1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.util.AbstractQueue;
10import java.util.Collection;
11import java.util.Iterator;
12import java.util.NoSuchElementException;
13import java.util.Spliterator;
14import java.util.Spliterators;
15import java.util.concurrent.locks.Condition;
16import java.util.concurrent.locks.ReentrantLock;
17import java.util.function.Consumer;
18
19// BEGIN android-note
20// removed link to collections framework docs
21// END android-note
22
23/**
24 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
25 * linked nodes.
26 *
27 * <p>The optional capacity bound constructor argument serves as a
28 * way to prevent excessive expansion. The capacity, if unspecified,
29 * is equal to {@link Integer#MAX_VALUE}.  Linked nodes are
30 * dynamically created upon each insertion unless this would bring the
31 * deque above capacity.
32 *
33 * <p>Most operations run in constant time (ignoring time spent
34 * blocking).  Exceptions include {@link #remove(Object) remove},
35 * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
36 * #removeLastOccurrence removeLastOccurrence}, {@link #contains
37 * contains}, {@link #iterator iterator.remove()}, and the bulk
38 * operations, all of which run in linear time.
39 *
40 * <p>This class and its iterator implement all of the
41 * <em>optional</em> methods of the {@link Collection} and {@link
42 * Iterator} interfaces.
43 *
44 * @since 1.6
45 * @author  Doug Lea
46 * @param <E> the type of elements held in this deque
47 */
48public class LinkedBlockingDeque<E>
49    extends AbstractQueue<E>
50    implements BlockingDeque<E>, java.io.Serializable {
51
52    /*
53     * Implemented as a simple doubly-linked list protected by a
54     * single lock and using conditions to manage blocking.
55     *
56     * To implement weakly consistent iterators, it appears we need to
57     * keep all Nodes GC-reachable from a predecessor dequeued Node.
58     * That would cause two problems:
59     * - allow a rogue Iterator to cause unbounded memory retention
60     * - cause cross-generational linking of old Nodes to new Nodes if
61     *   a Node was tenured while live, which generational GCs have a
62     *   hard time dealing with, causing repeated major collections.
63     * However, only non-deleted Nodes need to be reachable from
64     * dequeued Nodes, and reachability does not necessarily have to
65     * be of the kind understood by the GC.  We use the trick of
66     * linking a Node that has just been dequeued to itself.  Such a
67     * self-link implicitly means to jump to "first" (for next links)
68     * or "last" (for prev links).
69     */
70
71    /*
72     * We have "diamond" multiple interface/abstract class inheritance
73     * here, and that introduces ambiguities. Often we want the
74     * BlockingDeque javadoc combined with the AbstractQueue
75     * implementation, so a lot of method specs are duplicated here.
76     */
77
78    private static final long serialVersionUID = -387911632671998426L;
79
80    /** Doubly-linked list node class */
81    static final class Node<E> {
82        /**
83         * The item, or null if this node has been removed.
84         */
85        E item;
86
87        /**
88         * One of:
89         * - the real predecessor Node
90         * - this Node, meaning the predecessor is tail
91         * - null, meaning there is no predecessor
92         */
93        Node<E> prev;
94
95        /**
96         * One of:
97         * - the real successor Node
98         * - this Node, meaning the successor is head
99         * - null, meaning there is no successor
100         */
101        Node<E> next;
102
103        Node(E x) {
104            item = x;
105        }
106    }
107
108    /**
109     * Pointer to first node.
110     * Invariant: (first == null && last == null) ||
111     *            (first.prev == null && first.item != null)
112     */
113    transient Node<E> first;
114
115    /**
116     * Pointer to last node.
117     * Invariant: (first == null && last == null) ||
118     *            (last.next == null && last.item != null)
119     */
120    transient Node<E> last;
121
122    /** Number of items in the deque */
123    private transient int count;
124
125    /** Maximum number of items in the deque */
126    private final int capacity;
127
128    /** Main lock guarding all access */
129    final ReentrantLock lock = new ReentrantLock();
130
131    /** Condition for waiting takes */
132    private final Condition notEmpty = lock.newCondition();
133
134    /** Condition for waiting puts */
135    private final Condition notFull = lock.newCondition();
136
137    /**
138     * Creates a {@code LinkedBlockingDeque} with a capacity of
139     * {@link Integer#MAX_VALUE}.
