     * returning {@code true} upon success and {@code false} if this queue
273     * is full.  This method is generally preferable to method {@link #add},
274     * which can fail to insert an element only by throwing an exception.
275     *
276     * @throws NullPointerException if the specified element is null
277     */
278    public boolean offer(E e) {
279        if (e == null) throw new NullPointerException();
280        final ReentrantLock lock = this.lock;
281        lock.lock();
282        try {
283            if (count == items.length)
284                return false;
285            else {
286                enqueue(e);
287                return true;
288            }
289        } finally {
290            lock.unlock();
291        }
292    }
293
294    /**
295     * Inserts the specified element at the tail of this queue, waiting
296     * for space to become available if the queue is full.
297     *
298     * @throws InterruptedException {@inheritDoc}
299     * @throws NullPointerException {@inheritDoc}
300     */
301    public void put(E e) throws InterruptedException {
302        if (e == null) throw new NullPointerException();
303        final ReentrantLock lock = this.lock;
304        lock.lockInterruptibly();
305        try {
306            while (count == items.length)
307                notFull.await();
308            enqueue(e);
309        } finally {
310            lock.unlock();
311        }
312    }
313
314    /**
315     * Inserts the specified element at the tail of this queue, waiting
316     * up to the specified wait time for space to become available if
317     * the queue is full.
318     *
319     * @throws InterruptedException {@inheritDoc}
320     * @throws NullPointerException {@inheritDoc}
321     */
322    public boolean offer(E e, long timeout, TimeUnit unit)
323        throws InterruptedException {
324
325        if (e == null) throw new NullPointerException();
326        long nanos = unit.toNanos(timeout);
327        final ReentrantLock lock = this.lock;
328        lock.lockInterruptibly();
329        try {
330            while (count == items.length) {
331                if (nanos <= 0)
332                    return false;
333                nanos = notFull.awaitNanos(nanos);
334            }
335            enqueue(e);
336            return true;
337        } finally {
338            lock.unlock();
339        }
340    }
341
342    public E poll() {
343        final ReentrantLock lock = this.lock;
344        lock.lock();
345        try {
346            return (count == 0) ? null : dequeue();
347        } finally {
348            lock.unlock();
349        }
350    }
351
352    public E take() throws InterruptedException {
353        final ReentrantLock lock = this.lock;
354        lock.lockInterruptibly();
355        try {
356            while (count == 0)
357                notEmpty.await();
358            return dequeue();
359        } finally {
360            lock.unlock();
361        }
362    }
363
364    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
365        long nanos = unit.toNanos(timeout);
366        final ReentrantLock lock = this.lock;
367        lock.lockInterruptibly();
368        try {
369            while (count == 0) {
370                if (nanos <= 0)
371                    return null;
372                nanos = notEmpty.awaitNanos(nanos);
373            }
374            return dequeue();
375        } finally {
376            lock.unlock();
377        }
378    }
379
380    public E peek() {
381        final ReentrantLock lock = this.lock;
382        lock.lock();
383        try {
384            return itemAt(takeIndex); // null when queue is empty
385        } finally {
386            lock.unlock();
387        }
388    }
389
390    // this doc comment is overridden to remove the reference to collections
391    // greater in size than Integer.MAX_VALUE
392    /**
393     * Returns the number of elements in this queue.
394     *
395     * @return the number of elements in this queue
396     */
397    public int size() {
398        final ReentrantLock lock = this.lock;
399        lock.lock();
400        try {
401            return count;
402        } finally {
403            lock.unlock();
404        }
405    }
406
407    // this doc comment is a modified copy of the inherited doc comment,
408    // without the reference to unlimited queues.
409    /**
410     * Returns the number of additional elements that this queue can ideally
411     * (in the absence of memory or resource constraints) accept without
412     * blocking. This is always equal to the initial capacity of this queue
413     * less the current {@code size} of this queue.
414     *
415     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
416     * an element will succeed by inspecting {@code remainingCapacity}
417     * because it may be the case that another thread is about to
418     * insert or remove an element.
419     */
420    public int remainingCapacity() {
421        final ReentrantLock lock = this.lock;
422        lock.lock();
423        try {
424            return items.length - count;
425        } finally {
426            lock.unlock();
427        }
428    }
429
430    /**
431     * Removes a single instance of the specified element from this queue,
432     * if it is present.  More formally, removes an element {@code e} such
433     * that {@code o.equals(e)}, if this queue contains one or more such
434     * elements.
