1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.lang;
28
29import sun.misc.FpUtils;
30import sun.misc.DoubleConsts;
31
32/**
33 * The {@code Double} class wraps a value of the primitive type
34 * {@code double} in an object. An object of type
35 * {@code Double} contains a single field whose type is
36 * {@code double}.
37 *
38 * <p>In addition, this class provides several methods for converting a
39 * {@code double} to a {@code String} and a
40 * {@code String} to a {@code double}, as well as other
41 * constants and methods useful when dealing with a
42 * {@code double}.
43 *
44 * @author  Lee Boynton
45 * @author  Arthur van Hoff
46 * @author  Joseph D. Darcy
47 * @since JDK1.0
48 */
49public final class Double extends Number implements Comparable<Double> {
50    /**
51     * A constant holding the positive infinity of type
52     * {@code double}. It is equal to the value returned by
53     * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
54     */
55    public static final double POSITIVE_INFINITY = 1.0 / 0.0;
56
57    /**
58     * A constant holding the negative infinity of type
59     * {@code double}. It is equal to the value returned by
60     * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
61     */
62    public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
63
64    /**
65     * A constant holding a Not-a-Number (NaN) value of type
66     * {@code double}. It is equivalent to the value returned by
67     * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
68     */
69    public static final double NaN = 0.0d / 0.0;
70
71    /**
72     * A constant holding the largest positive finite value of type
73     * {@code double},
74     * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
75     * the hexadecimal floating-point literal
76     * {@code 0x1.fffffffffffffP+1023} and also equal to
77     * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
78     */
79    public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
80
81    /**
82     * A constant holding the smallest positive normal value of type
83     * {@code double}, 2<sup>-1022</sup>.  It is equal to the
84     * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
85     * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
86     *
87     * @since 1.6
88     */
89    public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
90
91    /**
92     * A constant holding the smallest positive nonzero value of type
93     * {@code double}, 2<sup>-1074</sup>. It is equal to the
94     * hexadecimal floating-point literal
95     * {@code 0x0.0000000000001P-1022} and also equal to
96     * {@code Double.longBitsToDouble(0x1L)}.
97     */
98    public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
99
100    /**
101     * Maximum exponent a finite {@code double} variable may have.
102     * It is equal to the value returned by
103     * {@code Math.getExponent(Double.MAX_VALUE)}.
104     *
105     * @since 1.6
106     */
107    public static final int MAX_EXPONENT = 1023;
108
109    /**
110     * Minimum exponent a normalized {@code double} variable may
111     * have.  It is equal to the value returned by
112     * {@code Math.getExponent(Double.MIN_NORMAL)}.
113     *
114     * @since 1.6
115     */
116    public static final int MIN_EXPONENT = -1022;
117
118    /**
119     * The number of bits used to represent a {@code double} value.
120     *
121     * @since 1.5
122     */
123    public static final int SIZE = 64;
124
125    /**
126     * The number of bytes used to represent a {@code double} value.
127     *
128     * @since 1.8
129     */
130    public static final int BYTES = SIZE / Byte.SIZE;
131
132    /**
133     * The {@code Class} instance representing the primitive type
134     * {@code double}.
135     *
136     * @since JDK1.1
137     */
138    public static final Class<Double>   TYPE = (Class<Double>) double[].class.getComponentType();
139
140    /**
141     * Returns a string representation of the {@code double}
142     * argument. All characters mentioned below are ASCII characters.
143     * <ul>
144     * <li>If the argument is NaN, the result is the string
145     *     "{@code NaN}".
146     * <li>Otherwise, the result is a string that represents the sign and
147     * magnitude (absolute value) of the argument. If the sign is negative,
148     * the first character of the result is '{@code -}'
149     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
150     * appears in the result. As for the magnitude <i>m</i>:
151     * <ul>
152     * <li>If <i>m</i> is infinity, it is represented by the characters
153     * {@code "Infinity"}; thus, positive infinity produces the result
154     * {@code "Infinity"} and negative infinity produces the result
155     * {@code "-Infinity"}.
156     *
157     * <li>If <i>m</i> is zero, it is represented by the characters
158     * {@code "0.0"}; thus, negative zero produces the result
159     * {@code "-0.0"} and positive zero produces the result
160     * {@code "0.0"}.
161     *
162     * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
163     * than 10<sup>7</sup>, then it is represented as the integer part of
164     * <i>m</i>, in decimal form with no leading zeroes, followed by
165     * '{@code .}' (<code>'&#92;u002E'</code>), followed by one or
166     * more decimal digits representing the fractional part of <i>m</i>.
