1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.  Oracle designates this
9 * particular file as subject to the "Classpath" exception as provided
10 * by Oracle in the LICENSE file that accompanied this code.
11 *
12 * This code is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 * version 2 for more details (a copy is included in the LICENSE file that
16 * accompanied this code).
17 *
18 * You should have received a copy of the GNU General Public License version
19 * 2 along with this work; if not, write to the Free Software Foundation,
20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23 * or visit www.oracle.com if you need additional information or have any
24 * questions.
25 */
26
27package java.lang;
28
29import sun.misc.FpUtils;
30import sun.misc.FloatConsts;
31import sun.misc.DoubleConsts;
32
33/**
34 * The {@code Float} class wraps a value of primitive type
35 * {@code float} in an object. An object of type
36 * {@code Float} contains a single field whose type is
37 * {@code float}.
38 *
39 * <p>In addition, this class provides several methods for converting a
40 * {@code float} to a {@code String} and a
41 * {@code String} to a {@code float}, as well as other
42 * constants and methods useful when dealing with a
43 * {@code float}.
44 *
45 * @author  Lee Boynton
46 * @author  Arthur van Hoff
47 * @author  Joseph D. Darcy
48 * @since JDK1.0
49 */
50public final class Float extends Number implements Comparable<Float> {
51    /**
52     * A constant holding the positive infinity of type
53     * {@code float}. It is equal to the value returned by
54     * {@code Float.intBitsToFloat(0x7f800000)}.
55     */
56    public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
57
58    /**
59     * A constant holding the negative infinity of type
60     * {@code float}. It is equal to the value returned by
61     * {@code Float.intBitsToFloat(0xff800000)}.
62     */
63    public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
64
65    /**
66     * A constant holding a Not-a-Number (NaN) value of type
67     * {@code float}.  It is equivalent to the value returned by
68     * {@code Float.intBitsToFloat(0x7fc00000)}.
69     */
70    public static final float NaN = 0.0f / 0.0f;
71
72    /**
73     * A constant holding the largest positive finite value of type
74     * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
75     * It is equal to the hexadecimal floating-point literal
76     * {@code 0x1.fffffeP+127f} and also equal to
77     * {@code Float.intBitsToFloat(0x7f7fffff)}.
78     */
79    public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
80
81    /**
82     * A constant holding the smallest positive normal value of type
83     * {@code float}, 2<sup>-126</sup>.  It is equal to the
84     * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
85     * equal to {@code Float.intBitsToFloat(0x00800000)}.
86     *
87     * @since 1.6
88     */
89    public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
90
91    /**
92     * A constant holding the smallest positive nonzero value of type
93     * {@code float}, 2<sup>-149</sup>. It is equal to the
94     * hexadecimal floating-point literal {@code 0x0.000002P-126f}
95     * and also equal to {@code Float.intBitsToFloat(0x1)}.
96     */
97    public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
98
99    /**
100     * Maximum exponent a finite {@code float} variable may have.  It
101     * is equal to the value returned by {@code
102     * Math.getExponent(Float.MAX_VALUE)}.
103     *
104     * @since 1.6
105     */
106    public static final int MAX_EXPONENT = 127;
107
108    /**
109     * Minimum exponent a normalized {@code float} variable may have.
110     * It is equal to the value returned by {@code
111     * Math.getExponent(Float.MIN_NORMAL)}.
112     *
113     * @since 1.6
114     */
115    public static final int MIN_EXPONENT = -126;
116
117    /**
118     * The number of bits used to represent a {@code float} value.
119     *
120     * @since 1.5
121     */
122    public static final int SIZE = 32;
123
124    /**
125     * The number of bytes used to represent a {@code float} value.
126     *
127     * @since 1.8
128     */
129    public static final int BYTES = SIZE / Byte.SIZE;
130
131    /**
132     * The {@code Class} instance representing the primitive type
133     * {@code float}.
134     *
135     * @since JDK1.1
136     */
137    public static final Class<Float> TYPE = (Class<Float>) float[].class.getComponentType();
138
139    /**
140     * Returns a string representation of the {@code float}
141     * argument. All characters mentioned below are ASCII characters.
142     * <ul>
143     * <li>If the argument is NaN, the result is the string
144     * "{@code NaN}".