435     * Returns {@code true} if this queue contained the specified element
436     * (or equivalently, if this queue changed as a result of the call).
437     *
438     * <p>Removal of interior elements in circular array based queues
439     * is an intrinsically slow and disruptive operation, so should
440     * be undertaken only in exceptional circumstances, ideally
441     * only when the queue is known not to be accessible by other
442     * threads.
443     *
444     * @param o element to be removed from this queue, if present
445     * @return {@code true} if this queue changed as a result of the call
446     */
447    public boolean remove(Object o) {
448        if (o == null) return false;
449        final ReentrantLock lock = this.lock;
450        lock.lock();
451        try {
452            if (count > 0) {
453                final Object[] items = this.items;
454                final int putIndex = this.putIndex;
455                int i = takeIndex;
456                do {
457                    if (o.equals(items[i])) {
458                        removeAt(i);
459                        return true;
460                    }
461                    if (++i == items.length) i = 0;
462                } while (i != putIndex);
463            }
464            return false;
465        } finally {
466            lock.unlock();
467        }
468    }
469
470    /**
471     * Returns {@code true} if this queue contains the specified element.
472     * More formally, returns {@code true} if and only if this queue contains
473     * at least one element {@code e} such that {@code o.equals(e)}.
474     *
475     * @param o object to be checked for containment in this queue
476     * @return {@code true} if this queue contains the specified element
477     */
478    public boolean contains(Object o) {
479        if (o == null) return false;
480        final ReentrantLock lock = this.lock;
481        lock.lock();
482        try {
483            if (count > 0) {
484                final Object[] items = this.items;
485                final int putIndex = this.putIndex;
486                int i = takeIndex;
487                do {
488                    if (o.equals(items[i]))
489                        return true;
490                    if (++i == items.length) i = 0;
491                } while (i != putIndex);
492            }
493            return false;
494        } finally {
495            lock.unlock();
496        }
497    }
498
499    /**
500     * Returns an array containing all of the elements in this queue, in
501     * proper sequence.
502     *
503     * <p>The returned array will be "safe" in that no references to it are
504     * maintained by this queue.  (In other words, this method must allocate
505     * a new array).  The caller is thus free to modify the returned array.
506     *
507     * <p>This method acts as bridge between array-based and collection-based
508     * APIs.
509     *
510     * @return an array containing all of the elements in this queue
511     */
512    public Object[] toArray() {
513        final ReentrantLock lock = this.lock;
514        lock.lock();
515        try {
516            final Object[] items = this.items;
517            final int end = takeIndex + count;
518            final Object[] a = Arrays.copyOfRange(items, takeIndex, end);
519            if (end != putIndex)
520                System.arraycopy(items, 0, a, items.length - takeIndex, putIndex);
521            return a;
522        } finally {
523            lock.unlock();
524        }
525    }
526
527    /**
528     * Returns an array containing all of the elements in this queue, in
529     * proper sequence; the runtime type of the returned array is that of
530     * the specified array.  If the queue fits in the specified array, it
531     * is returned therein.  Otherwise, a new array is allocated with the
532     * runtime type of the specified array and the size of this queue.
533     *
534     * <p>If this queue fits in the specified array with room to spare
535     * (i.e., the array has more elements than this queue), the element in
536     * the array immediately following the end of the queue is set to
537     * {@code null}.
538     *
539     * <p>Like the {@link #toArray()} method, this method acts as bridge between
540     * array-based and collection-based APIs.  Further, this method allows
541     * precise control over the runtime type of the output array, and may,
542     * under certain circumstances, be used to save allocation costs.
543     *
544     * <p>Suppose {@code x} is a queue known to contain only strings.
545     * The following code can be used to dump the queue into a newly
546     * allocated array of {@code String}:
547     *
548     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
549     *
550     * Note that {@code toArray(new Object[0])} is identical in function to
551     * {@code toArray()}.