140     */
141    public LinkedBlockingDeque() {
142        this(Integer.MAX_VALUE);
143    }
144
145    /**
146     * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
147     *
148     * @param capacity the capacity of this deque
149     * @throws IllegalArgumentException if {@code capacity} is less than 1
150     */
151    public LinkedBlockingDeque(int capacity) {
152        if (capacity <= 0) throw new IllegalArgumentException();
153        this.capacity = capacity;
154    }
155
156    /**
157     * Creates a {@code LinkedBlockingDeque} with a capacity of
158     * {@link Integer#MAX_VALUE}, initially containing the elements of
159     * the given collection, added in traversal order of the
160     * collection's iterator.
161     *
162     * @param c the collection of elements to initially contain
163     * @throws NullPointerException if the specified collection or any
164     *         of its elements are null
165     */
166    public LinkedBlockingDeque(Collection<? extends E> c) {
167        this(Integer.MAX_VALUE);
168        final ReentrantLock lock = this.lock;
169        lock.lock(); // Never contended, but necessary for visibility
170        try {
171            for (E e : c) {
172                if (e == null)
173                    throw new NullPointerException();
174                if (!linkLast(new Node<E>(e)))
175                    throw new IllegalStateException("Deque full");
176            }
177        } finally {
178            lock.unlock();
179        }
180    }
181
182
183    // Basic linking and unlinking operations, called only while holding lock
184
185    /**
186     * Links node as first element, or returns false if full.
187     */
188    private boolean linkFirst(Node<E> node) {
189        // assert lock.isHeldByCurrentThread();
190        if (count >= capacity)
191            return false;
192        Node<E> f = first;
193        node.next = f;
194        first = node;
195        if (last == null)
196            last = node;
197        else
198            f.prev = node;
199        ++count;
200        notEmpty.signal();
201        return true;
202    }
203
204    /**
205     * Links node as last element, or returns false if full.
206     */
207    private boolean linkLast(Node<E> node) {
208        // assert lock.isHeldByCurrentThread();
209        if (count >= capacity)
210            return false;
211        Node<E> l = last;
212        node.prev = l;
213        last = node;
214        if (first == null)
215            first = node;
216        else
217            l.next = node;
218        ++count;
219        notEmpty.signal();
220        return true;
221    }
222
223    /**
224     * Removes and returns first element, or null if empty.
225     */
226    private E unlinkFirst() {
227        // assert lock.isHeldByCurrentThread();
228        Node<E> f = first;
229        if (f == null)
230            return null;
231        Node<E> n = f.next;
232        E item = f.item;
233        f.item = null;
234        f.next = f; // help GC
235        first = n;
236        if (n == null)
237            last = null;
238        else
239            n.prev = null;
240        --count;
241        notFull.signal();
242        return item;
243    }
244
245    /**
246     * Removes and returns last element, or null if empty.
247     */
248    private E unlinkLast() {
249        // assert lock.isHeldByCurrentThread();
250        Node<E> l = last;
251        if (l == null)
252            return null;
253        Node<E> p = l.prev;
254        E item = l.item;
255        l.item = null;
256        l.prev = l; // help GC
257        last = p;
258        if (p == null)
259            first = null;
260        else
261            p.next = null;
262        --count;
263        notFull.signal();
264        return item;
265    }
266
267    /**
268     * Unlinks x.
269     */
270    void unlink(Node<E> x) {
271        // assert lock.isHeldByCurrentThread();
272        Node<E> p = x.prev;
273        Node<E> n = x.next;
274        if (p == null) {
275            unlinkFirst();
276        } else if (n == null) {
277            unlinkLast();
278        } else {
279            p.next = n;
280            n.prev = p;
281            x.item = null;
282            // Don't mess with x's links.  They may still be in use by
283            // an iterator.