167     *
168     * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
169     * equal to 10<sup>7</sup>, then it is represented in so-called
170     * "computerized scientific notation." Let <i>n</i> be the unique
171     * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
172     * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
173     * mathematically exact quotient of <i>m</i> and
174     * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
175     * magnitude is then represented as the integer part of <i>a</i>,
176     * as a single decimal digit, followed by '{@code .}'
177     * (<code>'&#92;u002E'</code>), followed by decimal digits
178     * representing the fractional part of <i>a</i>, followed by the
179     * letter '{@code E}' (<code>'&#92;u0045'</code>), followed
180     * by a representation of <i>n</i> as a decimal integer, as
181     * produced by the method {@link Integer#toString(int)}.
182     * </ul>
183     * </ul>
184     * How many digits must be printed for the fractional part of
185     * <i>m</i> or <i>a</i>? There must be at least one digit to represent
186     * the fractional part, and beyond that as many, but only as many, more
187     * digits as are needed to uniquely distinguish the argument value from
188     * adjacent values of type {@code double}. That is, suppose that
189     * <i>x</i> is the exact mathematical value represented by the decimal
190     * representation produced by this method for a finite nonzero argument
191     * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
192     * to <i>x</i>; or if two {@code double} values are equally close
193     * to <i>x</i>, then <i>d</i> must be one of them and the least
194     * significant bit of the significand of <i>d</i> must be {@code 0}.
195     *
196     * <p>To create localized string representations of a floating-point
197     * value, use subclasses of {@link java.text.NumberFormat}.
198     *
199     * @param   d   the {@code double} to be converted.
200     * @return a string representation of the argument.
201     */
202    public static String toString(double d) {
203        return FloatingDecimal.getThreadLocalInstance().loadDouble(d).toJavaFormatString();
204    }
205
206    /**
207     * Returns a hexadecimal string representation of the
208     * {@code double} argument. All characters mentioned below
209     * are ASCII characters.
210     *
211     * <ul>
212     * <li>If the argument is NaN, the result is the string
213     *     "{@code NaN}".
214     * <li>Otherwise, the result is a string that represents the sign
215     * and magnitude of the argument. If the sign is negative, the
216     * first character of the result is '{@code -}'
217     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign
218     * character appears in the result. As for the magnitude <i>m</i>:
219     *
220     * <ul>
221     * <li>If <i>m</i> is infinity, it is represented by the string
222     * {@code "Infinity"}; thus, positive infinity produces the
223     * result {@code "Infinity"} and negative infinity produces
224     * the result {@code "-Infinity"}.
225     *
226     * <li>If <i>m</i> is zero, it is represented by the string
227     * {@code "0x0.0p0"}; thus, negative zero produces the result
228     * {@code "-0x0.0p0"} and positive zero produces the result
229     * {@code "0x0.0p0"}.
230     *
231     * <li>If <i>m</i> is a {@code double} value with a
232     * normalized representation, substrings are used to represent the
233     * significand and exponent fields.  The significand is
234     * represented by the characters {@code "0x1."}
235     * followed by a lowercase hexadecimal representation of the rest
236     * of the significand as a fraction.  Trailing zeros in the
237     * hexadecimal representation are removed unless all the digits
238     * are zero, in which case a single zero is used. Next, the
239     * exponent is represented by {@code "p"} followed
240     * by a decimal string of the unbiased exponent as if produced by
241     * a call to {@link Integer#toString(int) Integer.toString} on the
242     * exponent value.
243     *
244     * <li>If <i>m</i> is a {@code double} value with a subnormal
245     * representation, the significand is represented by the
246     * characters {@code "0x0."} followed by a
247     * hexadecimal representation of the rest of the significand as a
248     * fraction.  Trailing zeros in the hexadecimal representation are
249     * removed. Next, the exponent is represented by
250     * {@code "p-1022"}.  Note that there must be at
251     * least one nonzero digit in a subnormal significand.
252     *
253     * </ul>
254     *
255     * </ul>
256     *
257     * <table border>
258     * <caption><h3>Examples</h3></caption>
259     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
260     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
261     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
262     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
263     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
264     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
265     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
266     * <tr><td>{@code Double.MAX_VALUE}</td>
267     *     <td>{@code 0x1.fffffffffffffp1023}</td>
268     * <tr><td>{@code Minimum Normal Value}</td>
269     *     <td>{@code 0x1.0p-1022}</td>
270     * <tr><td>{@code Maximum Subnormal Value}</td>
271     *     <td>{@code 0x0.fffffffffffffp-1022}</td>
272     * <tr><td>{@code Double.MIN_VALUE}</td>
273     *     <td>{@code 0x0.0000000000001p-1022}</td>
274     * </table>
275     * @param   d   the {@code double} to be converted.