552     *
553     * @param a the array into which the elements of the queue are to
554     *          be stored, if it is big enough; otherwise, a new array of the
555     *          same runtime type is allocated for this purpose
556     * @return an array containing all of the elements in this queue
557     * @throws ArrayStoreException if the runtime type of the specified array
558     *         is not a supertype of the runtime type of every element in
559     *         this queue
560     * @throws NullPointerException if the specified array is null
561     */
562    @SuppressWarnings("unchecked")
563    public <T> T[] toArray(T[] a) {
564        final ReentrantLock lock = this.lock;
565        lock.lock();
566        try {
567            final Object[] items = this.items;
568            final int count = this.count;
569            final int firstLeg = Math.min(items.length - takeIndex, count);
570            if (a.length < count) {
571                a = (T[]) Arrays.copyOfRange(items, takeIndex, takeIndex + count,
572                                             a.getClass());
573            } else {
574                System.arraycopy(items, takeIndex, a, 0, firstLeg);
575                if (a.length > count)
576                    a[count] = null;
577            }
578            if (firstLeg < count)
579                System.arraycopy(items, 0, a, firstLeg, putIndex);
580            return a;
581        } finally {
582            lock.unlock();
583        }
584    }
585
586    public String toString() {
587        final ReentrantLock lock = this.lock;
588        lock.lock();
589        try {
590            int k = count;
591            if (k == 0)
592                return "[]";
593
594            final Object[] items = this.items;
595            StringBuilder sb = new StringBuilder();
596            sb.append('[');
597            for (int i = takeIndex; ; ) {
598                Object e = items[i];
599                sb.append(e == this ? "(this Collection)" : e);
600                if (--k == 0)
601                    return sb.append(']').toString();
602                sb.append(',').append(' ');
603                if (++i == items.length) i = 0;
604            }
605        } finally {
606            lock.unlock();
607        }
608    }
609
610    /**
611     * Atomically removes all of the elements from this queue.
612     * The queue will be empty after this call returns.
613     */
614    public void clear() {
615        final Object[] items = this.items;
616        final ReentrantLock lock = this.lock;
617        lock.lock();
618        try {
619            int k = count;
620            if (k > 0) {
621                final int putIndex = this.putIndex;
622                int i = takeIndex;
623                do {
624                    items[i] = null;
625                    if (++i == items.length) i = 0;
626                } while (i != putIndex);
627                takeIndex = putIndex;
628                count = 0;
629                if (itrs != null)
630                    itrs.queueIsEmpty();
631                for (; k > 0 && lock.hasWaiters(notFull); k--)
632                    notFull.signal();
633            }
634        } finally {
635            lock.unlock();
636        }
637    }
638
639    /**
640     * @throws UnsupportedOperationException {@inheritDoc}
641     * @throws ClassCastException            {@inheritDoc}
642     * @throws NullPointerException          {@inheritDoc}
643     * @throws IllegalArgumentException      {@inheritDoc}
644     */
645    public int drainTo(Collection<? super E> c) {
646        return drainTo(c, Integer.MAX_VALUE);
647    }
648
649    /**
650     * @throws UnsupportedOperationException {@inheritDoc}
651     * @throws ClassCastException            {@inheritDoc}
652     * @throws NullPointerException          {@inheritDoc}
653     * @throws IllegalArgumentException      {@inheritDoc}
654     */
655    public int drainTo(Collection<? super E> c, int maxElements) {
656        if (c == null) throw new NullPointerException();
657        if (c == this)
658            throw new IllegalArgumentException();
659        if (maxElements <= 0)
660            return 0;
661        final Object[] items = this.items;
662        final ReentrantLock lock = this.lock;
663        lock.lock();
664        try {
665            int n = Math.min(maxElements, count);
666            int take = takeIndex;
667            int i = 0;
668            try {
669                while (i < n) {
670                    @SuppressWarnings("unchecked")
671                    E x = (E) items[take];
672                    c.add(x);
673                    items[take] = null;
674                    if (++take == items.length) take = 0;
675                    i++;
676                }
677                return n;
678            } finally {
679                // Restore invariants even if c.add() threw
680                if (i > 0) {
681                    count -= i;
682                    takeIndex = take;
683                    if (itrs != null) {
684                        if (count == 0)
685                            itrs.queueIsEmpty();
686                        else if (i > take)
687                            itrs.takeIndexWrapped();
688                    }
689                    for (; i > 0 && lock.hasWaiters(notFull); i--)
690                        notFull.signal();
691                }
692            }
693        } finally {
694            lock.unlock();
695        }
696    }
697
698    /**
699     * Returns an iterator over the elements in this queue in proper sequence.
