1/*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.util.AbstractQueue;
10import java.util.Arrays;
11import java.util.Collection;
12import java.util.Iterator;
13import java.util.NoSuchElementException;
14import java.util.Objects;
15import java.util.Queue;
16import java.util.Spliterator;
17import java.util.Spliterators;
18import java.util.function.Consumer;
19
20// BEGIN android-note
21// removed link to collections framework docs
22// END android-note
23
24/**
25 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
26 * This queue orders elements FIFO (first-in-first-out).
27 * The <em>head</em> of the queue is that element that has been on the
28 * queue the longest time.
29 * The <em>tail</em> of the queue is that element that has been on the
30 * queue the shortest time. New elements
31 * are inserted at the tail of the queue, and the queue retrieval
32 * operations obtain elements at the head of the queue.
33 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
34 * many threads will share access to a common collection.
35 * Like most other concurrent collection implementations, this class
36 * does not permit the use of {@code null} elements.
37 *
38 * <p>This implementation employs an efficient <em>non-blocking</em>
39 * algorithm based on one described in
40 * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
41 * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
42 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
43 *
44 * <p>Iterators are <i>weakly consistent</i>, returning elements
45 * reflecting the state of the queue at some point at or since the
46 * creation of the iterator.  They do <em>not</em> throw {@link
47 * java.util.ConcurrentModificationException}, and may proceed concurrently
48 * with other operations.  Elements contained in the queue since the creation
49 * of the iterator will be returned exactly once.
50 *
51 * <p>Beware that, unlike in most collections, the {@code size} method
52 * is <em>NOT</em> a constant-time operation. Because of the
53 * asynchronous nature of these queues, determining the current number
54 * of elements requires a traversal of the elements, and so may report
55 * inaccurate results if this collection is modified during traversal.
56 * Additionally, the bulk operations {@code addAll},
57 * {@code removeAll}, {@code retainAll}, {@code containsAll},
58 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
59 * to be performed atomically. For example, an iterator operating
60 * concurrently with an {@code addAll} operation might view only some
61 * of the added elements.
62 *
63 * <p>This class and its iterator implement all of the <em>optional</em>
64 * methods of the {@link Queue} and {@link Iterator} interfaces.
65 *
66 * <p>Memory consistency effects: As with other concurrent
67 * collections, actions in a thread prior to placing an object into a
68 * {@code ConcurrentLinkedQueue}
69 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
70 * actions subsequent to the access or removal of that element from
71 * the {@code ConcurrentLinkedQueue} in another thread.
72 *
73 * @since 1.5
74 * @author Doug Lea
75 * @param <E> the type of elements held in this queue
76 */
77public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
78        implements Queue<E>, java.io.Serializable {
79    private static final long serialVersionUID = 196745693267521676L;
80
81    /*
82     * This is a modification of the Michael & Scott algorithm,
83     * adapted for a garbage-collected environment, with support for
84     * interior node deletion (to support remove(Object)).  For
85     * explanation, read the paper.
86     *
87     * Note that like most non-blocking algorithms in this package,
88     * this implementation relies on the fact that in garbage
89     * collected systems, there is no possibility of ABA problems due
90     * to recycled nodes, so there is no need to use "counted
91     * pointers" or related techniques seen in versions used in
92     * non-GC'ed settings.
93     *
94     * The fundamental invariants are:
95     * - There is exactly one (last) Node with a null next reference,
96     *   which is CASed when enqueueing.  This last Node can be
97     *   reached in O(1) time from tail, but tail is merely an
98     *   optimization - it can always be reached in O(N) time from
99     *   head as well.
100     * - The elements contained in the queue are the non-null items in
101     *   Nodes that are reachable from head.  CASing the item
102     *   reference of a Node to null atomically removes it from the
103     *   queue.  Reachability of all elements from head must remain
104     *   true even in the case of concurrent modifications that cause
105     *   head to advance.  A dequeued Node may remain in use
106     *   indefinitely due to creation of an Iterator or simply a
107     *   poll() that has lost its time slice.
108     *
109     * The above might appear to imply that all Nodes are GC-reachable
110     * from a predecessor dequeued Node.  That would cause two problems:
111     * - allow a rogue Iterator to cause unbounded memory retention
112     * - cause cross-generational linking of old Nodes to new Nodes if
113     *   a Node was tenured while live, which generational GCs have a
114     *   hard time dealing with, causing repeated major collections.