276     * @return a hex string representation of the argument.
277     * @since 1.5
278     * @author Joseph D. Darcy
279     */
280    public static String toHexString(double d) {
281        /*
282         * Modeled after the "a" conversion specifier in C99, section
283         * 7.19.6.1; however, the output of this method is more
284         * tightly specified.
285         */
286        if (!FpUtils.isFinite(d) )
287            // For infinity and NaN, use the decimal output.
288            return Double.toString(d);
289        else {
290            // Initialized to maximum size of output.
291            StringBuffer answer = new StringBuffer(24);
292
293            if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative,
294                answer.append("-");                  // so append sign info
295
296            answer.append("0x");
297
298            d = Math.abs(d);
299
300            if(d == 0.0) {
301                answer.append("0.0p0");
302            }
303            else {
304                boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
305
306                // Isolate significand bits and OR in a high-order bit
307                // so that the string representation has a known
308                // length.
309                long signifBits = (Double.doubleToLongBits(d)
310                                   & DoubleConsts.SIGNIF_BIT_MASK) |
311                    0x1000000000000000L;
312
313                // Subnormal values have a 0 implicit bit; normal
314                // values have a 1 implicit bit.
315                answer.append(subnormal ? "0." : "1.");
316
317                // Isolate the low-order 13 digits of the hex
318                // representation.  If all the digits are zero,
319                // replace with a single 0; otherwise, remove all
320                // trailing zeros.
321                String signif = Long.toHexString(signifBits).substring(3,16);
322                answer.append(signif.equals("0000000000000") ? // 13 zeros
323                              "0":
324                              signif.replaceFirst("0{1,12}$", ""));
325
326                // If the value is subnormal, use the E_min exponent
327                // value for double; otherwise, extract and report d's
328                // exponent (the representation of a subnormal uses
329                // E_min -1).
330                answer.append("p" + (subnormal ?
331                               DoubleConsts.MIN_EXPONENT:
332                               FpUtils.getExponent(d) ));
333            }
334            return answer.toString();
335        }
336    }
337
338    /**
339     * Returns a {@code Double} object holding the
340     * {@code double} value represented by the argument string
341     * {@code s}.
342     *
343     * <p>If {@code s} is {@code null}, then a
344     * {@code NullPointerException} is thrown.
345     *
346     * <p>Leading and trailing whitespace characters in {@code s}
347     * are ignored.  Whitespace is removed as if by the {@link
348     * String#trim} method; that is, both ASCII space and control
349     * characters are removed. The rest of {@code s} should
350     * constitute a <i>FloatValue</i> as described by the lexical
351     * syntax rules:
352     *
353     * <blockquote>
354     * <dl>
355     * <dt><i>FloatValue:</i>
356     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
357     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
358     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
359     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
360     * <dd><i>SignedInteger</i>
361     * </dl>
362     *
363     * <p>
364     *
365     * <dl>
366     * <dt><i>HexFloatingPointLiteral</i>:
367     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
368     * </dl>
369     *
370     * <p>
371     *
372     * <dl>
373     * <dt><i>HexSignificand:</i>
374     * <dd><i>HexNumeral</i>
375     * <dd><i>HexNumeral</i> {@code .}
376     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
377     *     </i>{@code .}<i> HexDigits</i>
378     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
379     *     </i>{@code .} <i>HexDigits</i>
380     * </dl>
381     *
382     * <p>
383     *
384     * <dl>
385     * <dt><i>BinaryExponent:</i>
386     * <dd><i>BinaryExponentIndicator SignedInteger</i>
387     * </dl>
388     *
389     * <p>
390     *
391     * <dl>
392     * <dt><i>BinaryExponentIndicator:</i>
393     * <dd>{@code p}
394     * <dd>{@code P}
395     * </dl>
396     *
397     * </blockquote>
398     *
399     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
400     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
401     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
402     * sections of
403     * <cite>The Java&trade; Language Specification</cite>,
404     * except that underscores are not accepted between digits.
405     * If {@code s} does not have the form of
406     * a <i>FloatValue</i>, then a {@code NumberFormatException}
407     * is thrown. Otherwise, {@code s} is regarded as
408     * representing an exact decimal value in the usual
409     * "computerized scientific notation" or as an exact
410     * hexadecimal value; this exact numerical value is then
411     * conceptually converted to an "infinitely precise"
412     * binary value that is then rounded to type {@code double}
413     * by the usual round-to-nearest rule of IEEE 754 floating-point
414     * arithmetic, which includes preserving the sign of a zero
415     * value.
