1/* 2 * Copyright (C) 2016 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "instruction_builder.h" 18 19#include "bytecode_utils.h" 20#include "class_linker.h" 21#include "driver/compiler_options.h" 22#include "scoped_thread_state_change.h" 23 24namespace art { 25 26void HInstructionBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) { 27 if (compilation_stats_ != nullptr) { 28 compilation_stats_->RecordStat(compilation_stat); 29 } 30} 31 32HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const { 33 return block_builder_->GetBlockAt(dex_pc); 34} 35 36ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) { 37 ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()]; 38 const size_t vregs = graph_->GetNumberOfVRegs(); 39 if (locals->size() != vregs) { 40 locals->resize(vregs, nullptr); 41 42 if (block->IsCatchBlock()) { 43 // We record incoming inputs of catch phis at throwing instructions and 44 // must therefore eagerly create the phis. Phis for undefined vregs will 45 // be deleted when the first throwing instruction with the vreg undefined 46 // is encountered. Unused phis will be removed by dead phi analysis. 47 for (size_t i = 0; i < vregs; ++i) { 48 // No point in creating the catch phi if it is already undefined at 49 // the first throwing instruction. 50 HInstruction* current_local_value = (*current_locals_)[i]; 51 if (current_local_value != nullptr) { 52 HPhi* phi = new (arena_) HPhi( 53 arena_, 54 i, 55 0, 56 current_local_value->GetType()); 57 block->AddPhi(phi); 58 (*locals)[i] = phi; 59 } 60 } 61 } 62 } 63 return locals; 64} 65 66HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) { 67 ArenaVector<HInstruction*>* locals = GetLocalsFor(block); 68 return (*locals)[local]; 69} 70 71void HInstructionBuilder::InitializeBlockLocals() { 72 current_locals_ = GetLocalsFor(current_block_); 73 74 if (current_block_->IsCatchBlock()) { 75 // Catch phis were already created and inputs collected from throwing sites. 76 if (kIsDebugBuild) { 77 // Make sure there was at least one throwing instruction which initialized 78 // locals (guaranteed by HGraphBuilder) and that all try blocks have been 79 // visited already (from HTryBoundary scoping and reverse post order). 80 bool catch_block_visited = false; 81 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { 82 HBasicBlock* current = it.Current(); 83 if (current == current_block_) { 84 catch_block_visited = true; 85 } else if (current->IsTryBlock()) { 86 const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry(); 87 if (try_entry.HasExceptionHandler(*current_block_)) { 88 DCHECK(!catch_block_visited) << "Catch block visited before its try block."; 89 } 90 } 91 } 92 DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs()) 93 << "No instructions throwing into a live catch block."; 94 } 95 } else if (current_block_->IsLoopHeader()) { 96 // If the block is a loop header, we know we only have visited the pre header 97 // because we are visiting in reverse post order. We create phis for all initialized 98 // locals from the pre header. Their inputs will be populated at the end of 99 // the analysis. 100 for (size_t local = 0; local < current_locals_->size(); ++local) { 101 HInstruction* incoming = 102 ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local); 103 if (incoming != nullptr) { 104 HPhi* phi = new (arena_) HPhi( 105 arena_, 106 local, 107 0, 108 incoming->GetType()); 109 current_block_->AddPhi(phi); 110 (*current_locals_)[local] = phi; 111 } 112 } 113 114 // Save the loop header so that the last phase of the analysis knows which 115 // blocks need to be updated. 116 loop_headers_.push_back(current_block_); 117 } else if (current_block_->GetPredecessors().size() > 0) { 118 // All predecessors have already been visited because we are visiting in reverse post order. 119 // We merge the values of all locals, creating phis if those values differ. 120 for (size_t local = 0; local < current_locals_->size(); ++local) { 121 bool one_predecessor_has_no_value = false; 122 bool is_different = false; 123 HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); 124 125 for (HBasicBlock* predecessor : current_block_->GetPredecessors()) { 126 HInstruction* current = ValueOfLocalAt(predecessor, local); 127 if (current == nullptr) { 128 one_predecessor_has_no_value = true; 129 break; 130 } else if (current != value) { 131 is_different = true; 132 } 133 } 134 135 if (one_predecessor_has_no_value) { 136 // If one predecessor has no value for this local, we trust the verifier has 137 // successfully checked that there is a store dominating any read after this block. 