284            --count;
285            notFull.signal();
286        }
287    }
288
289    // BlockingDeque methods
290
291    /**
292     * @throws IllegalStateException if this deque is full
293     * @throws NullPointerException {@inheritDoc}
294     */
295    public void addFirst(E e) {
296        if (!offerFirst(e))
297            throw new IllegalStateException("Deque full");
298    }
299
300    /**
301     * @throws IllegalStateException if this deque is full
302     * @throws NullPointerException  {@inheritDoc}
303     */
304    public void addLast(E e) {
305        if (!offerLast(e))
306            throw new IllegalStateException("Deque full");
307    }
308
309    /**
310     * @throws NullPointerException {@inheritDoc}
311     */
312    public boolean offerFirst(E e) {
313        if (e == null) throw new NullPointerException();
314        Node<E> node = new Node<E>(e);
315        final ReentrantLock lock = this.lock;
316        lock.lock();
317        try {
318            return linkFirst(node);
319        } finally {
320            lock.unlock();
321        }
322    }
323
324    /**
325     * @throws NullPointerException {@inheritDoc}
326     */
327    public boolean offerLast(E e) {
328        if (e == null) throw new NullPointerException();
329        Node<E> node = new Node<E>(e);
330        final ReentrantLock lock = this.lock;
331        lock.lock();
332        try {
333            return linkLast(node);
334        } finally {
335            lock.unlock();
336        }
337    }
338
339    /**
340     * @throws NullPointerException {@inheritDoc}
341     * @throws InterruptedException {@inheritDoc}
342     */
343    public void putFirst(E e) throws InterruptedException {
344        if (e == null) throw new NullPointerException();
345        Node<E> node = new Node<E>(e);
346        final ReentrantLock lock = this.lock;
347        lock.lock();
348        try {
349            while (!linkFirst(node))
350                notFull.await();
351        } finally {
352            lock.unlock();
353        }
354    }
355
356    /**
357     * @throws NullPointerException {@inheritDoc}
358     * @throws InterruptedException {@inheritDoc}
359     */
360    public void putLast(E e) throws InterruptedException {
361        if (e == null) throw new NullPointerException();
362        Node<E> node = new Node<E>(e);
363        final ReentrantLock lock = this.lock;
364        lock.lock();
365        try {
366            while (!linkLast(node))
367                notFull.await();
368        } finally {
369            lock.unlock();
370        }
371    }
372
373    /**
374     * @throws NullPointerException {@inheritDoc}
375     * @throws InterruptedException {@inheritDoc}
376     */
377    public boolean offerFirst(E e, long timeout, TimeUnit unit)
378        throws InterruptedException {
379        if (e == null) throw new NullPointerException();
380        Node<E> node = new Node<E>(e);
381        long nanos = unit.toNanos(timeout);
382        final ReentrantLock lock = this.lock;
383        lock.lockInterruptibly();
384        try {
385            while (!linkFirst(node)) {
386                if (nanos <= 0L)
387                    return false;
388                nanos = notFull.awaitNanos(nanos);
389            }
390            return true;
391        } finally {
392            lock.unlock();
393        }
394    }
395
396    /**
397     * @throws NullPointerException {@inheritDoc}
398     * @throws InterruptedException {@inheritDoc}
399     */
400    public boolean offerLast(E e, long timeout, TimeUnit unit)
401        throws InterruptedException {
402        if (e == null) throw new NullPointerException();
403        Node<E> node = new Node<E>(e);
404        long nanos = unit.toNanos(timeout);
405        final ReentrantLock lock = this.lock;
406        lock.lockInterruptibly();
407        try {
408            while (!linkLast(node)) {
409                if (nanos <= 0L)
410                    return false;
411                nanos = notFull.awaitNanos(nanos);
412            }
413            return true;
414        } finally {
415            lock.unlock();
416        }
417    }
418
419    /**
420     * @throws NoSuchElementException {@inheritDoc}
421     */
422    public E removeFirst() {
423        E x = pollFirst();
424        if (x == null) throw new NoSuchElementException();
425        return x;
426    }
427
428    /**
429     * @throws NoSuchElementException {@inheritDoc}
430     */
431    public E removeLast() {
432        E x = pollLast();
433        if (x == null) throw new NoSuchElementException();
434        return x;
435    }
436
437    public E pollFirst() {
438        final ReentrantLock lock = this.lock;
439        lock.lock();
440        try {
441            return unlinkFirst();
442        } finally {
443            lock.unlock();
444        }
445    }
446
447    public E pollLast() {
448        final ReentrantLock lock = this.lock;
449        lock.lock();
450        try {
451            return unlinkLast();
452        } finally {
453            lock.unlock();
454        }
455    }
456
457    public E takeFirst() throws InterruptedException {
458        final ReentrantLock lock = this.lock;
459        lock.lock();
460        try {
461            E x;
462            while ( (x = unlinkFirst()) == null)
463                notEmpty.await();
464            return x;
465        } finally {
466            lock.unlock();
467        }
468    }
469
470    public E takeLast() throws InterruptedException {
471        final ReentrantLock lock = this.lock;
472        lock.lock();
473        try {
474            E x;
475            while ( (x = unlinkLast()) == null)
476                notEmpty.await();
477            return x;
478        } finally {
479            lock.unlock();
480        }
481    }
482
483    public E pollFirst(long timeout, TimeUnit unit)
484        throws InterruptedException {
485        long nanos = unit.toNanos(timeout);