145     * <li>Otherwise, the result is a string that represents the sign and
146     *     magnitude (absolute value) of the argument. If the sign is
147     *     negative, the first character of the result is
148     *     '{@code -}' (<code>'&#92;u002D'</code>); if the sign is
149     *     positive, no sign character appears in the result. As for
150     *     the magnitude <i>m</i>:
151     * <ul>
152     * <li>If <i>m</i> is infinity, it is represented by the characters
153     *     {@code "Infinity"}; thus, positive infinity produces
154     *     the result {@code "Infinity"} and negative infinity
155     *     produces the result {@code "-Infinity"}.
156     * <li>If <i>m</i> is zero, it is represented by the characters
157     *     {@code "0.0"}; thus, negative zero produces the result
158     *     {@code "-0.0"} and positive zero produces the result
159     *     {@code "0.0"}.
160     * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
161     *      less than 10<sup>7</sup>, then it is represented as the
162     *      integer part of <i>m</i>, in decimal form with no leading
163     *      zeroes, followed by '{@code .}'
164     *      (<code>'&#92;u002E'</code>), followed by one or more
165     *      decimal digits representing the fractional part of
166     *      <i>m</i>.
167     * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
168     *      equal to 10<sup>7</sup>, then it is represented in
169     *      so-called "computerized scientific notation." Let <i>n</i>
170     *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
171     *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
172     *      be the mathematically exact quotient of <i>m</i> and
173     *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
174     *      The magnitude is then represented as the integer part of
175     *      <i>a</i>, as a single decimal digit, followed by
176     *      '{@code .}' (<code>'&#92;u002E'</code>), followed by
177     *      decimal digits representing the fractional part of
178     *      <i>a</i>, followed by the letter '{@code E}'
179     *      (<code>'&#92;u0045'</code>), followed by a representation
180     *      of <i>n</i> as a decimal integer, as produced by the
181     *      method {@link java.lang.Integer#toString(int)}.
182     *
183     * </ul>
184     * </ul>
185     * How many digits must be printed for the fractional part of
186     * <i>m</i> or <i>a</i>? There must be at least one digit
187     * to represent the fractional part, and beyond that as many, but
188     * only as many, more digits as are needed to uniquely distinguish
189     * the argument value from adjacent values of type
190     * {@code float}. That is, suppose that <i>x</i> is the
191     * exact mathematical value represented by the decimal
192     * representation produced by this method for a finite nonzero
193     * argument <i>f</i>. Then <i>f</i> must be the {@code float}
194     * value nearest to <i>x</i>; or, if two {@code float} values are
195     * equally close to <i>x</i>, then <i>f</i> must be one of
196     * them and the least significant bit of the significand of
197     * <i>f</i> must be {@code 0}.
198     *
199     * <p>To create localized string representations of a floating-point
200     * value, use subclasses of {@link java.text.NumberFormat}.
201     *
202     * @param   f   the float to be converted.
203     * @return a string representation of the argument.
204     */
205    public static String toString(float f) {
206        return FloatingDecimal.getThreadLocalInstance().loadFloat(f).toJavaFormatString();
207    }
208
209    /**
210     * Returns a hexadecimal string representation of the
211     * {@code float} argument. All characters mentioned below are
212     * ASCII characters.
213     *
214     * <ul>
215     * <li>If the argument is NaN, the result is the string
216     *     "{@code NaN}".
217     * <li>Otherwise, the result is a string that represents the sign and
218     * magnitude (absolute value) of the argument. If the sign is negative,
219     * the first character of the result is '{@code -}'
220     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
221     * appears in the result. As for the magnitude <i>m</i>:
222     *
223     * <ul>
224     * <li>If <i>m</i> is infinity, it is represented by the string
225     * {@code "Infinity"}; thus, positive infinity produces the
226     * result {@code "Infinity"} and negative infinity produces
227     * the result {@code "-Infinity"}.
228     *
229     * <li>If <i>m</i> is zero, it is represented by the string
230     * {@code "0x0.0p0"}; thus, negative zero produces the result
231     * {@code "-0x0.0p0"} and positive zero produces the result
232     * {@code "0x0.0p0"}.