115     * However, only non-deleted Nodes need to be reachable from
116     * dequeued Nodes, and reachability does not necessarily have to
117     * be of the kind understood by the GC.  We use the trick of
118     * linking a Node that has just been dequeued to itself.  Such a
119     * self-link implicitly means to advance to head.
120     *
121     * Both head and tail are permitted to lag.  In fact, failing to
122     * update them every time one could is a significant optimization
123     * (fewer CASes). As with LinkedTransferQueue (see the internal
124     * documentation for that class), we use a slack threshold of two;
125     * that is, we update head/tail when the current pointer appears
126     * to be two or more steps away from the first/last node.
127     *
128     * Since head and tail are updated concurrently and independently,
129     * it is possible for tail to lag behind head (why not)?
130     *
131     * CASing a Node's item reference to null atomically removes the
132     * element from the queue.  Iterators skip over Nodes with null
133     * items.  Prior implementations of this class had a race between
134     * poll() and remove(Object) where the same element would appear
135     * to be successfully removed by two concurrent operations.  The
136     * method remove(Object) also lazily unlinks deleted Nodes, but
137     * this is merely an optimization.
138     *
139     * When constructing a Node (before enqueuing it) we avoid paying
140     * for a volatile write to item by using Unsafe.putObject instead
141     * of a normal write.  This allows the cost of enqueue to be
142     * "one-and-a-half" CASes.
143     *
144     * Both head and tail may or may not point to a Node with a
145     * non-null item.  If the queue is empty, all items must of course
146     * be null.  Upon creation, both head and tail refer to a dummy
147     * Node with null item.  Both head and tail are only updated using
148     * CAS, so they never regress, although again this is merely an
149     * optimization.
150     */
151
152    private static class Node<E> {
153        volatile E item;
154        volatile Node<E> next;
155    }
156
157    /**
158     * Returns a new node holding item.  Uses relaxed write because item
159     * can only be seen after piggy-backing publication via casNext.
160     */
161    static <E> Node<E> newNode(E item) {
162        Node<E> node = new Node<E>();
163        U.putObject(node, ITEM, item);
164        return node;
165    }
166
167    static <E> boolean casItem(Node<E> node, E cmp, E val) {
168        return U.compareAndSwapObject(node, ITEM, cmp, val);
169    }
170
171    static <E> void lazySetNext(Node<E> node, Node<E> val) {
172        U.putOrderedObject(node, NEXT, val);
173    }
174
175    static <E> boolean casNext(Node<E> node, Node<E> cmp, Node<E> val) {
176        return U.compareAndSwapObject(node, NEXT, cmp, val);
177    }
178
179    /**
180     * A node from which the first live (non-deleted) node (if any)
181     * can be reached in O(1) time.
182     * Invariants:
183     * - all live nodes are reachable from head via succ()
184     * - head != null
185     * - (tmp = head).next != tmp || tmp != head
186     * Non-invariants:
187     * - head.item may or may not be null.
188     * - it is permitted for tail to lag behind head, that is, for tail
189     *   to not be reachable from head!
190     */
191    transient volatile Node<E> head;
192
193    /**
194     * A node from which the last node on list (that is, the unique
195     * node with node.next == null) can be reached in O(1) time.
196     * Invariants:
197     * - the last node is always reachable from tail via succ()
198     * - tail != null
199     * Non-invariants:
200     * - tail.item may or may not be null.
201     * - it is permitted for tail to lag behind head, that is, for tail
202     *   to not be reachable from head!
203     * - tail.next may or may not be self-pointing to tail.
204     */
205    private transient volatile Node<E> tail;
206
207    /**
208     * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
209     */
210    public ConcurrentLinkedQueue() {
211        head = tail = newNode(null);
212    }
213
214    /**
215     * Creates a {@code ConcurrentLinkedQueue}
216     * initially containing the elements of the given collection,
217     * added in traversal order of the collection's iterator.