486        final ReentrantLock lock = this.lock;
487        lock.lockInterruptibly();
488        try {
489            E x;
490            while ( (x = unlinkFirst()) == null) {
491                if (nanos <= 0L)
492                    return null;
493                nanos = notEmpty.awaitNanos(nanos);
494            }
495            return x;
496        } finally {
497            lock.unlock();
498        }
499    }
500
501    public E pollLast(long timeout, TimeUnit unit)
502        throws InterruptedException {
503        long nanos = unit.toNanos(timeout);
504        final ReentrantLock lock = this.lock;
505        lock.lockInterruptibly();
506        try {
507            E x;
508            while ( (x = unlinkLast()) == null) {
509                if (nanos <= 0L)
510                    return null;
511                nanos = notEmpty.awaitNanos(nanos);
512            }
513            return x;
514        } finally {
515            lock.unlock();
516        }
517    }
518
519    /**
520     * @throws NoSuchElementException {@inheritDoc}
521     */
522    public E getFirst() {
523        E x = peekFirst();
524        if (x == null) throw new NoSuchElementException();
525        return x;
526    }
527
528    /**
529     * @throws NoSuchElementException {@inheritDoc}
530     */
531    public E getLast() {
532        E x = peekLast();
533        if (x == null) throw new NoSuchElementException();
534        return x;
535    }
536
537    public E peekFirst() {
538        final ReentrantLock lock = this.lock;
539        lock.lock();
540        try {
541            return (first == null) ? null : first.item;
542        } finally {
543            lock.unlock();
544        }
545    }
546
547    public E peekLast() {
548        final ReentrantLock lock = this.lock;
549        lock.lock();
550        try {
551            return (last == null) ? null : last.item;
552        } finally {
553            lock.unlock();
554        }
555    }
556
557    public boolean removeFirstOccurrence(Object o) {
558        if (o == null) return false;
559        final ReentrantLock lock = this.lock;
560        lock.lock();
561        try {
562            for (Node<E> p = first; p != null; p = p.next) {
563                if (o.equals(p.item)) {
564                    unlink(p);
565                    return true;
566                }
567            }
568            return false;
569        } finally {
570            lock.unlock();
571        }
572    }
573
574    public boolean removeLastOccurrence(Object o) {
575        if (o == null) return false;
576        final ReentrantLock lock = this.lock;
577        lock.lock();
578        try {
579            for (Node<E> p = last; p != null; p = p.prev) {
580                if (o.equals(p.item)) {
581                    unlink(p);
582                    return true;
583                }
584            }
585            return false;
586        } finally {
587            lock.unlock();
588        }
589    }
590
591    // BlockingQueue methods
592
593    /**
594     * Inserts the specified element at the end of this deque unless it would
595     * violate capacity restrictions.  When using a capacity-restricted deque,
596     * it is generally preferable to use method {@link #offer(Object) offer}.
597     *
598     * <p>This method is equivalent to {@link #addLast}.
599     *
600     * @throws IllegalStateException if this deque is full
601     * @throws NullPointerException if the specified element is null
602     */
603    public boolean add(E e) {
604        addLast(e);
605        return true;
606    }
607
608    /**
609     * @throws NullPointerException if the specified element is null
610     */
611    public boolean offer(E e) {
612        return offerLast(e);
613    }
614
615    /**
616     * @throws NullPointerException {@inheritDoc}
617     * @throws InterruptedException {@inheritDoc}
618     */
619    public void put(E e) throws InterruptedException {
620        putLast(e);
621    }
622
623    /**
624     * @throws NullPointerException {@inheritDoc}
625     * @throws InterruptedException {@inheritDoc}
626     */
627    public boolean offer(E e, long timeout, TimeUnit unit)
628        throws InterruptedException {
629        return offerLast(e, timeout, unit);
630    }
631
632    /**
633     * Retrieves and removes the head of the queue represented by this deque.
634     * This method differs from {@link #poll poll} only in that it throws an
635     * exception if this deque is empty.
636     *
637     * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
638     *
639     * @return the head of the queue represented by this deque
640     * @throws NoSuchElementException if this deque is empty
641     */
642    public E remove() {
643        return removeFirst();
644    }
645
646    public E poll() {
647        return pollFirst();
648    }
649
650    public E take() throws InterruptedException {
651        return takeFirst();
652    }
653
654    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
655        return pollFirst(timeout, unit);
656    }
657
658    /**
659     * Retrieves, but does not remove, the head of the queue represented by
660     * this deque.  This method differs from {@link #peek peek} only in that
661     * it throws an exception if this deque is empty.
662     *
663     * <p>This method is equivalent to {@link #getFirst() getFirst}.
664     *
665     * @return the head of the queue represented by this deque
666     * @throws NoSuchElementException if this deque is empty
667     */
668    public E element() {
669        return getFirst();
670    }
671
672    public E peek() {
673        return peekFirst();
674    }
675
676    /**
677     * Returns the number of additional elements that this deque can ideally
678     * (in the absence of memory or resource constraints) accept without
679     * blocking. This is always equal to the initial capacity of this deque
680     * less the current {@code size} of this deque.