233     *
234     * <li>If <i>m</i> is a {@code float} value with a
235     * normalized representation, substrings are used to represent the
236     * significand and exponent fields.  The significand is
237     * represented by the characters {@code "0x1."}
238     * followed by a lowercase hexadecimal representation of the rest
239     * of the significand as a fraction.  Trailing zeros in the
240     * hexadecimal representation are removed unless all the digits
241     * are zero, in which case a single zero is used. Next, the
242     * exponent is represented by {@code "p"} followed
243     * by a decimal string of the unbiased exponent as if produced by
244     * a call to {@link Integer#toString(int) Integer.toString} on the
245     * exponent value.
246     *
247     * <li>If <i>m</i> is a {@code float} value with a subnormal
248     * representation, the significand is represented by the
249     * characters {@code "0x0."} followed by a
250     * hexadecimal representation of the rest of the significand as a
251     * fraction.  Trailing zeros in the hexadecimal representation are
252     * removed. Next, the exponent is represented by
253     * {@code "p-126"}.  Note that there must be at
254     * least one nonzero digit in a subnormal significand.
255     *
256     * </ul>
257     *
258     * </ul>
259     *
260     * <table border>
261     * <caption><h3>Examples</h3></caption>
262     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
263     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
264     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
265     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
266     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
267     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
268     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
269     * <tr><td>{@code Float.MAX_VALUE}</td>
270     *     <td>{@code 0x1.fffffep127}</td>
271     * <tr><td>{@code Minimum Normal Value}</td>
272     *     <td>{@code 0x1.0p-126}</td>
273     * <tr><td>{@code Maximum Subnormal Value}</td>
274     *     <td>{@code 0x0.fffffep-126}</td>
275     * <tr><td>{@code Float.MIN_VALUE}</td>
276     *     <td>{@code 0x0.000002p-126}</td>
277     * </table>
278     * @param   f   the {@code float} to be converted.
279     * @return a hex string representation of the argument.
280     * @since 1.5
281     * @author Joseph D. Darcy
282     */
283    public static String toHexString(float f) {
284        if (Math.abs(f) < FloatConsts.MIN_NORMAL
285            &&  f != 0.0f ) {// float subnormal
286            // Adjust exponent to create subnormal double, then
287            // replace subnormal double exponent with subnormal float
288            // exponent
289            String s = Double.toHexString(FpUtils.scalb((double)f,
290                                                        /* -1022+126 */
291                                                        DoubleConsts.MIN_EXPONENT-
292                                                        FloatConsts.MIN_EXPONENT));
293            return s.replaceFirst("p-1022$", "p-126");
294        }
295        else // double string will be the same as float string
296            return Double.toHexString(f);
297    }
298
299    /**
300     * Returns a {@code Float} object holding the
301     * {@code float} value represented by the argument string
302     * {@code s}.
303     *
304     * <p>If {@code s} is {@code null}, then a
305     * {@code NullPointerException} is thrown.
306     *
307     * <p>Leading and trailing whitespace characters in {@code s}
308     * are ignored.  Whitespace is removed as if by the {@link
309     * String#trim} method; that is, both ASCII space and control
310     * characters are removed. The rest of {@code s} should
311     * constitute a <i>FloatValue</i> as described by the lexical
312     * syntax rules:
313     *
314     * <blockquote>
315     * <dl>
316     * <dt><i>FloatValue:</i>
317     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
318     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
319     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
320     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
321     * <dd><i>SignedInteger</i>
322     * </dl>
323     *
324     * <p>
325     *
326     * <dl>
327     * <dt><i>HexFloatingPointLiteral</i>:
328     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
329     * </dl>
330     *
331     * <p>
332     *
333     * <dl>
334     * <dt><i>HexSignificand:</i>
335     * <dd><i>HexNumeral</i>
336     * <dd><i>HexNumeral</i> {@code .}
337     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
338     *     </i>{@code .}<i> HexDigits</i>
339     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
340     *     </i>{@code .} <i>HexDigits</i>
341     * </dl>
342     *
343     * <p>
344     *
345     * <dl>
346     * <dt><i>BinaryExponent:</i>
347     * <dd><i>BinaryExponentIndicator SignedInteger</i>
348     * </dl>
349     *
350     * <p>
351     *
352     * <dl>
353     * <dt><i>BinaryExponentIndicator:</i>
354     * <dd>{@code p}
355     * <dd>{@code P}
356     * </dl>
357     *
358     * </blockquote>
359     *
360     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
361     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
362     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
363     * sections of
364     * <cite>The Java&trade; Language Specification</cite>,
365     * except that underscores are not accepted between digits.