416     *
417     * Note that the round-to-nearest rule also implies overflow and
418     * underflow behaviour; if the exact value of {@code s} is large
419     * enough in magnitude (greater than or equal to ({@link
420     * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
421     * rounding to {@code double} will result in an infinity and if the
422     * exact value of {@code s} is small enough in magnitude (less
423     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
424     * result in a zero.
425     *
426     * Finally, after rounding a {@code Double} object representing
427     * this {@code double} value is returned.
428     *
429     * <p> To interpret localized string representations of a
430     * floating-point value, use subclasses of {@link
431     * java.text.NumberFormat}.
432     *
433     * <p>Note that trailing format specifiers, specifiers that
434     * determine the type of a floating-point literal
435     * ({@code 1.0f} is a {@code float} value;
436     * {@code 1.0d} is a {@code double} value), do
437     * <em>not</em> influence the results of this method.  In other
438     * words, the numerical value of the input string is converted
439     * directly to the target floating-point type.  The two-step
440     * sequence of conversions, string to {@code float} followed
441     * by {@code float} to {@code double}, is <em>not</em>
442     * equivalent to converting a string directly to
443     * {@code double}. For example, the {@code float}
444     * literal {@code 0.1f} is equal to the {@code double}
445     * value {@code 0.10000000149011612}; the {@code float}
446     * literal {@code 0.1f} represents a different numerical
447     * value than the {@code double} literal
448     * {@code 0.1}. (The numerical value 0.1 cannot be exactly
449     * represented in a binary floating-point number.)
450     *
451     * <p>To avoid calling this method on an invalid string and having
452     * a {@code NumberFormatException} be thrown, the regular
453     * expression below can be used to screen the input string:
454     *
455     * <code>
456     * <pre>
457     *  final String Digits     = "(\\p{Digit}+)";
458     *  final String HexDigits  = "(\\p{XDigit}+)";
459     *  // an exponent is 'e' or 'E' followed by an optionally
460     *  // signed decimal integer.
461     *  final String Exp        = "[eE][+-]?"+Digits;
462     *  final String fpRegex    =
463     *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
464     *       "[+-]?(" + // Optional sign character
465     *       "NaN|" +           // "NaN" string
466     *       "Infinity|" +      // "Infinity" string
467     *
468     *       // A decimal floating-point string representing a finite positive
469     *       // number without a leading sign has at most five basic pieces:
470     *       // Digits . Digits ExponentPart FloatTypeSuffix
471     *       //
472     *       // Since this method allows integer-only strings as input
473     *       // in addition to strings of floating-point literals, the
474     *       // two sub-patterns below are simplifications of the grammar
475     *       // productions from section 3.10.2 of
476     *       // <cite>The Java&trade; Language Specification</cite>.
477     *
478     *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
479     *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
480     *
481     *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
482     *       "(\\.("+Digits+")("+Exp+")?)|"+
483     *
484     *       // Hexadecimal strings
485     *       "((" +
486     *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
487     *        "(0[xX]" + HexDigits + "(\\.)?)|" +
488     *
489     *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
490     *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
491     *
492     *        ")[pP][+-]?" + Digits + "))" +
493     *       "[fFdD]?))" +
494     *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
495     *
496     *  if (Pattern.matches(fpRegex, myString))
497     *      Double.valueOf(myString); // Will not throw NumberFormatException
498     *  else {
499     *      // Perform suitable alternative action
500     *  }
501     * </pre>
502     * </code>
503     *
504     * @param      s   the string to be parsed.
505     * @return     a {@code Double} object holding the value
506     *             represented by the {@code String} argument.
507     * @throws     NumberFormatException  if the string does not contain a
508     *             parsable number.
509     */
510    public static Double valueOf(String s) throws NumberFormatException {
511        return new Double(FloatingDecimal.getThreadLocalInstance().readJavaFormatString(s).doubleValue());
512    }
513
514    /**
515     * Returns a {@code Double} instance representing the specified
516     * {@code double} value.
517     * If a new {@code Double} instance is not required, this method
518     * should generally be used in preference to the constructor
519     * {@link #Double(double)}, as this method is likely to yield
520     * significantly better space and time performance by caching
521     * frequently requested values.
522     *
523     * @param  d a double value.
524     * @return a {@code Double} instance representing {@code d}.
525     * @since  1.5
526     */
527    public static Double valueOf(double d) {
528        return new Double(d);
529    }
530
531    /**
532     * Returns a new {@code double} initialized to the value
533     * represented by the specified {@code String}, as performed
534     * by the {@code valueOf} method of class
535     * {@code Double}.
536     *
537     * @param  s   the string to be parsed.