681     *
682     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
683     * an element will succeed by inspecting {@code remainingCapacity}
684     * because it may be the case that another thread is about to
685     * insert or remove an element.
686     */
687    public int remainingCapacity() {
688        final ReentrantLock lock = this.lock;
689        lock.lock();
690        try {
691            return capacity - count;
692        } finally {
693            lock.unlock();
694        }
695    }
696
697    /**
698     * @throws UnsupportedOperationException {@inheritDoc}
699     * @throws ClassCastException            {@inheritDoc}
700     * @throws NullPointerException          {@inheritDoc}
701     * @throws IllegalArgumentException      {@inheritDoc}
702     */
703    public int drainTo(Collection<? super E> c) {
704        return drainTo(c, Integer.MAX_VALUE);
705    }
706
707    /**
708     * @throws UnsupportedOperationException {@inheritDoc}
709     * @throws ClassCastException            {@inheritDoc}
710     * @throws NullPointerException          {@inheritDoc}
711     * @throws IllegalArgumentException      {@inheritDoc}
712     */
713    public int drainTo(Collection<? super E> c, int maxElements) {
714        if (c == null)
715            throw new NullPointerException();
716        if (c == this)
717            throw new IllegalArgumentException();
718        if (maxElements <= 0)
719            return 0;
720        final ReentrantLock lock = this.lock;
721        lock.lock();
722        try {
723            int n = Math.min(maxElements, count);
724            for (int i = 0; i < n; i++) {
725                c.add(first.item);   // In this order, in case add() throws.
726                unlinkFirst();
727            }
728            return n;
729        } finally {
730            lock.unlock();
731        }
732    }
733
734    // Stack methods
735
736    /**
737     * @throws IllegalStateException if this deque is full
738     * @throws NullPointerException {@inheritDoc}
739     */
740    public void push(E e) {
741        addFirst(e);
742    }
743
744    /**
745     * @throws NoSuchElementException {@inheritDoc}
746     */
747    public E pop() {
748        return removeFirst();
749    }
750
751    // Collection methods
752
753    /**
754     * Removes the first occurrence of the specified element from this deque.
755     * If the deque does not contain the element, it is unchanged.
756     * More formally, removes the first element {@code e} such that
757     * {@code o.equals(e)} (if such an element exists).
758     * Returns {@code true} if this deque contained the specified element
759     * (or equivalently, if this deque changed as a result of the call).
760     *
761     * <p>This method is equivalent to
762     * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
763     *
764     * @param o element to be removed from this deque, if present
765     * @return {@code true} if this deque changed as a result of the call
766     */
767    public boolean remove(Object o) {
768        return removeFirstOccurrence(o);
769    }
770
771    /**
772     * Returns the number of elements in this deque.
773     *
774     * @return the number of elements in this deque
775     */
776    public int size() {
777        final ReentrantLock lock = this.lock;
778        lock.lock();
779        try {
780            return count;
781        } finally {
782            lock.unlock();
783        }
784    }
785
786    /**
787     * Returns {@code true} if this deque contains the specified element.
788     * More formally, returns {@code true} if and only if this deque contains
789     * at least one element {@code e} such that {@code o.equals(e)}.
790     *
791     * @param o object to be checked for containment in this deque
792     * @return {@code true} if this deque contains the specified element
793     */
794    public boolean contains(Object o) {
795        if (o == null) return false;
796        final ReentrantLock lock = this.lock;
797        lock.lock();
798        try {
799            for (Node<E> p = first; p != null; p = p.next)
800                if (o.equals(p.item))
801                    return true;
802            return false;
803        } finally {
804            lock.unlock();
805        }
806    }
807
808    /*
809     * TODO: Add support for more efficient bulk operations.
810     *
811     * We don't want to acquire the lock for every iteration, but we
812     * also want other threads a chance to interact with the
813     * collection, especially when count is close to capacity.
814     */
815
816//     /**
817//      * Adds all of the elements in the specified collection to this
818//      * queue.  Attempts to addAll of a queue to itself result in
819//      * {@code IllegalArgumentException}. Further, the behavior of
820//      * this operation is undefined if the specified collection is
821//      * modified while the operation is in progress.