700     * The elements will be returned in order from first (head) to last (tail).
701     *
702     * <p>The returned iterator is
703     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
704     *
705     * @return an iterator over the elements in this queue in proper sequence
706     */
707    public Iterator<E> iterator() {
708        return new Itr();
709    }
710
711    /**
712     * Shared data between iterators and their queue, allowing queue
713     * modifications to update iterators when elements are removed.
714     *
715     * This adds a lot of complexity for the sake of correctly
716     * handling some uncommon operations, but the combination of
717     * circular-arrays and supporting interior removes (i.e., those
718     * not at head) would cause iterators to sometimes lose their
719     * places and/or (re)report elements they shouldn't.  To avoid
720     * this, when a queue has one or more iterators, it keeps iterator
721     * state consistent by:
722     *
723     * (1) keeping track of the number of "cycles", that is, the
724     *     number of times takeIndex has wrapped around to 0.
725     * (2) notifying all iterators via the callback removedAt whenever
726     *     an interior element is removed (and thus other elements may
727     *     be shifted).
728     *
729     * These suffice to eliminate iterator inconsistencies, but
730     * unfortunately add the secondary responsibility of maintaining
731     * the list of iterators.  We track all active iterators in a
732     * simple linked list (accessed only when the queue's lock is
733     * held) of weak references to Itr.  The list is cleaned up using
734     * 3 different mechanisms:
735     *
736     * (1) Whenever a new iterator is created, do some O(1) checking for
737     *     stale list elements.
738     *
739     * (2) Whenever takeIndex wraps around to 0, check for iterators
740     *     that have been unused for more than one wrap-around cycle.
741     *
742     * (3) Whenever the queue becomes empty, all iterators are notified
743     *     and this entire data structure is discarded.
744     *
745     * So in addition to the removedAt callback that is necessary for
746     * correctness, iterators have the shutdown and takeIndexWrapped
747     * callbacks that help remove stale iterators from the list.
748     *
749     * Whenever a list element is examined, it is expunged if either
750     * the GC has determined that the iterator is discarded, or if the
751     * iterator reports that it is "detached" (does not need any
752     * further state updates).  Overhead is maximal when takeIndex
753     * never advances, iterators are discarded before they are
754     * exhausted, and all removals are interior removes, in which case
755     * all stale iterators are discovered by the GC.  But even in this
756     * case we don't increase the amortized complexity.
757     *
758     * Care must be taken to keep list sweeping methods from
759     * reentrantly invoking another such method, causing subtle
760     * corruption bugs.
761     */
762    class Itrs {
763
764        /**
765         * Node in a linked list of weak iterator references.
766         */
767        private class Node extends WeakReference<Itr> {
768            Node next;
769
770            Node(Itr iterator, Node next) {
771                super(iterator);
772                this.next = next;
773            }
774        }
775
776        /** Incremented whenever takeIndex wraps around to 0 */
777        int cycles;
778
779        /** Linked list of weak iterator references */
780        private Node head;
781
782        /** Used to expunge stale iterators */
783        private Node sweeper;
784
785        private static final int SHORT_SWEEP_PROBES = 4;
786        private static final int LONG_SWEEP_PROBES = 16;
787
788        Itrs(Itr initial) {
789            register(initial);
790        }
791
792        /**
793         * Sweeps itrs, looking for and expunging stale iterators.
794         * If at least one was found, tries harder to find more.
795         * Called only from iterating thread.
796         *
797         * @param tryHarder whether to start in try-harder mode, because
798         * there is known to be at least one iterator to collect
799         */
800        void doSomeSweeping(boolean tryHarder) {
801            // assert lock.getHoldCount() == 1;
802            // assert head != null;
803            int probes = tryHarder ? LONG_SWEEP_PROBES : SHORT_SWEEP_PROBES;
804            Node o, p;
805            final Node sweeper = this.sweeper;
806            boolean passedGo;   // to limit search to one full sweep
807
808            if (sweeper == null) {
809                o = null;
810                p = head;
811                passedGo = true;
812            } else {
813                o = sweeper;
814                p = o.next;
815                passedGo = false;
816            }
817
818            for (; probes > 0; probes--) {
819                if (p == null) {
820                    if (passedGo)
821                        break;
822                    o = null;
823                    p = head;
824                    passedGo = true;
825                }
826                final Itr it = p.get();
827                final Node next = p.next;
828                if (it == null || it.isDetached()) {
829                    // found a discarded/exhausted iterator
830                    probes = LONG_SWEEP_PROBES; // "try harder"
831                    // unlink p
832                    p.clear();
833                    p.next = null;
834                    if (o == null) {
835                        head = next;
836                        if (next == null) {
837                            // We've run out of iterators to track; retire
838                            itrs = null;
839                            return;
840                        }
841                    }
842                    else
843                        o.next = next;
844                } else {
845                    o = p;
846                }
847                p = next;
848            }
849
850            this.sweeper = (p == null) ? null : o;
851        }
852
853        /**
854         * Adds a new iterator to the linked list of tracked iterators.