538     * @return the {@code double} value represented by the string
539     *         argument.
540     * @throws NullPointerException  if the string is null
541     * @throws NumberFormatException if the string does not contain
542     *         a parsable {@code double}.
543     * @see    java.lang.Double#valueOf(String)
544     * @since 1.2
545     */
546    public static double parseDouble(String s) throws NumberFormatException {
547        return FloatingDecimal.getThreadLocalInstance().readJavaFormatString(s).doubleValue();
548    }
549
550    /**
551     * Returns {@code true} if the specified number is a
552     * Not-a-Number (NaN) value, {@code false} otherwise.
553     *
554     * @param   v   the value to be tested.
555     * @return  {@code true} if the value of the argument is NaN;
556     *          {@code false} otherwise.
557     */
558    static public boolean isNaN(double v) {
559        return (v != v);
560    }
561
562    /**
563     * Returns {@code true} if the specified number is infinitely
564     * large in magnitude, {@code false} otherwise.
565     *
566     * @param   v   the value to be tested.
567     * @return  {@code true} if the value of the argument is positive
568     *          infinity or negative infinity; {@code false} otherwise.
569     */
570    static public boolean isInfinite(double v) {
571        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
572    }
573
574    /**
575     * Returns {@code true} if the argument is a finite floating-point
576     * value; returns {@code false} otherwise (for NaN and infinity
577     * arguments).
578     *
579     * @param d the {@code double} value to be tested
580     * @return {@code true} if the argument is a finite
581     * floating-point value, {@code false} otherwise.
582     * @since 1.8
583     */
584    public static boolean isFinite(double d) {
585        return Math.abs(d) <= DoubleConsts.MAX_VALUE;
586    }
587
588    /**
589     * The value of the Double.
590     *
591     * @serial
592     */
593    private final double value;
594
595    /**
596     * Constructs a newly allocated {@code Double} object that
597     * represents the primitive {@code double} argument.
598     *
599     * @param   value   the value to be represented by the {@code Double}.
600     */
601    public Double(double value) {
602        this.value = value;
603    }
604
605    /**
606     * Constructs a newly allocated {@code Double} object that
607     * represents the floating-point value of type {@code double}
608     * represented by the string. The string is converted to a
609     * {@code double} value as if by the {@code valueOf} method.
610     *
611     * @param  s  a string to be converted to a {@code Double}.
612     * @throws    NumberFormatException  if the string does not contain a
613     *            parsable number.
614     * @see       java.lang.Double#valueOf(java.lang.String)
615     */
616    public Double(String s) throws NumberFormatException {
617        // REMIND: this is inefficient
618        this(valueOf(s).doubleValue());
619    }
620
621    /**
622     * Returns {@code true} if this {@code Double} value is
623     * a Not-a-Number (NaN), {@code false} otherwise.
624     *
625     * @return  {@code true} if the value represented by this object is
626     *          NaN; {@code false} otherwise.
627     */
628    public boolean isNaN() {
629        return isNaN(value);
630    }
631
632    /**
633     * Returns {@code true} if this {@code Double} value is
634     * infinitely large in magnitude, {@code false} otherwise.
635     *
636     * @return  {@code true} if the value represented by this object is
637     *          positive infinity or negative infinity;
638     *          {@code false} otherwise.
639     */
640    public boolean isInfinite() {
641        return isInfinite(value);
642    }
643
644    /**
645     * Returns a string representation of this {@code Double} object.
646     * The primitive {@code double} value represented by this
647     * object is converted to a string exactly as if by the method
648     * {@code toString} of one argument.
649     *
650     * @return  a {@code String} representation of this object.
651     * @see java.lang.Double#toString(double)
652     */
653    public String toString() {
654        return toString(value);
655    }
656
657    /**
658     * Returns the value of this {@code Double} as a {@code byte} (by
659     * casting to a {@code byte}).
660     *
661     * @return  the {@code double} value represented by this object
662     *          converted to type {@code byte}
663     * @since JDK1.1
664     */
665    public byte byteValue() {
666        return (byte)value;
667    }
668
669    /**
670     * Returns the value of this {@code Double} as a
671     * {@code short} (by casting to a {@code short}).
672     *
673     * @return  the {@code double} value represented by this object
674     *          converted to type {@code short}
675     * @since JDK1.1
676     */
677    public short shortValue() {
678        return (short)value;
679    }
680
681    /**
682     * Returns the value of this {@code Double} as an
683     * {@code int} (by casting to type {@code int}).
684     *
685     * @return  the {@code double} value represented by this object
686     *          converted to type {@code int}
687     */
688    public int intValue() {
689        return (int)value;
690    }
691
692    /**
693     * Returns the value of this {@code Double} as a
694     * {@code long} (by casting to type {@code long}).