366     * If {@code s} does not have the form of
367     * a <i>FloatValue</i>, then a {@code NumberFormatException}
368     * is thrown. Otherwise, {@code s} is regarded as
369     * representing an exact decimal value in the usual
370     * "computerized scientific notation" or as an exact
371     * hexadecimal value; this exact numerical value is then
372     * conceptually converted to an "infinitely precise"
373     * binary value that is then rounded to type {@code float}
374     * by the usual round-to-nearest rule of IEEE 754 floating-point
375     * arithmetic, which includes preserving the sign of a zero
376     * value.
377     *
378     * Note that the round-to-nearest rule also implies overflow and
379     * underflow behaviour; if the exact value of {@code s} is large
380     * enough in magnitude (greater than or equal to ({@link
381     * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
382     * rounding to {@code float} will result in an infinity and if the
383     * exact value of {@code s} is small enough in magnitude (less
384     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
385     * result in a zero.
386     *
387     * Finally, after rounding a {@code Float} object representing
388     * this {@code float} value is returned.
389     *
390     * <p>To interpret localized string representations of a
391     * floating-point value, use subclasses of {@link
392     * java.text.NumberFormat}.
393     *
394     * <p>Note that trailing format specifiers, specifiers that
395     * determine the type of a floating-point literal
396     * ({@code 1.0f} is a {@code float} value;
397     * {@code 1.0d} is a {@code double} value), do
398     * <em>not</em> influence the results of this method.  In other
399     * words, the numerical value of the input string is converted
400     * directly to the target floating-point type.  In general, the
401     * two-step sequence of conversions, string to {@code double}
402     * followed by {@code double} to {@code float}, is
403     * <em>not</em> equivalent to converting a string directly to
404     * {@code float}.  For example, if first converted to an
405     * intermediate {@code double} and then to
406     * {@code float}, the string<br>
407     * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
408     * results in the {@code float} value
409     * {@code 1.0000002f}; if the string is converted directly to
410     * {@code float}, <code>1.000000<b>1</b>f</code> results.
411     *
412     * <p>To avoid calling this method on an invalid string and having
413     * a {@code NumberFormatException} be thrown, the documentation
414     * for {@link Double#valueOf Double.valueOf} lists a regular
415     * expression which can be used to screen the input.
416     *
417     * @param   s   the string to be parsed.
418     * @return  a {@code Float} object holding the value
419     *          represented by the {@code String} argument.
420     * @throws  NumberFormatException  if the string does not contain a
421     *          parsable number.
422     */
423    public static Float valueOf(String s) throws NumberFormatException {
424        return new Float(FloatingDecimal.getThreadLocalInstance().readJavaFormatString(s).floatValue());
425    }
426
427    /**
428     * Returns a {@code Float} instance representing the specified
429     * {@code float} value.
430     * If a new {@code Float} instance is not required, this method
431     * should generally be used in preference to the constructor
432     * {@link #Float(float)}, as this method is likely to yield
433     * significantly better space and time performance by caching
434     * frequently requested values.
435     *
436     * @param  f a float value.
437     * @return a {@code Float} instance representing {@code f}.
438     * @since  1.5
439     */
440    public static Float valueOf(float f) {
441        return new Float(f);
442    }
443
444    /**
445     * Returns a new {@code float} initialized to the value
446     * represented by the specified {@code String}, as performed
447     * by the {@code valueOf} method of class {@code Float}.
448     *
449     * @param  s the string to be parsed.
450     * @return the {@code float} value represented by the string
451     *         argument.
452     * @throws NullPointerException  if the string is null
453     * @throws NumberFormatException if the string does not contain a
454     *               parsable {@code float}.
455     * @see    java.lang.Float#valueOf(String)
456     * @since 1.2
457     */
458    public static float parseFloat(String s) throws NumberFormatException {
459        return FloatingDecimal.getThreadLocalInstance().readJavaFormatString(s).floatValue();
460    }
461
462    /**
463     * Returns {@code true} if the specified number is a
464     * Not-a-Number (NaN) value, {@code false} otherwise.
465     *
466     * @param   v   the value to be tested.
467     * @return  {@code true} if the argument is NaN;
468     *          {@code false} otherwise.