855         */
856        void register(Itr itr) {
857            // assert lock.getHoldCount() == 1;
858            head = new Node(itr, head);
859        }
860
861        /**
862         * Called whenever takeIndex wraps around to 0.
863         *
864         * Notifies all iterators, and expunges any that are now stale.
865         */
866        void takeIndexWrapped() {
867            // assert lock.getHoldCount() == 1;
868            cycles++;
869            for (Node o = null, p = head; p != null;) {
870                final Itr it = p.get();
871                final Node next = p.next;
872                if (it == null || it.takeIndexWrapped()) {
873                    // unlink p
874                    // assert it == null || it.isDetached();
875                    p.clear();
876                    p.next = null;
877                    if (o == null)
878                        head = next;
879                    else
880                        o.next = next;
881                } else {
882                    o = p;
883                }
884                p = next;
885            }
886            if (head == null)   // no more iterators to track
887                itrs = null;
888        }
889
890        /**
891         * Called whenever an interior remove (not at takeIndex) occurred.
892         *
893         * Notifies all iterators, and expunges any that are now stale.
894         */
895        void removedAt(int removedIndex) {
896            for (Node o = null, p = head; p != null;) {
897                final Itr it = p.get();
898                final Node next = p.next;
899                if (it == null || it.removedAt(removedIndex)) {
900                    // unlink p
901                    // assert it == null || it.isDetached();
902                    p.clear();
903                    p.next = null;
904                    if (o == null)
905                        head = next;
906                    else
907                        o.next = next;
908                } else {
909                    o = p;
910                }
911                p = next;
912            }
913            if (head == null)   // no more iterators to track
914                itrs = null;
915        }
916
917        /**
918         * Called whenever the queue becomes empty.
919         *
920         * Notifies all active iterators that the queue is empty,
921         * clears all weak refs, and unlinks the itrs datastructure.
922         */
923        void queueIsEmpty() {
924            // assert lock.getHoldCount() == 1;
925            for (Node p = head; p != null; p = p.next) {
926                Itr it = p.get();
927                if (it != null) {
928                    p.clear();
929                    it.shutdown();
930                }
931            }
932            head = null;
933            itrs = null;
934        }
935
936        /**
937         * Called whenever an element has been dequeued (at takeIndex).
938         */
939        void elementDequeued() {
940            // assert lock.getHoldCount() == 1;
941            if (count == 0)
942                queueIsEmpty();
943            else if (takeIndex == 0)
944                takeIndexWrapped();
945        }
946    }
947
948    /**
949     * Iterator for ArrayBlockingQueue.
950     *
951     * To maintain weak consistency with respect to puts and takes, we
952     * read ahead one slot, so as to not report hasNext true but then
953     * not have an element to return.
954     *
955     * We switch into "detached" mode (allowing prompt unlinking from
956     * itrs without help from the GC) when all indices are negative, or
957     * when hasNext returns false for the first time.  This allows the
958     * iterator to track concurrent updates completely accurately,
959     * except for the corner case of the user calling Iterator.remove()
960     * after hasNext() returned false.  Even in this case, we ensure
961     * that we don't remove the wrong element by keeping track of the
962     * expected element to remove, in lastItem.  Yes, we may fail to
963     * remove lastItem from the queue if it moved due to an interleaved
964     * interior remove while in detached mode.