695     *
696     * @return  the {@code double} value represented by this object
697     *          converted to type {@code long}
698     */
699    public long longValue() {
700        return (long)value;
701    }
702
703    /**
704     * Returns the {@code float} value of this
705     * {@code Double} object.
706     *
707     * @return  the {@code double} value represented by this object
708     *          converted to type {@code float}
709     * @since JDK1.0
710     */
711    public float floatValue() {
712        return (float)value;
713    }
714
715    /**
716     * Returns the {@code double} value of this
717     * {@code Double} object.
718     *
719     * @return the {@code double} value represented by this object
720     */
721    public double doubleValue() {
722        return (double)value;
723    }
724
725    /**
726     * Returns a hash code for this {@code Double} object. The
727     * result is the exclusive OR of the two halves of the
728     * {@code long} integer bit representation, exactly as
729     * produced by the method {@link #doubleToLongBits(double)}, of
730     * the primitive {@code double} value represented by this
731     * {@code Double} object. That is, the hash code is the value
732     * of the expression:
733     *
734     * <blockquote>
735     *  {@code (int)(v^(v>>>32))}
736     * </blockquote>
737     *
738     * where {@code v} is defined by:
739     *
740     * <blockquote>
741     *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
742     * </blockquote>
743     *
744     * @return  a {@code hash code} value for this object.
745     */
746    public int hashCode() {
747        return Double.hashCode(value);
748    }
749
750    /**
751     * Returns a hash code for a {@code double} value; compatible with
752     * {@code Double.hashCode()}.
753     *
754     * @param value the value to hash
755     * @return a hash code value for a {@code double} value.
756     * @since 1.8
757     */
758    public static int hashCode(double value) {
759        long bits = doubleToLongBits(value);
760        return (int)(bits ^ (bits >>> 32));
761    }
762
763    /**
764     * Compares this object against the specified object.  The result
765     * is {@code true} if and only if the argument is not
766     * {@code null} and is a {@code Double} object that
767     * represents a {@code double} that has the same value as the
768     * {@code double} represented by this object. For this
769     * purpose, two {@code double} values are considered to be
770     * the same if and only if the method {@link
771     * #doubleToLongBits(double)} returns the identical
772     * {@code long} value when applied to each.
773     *
774     * <p>Note that in most cases, for two instances of class
775     * {@code Double}, {@code d1} and {@code d2}, the
776     * value of {@code d1.equals(d2)} is {@code true} if and
777     * only if
778     *
779     * <blockquote>
780     *  {@code d1.doubleValue() == d2.doubleValue()}
781     * </blockquote>
782     *
783     * <p>also has the value {@code true}. However, there are two
784     * exceptions:
785     * <ul>
786     * <li>If {@code d1} and {@code d2} both represent
787     *     {@code Double.NaN}, then the {@code equals} method
788     *     returns {@code true}, even though
789     *     {@code Double.NaN==Double.NaN} has the value
790     *     {@code false}.
791     * <li>If {@code d1} represents {@code +0.0} while
792     *     {@code d2} represents {@code -0.0}, or vice versa,
793     *     the {@code equal} test has the value {@code false},
794     *     even though {@code +0.0==-0.0} has the value {@code true}.
795     * </ul>
796     * This definition allows hash tables to operate properly.
797     * @param   obj   the object to compare with.
798     * @return  {@code true} if the objects are the same;
799     *          {@code false} otherwise.
800     * @see java.lang.Double#doubleToLongBits(double)
801     */
802    public boolean equals(Object obj) {
803        return (obj instanceof Double)
804               && (doubleToLongBits(((Double)obj).value) ==
805                      doubleToLongBits(value));
806    }
807
808    /**
809     * Returns a representation of the specified floating-point value
810     * according to the IEEE 754 floating-point "double
811     * format" bit layout.
812     *
813     * <p>Bit 63 (the bit that is selected by the mask
814     * {@code 0x8000000000000000L}) represents the sign of the
815     * floating-point number. Bits
816     * 62-52 (the bits that are selected by the mask
817     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
818     * (the bits that are selected by the mask
819     * {@code 0x000fffffffffffffL}) represent the significand
820     * (sometimes called the mantissa) of the floating-point number.
821     *
822     * <p>If the argument is positive infinity, the result is
823     * {@code 0x7ff0000000000000L}.
824     *
825     * <p>If the argument is negative infinity, the result is
826     * {@code 0xfff0000000000000L}.
827     *
828     * <p>If the argument is NaN, the result is
829     * {@code 0x7ff8000000000000L}.