218     *
219     * @param c the collection of elements to initially contain
220     * @throws NullPointerException if the specified collection or any
221     *         of its elements are null
222     */
223    public ConcurrentLinkedQueue(Collection<? extends E> c) {
224        Node<E> h = null, t = null;
225        for (E e : c) {
226            Node<E> newNode = newNode(Objects.requireNonNull(e));
227            if (h == null)
228                h = t = newNode;
229            else {
230                lazySetNext(t, newNode);
231                t = newNode;
232            }
233        }
234        if (h == null)
235            h = t = newNode(null);
236        head = h;
237        tail = t;
238    }
239
240    // Have to override just to update the javadoc
241
242    /**
243     * Inserts the specified element at the tail of this queue.
244     * As the queue is unbounded, this method will never throw
245     * {@link IllegalStateException} or return {@code false}.
246     *
247     * @return {@code true} (as specified by {@link Collection#add})
248     * @throws NullPointerException if the specified element is null
249     */
250    public boolean add(E e) {
251        return offer(e);
252    }
253
254    /**
255     * Tries to CAS head to p. If successful, repoint old head to itself
256     * as sentinel for succ(), below.
257     */
258    final void updateHead(Node<E> h, Node<E> p) {
259        // assert h != null && p != null && (h == p || h.item == null);
260        if (h != p && casHead(h, p))
261            lazySetNext(h, h);
262    }
263
264    /**
265     * Returns the successor of p, or the head node if p.next has been
266     * linked to self, which will only be true if traversing with a
267     * stale pointer that is now off the list.
268     */
269    final Node<E> succ(Node<E> p) {
270        Node<E> next = p.next;
271        return (p == next) ? head : next;
272    }
273
274    /**
275     * Inserts the specified element at the tail of this queue.
276     * As the queue is unbounded, this method will never return {@code false}.
277     *
278     * @return {@code true} (as specified by {@link Queue#offer})
279     * @throws NullPointerException if the specified element is null
280     */
281    public boolean offer(E e) {
282        final Node<E> newNode = newNode(Objects.requireNonNull(e));
283
284        for (Node<E> t = tail, p = t;;) {
285            Node<E> q = p.next;
286            if (q == null) {
287                // p is last node
288                if (casNext(p, null, newNode)) {
289                    // Successful CAS is the linearization point
290                    // for e to become an element of this queue,
291                    // and for newNode to become "live".
292                    if (p != t) // hop two nodes at a time
293                        casTail(t, newNode);  // Failure is OK.
294                    return true;
295                }
296                // Lost CAS race to another thread; re-read next
297            }
298            else if (p == q)
299                // We have fallen off list.  If tail is unchanged, it
300                // will also be off-list, in which case we need to
301                // jump to head, from which all live nodes are always
302                // reachable.  Else the new tail is a better bet.
303                p = (t != (t = tail)) ? t : head;
304            else
305                // Check for tail updates after two hops.
306                p = (p != t && t != (t = tail)) ? t : q;
307        }
308    }
309
310    public E poll() {
311        restartFromHead:
312        for (;;) {
313            for (Node<E> h = head, p = h, q;;) {
314                E item = p.item;
315
316                if (item != null && casItem(p, item, null)) {
317                    // Successful CAS is the linearization point
318                    // for item to be removed from this queue.
319                    if (p != h) // hop two nodes at a time
320                        updateHead(h, ((q = p.next) != null) ? q : p);
321                    return item;
322                }
323                else if ((q = p.next) == null) {
324                    updateHead(h, p);
325                    return null;
326                }
327                else if (p == q)
328                    continue restartFromHead;
329                else
330                    p = q;
331            }
332        }
333    }
334
335    public E peek() {
336        restartFromHead:
337        for (;;) {
338            for (Node<E> h = head, p = h, q;;) {
339                E item = p.item;
340                if (item != null || (q = p.next) == null) {
341                    updateHead(h, p);
342                    return item;
343                }
344                else if (p == q)
345                    continue restartFromHead;
346                else
347                    p = q;
348            }
349        }
350    }
351
352    /**
353     * Returns the first live (non-deleted) node on list, or null if none.
354     * This is yet another variant of poll/peek; here returning the
355     * first node, not element.  We could make peek() a wrapper around
356     * first(), but that would cost an extra volatile read of item,
357     * and the need to add a retry loop to deal with the possibility
358     * of losing a race to a concurrent poll().
359     */
360    Node<E> first() {
361        restartFromHead:
362        for (;;) {
363            for (Node<E> h = head, p = h, q;;) {
364                boolean hasItem = (p.item != null);
365                if (hasItem || (q = p.next) == null) {
366                    updateHead(h, p);
367                    return hasItem ? p : null;
368                }
369                else if (p == q)
370                    continue restartFromHead;
371                else
372                    p = q;
373            }
374        }
375    }
376
377    /**
378     * Returns {@code true} if this queue contains no elements.