138 continue; 139 } 140 141 if (is_different) { 142 HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); 143 HPhi* phi = new (arena_) HPhi( 144 arena_, 145 local, 146 current_block_->GetPredecessors().size(), 147 first_input->GetType()); 148 for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) { 149 HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local); 150 phi->SetRawInputAt(i, pred_value); 151 } 152 current_block_->AddPhi(phi); 153 value = phi; 154 } 155 (*current_locals_)[local] = value; 156 } 157 } 158} 159 160void HInstructionBuilder::PropagateLocalsToCatchBlocks() { 161 const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry(); 162 for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { 163 ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block); 164 DCHECK_EQ(handler_locals->size(), current_locals_->size()); 165 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { 166 HInstruction* handler_value = (*handler_locals)[vreg]; 167 if (handler_value == nullptr) { 168 // Vreg was undefined at a previously encountered throwing instruction 169 // and the catch phi was deleted. Do not record the local value. 170 continue; 171 } 172 DCHECK(handler_value->IsPhi()); 173 174 HInstruction* local_value = (*current_locals_)[vreg]; 175 if (local_value == nullptr) { 176 // This is the first instruction throwing into `catch_block` where 177 // `vreg` is undefined. Delete the catch phi. 178 catch_block->RemovePhi(handler_value->AsPhi()); 179 (*handler_locals)[vreg] = nullptr; 180 } else { 181 // Vreg has been defined at all instructions throwing into `catch_block` 182 // encountered so far. Record the local value in the catch phi. 183 handler_value->AsPhi()->AddInput(local_value); 184 } 185 } 186 } 187} 188 189void HInstructionBuilder::AppendInstruction(HInstruction* instruction) { 190 current_block_->AddInstruction(instruction); 191 InitializeInstruction(instruction); 192} 193 194void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) { 195 if (current_block_->GetInstructions().IsEmpty()) { 196 current_block_->AddInstruction(instruction); 197 } else { 198 current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction()); 199 } 200 InitializeInstruction(instruction); 201} 202 203void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) { 204 if (instruction->NeedsEnvironment()) { 205 HEnvironment* environment = new (arena_) HEnvironment( 206 arena_, 207 current_locals_->size(), 208 graph_->GetDexFile(), 209 graph_->GetMethodIdx(), 210 instruction->GetDexPc(), 211 graph_->GetInvokeType(), 212 instruction); 213 environment->CopyFrom(*current_locals_); 214 instruction->SetRawEnvironment(environment); 215 } 216} 217 218HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) { 219 HInstruction* ref = LoadLocal(register_index, Primitive::kPrimNot); 220 if (!ref->CanBeNull()) { 221 return ref; 222 } 223 224 HNullCheck* null_check = new (arena_) HNullCheck(ref, dex_pc); 225 AppendInstruction(null_check); 226 return null_check; 227} 228 229void HInstructionBuilder::SetLoopHeaderPhiInputs() { 230 for (size_t i = loop_headers_.size(); i > 0; --i) { 231 HBasicBlock* block = loop_headers_[i - 1]; 232 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { 233 HPhi* phi = it.Current()->AsPhi(); 234 size_t vreg = phi->GetRegNumber(); 235 for (HBasicBlock* predecessor : block->GetPredecessors()) { 236 HInstruction* value = ValueOfLocalAt(predecessor, vreg); 237 if (value == nullptr) { 238 // Vreg is undefined at this predecessor. Mark it dead and leave with 239 // fewer inputs than predecessors. SsaChecker will fail if not removed. 240 phi->SetDead(); 241 break; 242 } else { 243 phi->AddInput(value); 244 } 245 } 246 } 247 } 248} 249 250static bool IsBlockPopulated(HBasicBlock* block) { 251 if (block->IsLoopHeader()) { 252 // Suspend checks were inserted into loop headers during building of dominator tree. 253 DCHECK(block->GetFirstInstruction()->IsSuspendCheck()); 254 return block->GetFirstInstruction() != block->GetLastInstruction(); 255 } else { 256 return !block->GetInstructions().IsEmpty(); 257 } 258} 259 260bool HInstructionBuilder::Build() { 261 locals_for_.resize(graph_->GetBlocks().size(), 262 ArenaVector<HInstruction*>(arena_->Adapter(kArenaAllocGraphBuilder))); 263 264 // Find locations where we want to generate extra stackmaps for native debugging. 265 // This allows us to generate the info only at interesting points (for example, 266 // at start of java statement) rather than before every dex instruction. 