469     */
470    static public boolean isNaN(float v) {
471        return (v != v);
472    }
473
474    /**
475     * Returns {@code true} if the specified number is infinitely
476     * large in magnitude, {@code false} otherwise.
477     *
478     * @param   v   the value to be tested.
479     * @return  {@code true} if the argument is positive infinity or
480     *          negative infinity; {@code false} otherwise.
481     */
482    static public boolean isInfinite(float v) {
483        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
484    }
485
486    /**
487     * Returns {@code true} if the argument is a finite floating-point
488     * value; returns {@code false} otherwise (for NaN and infinity
489     * arguments).
490     *
491     * @param f the {@code float} value to be tested
492     * @return {@code true} if the argument is a finite
493     * floating-point value, {@code false} otherwise.
494     * @since 1.8
495     */
496     public static boolean isFinite(float f) {
497        return Math.abs(f) <= FloatConsts.MAX_VALUE;
498    }
499
500    /**
501     * The value of the Float.
502     *
503     * @serial
504     */
505    private final float value;
506
507    /**
508     * Constructs a newly allocated {@code Float} object that
509     * represents the primitive {@code float} argument.
510     *
511     * @param   value   the value to be represented by the {@code Float}.
512     */
513    public Float(float value) {
514        this.value = value;
515    }
516
517    /**
518     * Constructs a newly allocated {@code Float} object that
519     * represents the argument converted to type {@code float}.
520     *
521     * @param   value   the value to be represented by the {@code Float}.
522     */
523    public Float(double value) {
524        this.value = (float)value;
525    }
526
527    /**
528     * Constructs a newly allocated {@code Float} object that
529     * represents the floating-point value of type {@code float}
530     * represented by the string. The string is converted to a
531     * {@code float} value as if by the {@code valueOf} method.
532     *
533     * @param      s   a string to be converted to a {@code Float}.
534     * @throws  NumberFormatException  if the string does not contain a
535     *               parsable number.
536     * @see        java.lang.Float#valueOf(java.lang.String)
537     */
538    public Float(String s) throws NumberFormatException {
539        // REMIND: this is inefficient
540        this(valueOf(s).floatValue());
541    }
542
543    /**
544     * Returns {@code true} if this {@code Float} value is a
545     * Not-a-Number (NaN), {@code false} otherwise.
546     *
547     * @return  {@code true} if the value represented by this object is
548     *          NaN; {@code false} otherwise.
549     */
550    public boolean isNaN() {
551        return isNaN(value);
552    }
553
554    /**
555     * Returns {@code true} if this {@code Float} value is
556     * infinitely large in magnitude, {@code false} otherwise.
557     *
558     * @return  {@code true} if the value represented by this object is
559     *          positive infinity or negative infinity;
560     *          {@code false} otherwise.
561     */
562    public boolean isInfinite() {
563        return isInfinite(value);
564    }
565
566    /**
567     * Returns a string representation of this {@code Float} object.
568     * The primitive {@code float} value represented by this object
569     * is converted to a {@code String} exactly as if by the method
570     * {@code toString} of one argument.
571     *
572     * @return  a {@code String} representation of this object.
573     * @see java.lang.Float#toString(float)
574     */
575    public String toString() {
576        return Float.toString(value);
577    }
578
579    /**
580     * Returns the value of this {@code Float} as a {@code byte} (by
581     * casting to a {@code byte}).
582     *
583     * @return  the {@code float} value represented by this object
584     *          converted to type {@code byte}
585     */
586    public byte byteValue() {
587        return (byte)value;
588    }
589
590    /**
591     * Returns the value of this {@code Float} as a {@code short} (by
592     * casting to a {@code short}).
593     *
594     * @return  the {@code float} value represented by this object
595     *          converted to type {@code short}
596     * @since JDK1.1
597     */
598    public short shortValue() {
599        return (short)value;
600    }
601
602    /**
603     * Returns the value of this {@code Float} as an {@code int} (by
604     * casting to type {@code int}).
605     *
606     * @return  the {@code float} value represented by this object
607     *          converted to type {@code int}
608     */
609    public int intValue() {
610        return (int)value;
611    }
612
613    /**
614     * Returns value of this {@code Float} as a {@code long} (by
615     * casting to type {@code long}).