379     *
380     * @return {@code true} if this queue contains no elements
381     */
382    public boolean isEmpty() {
383        return first() == null;
384    }
385
386    /**
387     * Returns the number of elements in this queue.  If this queue
388     * contains more than {@code Integer.MAX_VALUE} elements, returns
389     * {@code Integer.MAX_VALUE}.
390     *
391     * <p>Beware that, unlike in most collections, this method is
392     * <em>NOT</em> a constant-time operation. Because of the
393     * asynchronous nature of these queues, determining the current
394     * number of elements requires an O(n) traversal.
395     * Additionally, if elements are added or removed during execution
396     * of this method, the returned result may be inaccurate.  Thus,
397     * this method is typically not very useful in concurrent
398     * applications.
399     *
400     * @return the number of elements in this queue
401     */
402    public int size() {
403        restartFromHead: for (;;) {
404            int count = 0;
405            for (Node<E> p = first(); p != null;) {
406                if (p.item != null)
407                    if (++count == Integer.MAX_VALUE)
408                        break;  // @see Collection.size()
409                if (p == (p = p.next))
410                    continue restartFromHead;
411            }
412            return count;
413        }
414    }
415
416    /**
417     * Returns {@code true} if this queue contains the specified element.
418     * More formally, returns {@code true} if and only if this queue contains
419     * at least one element {@code e} such that {@code o.equals(e)}.
420     *
421     * @param o object to be checked for containment in this queue
422     * @return {@code true} if this queue contains the specified element
423     */
424    public boolean contains(Object o) {
425        if (o != null) {
426            for (Node<E> p = first(); p != null; p = succ(p)) {
427                E item = p.item;
428                if (item != null && o.equals(item))
429                    return true;
430            }
431        }
432        return false;
433    }
434
435    /**
436     * Removes a single instance of the specified element from this queue,
437     * if it is present.  More formally, removes an element {@code e} such
438     * that {@code o.equals(e)}, if this queue contains one or more such
439     * elements.
440     * Returns {@code true} if this queue contained the specified element
441     * (or equivalently, if this queue changed as a result of the call).
442     *
443     * @param o element to be removed from this queue, if present
444     * @return {@code true} if this queue changed as a result of the call
445     */
446    public boolean remove(Object o) {
447        if (o != null) {
448            Node<E> next, pred = null;
449            for (Node<E> p = first(); p != null; pred = p, p = next) {
450                boolean removed = false;
451                E item = p.item;
452                if (item != null) {
453                    if (!o.equals(item)) {
454                        next = succ(p);
455                        continue;
456                    }
457                    removed = casItem(p, item, null);
458                }
459
460                next = succ(p);
461                if (pred != null && next != null) // unlink
462                    casNext(pred, p, next);
463                if (removed)
464                    return true;
465            }
466        }
467        return false;
468    }
469
470    /**
471     * Appends all of the elements in the specified collection to the end of
472     * this queue, in the order that they are returned by the specified
473     * collection's iterator.  Attempts to {@code addAll} of a queue to
474     * itself result in {@code IllegalArgumentException}.
475     *
476     * @param c the elements to be inserted into this queue
477     * @return {@code true} if this queue changed as a result of the call
478     * @throws NullPointerException if the specified collection or any
479     *         of its elements are null
480     * @throws IllegalArgumentException if the collection is this queue
481     */
482    public boolean addAll(Collection<? extends E> c) {
483        if (c == this)
484            // As historically specified in AbstractQueue#addAll
485            throw new IllegalArgumentException();
486
487        // Copy c into a private chain of Nodes
488        Node<E> beginningOfTheEnd = null, last = null;
489        for (E e : c) {
490            Node<E> newNode = newNode(Objects.requireNonNull(e));
491            if (beginningOfTheEnd == null)
492                beginningOfTheEnd = last = newNode;
493            else {
494                lazySetNext(last, newNode);
495                last = newNode;
496            }
497        }
498        if (beginningOfTheEnd == null)
499            return false;
500
501        // Atomically append the chain at the tail of this collection
502        for (Node<E> t = tail, p = t;;) {
503            Node<E> q = p.next;
504            if (q == null) {
505                // p is last node
506                if (casNext(p, null, beginningOfTheEnd)) {
507                    // Successful CAS is the linearization point
508                    // for all elements to be added to this queue.