267 const bool native_debuggable = compiler_driver_ != nullptr && 268 compiler_driver_->GetCompilerOptions().GetNativeDebuggable(); 269 ArenaBitVector* native_debug_info_locations = nullptr; 270 if (native_debuggable) { 271 const uint32_t num_instructions = code_item_.insns_size_in_code_units_; 272 native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false); 273 FindNativeDebugInfoLocations(native_debug_info_locations); 274 } 275 276 for (HReversePostOrderIterator block_it(*graph_); !block_it.Done(); block_it.Advance()) { 277 current_block_ = block_it.Current(); 278 uint32_t block_dex_pc = current_block_->GetDexPc(); 279 280 InitializeBlockLocals(); 281 282 if (current_block_->IsEntryBlock()) { 283 InitializeParameters(); 284 AppendInstruction(new (arena_) HSuspendCheck(0u)); 285 AppendInstruction(new (arena_) HGoto(0u)); 286 continue; 287 } else if (current_block_->IsExitBlock()) { 288 AppendInstruction(new (arena_) HExit()); 289 continue; 290 } else if (current_block_->IsLoopHeader()) { 291 HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(current_block_->GetDexPc()); 292 current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check); 293 // This is slightly odd because the loop header might not be empty (TryBoundary). 294 // But we're still creating the environment with locals from the top of the block. 295 InsertInstructionAtTop(suspend_check); 296 } 297 298 if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) { 299 // Synthetic block that does not need to be populated. 300 DCHECK(IsBlockPopulated(current_block_)); 301 continue; 302 } 303 304 DCHECK(!IsBlockPopulated(current_block_)); 305 306 for (CodeItemIterator it(code_item_, block_dex_pc); !it.Done(); it.Advance()) { 307 if (current_block_ == nullptr) { 308 // The previous instruction ended this block. 309 break; 310 } 311 312 uint32_t dex_pc = it.CurrentDexPc(); 313 if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) { 314 // This dex_pc starts a new basic block. 315 break; 316 } 317 318 if (current_block_->IsTryBlock() && IsThrowingDexInstruction(it.CurrentInstruction())) { 319 PropagateLocalsToCatchBlocks(); 320 } 321 322 if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { 323 AppendInstruction(new (arena_) HNativeDebugInfo(dex_pc)); 324 } 325 326 if (!ProcessDexInstruction(it.CurrentInstruction(), dex_pc)) { 327 return false; 328 } 329 } 330 331 if (current_block_ != nullptr) { 332 // Branching instructions clear current_block, so we know the last 333 // instruction of the current block is not a branching instruction. 334 // We add an unconditional Goto to the next block. 335 DCHECK_EQ(current_block_->GetSuccessors().size(), 1u); 336 AppendInstruction(new (arena_) HGoto()); 337 } 338 } 339 340 SetLoopHeaderPhiInputs(); 341 342 return true; 343} 344 345void HInstructionBuilder::FindNativeDebugInfoLocations(ArenaBitVector* locations) { 346 // The callback gets called when the line number changes. 347 // In other words, it marks the start of new java statement. 348 struct Callback { 349 static bool Position(void* ctx, const DexFile::PositionInfo& entry) { 350 static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_); 351 return false; 352 } 353 }; 354 dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations); 355 // Instruction-specific tweaks. 356 const Instruction* const begin = Instruction::At(code_item_.insns_); 357 const Instruction* const end = begin->RelativeAt(code_item_.insns_size_in_code_units_); 358 for (const Instruction* inst = begin; inst < end; inst = inst->Next()) { 359 switch (inst->Opcode()) { 360 case Instruction::MOVE_EXCEPTION: { 361 // Stop in native debugger after the exception has been moved. 362 // The compiler also expects the move at the start of basic block so 363 // we do not want to interfere by inserting native-debug-info before it. 364 locations->ClearBit(inst->GetDexPc(code_item_.insns_)); 365 const Instruction* next = inst->Next(); 366 if (next < end) { 367 locations->SetBit(next->GetDexPc(code_item_.insns_)); 368 } 369 break; 370 } 371 default: 372 break; 373 } 374 } 375} 376 377HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, Primitive::Type type) const { 378 HInstruction* value = (*current_locals_)[reg_number]; 379 DCHECK(value != nullptr); 380 381 // If the operation requests a specific type, we make sure its input is of that type. 382 if (type != value->GetType()) { 383 if (Primitive::IsFloatingPointType(type)) { 384 return ssa_builder_->GetFloatOrDoubleEquivalent(value, type); 385 } else if (type == Primitive::kPrimNot) { 386 return ssa_builder_->GetReferenceTypeEquivalent(value); 387 } 388 } 389 390 return value; 391} 392 393void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) { 394 Primitive::Type stored_type = stored_value->GetType(); 395 DCHECK_NE(stored_type, Primitive::kPrimVoid); 396 397 // Storing into vreg `reg_number` may implicitly invalidate the surrounding 398 // registers. Consider the following cases: 399 // (1) Storing a wide value must overwrite previous values in both `reg_number` 400 // and `reg_number+1`. We store `nullptr` in `reg_number+1`. 