616     *
617     * @return  the {@code float} value represented by this object
618     *          converted to type {@code long}
619     */
620    public long longValue() {
621        return (long)value;
622    }
623
624    /**
625     * Returns the {@code float} value of this {@code Float} object.
626     *
627     * @return the {@code float} value represented by this object
628     */
629    public float floatValue() {
630        return value;
631    }
632
633    /**
634     * Returns the {@code double} value of this {@code Float} object.
635     *
636     * @return the {@code float} value represented by this
637     *         object is converted to type {@code double} and the
638     *         result of the conversion is returned.
639     */
640    public double doubleValue() {
641        return (double)value;
642    }
643
644    /**
645     * Returns a hash code for this {@code Float} object. The
646     * result is the integer bit representation, exactly as produced
647     * by the method {@link #floatToIntBits(float)}, of the primitive
648     * {@code float} value represented by this {@code Float}
649     * object.
650     *
651     * @return a hash code value for this object.
652     */
653    public int hashCode() {
654        return floatToIntBits(value);
655    }
656
657    /**
658     * Returns a hash code for a {@code float} value; compatible with
659     * {@code Float.hashCode()}.
660     *
661     * @param value the value to hash
662     * @return a hash code value for a {@code float} value.
663     * @since 1.8
664     */
665    public static int hashCode(float value) {
666        return floatToIntBits(value);
667    }
668
669    /**
670
671     * Compares this object against the specified object.  The result
672     * is {@code true} if and only if the argument is not
673     * {@code null} and is a {@code Float} object that
674     * represents a {@code float} with the same value as the
675     * {@code float} represented by this object. For this
676     * purpose, two {@code float} values are considered to be the
677     * same if and only if the method {@link #floatToIntBits(float)}
678     * returns the identical {@code int} value when applied to
679     * each.
680     *
681     * <p>Note that in most cases, for two instances of class
682     * {@code Float}, {@code f1} and {@code f2}, the value
683     * of {@code f1.equals(f2)} is {@code true} if and only if
684     *
685     * <blockquote><pre>
686     *   f1.floatValue() == f2.floatValue()
687     * </pre></blockquote>
688     *
689     * <p>also has the value {@code true}. However, there are two exceptions:
690     * <ul>
691     * <li>If {@code f1} and {@code f2} both represent
692     *     {@code Float.NaN}, then the {@code equals} method returns
693     *     {@code true}, even though {@code Float.NaN==Float.NaN}
694     *     has the value {@code false}.
695     * <li>If {@code f1} represents {@code +0.0f} while
696     *     {@code f2} represents {@code -0.0f}, or vice
697     *     versa, the {@code equal} test has the value
698     *     {@code false}, even though {@code 0.0f==-0.0f}
699     *     has the value {@code true}.
700     * </ul>
701     *
702     * This definition allows hash tables to operate properly.
703     *
704     * @param obj the object to be compared
705     * @return  {@code true} if the objects are the same;
706     *          {@code false} otherwise.
707     * @see java.lang.Float#floatToIntBits(float)
708     */
709    public boolean equals(Object obj) {
710        return (obj instanceof Float)
711               && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
712    }
713
714    /**
715     * Returns a representation of the specified floating-point value
716     * according to the IEEE 754 floating-point "single format" bit
717     * layout.
718     *
719     * <p>Bit 31 (the bit that is selected by the mask
720     * {@code 0x80000000}) represents the sign of the floating-point
721     * number.
722     * Bits 30-23 (the bits that are selected by the mask
723     * {@code 0x7f800000}) represent the exponent.
724     * Bits 22-0 (the bits that are selected by the mask
725     * {@code 0x007fffff}) represent the significand (sometimes called
726     * the mantissa) of the floating-point number.
727     *
728     * <p>If the argument is positive infinity, the result is
729     * {@code 0x7f800000}.
730     *
731     * <p>If the argument is negative infinity, the result is
732     * {@code 0xff800000}.
733     *
734     * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
735     *
736     * <p>In all cases, the result is an integer that, when given to the
737     * {@link #intBitsToFloat(int)} method, will produce a floating-point
738     * value the same as the argument to {@code floatToIntBits}
739     * (except all NaN values are collapsed to a single
740     * "canonical" NaN value).
741     *
742     * @param   value   a floating-point number.
743     * @return the bits that represent the floating-point number.