965     */
966    private class Itr implements Iterator<E> {
967        /** Index to look for new nextItem; NONE at end */
968        private int cursor;
969
970        /** Element to be returned by next call to next(); null if none */
971        private E nextItem;
972
973        /** Index of nextItem; NONE if none, REMOVED if removed elsewhere */
974        private int nextIndex;
975
976        /** Last element returned; null if none or not detached. */
977        private E lastItem;
978
979        /** Index of lastItem, NONE if none, REMOVED if removed elsewhere */
980        private int lastRet;
981
982        /** Previous value of takeIndex, or DETACHED when detached */
983        private int prevTakeIndex;
984
985        /** Previous value of iters.cycles */
986        private int prevCycles;
987
988        /** Special index value indicating "not available" or "undefined" */
989        private static final int NONE = -1;
990
991        /**
992         * Special index value indicating "removed elsewhere", that is,
993         * removed by some operation other than a call to this.remove().
994         */
995        private static final int REMOVED = -2;
996
997        /** Special value for prevTakeIndex indicating "detached mode" */
998        private static final int DETACHED = -3;
999
1000        Itr() {
1001            // assert lock.getHoldCount() == 0;
1002            lastRet = NONE;
1003            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1004            lock.lock();
1005            try {
1006                if (count == 0) {
1007                    // assert itrs == null;
1008                    cursor = NONE;
1009                    nextIndex = NONE;
1010                    prevTakeIndex = DETACHED;
1011                } else {
1012                    final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1013                    prevTakeIndex = takeIndex;
1014                    nextItem = itemAt(nextIndex = takeIndex);
1015                    cursor = incCursor(takeIndex);
1016                    if (itrs == null) {
1017                        itrs = new Itrs(this);
1018                    } else {
1019                        itrs.register(this); // in this order
1020                        itrs.doSomeSweeping(false);
1021                    }
1022                    prevCycles = itrs.cycles;
1023                    // assert takeIndex >= 0;
1024                    // assert prevTakeIndex == takeIndex;
1025                    // assert nextIndex >= 0;
1026                    // assert nextItem != null;
1027                }
1028            } finally {
1029                lock.unlock();
1030            }
1031        }
1032
1033        boolean isDetached() {
1034            // assert lock.getHoldCount() == 1;
1035            return prevTakeIndex < 0;
1036        }
1037
1038        private int incCursor(int index) {
1039            // assert lock.getHoldCount() == 1;
1040            if (++index == items.length) index = 0;
1041            if (index == putIndex) index = NONE;
1042            return index;
1043        }
1044
1045        /**
1046         * Returns true if index is invalidated by the given number of
1047         * dequeues, starting from prevTakeIndex.
1048         */
1049        private boolean invalidated(int index, int prevTakeIndex,
1050                                    long dequeues, int length) {
1051            if (index < 0)
1052                return false;
1053            int distance = index - prevTakeIndex;
1054            if (distance < 0)
1055                distance += length;
1056            return dequeues > distance;
1057        }
1058
1059        /**
1060         * Adjusts indices to incorporate all dequeues since the last
1061         * operation on this iterator.  Call only from iterating thread.
1062         */
1063        private void incorporateDequeues() {
1064            // assert lock.getHoldCount() == 1;
1065            // assert itrs != null;
1066            // assert !isDetached();
1067            // assert count > 0;
1068
1069            final int cycles = itrs.cycles;
1070            final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1071            final int prevCycles = this.prevCycles;
1072            final int prevTakeIndex = this.prevTakeIndex;
1073
1074            if (cycles != prevCycles || takeIndex != prevTakeIndex) {
1075                final int len = items.length;
1076                // how far takeIndex has advanced since the previous
1077                // operation of this iterator
1078                long dequeues = (cycles - prevCycles) * len
1079                    + (takeIndex - prevTakeIndex);
1080
1081                // Check indices for invalidation
1082                if (invalidated(lastRet, prevTakeIndex, dequeues, len))
1083                    lastRet = REMOVED;
1084                if (invalidated(nextIndex, prevTakeIndex, dequeues, len))
1085                    nextIndex = REMOVED;
1086                if (invalidated(cursor, prevTakeIndex, dequeues, len))
1087                    cursor = takeIndex;
1088
1089                if (cursor < 0 && nextIndex < 0 && lastRet < 0)
1090                    detach();
1091                else {
1092                    this.prevCycles = cycles;
1093                    this.prevTakeIndex = takeIndex;
1094                }
1095            }
1096        }
1097
1098        /**
1099         * Called when itrs should stop tracking this iterator, either
1100         * because there are no more indices to update (cursor < 0 &&
1101         * nextIndex < 0 && lastRet < 0) or as a special exception, when
1102         * lastRet >= 0, because hasNext() is about to return false for the
1103         * first time.  Call only from iterating thread.