822//      *
823//      * @param c collection containing elements to be added to this queue
824//      * @return {@code true} if this queue changed as a result of the call
825//      * @throws ClassCastException            {@inheritDoc}
826//      * @throws NullPointerException          {@inheritDoc}
827//      * @throws IllegalArgumentException      {@inheritDoc}
828//      * @throws IllegalStateException if this deque is full
829//      * @see #add(Object)
830//      */
831//     public boolean addAll(Collection<? extends E> c) {
832//         if (c == null)
833//             throw new NullPointerException();
834//         if (c == this)
835//             throw new IllegalArgumentException();
836//         final ReentrantLock lock = this.lock;
837//         lock.lock();
838//         try {
839//             boolean modified = false;
840//             for (E e : c)
841//                 if (linkLast(e))
842//                     modified = true;
843//             return modified;
844//         } finally {
845//             lock.unlock();
846//         }
847//     }
848
849    /**
850     * Returns an array containing all of the elements in this deque, in
851     * proper sequence (from first to last element).
852     *
853     * <p>The returned array will be "safe" in that no references to it are
854     * maintained by this deque.  (In other words, this method must allocate
855     * a new array).  The caller is thus free to modify the returned array.
856     *
857     * <p>This method acts as bridge between array-based and collection-based
858     * APIs.
859     *
860     * @return an array containing all of the elements in this deque
861     */
862    @SuppressWarnings("unchecked")
863    public Object[] toArray() {
864        final ReentrantLock lock = this.lock;
865        lock.lock();
866        try {
867            Object[] a = new Object[count];
868            int k = 0;
869            for (Node<E> p = first; p != null; p = p.next)
870                a[k++] = p.item;
871            return a;
872        } finally {
873            lock.unlock();
874        }
875    }
876
877    /**
878     * Returns an array containing all of the elements in this deque, in
879     * proper sequence; the runtime type of the returned array is that of
880     * the specified array.  If the deque fits in the specified array, it
881     * is returned therein.  Otherwise, a new array is allocated with the
882     * runtime type of the specified array and the size of this deque.
883     *
884     * <p>If this deque fits in the specified array with room to spare
885     * (i.e., the array has more elements than this deque), the element in
886     * the array immediately following the end of the deque is set to
887     * {@code null}.
888     *
889     * <p>Like the {@link #toArray()} method, this method acts as bridge between
890     * array-based and collection-based APIs.  Further, this method allows
891     * precise control over the runtime type of the output array, and may,
892     * under certain circumstances, be used to save allocation costs.
893     *
894     * <p>Suppose {@code x} is a deque known to contain only strings.
895     * The following code can be used to dump the deque into a newly
896     * allocated array of {@code String}:
897     *
898     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
899     *
900     * Note that {@code toArray(new Object[0])} is identical in function to
901     * {@code toArray()}.
902     *
903     * @param a the array into which the elements of the deque are to
904     *          be stored, if it is big enough; otherwise, a new array of the
905     *          same runtime type is allocated for this purpose
906     * @return an array containing all of the elements in this deque
907     * @throws ArrayStoreException if the runtime type of the specified array
908     *         is not a supertype of the runtime type of every element in
909     *         this deque
910     * @throws NullPointerException if the specified array is null
911     */
912    @SuppressWarnings("unchecked")
913    public <T> T[] toArray(T[] a) {
914        final ReentrantLock lock = this.lock;
915        lock.lock();
916        try {
917            if (a.length < count)
918                a = (T[])java.lang.reflect.Array.newInstance
919                    (a.getClass().getComponentType(), count);
920
921            int k = 0;
922            for (Node<E> p = first; p != null; p = p.next)
923                a[k++] = (T)p.item;
924            if (a.length > k)
925                a[k] = null;
926            return a;
927        } finally {
928            lock.unlock();
929        }
930    }
931
932    public String toString() {
933        return Helpers.collectionToString(this);
934    }
935
936    /**
937     * Atomically removes all of the elements from this deque.
938     * The deque will be empty after this call returns.
939     */
940    public void clear() {
941        final ReentrantLock lock = this.lock;
942        lock.lock();
943        try {
944            for (Node<E> f = first; f != null; ) {
945                f.item = null;
946                Node<E> n = f.next;
947                f.prev = null;
948                f.next = null;
949                f = n;
950            }
951            first = last = null;
952            count = 0;
953            notFull.signalAll();
954        } finally {
955            lock.unlock();
956        }
957    }
958
959    /**
960     * Returns an iterator over the elements in this deque in proper sequence.
961     * The elements will be returned in order from first (head) to last (tail).
962     *
963     * <p>The returned iterator is
964     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
965     *
966     * @return an iterator over the elements in this deque in proper sequence
967     */
968    public Iterator<E> iterator() {
969        return new Itr();
970    }
971
972    /**
973     * Returns an iterator over the elements in this deque in reverse
974     * sequential order.  The elements will be returned in order from
975     * last (tail) to first (head).