830     *
831     * <p>In all cases, the result is a {@code long} integer that, when
832     * given to the {@link #longBitsToDouble(long)} method, will produce a
833     * floating-point value the same as the argument to
834     * {@code doubleToLongBits} (except all NaN values are
835     * collapsed to a single "canonical" NaN value).
836     *
837     * @param   value   a {@code double} precision floating-point number.
838     * @return the bits that represent the floating-point number.
839     */
840    public static long doubleToLongBits(double value) {
841        long result = doubleToRawLongBits(value);
842        // Check for NaN based on values of bit fields, maximum
843        // exponent and nonzero significand.
844        if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
845              DoubleConsts.EXP_BIT_MASK) &&
846             (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
847            result = 0x7ff8000000000000L;
848        return result;
849    }
850
851    /**
852     * Returns a representation of the specified floating-point value
853     * according to the IEEE 754 floating-point "double
854     * format" bit layout, preserving Not-a-Number (NaN) values.
855     *
856     * <p>Bit 63 (the bit that is selected by the mask
857     * {@code 0x8000000000000000L}) represents the sign of the
858     * floating-point number. Bits
859     * 62-52 (the bits that are selected by the mask
860     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
861     * (the bits that are selected by the mask
862     * {@code 0x000fffffffffffffL}) represent the significand
863     * (sometimes called the mantissa) of the floating-point number.
864     *
865     * <p>If the argument is positive infinity, the result is
866     * {@code 0x7ff0000000000000L}.
867     *
868     * <p>If the argument is negative infinity, the result is
869     * {@code 0xfff0000000000000L}.
870     *
871     * <p>If the argument is NaN, the result is the {@code long}
872     * integer representing the actual NaN value.  Unlike the
873     * {@code doubleToLongBits} method,
874     * {@code doubleToRawLongBits} does not collapse all the bit
875     * patterns encoding a NaN to a single "canonical" NaN
876     * value.
877     *
878     * <p>In all cases, the result is a {@code long} integer that,
879     * when given to the {@link #longBitsToDouble(long)} method, will
880     * produce a floating-point value the same as the argument to
881     * {@code doubleToRawLongBits}.
882     *
883     * @param   value   a {@code double} precision floating-point number.
884     * @return the bits that represent the floating-point number.
885     * @since 1.3
886     */
887    public static native long doubleToRawLongBits(double value);
888
889    /**
890     * Returns the {@code double} value corresponding to a given
891     * bit representation.
892     * The argument is considered to be a representation of a
893     * floating-point value according to the IEEE 754 floating-point
894     * "double format" bit layout.
895     *
896     * <p>If the argument is {@code 0x7ff0000000000000L}, the result
897     * is positive infinity.
898     *
899     * <p>If the argument is {@code 0xfff0000000000000L}, the result
900     * is negative infinity.
901     *
902     * <p>If the argument is any value in the range
903     * {@code 0x7ff0000000000001L} through
904     * {@code 0x7fffffffffffffffL} or in the range
905     * {@code 0xfff0000000000001L} through
906     * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
907     * 754 floating-point operation provided by Java can distinguish
908     * between two NaN values of the same type with different bit
909     * patterns.  Distinct values of NaN are only distinguishable by
910     * use of the {@code Double.doubleToRawLongBits} method.
911     *
912     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
913     * values that can be computed from the argument:
914     *
915     * <blockquote><pre>
916     * int s = ((bits &gt;&gt; 63) == 0) ? 1 : -1;
917     * int e = (int)((bits &gt;&gt; 52) & 0x7ffL);
918     * long m = (e == 0) ?
919     *                 (bits & 0xfffffffffffffL) &lt;&lt; 1 :
920     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
921     * </pre></blockquote>
922     *
923     * Then the floating-point result equals the value of the mathematical
924     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
925     *
926     * <p>Note that this method may not be able to return a
927     * {@code double} NaN with exactly same bit pattern as the
928     * {@code long} argument.  IEEE 754 distinguishes between two
929     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
930     * differences between the two kinds of NaN are generally not
931     * visible in Java.  Arithmetic operations on signaling NaNs turn
932     * them into quiet NaNs with a different, but often similar, bit
933     * pattern.  However, on some processors merely copying a
934     * signaling NaN also performs that conversion.  In particular,
935     * copying a signaling NaN to return it to the calling method
936     * may perform this conversion.  So {@code longBitsToDouble}
937     * may not be able to return a {@code double} with a
938     * signaling NaN bit pattern.  Consequently, for some
939     * {@code long} values,
940     * {@code doubleToRawLongBits(longBitsToDouble(start))} may
941     * <i>not</i> equal {@code start}.  Moreover, which
942     * particular bit patterns represent signaling NaNs is platform
943     * dependent; although all NaN bit patterns, quiet or signaling,
944     * must be in the NaN range identified above.
