/external/eigen/test/eigen2/ |
H A D | main.h | 151 template<typename T> inline typename NumTraits<T>::Real test_precision(); 152 template<> inline int test_precision<int>() { return 0; } function in namespace:Eigen 153 template<> inline float test_precision<float>() { return 1e-3f; } function in namespace:Eigen 154 template<> inline double test_precision<double>() { return 1e-6; } function in namespace:Eigen 155 template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } function in namespace:Eigen 156 template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } function in namespace:Eigen 157 template<> inline long double test_precision<long double>() { return 1e-6; } function in namespace:Eigen 160 { return ei_isApprox(a, b, test_precision<in [all...] |
H A D | eigen2_sparse_solvers.cpp | 89 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default"); 94 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod"); 101 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)"); 104 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)"); 107 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)"); 133 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default"); 154 // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default"); 162 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU"); 179 VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
|
H A D | eigen2_triangular.cpp | 17 RealScalar largerEps = 10*test_precision<RealScalar>(); 68 VERIFY(m3.template marked<Eigen::LowerTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); 70 .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); 74 VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>())); 77 VERIFY(m3.template marked<Eigen::UpperTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>())); 79 .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>())); 83 VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));
|
H A D | eigen2_svd.cpp | 28 RealScalar largerEps = test_precision<RealScalar>();
|
H A D | eigen2_adjoint.cpp | 25 RealScalar largerEps = test_precision<RealScalar>();
|
H A D | eigen2_eigensolver.cpp | 31 RealScalar largerEps = 10*test_precision<RealScalar>(); 114 // RealScalar largerEps = 10*test_precision<RealScalar>();
|
H A D | eigen2_geometry.cpp | 36 Scalar largeEps = test_precision<Scalar>(); 167 VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>())); 248 * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
|
H A D | eigen2_geometry_with_eigen2_prefix.cpp | 38 Scalar largeEps = test_precision<Scalar>(); 169 VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>())); 250 * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
|
/external/eigen/test/ |
H A D | main.h | 236 template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } function in namespace:Eigen 237 template<> inline float test_precision<float>() { return 1e-3f; } function in namespace:Eigen 238 template<> inline double test_precision<double>() { return 1e-6; } function in namespace:Eigen 239 template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } function in namespace:Eigen 240 template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } function in namespace:Eigen 241 template<> inline long double test_precision<long double>() { return 1e-6; } function in namespace:Eigen 244 { return internal::isApprox(a, b, test_precision<int>()); } 246 { return internal::isMuchSmallerThan(a, b, test_precision<in [all...] |
H A D | spqr_support.cpp | 56 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
|
H A D | geo_eulerangles.cpp | 29 if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(M_PI/2),test_precision<Scalar>())) ) 30 VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
|
H A D | sparse_solver.h | 39 VERIFY(x.isApprox(refX,test_precision<Scalar>())); 58 VERIFY(x.isApprox(refX,test_precision<Scalar>())); 68 VERIFY(x.isApprox(refX,test_precision<Scalar>())); 104 if (res_error > test_precision<Scalar>() ){
|
H A D | geo_transformations.cpp | 58 VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); 104 while(v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random(); 105 while(v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random(); 110 if(abs(cos(a)) > test_precision<Scalar>()) 182 VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); 263 * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); 367 } while(t0.linear().jacobiSvd().singularValues()(2)<test_precision<Scalar>());
|
H A D | geo_quaternion.cpp | 30 Scalar largeEps = test_precision<Scalar>(); 56 Scalar largeEps = test_precision<Scalar>(); 111 if (abs(aa.angle()) > 5*test_precision<Scalar>()
|
H A D | eigensolver_selfadjoint.cpp | 27 RealScalar largerEps = 10*test_precision<RealScalar>();
|
H A D | product_trmv.cpp | 19 RealScalar largerEps = 10*test_precision<RealScalar>();
|
H A D | adjoint.cpp | 48 VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
|
H A D | triangular.cpp | 20 RealScalar largerEps = 10*test_precision<RealScalar>();
|
H A D | array.cpp | 71 if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
|
H A D | jacobisvd.cpp | 132 } while(m2.jacobiSvd().setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
|
/external/eigen/unsupported/test/ |
H A D | FFTW.cpp | 96 VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check 101 VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check 108 VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check 124 VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>() );// gross check 129 VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check 155 VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check 158 VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check 166 VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check 171 VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check 205 VERIFY( (src-src2).norm() < test_precision< [all...] |
H A D | polynomialutils.cpp | 43 bool evalToZero = evr.isZero( test_precision<_Scalar>() );
|
H A D | polynomialsolver.cpp | 47 bool evalToZero = evr.isZero( test_precision<Scalar>() ); 114 const Scalar psPrec = sqrt( test_precision<Scalar>() );
|
H A D | matrix_function.cpp | 20 return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all();
|
/external/eigen/bench/spbench/ |
H A D | spbenchsolver.h | 85 template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } function 86 template<> inline float test_precision<float>() { return 1e-3f; } function 87 template<> inline double test_precision<double>() { return 1e-6; } function 88 template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } function 89 template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } function
|