976     *
977     * <p>The returned iterator is
978     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
979     *
980     * @return an iterator over the elements in this deque in reverse order
981     */
982    public Iterator<E> descendingIterator() {
983        return new DescendingItr();
984    }
985
986    /**
987     * Base class for LinkedBlockingDeque iterators.
988     */
989    private abstract class AbstractItr implements Iterator<E> {
990        /**
991         * The next node to return in next().
992         */
993        Node<E> next;
994
995        /**
996         * nextItem holds on to item fields because once we claim that
997         * an element exists in hasNext(), we must return item read
998         * under lock (in advance()) even if it was in the process of
999         * being removed when hasNext() was called.
1000         */
1001        E nextItem;
1002
1003        /**
1004         * Node returned by most recent call to next. Needed by remove.
1005         * Reset to null if this element is deleted by a call to remove.
1006         */
1007        private Node<E> lastRet;
1008
1009        abstract Node<E> firstNode();
1010        abstract Node<E> nextNode(Node<E> n);
1011
1012        AbstractItr() {
1013            // set to initial position
1014            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1015            lock.lock();
1016            try {
1017                next = firstNode();
1018                nextItem = (next == null) ? null : next.item;
1019            } finally {
1020                lock.unlock();
1021            }
1022        }
1023
1024        /**
1025         * Returns the successor node of the given non-null, but
1026         * possibly previously deleted, node.
1027         */
1028        private Node<E> succ(Node<E> n) {
1029            // Chains of deleted nodes ending in null or self-links
1030            // are possible if multiple interior nodes are removed.
1031            for (;;) {
1032                Node<E> s = nextNode(n);
1033                if (s == null)
1034                    return null;
1035                else if (s.item != null)
1036                    return s;
1037                else if (s == n)
1038                    return firstNode();
1039                else
1040                    n = s;
1041            }
1042        }
1043
1044        /**
1045         * Advances next.
1046         */
1047        void advance() {
1048            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1049            lock.lock();
1050            try {
1051                // assert next != null;
1052                next = succ(next);
1053                nextItem = (next == null) ? null : next.item;
1054            } finally {
1055                lock.unlock();
1056            }
1057        }
1058
1059        public boolean hasNext() {
1060            return next != null;
1061        }
1062
1063        public E next() {
1064            if (next == null)
1065                throw new NoSuchElementException();
1066            lastRet = next;
1067            E x = nextItem;
1068            advance();
1069            return x;
1070        }
1071
1072        public void remove() {
1073            Node<E> n = lastRet;
1074            if (n == null)
1075                throw new IllegalStateException();
1076            lastRet = null;
1077            final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1078            lock.lock();
1079            try {
1080                if (n.item != null)
1081                    unlink(n);
1082            } finally {
1083                lock.unlock();
1084            }
1085        }
1086    }
1087
1088    /** Forward iterator */
1089    private class Itr extends AbstractItr {
1090        Node<E> firstNode() { return first; }
1091        Node<E> nextNode(Node<E> n) { return n.next; }
1092    }
1093
1094    /** Descending iterator */
1095    private class DescendingItr extends AbstractItr {
1096        Node<E> firstNode() { return last; }
1097        Node<E> nextNode(Node<E> n) { return n.prev; }
1098    }
1099
1100    /** A customized variant of Spliterators.IteratorSpliterator */
1101    static final class LBDSpliterator<E> implements Spliterator<E> {
1102        static final int MAX_BATCH = 1 << 25;  // max batch array size;
1103        final LinkedBlockingDeque<E> queue;
1104        Node<E> current;    // current node; null until initialized
1105        int batch;          // batch size for splits
1106        boolean exhausted;  // true when no more nodes
1107        long est;           // size estimate
1108        LBDSpliterator(LinkedBlockingDeque<E> queue) {
1109            this.queue = queue;
1110            this.est = queue.size();
1111        }
1112
1113        public long estimateSize() { return est; }
1114
1115        public Spliterator<E> trySplit() {
1116            Node<E> h;
1117            final LinkedBlockingDeque<E> q = this.queue;
1118            int b = batch;
1119            int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1120            if (!exhausted &&
1121                ((h = current) != null || (h = q.first) != null) &&
1122                h.next != null) {
1123                Object[] a = new Object[n];
1124                final ReentrantLock lock = q.lock;
1125                int i = 0;
1126                Node<E> p = current;
1127                lock.lock();
1128                try {
1129                    if (p != null || (p = q.first) != null) {
1130                        do {
1131                            if ((a[i] = p.item) != null)
1132                                ++i;
1133                        } while ((p = p.next) != null && i < n);