744     */
745    public static int floatToIntBits(float value) {
746        int result = floatToRawIntBits(value);
747        // Check for NaN based on values of bit fields, maximum
748        // exponent and nonzero significand.
749        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
750              FloatConsts.EXP_BIT_MASK) &&
751             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
752            result = 0x7fc00000;
753        return result;
754    }
755
756    /**
757     * Returns a representation of the specified floating-point value
758     * according to the IEEE 754 floating-point "single format" bit
759     * layout, preserving Not-a-Number (NaN) values.
760     *
761     * <p>Bit 31 (the bit that is selected by the mask
762     * {@code 0x80000000}) represents the sign of the floating-point
763     * number.
764     * Bits 30-23 (the bits that are selected by the mask
765     * {@code 0x7f800000}) represent the exponent.
766     * Bits 22-0 (the bits that are selected by the mask
767     * {@code 0x007fffff}) represent the significand (sometimes called
768     * the mantissa) of the floating-point number.
769     *
770     * <p>If the argument is positive infinity, the result is
771     * {@code 0x7f800000}.
772     *
773     * <p>If the argument is negative infinity, the result is
774     * {@code 0xff800000}.
775     *
776     * <p>If the argument is NaN, the result is the integer representing
777     * the actual NaN value.  Unlike the {@code floatToIntBits}
778     * method, {@code floatToRawIntBits} does not collapse all the
779     * bit patterns encoding a NaN to a single "canonical"
780     * NaN value.
781     *
782     * <p>In all cases, the result is an integer that, when given to the
783     * {@link #intBitsToFloat(int)} method, will produce a
784     * floating-point value the same as the argument to
785     * {@code floatToRawIntBits}.
786     *
787     * @param   value   a floating-point number.
788     * @return the bits that represent the floating-point number.
789     * @since 1.3
790     */
791    public static native int floatToRawIntBits(float value);
792
793    /**
794     * Returns the {@code float} value corresponding to a given
795     * bit representation.
796     * The argument is considered to be a representation of a
797     * floating-point value according to the IEEE 754 floating-point
798     * "single format" bit layout.
799     *
800     * <p>If the argument is {@code 0x7f800000}, the result is positive
801     * infinity.
802     *
803     * <p>If the argument is {@code 0xff800000}, the result is negative
804     * infinity.
805     *
806     * <p>If the argument is any value in the range
807     * {@code 0x7f800001} through {@code 0x7fffffff} or in
808     * the range {@code 0xff800001} through
809     * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
810     * floating-point operation provided by Java can distinguish
811     * between two NaN values of the same type with different bit
812     * patterns.  Distinct values of NaN are only distinguishable by
813     * use of the {@code Float.floatToRawIntBits} method.
814     *
815     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
816     * values that can be computed from the argument:
817     *
818     * <blockquote><pre>
819     * int s = ((bits &gt;&gt; 31) == 0) ? 1 : -1;
820     * int e = ((bits &gt;&gt; 23) & 0xff);
821     * int m = (e == 0) ?
822     *                 (bits & 0x7fffff) &lt;&lt; 1 :
823     *                 (bits & 0x7fffff) | 0x800000;
824     * </pre></blockquote>
825     *
826     * Then the floating-point result equals the value of the mathematical
827     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
828     *
829     * <p>Note that this method may not be able to return a
830     * {@code float} NaN with exactly same bit pattern as the
831     * {@code int} argument.  IEEE 754 distinguishes between two
832     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
833     * differences between the two kinds of NaN are generally not
834     * visible in Java.  Arithmetic operations on signaling NaNs turn
835     * them into quiet NaNs with a different, but often similar, bit
836     * pattern.  However, on some processors merely copying a
837     * signaling NaN also performs that conversion.  In particular,
838     * copying a signaling NaN to return it to the calling method may
839     * perform this conversion.  So {@code intBitsToFloat} may
840     * not be able to return a {@code float} with a signaling NaN
841     * bit pattern.  Consequently, for some {@code int} values,
842     * {@code floatToRawIntBits(intBitsToFloat(start))} may
843     * <i>not</i> equal {@code start}.  Moreover, which
844     * particular bit patterns represent signaling NaNs is platform
845     * dependent; although all NaN bit patterns, quiet or signaling,
846     * must be in the NaN range identified above.
847     *
848     * @param   bits   an integer.