509                    if (!casTail(t, last)) {
510                        // Try a little harder to update tail,
511                        // since we may be adding many elements.
512                        t = tail;
513                        if (last.next == null)
514                            casTail(t, last);
515                    }
516                    return true;
517                }
518                // Lost CAS race to another thread; re-read next
519            }
520            else if (p == q)
521                // We have fallen off list.  If tail is unchanged, it
522                // will also be off-list, in which case we need to
523                // jump to head, from which all live nodes are always
524                // reachable.  Else the new tail is a better bet.
525                p = (t != (t = tail)) ? t : head;
526            else
527                // Check for tail updates after two hops.
528                p = (p != t && t != (t = tail)) ? t : q;
529        }
530    }
531
532    public String toString() {
533        String[] a = null;
534        restartFromHead: for (;;) {
535            int charLength = 0;
536            int size = 0;
537            for (Node<E> p = first(); p != null;) {
538                E item = p.item;
539                if (item != null) {
540                    if (a == null)
541                        a = new String[4];
542                    else if (size == a.length)
543                        a = Arrays.copyOf(a, 2 * size);
544                    String s = item.toString();
545                    a[size++] = s;
546                    charLength += s.length();
547                }
548                if (p == (p = p.next))
549                    continue restartFromHead;
550            }
551
552            if (size == 0)
553                return "[]";
554
555            return Helpers.toString(a, size, charLength);
556        }
557    }
558
559    private Object[] toArrayInternal(Object[] a) {
560        Object[] x = a;
561        restartFromHead: for (;;) {
562            int size = 0;
563            for (Node<E> p = first(); p != null;) {
564                E item = p.item;
565                if (item != null) {
566                    if (x == null)
567                        x = new Object[4];
568                    else if (size == x.length)
569                        x = Arrays.copyOf(x, 2 * (size + 4));
570                    x[size++] = item;
571                }
572                if (p == (p = p.next))
573                    continue restartFromHead;
574            }
575            if (x == null)
576                return new Object[0];
577            else if (a != null && size <= a.length) {
578                if (a != x)
579                    System.arraycopy(x, 0, a, 0, size);
580                if (size < a.length)
581                    a[size] = null;
582                return a;
583            }
584            return (size == x.length) ? x : Arrays.copyOf(x, size);
585        }
586    }
587
588    /**
589     * Returns an array containing all of the elements in this queue, in
590     * proper sequence.
591     *
592     * <p>The returned array will be "safe" in that no references to it are
593     * maintained by this queue.  (In other words, this method must allocate
594     * a new array).  The caller is thus free to modify the returned array.
595     *
596     * <p>This method acts as bridge between array-based and collection-based
597     * APIs.
598     *
599     * @return an array containing all of the elements in this queue
600     */
601    public Object[] toArray() {
602        return toArrayInternal(null);
603    }
604
605    /**
606     * Returns an array containing all of the elements in this queue, in
607     * proper sequence; the runtime type of the returned array is that of
608     * the specified array.  If the queue fits in the specified array, it
609     * is returned therein.  Otherwise, a new array is allocated with the
610     * runtime type of the specified array and the size of this queue.
611     *
612     * <p>If this queue fits in the specified array with room to spare
613     * (i.e., the array has more elements than this queue), the element in
614     * the array immediately following the end of the queue is set to
615     * {@code null}.
616     *
617     * <p>Like the {@link #toArray()} method, this method acts as bridge between
618     * array-based and collection-based APIs.  Further, this method allows
619     * precise control over the runtime type of the output array, and may,
620     * under certain circumstances, be used to save allocation costs.
621     *
622     * <p>Suppose {@code x} is a queue known to contain only strings.
623     * The following code can be used to dump the queue into a newly
624     * allocated array of {@code String}:
625     *
626     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
627     *
628     * Note that {@code toArray(new Object[0])} is identical in function to
629     * {@code toArray()}.