1104         */
1105        private void detach() {
1106            // Switch to detached mode
1107            // assert lock.getHoldCount() == 1;
1108            // assert cursor == NONE;
1109            // assert nextIndex < 0;
1110            // assert lastRet < 0 || nextItem == null;
1111            // assert lastRet < 0 ^ lastItem != null;
1112            if (prevTakeIndex >= 0) {
1113                // assert itrs != null;
1114                prevTakeIndex = DETACHED;
1115                // try to unlink from itrs (but not too hard)
1116                itrs.doSomeSweeping(true);
1117            }
1118        }
1119
1120        /**
1121         * For performance reasons, we would like not to acquire a lock in
1122         * hasNext in the common case.  To allow for this, we only access
1123         * fields (i.e. nextItem) that are not modified by update operations
1124         * triggered by queue modifications.
1125         */
1126        public boolean hasNext() {
1127            // assert lock.getHoldCount() == 0;
1128            if (nextItem != null)
1129                return true;
1130            noNext();
1131            return false;
1132        }
1133
1134        private void noNext() {
1135            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1136            lock.lock();
1137            try {
1138                // assert cursor == NONE;
1139                // assert nextIndex == NONE;
1140                if (!isDetached()) {
1141                    // assert lastRet >= 0;
1142                    incorporateDequeues(); // might update lastRet
1143                    if (lastRet >= 0) {
1144                        lastItem = itemAt(lastRet);
1145                        // assert lastItem != null;
1146                        detach();
1147                    }
1148                }
1149                // assert isDetached();
1150                // assert lastRet < 0 ^ lastItem != null;
1151            } finally {
1152                lock.unlock();
1153            }
1154        }
1155
1156        public E next() {
1157            // assert lock.getHoldCount() == 0;
1158            final E x = nextItem;
1159            if (x == null)
1160                throw new NoSuchElementException();
1161            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1162            lock.lock();
1163            try {
1164                if (!isDetached())
1165                    incorporateDequeues();
1166                // assert nextIndex != NONE;
1167                // assert lastItem == null;
1168                lastRet = nextIndex;
1169                final int cursor = this.cursor;
1170                if (cursor >= 0) {
1171                    nextItem = itemAt(nextIndex = cursor);
1172                    // assert nextItem != null;
1173                    this.cursor = incCursor(cursor);
1174                } else {
1175                    nextIndex = NONE;
1176                    nextItem = null;
1177                }
1178            } finally {
1179                lock.unlock();
1180            }
1181            return x;
1182        }
1183
1184        public void remove() {
1185            // assert lock.getHoldCount() == 0;
1186            final ReentrantLock lock = ArrayBlockingQueue.this.lock;
1187            lock.lock();
1188            try {
1189                if (!isDetached())
1190                    incorporateDequeues(); // might update lastRet or detach
1191                final int lastRet = this.lastRet;
1192                this.lastRet = NONE;
1193                if (lastRet >= 0) {
1194                    if (!isDetached())
1195                        removeAt(lastRet);
1196                    else {
1197                        final E lastItem = this.lastItem;
1198                        // assert lastItem != null;
1199                        this.lastItem = null;
1200                        if (itemAt(lastRet) == lastItem)
1201                            removeAt(lastRet);
1202                    }
1203                } else if (lastRet == NONE)
1204                    throw new IllegalStateException();
1205                // else lastRet == REMOVED and the last returned element was
1206                // previously asynchronously removed via an operation other
1207                // than this.remove(), so nothing to do.
1208
1209                if (cursor < 0 && nextIndex < 0)
1210                    detach();
1211            } finally {
1212                lock.unlock();
1213                // assert lastRet == NONE;
1214                // assert lastItem == null;
1215            }
1216        }
1217
1218        /**
1219         * Called to notify the iterator that the queue is empty, or that it
1220         * has fallen hopelessly behind, so that it should abandon any
1221         * further iteration, except possibly to return one more element
1222         * from next(), as promised by returning true from hasNext().