849     * @return  the {@code float} floating-point value with the same bit
850     *          pattern.
851     */
852    public static native float intBitsToFloat(int bits);
853
854    /**
855     * Compares two {@code Float} objects numerically.  There are
856     * two ways in which comparisons performed by this method differ
857     * from those performed by the Java language numerical comparison
858     * operators ({@code <, <=, ==, >=, >}) when
859     * applied to primitive {@code float} values:
860     *
861     * <ul><li>
862     *          {@code Float.NaN} is considered by this method to
863     *          be equal to itself and greater than all other
864     *          {@code float} values
865     *          (including {@code Float.POSITIVE_INFINITY}).
866     * <li>
867     *          {@code 0.0f} is considered by this method to be greater
868     *          than {@code -0.0f}.
869     * </ul>
870     *
871     * This ensures that the <i>natural ordering</i> of {@code Float}
872     * objects imposed by this method is <i>consistent with equals</i>.
873     *
874     * @param   anotherFloat   the {@code Float} to be compared.
875     * @return  the value {@code 0} if {@code anotherFloat} is
876     *          numerically equal to this {@code Float}; a value
877     *          less than {@code 0} if this {@code Float}
878     *          is numerically less than {@code anotherFloat};
879     *          and a value greater than {@code 0} if this
880     *          {@code Float} is numerically greater than
881     *          {@code anotherFloat}.
882     *
883     * @since   1.2
884     * @see Comparable#compareTo(Object)
885     */
886    public int compareTo(Float anotherFloat) {
887        return Float.compare(value, anotherFloat.value);
888    }
889
890    /**
891     * Compares the two specified {@code float} values. The sign
892     * of the integer value returned is the same as that of the
893     * integer that would be returned by the call:
894     * <pre>
895     *    new Float(f1).compareTo(new Float(f2))
896     * </pre>
897     *
898     * @param   f1        the first {@code float} to compare.
899     * @param   f2        the second {@code float} to compare.
900     * @return  the value {@code 0} if {@code f1} is
901     *          numerically equal to {@code f2}; a value less than
902     *          {@code 0} if {@code f1} is numerically less than
903     *          {@code f2}; and a value greater than {@code 0}
904     *          if {@code f1} is numerically greater than
905     *          {@code f2}.
906     * @since 1.4
907     */
908    public static int compare(float f1, float f2) {
909        if (f1 < f2)
910            return -1;           // Neither val is NaN, thisVal is smaller
911        if (f1 > f2)
912            return 1;            // Neither val is NaN, thisVal is larger
913
914        // Cannot use floatToRawIntBits because of possibility of NaNs.
915        int thisBits    = Float.floatToIntBits(f1);
916        int anotherBits = Float.floatToIntBits(f2);
917
918        return (thisBits == anotherBits ?  0 : // Values are equal
919                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
920                 1));                          // (0.0, -0.0) or (NaN, !NaN)
921    }
922
923    /**
924     * Adds two {@code float} values together as per the + operator.
925     *
926     * @param a the first operand
927     * @param b the second operand
928     * @return the sum of {@code a} and {@code b}
929     * @jls 4.2.4 Floating-Point Operations
930     * @see java.util.function.BinaryOperator
931     * @since 1.8
932     */
933    public static float sum(float a, float b) {
934        return a + b;
935    }
936
937    /**
938     * Returns the greater of two {@code float} values
939     * as if by calling {@link Math#max(float, float) Math.max}.
940     *
941     * @param a the first operand
942     * @param b the second operand
943     * @return the greater of {@code a} and {@code b}
944     * @see java.util.function.BinaryOperator
945     * @since 1.8
946     */
947    public static float max(float a, float b) {
948        return Math.max(a, b);
949    }
950
951    /**
952     * Returns the smaller of two {@code float} values
953     * as if by calling {@link Math#min(float, float) Math.min}.
954     *
955     * @param a the first operand
956     * @param b the second operand
957     * @return the smaller of {@code a} and {@code b}
958     * @see java.util.function.BinaryOperator
959     * @since 1.8
960     */
961    public static float min(float a, float b) {
962        return Math.min(a, b);
963    }
964
965    /** use serialVersionUID from JDK 1.0.2 for interoperability */
966    private static final long serialVersionUID = -2671257302660747028L;
967}
968