630     *
631     * @param a the array into which the elements of the queue are to
632     *          be stored, if it is big enough; otherwise, a new array of the
633     *          same runtime type is allocated for this purpose
634     * @return an array containing all of the elements in this queue
635     * @throws ArrayStoreException if the runtime type of the specified array
636     *         is not a supertype of the runtime type of every element in
637     *         this queue
638     * @throws NullPointerException if the specified array is null
639     */
640    @SuppressWarnings("unchecked")
641    public <T> T[] toArray(T[] a) {
642        if (a == null) throw new NullPointerException();
643        return (T[]) toArrayInternal(a);
644    }
645
646    /**
647     * Returns an iterator over the elements in this queue in proper sequence.
648     * The elements will be returned in order from first (head) to last (tail).
649     *
650     * <p>The returned iterator is
651     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
652     *
653     * @return an iterator over the elements in this queue in proper sequence
654     */
655    public Iterator<E> iterator() {
656        return new Itr();
657    }
658
659    private class Itr implements Iterator<E> {
660        /**
661         * Next node to return item for.
662         */
663        private Node<E> nextNode;
664
665        /**
666         * nextItem holds on to item fields because once we claim
667         * that an element exists in hasNext(), we must return it in
668         * the following next() call even if it was in the process of
669         * being removed when hasNext() was called.
670         */
671        private E nextItem;
672
673        /**
674         * Node of the last returned item, to support remove.
675         */
676        private Node<E> lastRet;
677
678        Itr() {
679            restartFromHead: for (;;) {
680                Node<E> h, p, q;
681                for (p = h = head;; p = q) {
682                    E item;
683                    if ((item = p.item) != null) {
684                        nextNode = p;
685                        nextItem = item;
686                        break;
687                    }
688                    else if ((q = p.next) == null)
689                        break;
690                    else if (p == q)
691                        continue restartFromHead;
692                }
693                updateHead(h, p);
694                return;
695            }
696        }
697
698        public boolean hasNext() {
699            return nextItem != null;
700        }
701
702        public E next() {
703            final Node<E> pred = nextNode;
704            if (pred == null) throw new NoSuchElementException();
705            // assert nextItem != null;
706            lastRet = pred;
707            E item = null;
708
709            for (Node<E> p = succ(pred), q;; p = q) {
710                if (p == null || (item = p.item) != null) {
711                    nextNode = p;
712                    E x = nextItem;
713                    nextItem = item;
714                    return x;
715                }
716                // unlink deleted nodes
717                if ((q = succ(p)) != null)
718                    casNext(pred, p, q);
719            }
720        }
721
722        public void remove() {
723            Node<E> l = lastRet;
724            if (l == null) throw new IllegalStateException();
725            // rely on a future traversal to relink.
726            l.item = null;
727            lastRet = null;
728        }
729    }
730
731    /**
732     * Saves this queue to a stream (that is, serializes it).
733     *
734     * @param s the stream
735     * @throws java.io.IOException if an I/O error occurs
736     * @serialData All of the elements (each an {@code E}) in
737     * the proper order, followed by a null
738     */
739    private void writeObject(java.io.ObjectOutputStream s)
740        throws java.io.IOException {
741
742        // Write out any hidden stuff
743        s.defaultWriteObject();
744
745        // Write out all elements in the proper order.
746        for (Node<E> p = first(); p != null; p = succ(p)) {
747            Object item = p.item;
748            if (item != null)
749                s.writeObject(item);
750        }
751
752        // Use trailing null as sentinel
753        s.writeObject(null);
754    }
755
756    /**
757     * Reconstitutes this queue from a stream (that is, deserializes it).