1223         */
1224        void shutdown() {
1225            // assert lock.getHoldCount() == 1;
1226            cursor = NONE;
1227            if (nextIndex >= 0)
1228                nextIndex = REMOVED;
1229            if (lastRet >= 0) {
1230                lastRet = REMOVED;
1231                lastItem = null;
1232            }
1233            prevTakeIndex = DETACHED;
1234            // Don't set nextItem to null because we must continue to be
1235            // able to return it on next().
1236            //
1237            // Caller will unlink from itrs when convenient.
1238        }
1239
1240        private int distance(int index, int prevTakeIndex, int length) {
1241            int distance = index - prevTakeIndex;
1242            if (distance < 0)
1243                distance += length;
1244            return distance;
1245        }
1246
1247        /**
1248         * Called whenever an interior remove (not at takeIndex) occurred.
1249         *
1250         * @return true if this iterator should be unlinked from itrs
1251         */
1252        boolean removedAt(int removedIndex) {
1253            // assert lock.getHoldCount() == 1;
1254            if (isDetached())
1255                return true;
1256
1257            final int takeIndex = ArrayBlockingQueue.this.takeIndex;
1258            final int prevTakeIndex = this.prevTakeIndex;
1259            final int len = items.length;
1260            // distance from prevTakeIndex to removedIndex
1261            final int removedDistance =
1262                len * (itrs.cycles - this.prevCycles
1263                       + ((removedIndex < takeIndex) ? 1 : 0))
1264                + (removedIndex - prevTakeIndex);
1265            // assert itrs.cycles - this.prevCycles >= 0;
1266            // assert itrs.cycles - this.prevCycles <= 1;
1267            // assert removedDistance > 0;
1268            // assert removedIndex != takeIndex;
1269            int cursor = this.cursor;
1270            if (cursor >= 0) {
1271                int x = distance(cursor, prevTakeIndex, len);
1272                if (x == removedDistance) {
1273                    if (cursor == putIndex)
1274                        this.cursor = cursor = NONE;
1275                }
1276                else if (x > removedDistance) {
1277                    // assert cursor != prevTakeIndex;
1278                    this.cursor = cursor = dec(cursor);
1279                }
1280            }
1281            int lastRet = this.lastRet;
1282            if (lastRet >= 0) {
1283                int x = distance(lastRet, prevTakeIndex, len);
1284                if (x == removedDistance)
1285                    this.lastRet = lastRet = REMOVED;
1286                else if (x > removedDistance)
1287                    this.lastRet = lastRet = dec(lastRet);
1288            }
1289            int nextIndex = this.nextIndex;
1290            if (nextIndex >= 0) {
1291                int x = distance(nextIndex, prevTakeIndex, len);
1292                if (x == removedDistance)
1293                    this.nextIndex = nextIndex = REMOVED;
1294                else if (x > removedDistance)
1295                    this.nextIndex = nextIndex = dec(nextIndex);
1296            }
1297            if (cursor < 0 && nextIndex < 0 && lastRet < 0) {
1298                this.prevTakeIndex = DETACHED;
1299                return true;
1300            }
1301            return false;
1302        }
1303
1304        /**
1305         * Called whenever takeIndex wraps around to zero.
1306         *
1307         * @return true if this iterator should be unlinked from itrs
1308         */
1309        boolean takeIndexWrapped() {
1310            // assert lock.getHoldCount() == 1;
1311            if (isDetached())
1312                return true;
1313            if (itrs.cycles - prevCycles > 1) {
1314                // All the elements that existed at the time of the last
1315                // operation are gone, so abandon further iteration.
1316                shutdown();
1317                return true;
1318            }
1319            return false;
1320        }
1321
1322//         /** Uncomment for debugging. */
1323//         public String toString() {
1324//             return ("cursor=" + cursor + " " +
1325//                     "nextIndex=" + nextIndex + " " +
1326//                     "lastRet=" + lastRet + " " +
1327//                     "nextItem=" + nextItem + " " +
1328//                     "lastItem=" + lastItem + " " +
1329//                     "prevCycles=" + prevCycles + " " +
1330//                     "prevTakeIndex=" + prevTakeIndex + " " +
1331//                     "size()=" + size() + " " +
1332//                     "remainingCapacity()=" + remainingCapacity());
1333//         }
1334    }
1335
1336}
1337