1134                    }
1135                } finally {
1136                    lock.unlock();
1137                }
1138                if ((current = p) == null) {
1139                    est = 0L;
1140                    exhausted = true;
1141                }
1142                else if ((est -= i) < 0L)
1143                    est = 0L;
1144                if (i > 0) {
1145                    batch = i;
1146                    return Spliterators.spliterator
1147                        (a, 0, i, (Spliterator.ORDERED |
1148                                   Spliterator.NONNULL |
1149                                   Spliterator.CONCURRENT));
1150                }
1151            }
1152            return null;
1153        }
1154
1155        public void forEachRemaining(Consumer<? super E> action) {
1156            if (action == null) throw new NullPointerException();
1157            final LinkedBlockingDeque<E> q = this.queue;
1158            final ReentrantLock lock = q.lock;
1159            if (!exhausted) {
1160                exhausted = true;
1161                Node<E> p = current;
1162                do {
1163                    E e = null;
1164                    lock.lock();
1165                    try {
1166                        if (p == null)
1167                            p = q.first;
1168                        while (p != null) {
1169                            e = p.item;
1170                            p = p.next;
1171                            if (e != null)
1172                                break;
1173                        }
1174                    } finally {
1175                        lock.unlock();
1176                    }
1177                    if (e != null)
1178                        action.accept(e);
1179                } while (p != null);
1180            }
1181        }
1182
1183        public boolean tryAdvance(Consumer<? super E> action) {
1184            if (action == null) throw new NullPointerException();
1185            final LinkedBlockingDeque<E> q = this.queue;
1186            final ReentrantLock lock = q.lock;
1187            if (!exhausted) {
1188                E e = null;
1189                lock.lock();
1190                try {
1191                    if (current == null)
1192                        current = q.first;
1193                    while (current != null) {
1194                        e = current.item;
1195                        current = current.next;
1196                        if (e != null)
1197                            break;
1198                    }
1199                } finally {
1200                    lock.unlock();
1201                }
1202                if (current == null)
1203                    exhausted = true;
1204                if (e != null) {
1205                    action.accept(e);
1206                    return true;
1207                }
1208            }
1209            return false;
1210        }
1211
1212        public int characteristics() {
1213            return Spliterator.ORDERED | Spliterator.NONNULL |
1214                Spliterator.CONCURRENT;
1215        }
1216    }
1217
1218    /**
1219     * Returns a {@link Spliterator} over the elements in this deque.
1220     *
1221     * <p>The returned spliterator is
1222     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1223     *
1224     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1225     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1226     *
1227     * @implNote
1228     * The {@code Spliterator} implements {@code trySplit} to permit limited
1229     * parallelism.
1230     *
1231     * @return a {@code Spliterator} over the elements in this deque
1232     * @since 1.8
1233     */
1234    public Spliterator<E> spliterator() {
1235        return new LBDSpliterator<E>(this);
1236    }
1237
1238    /**
1239     * Saves this deque to a stream (that is, serializes it).
1240     *
1241     * @param s the stream
1242     * @throws java.io.IOException if an I/O error occurs
1243     * @serialData The capacity (int), followed by elements (each an
1244     * {@code Object}) in the proper order, followed by a null
1245     */
1246    private void writeObject(java.io.ObjectOutputStream s)
1247        throws java.io.IOException {
1248        final ReentrantLock lock = this.lock;
1249        lock.lock();
1250        try {
1251            // Write out capacity and any hidden stuff
1252            s.defaultWriteObject();
1253            // Write out all elements in the proper order.
1254            for (Node<E> p = first; p != null; p = p.next)
1255                s.writeObject(p.item);
1256            // Use trailing null as sentinel
1257            s.writeObject(null);
1258        } finally {
1259            lock.unlock();
1260        }
1261    }
1262
1263    /**
1264     * Reconstitutes this deque from a stream (that is, deserializes it).
1265     * @param s the stream
1266     * @throws ClassNotFoundException if the class of a serialized object
1267     *         could not be found
1268     * @throws java.io.IOException if an I/O error occurs
1269     */
1270    private void readObject(java.io.ObjectInputStream s)
1271        throws java.io.IOException, ClassNotFoundException {
1272        s.defaultReadObject();
1273        count = 0;
1274        first = null;
1275        last = null;
1276        // Read in all elements and place in queue
1277        for (;;) {
1278            @SuppressWarnings("unchecked")
1279            E item = (E)s.readObject();
1280            if (item == null)
1281                break;
1282            add(item);
1283        }
1284    }
1285
1286}
1287