758     * @param s the stream
759     * @throws ClassNotFoundException if the class of a serialized object
760     *         could not be found
761     * @throws java.io.IOException if an I/O error occurs
762     */
763    private void readObject(java.io.ObjectInputStream s)
764        throws java.io.IOException, ClassNotFoundException {
765        s.defaultReadObject();
766
767        // Read in elements until trailing null sentinel found
768        Node<E> h = null, t = null;
769        for (Object item; (item = s.readObject()) != null; ) {
770            @SuppressWarnings("unchecked")
771            Node<E> newNode = newNode((E) item);
772            if (h == null)
773                h = t = newNode;
774            else {
775                lazySetNext(t, newNode);
776                t = newNode;
777            }
778        }
779        if (h == null)
780            h = t = newNode(null);
781        head = h;
782        tail = t;
783    }
784
785    /** A customized variant of Spliterators.IteratorSpliterator */
786    static final class CLQSpliterator<E> implements Spliterator<E> {
787        static final int MAX_BATCH = 1 << 25;  // max batch array size;
788        final ConcurrentLinkedQueue<E> queue;
789        Node<E> current;    // current node; null until initialized
790        int batch;          // batch size for splits
791        boolean exhausted;  // true when no more nodes
792        CLQSpliterator(ConcurrentLinkedQueue<E> queue) {
793            this.queue = queue;
794        }
795
796        public Spliterator<E> trySplit() {
797            Node<E> p;
798            final ConcurrentLinkedQueue<E> q = this.queue;
799            int b = batch;
800            int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
801            if (!exhausted &&
802                ((p = current) != null || (p = q.first()) != null) &&
803                p.next != null) {
804                Object[] a = new Object[n];
805                int i = 0;
806                do {
807                    if ((a[i] = p.item) != null)
808                        ++i;
809                    if (p == (p = p.next))
810                        p = q.first();
811                } while (p != null && i < n);
812                if ((current = p) == null)
813                    exhausted = true;
814                if (i > 0) {
815                    batch = i;
816                    return Spliterators.spliterator
817                        (a, 0, i, (Spliterator.ORDERED |
818                                   Spliterator.NONNULL |
819                                   Spliterator.CONCURRENT));
820                }
821            }
822            return null;
823        }
824
825        public void forEachRemaining(Consumer<? super E> action) {
826            Node<E> p;
827            if (action == null) throw new NullPointerException();
828            final ConcurrentLinkedQueue<E> q = this.queue;
829            if (!exhausted &&
830                ((p = current) != null || (p = q.first()) != null)) {
831                exhausted = true;
832                do {
833                    E e = p.item;
834                    if (p == (p = p.next))
835                        p = q.first();
836                    if (e != null)
837                        action.accept(e);
838                } while (p != null);
839            }
840        }
841
842        public boolean tryAdvance(Consumer<? super E> action) {
843            Node<E> p;
844            if (action == null) throw new NullPointerException();
845            final ConcurrentLinkedQueue<E> q = this.queue;
846            if (!exhausted &&
847                ((p = current) != null || (p = q.first()) != null)) {
848                E e;
849                do {
850                    e = p.item;
851                    if (p == (p = p.next))
852                        p = q.first();
853                } while (e == null && p != null);
854                if ((current = p) == null)
855                    exhausted = true;
856                if (e != null) {
857                    action.accept(e);
858                    return true;
859                }
860            }
861            return false;
862        }
863
864        public long estimateSize() { return Long.MAX_VALUE; }
865
866        public int characteristics() {
867            return Spliterator.ORDERED | Spliterator.NONNULL |
868                Spliterator.CONCURRENT;
869        }
870    }
871
872    /**
873     * Returns a {@link Spliterator} over the elements in this queue.
874     *
875     * <p>The returned spliterator is
876     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
877     *
878     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
879     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
880     *
881     * @implNote
882     * The {@code Spliterator} implements {@code trySplit} to permit limited
883     * parallelism.
884     *
885     * @return a {@code Spliterator} over the elements in this queue
886     * @since 1.8
887     */
888    @Override
889    public Spliterator<E> spliterator() {
890        return new CLQSpliterator<E>(this);
891    }
892
893    private boolean casTail(Node<E> cmp, Node<E> val) {
894        return U.compareAndSwapObject(this, TAIL, cmp, val);
895    }
896
897    private boolean casHead(Node<E> cmp, Node<E> val) {
898        return U.compareAndSwapObject(this, HEAD, cmp, val);
899    }
900
901    // Unsafe mechanics
902
903    private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
904    private static final long HEAD;
905    private static final long TAIL;
906    private static final long ITEM;
907    private static final long NEXT;
908    static {
909        try {
910            HEAD = U.objectFieldOffset
911                (ConcurrentLinkedQueue.class.getDeclaredField("head"));
912            TAIL = U.objectFieldOffset
913                (ConcurrentLinkedQueue.class.getDeclaredField("tail"));
914            ITEM = U.objectFieldOffset
915                (Node.class.getDeclaredField("item"));
916            NEXT = U.objectFieldOffset
917                (Node.class.getDeclaredField("next"));
918        } catch (ReflectiveOperationException e) {
919            throw new Error(e);
920        }
921    }
922}
923