945     *
946     * @param   bits   any {@code long} integer.
947     * @return  the {@code double} floating-point value with the same
948     *          bit pattern.
949     */
950    public static native double longBitsToDouble(long bits);
951
952    /**
953     * Compares two {@code Double} objects numerically.  There
954     * are two ways in which comparisons performed by this method
955     * differ from those performed by the Java language numerical
956     * comparison operators ({@code <, <=, ==, >=, >})
957     * when applied to primitive {@code double} values:
958     * <ul><li>
959     *          {@code Double.NaN} is considered by this method
960     *          to be equal to itself and greater than all other
961     *          {@code double} values (including
962     *          {@code Double.POSITIVE_INFINITY}).
963     * <li>
964     *          {@code 0.0d} is considered by this method to be greater
965     *          than {@code -0.0d}.
966     * </ul>
967     * This ensures that the <i>natural ordering</i> of
968     * {@code Double} objects imposed by this method is <i>consistent
969     * with equals</i>.
970     *
971     * @param   anotherDouble   the {@code Double} to be compared.
972     * @return  the value {@code 0} if {@code anotherDouble} is
973     *          numerically equal to this {@code Double}; a value
974     *          less than {@code 0} if this {@code Double}
975     *          is numerically less than {@code anotherDouble};
976     *          and a value greater than {@code 0} if this
977     *          {@code Double} is numerically greater than
978     *          {@code anotherDouble}.
979     *
980     * @since   1.2
981     */
982    public int compareTo(Double anotherDouble) {
983        return Double.compare(value, anotherDouble.value);
984    }
985
986    /**
987     * Compares the two specified {@code double} values. The sign
988     * of the integer value returned is the same as that of the
989     * integer that would be returned by the call:
990     * <pre>
991     *    new Double(d1).compareTo(new Double(d2))
992     * </pre>
993     *
994     * @param   d1        the first {@code double} to compare
995     * @param   d2        the second {@code double} to compare
996     * @return  the value {@code 0} if {@code d1} is
997     *          numerically equal to {@code d2}; a value less than
998     *          {@code 0} if {@code d1} is numerically less than
999     *          {@code d2}; and a value greater than {@code 0}
1000     *          if {@code d1} is numerically greater than
1001     *          {@code d2}.
1002     * @since 1.4
1003     */
1004    public static int compare(double d1, double d2) {
1005        if (d1 < d2)
1006            return -1;           // Neither val is NaN, thisVal is smaller
1007        if (d1 > d2)
1008            return 1;            // Neither val is NaN, thisVal is larger
1009
1010        // Cannot use doubleToRawLongBits because of possibility of NaNs.
1011        long thisBits    = Double.doubleToLongBits(d1);
1012        long anotherBits = Double.doubleToLongBits(d2);
1013
1014        return (thisBits == anotherBits ?  0 : // Values are equal
1015                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1016                 1));                          // (0.0, -0.0) or (NaN, !NaN)
1017    }
1018
1019    /**
1020     * Adds two {@code double} values together as per the + operator.
1021     *
1022     * @param a the first operand
1023     * @param b the second operand
1024     * @return the sum of {@code a} and {@code b}
1025     * @jls 4.2.4 Floating-Point Operations
1026     * @see java.util.function.BinaryOperator
1027     * @since 1.8
1028     */
1029    public static double sum(double a, double b) {
1030        return a + b;
1031    }
1032
1033    /**
1034     * Returns the greater of two {@code double} values
1035     * as if by calling {@link Math#max(double, double) Math.max}.
1036     *
1037     * @param a the first operand
1038     * @param b the second operand
1039     * @return the greater of {@code a} and {@code b}
1040     * @see java.util.function.BinaryOperator
1041     * @since 1.8
1042     */
1043    public static double max(double a, double b) {
1044        return Math.max(a, b);
1045    }
1046
1047    /**
1048     * Returns the smaller of two {@code double} values
1049     * as if by calling {@link Math#min(double, double) Math.min}.
1050     *
1051     * @param a the first operand
1052     * @param b the second operand
1053     * @return the smaller of {@code a} and {@code b}.
1054     * @see java.util.function.BinaryOperator
1055     * @since 1.8
1056     */
1057    public static double min(double a, double b) {
1058        return Math.min(a, b);
1059    }
1060
1061    /** use serialVersionUID from JDK 1.0.2 for interoperability */
1062    private static final long serialVersionUID = -9172774392245257468L;
1063}
1064