401 // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` 402 // must invalidate it. We store `nullptr` in `reg_number-1`. 403 // Consequently, storing a wide value into the high vreg of another wide value 404 // will invalidate both `reg_number-1` and `reg_number+1`. 405 406 if (reg_number != 0) { 407 HInstruction* local_low = (*current_locals_)[reg_number - 1]; 408 if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) { 409 // The vreg we are storing into was previously the high vreg of a pair. 410 // We need to invalidate its low vreg. 411 DCHECK((*current_locals_)[reg_number] == nullptr); 412 (*current_locals_)[reg_number - 1] = nullptr; 413 } 414 } 415 416 (*current_locals_)[reg_number] = stored_value; 417 if (Primitive::Is64BitType(stored_type)) { 418 // We are storing a pair. Invalidate the instruction in the high vreg. 419 (*current_locals_)[reg_number + 1] = nullptr; 420 } 421} 422 423void HInstructionBuilder::InitializeParameters() { 424 DCHECK(current_block_->IsEntryBlock()); 425 426 // dex_compilation_unit_ is null only when unit testing. 427 if (dex_compilation_unit_ == nullptr) { 428 return; 429 } 430 431 const char* shorty = dex_compilation_unit_->GetShorty(); 432 uint16_t number_of_parameters = graph_->GetNumberOfInVRegs(); 433 uint16_t locals_index = graph_->GetNumberOfLocalVRegs(); 434 uint16_t parameter_index = 0; 435 436 const DexFile::MethodId& referrer_method_id = 437 dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); 438 if (!dex_compilation_unit_->IsStatic()) { 439 // Add the implicit 'this' argument, not expressed in the signature. 440 HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_, 441 referrer_method_id.class_idx_, 442 parameter_index++, 443 Primitive::kPrimNot, 444 true); 445 AppendInstruction(parameter); 446 UpdateLocal(locals_index++, parameter); 447 number_of_parameters--; 448 } 449 450 const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); 451 const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto); 452 for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { 453 HParameterValue* parameter = new (arena_) HParameterValue( 454 *dex_file_, 455 arg_types->GetTypeItem(shorty_pos - 1).type_idx_, 456 parameter_index++, 457 Primitive::GetType(shorty[shorty_pos]), 458 false); 459 ++shorty_pos; 460 AppendInstruction(parameter); 461 // Store the parameter value in the local that the dex code will use 462 // to reference that parameter. 463 UpdateLocal(locals_index++, parameter); 464 if (Primitive::Is64BitType(parameter->GetType())) { 465 i++; 466 locals_index++; 467 parameter_index++; 468 } 469 } 470} 471 472template<typename T> 473void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { 474 HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); 475 HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); 476 T* comparison = new (arena_) T(first, second, dex_pc); 477 AppendInstruction(comparison); 478 AppendInstruction(new (arena_) HIf(comparison, dex_pc)); 479 current_block_ = nullptr; 480} 481 482template<typename T> 483void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { 484 HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); 485 T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); 486 AppendInstruction(comparison); 487 AppendInstruction(new (arena_) HIf(comparison, dex_pc)); 488 current_block_ = nullptr; 489} 490 491template<typename T> 492void HInstructionBuilder::Unop_12x(const Instruction& instruction, 493 Primitive::Type type, 494 uint32_t dex_pc) { 495 HInstruction* first = LoadLocal(instruction.VRegB(), type); 496 AppendInstruction(new (arena_) T(type, first, dex_pc)); 497 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 498} 499 500void HInstructionBuilder::Conversion_12x(const Instruction& instruction, 501 Primitive::Type input_type, 502 Primitive::Type result_type, 503 uint32_t dex_pc) { 504 HInstruction* first = LoadLocal(instruction.VRegB(), input_type); 505 AppendInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc)); 506 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 507} 508 509template<typename T> 510void HInstructionBuilder::Binop_23x(const Instruction& instruction, 511 Primitive::Type type, 512 uint32_t dex_pc) { 513 HInstruction* first = LoadLocal(instruction.VRegB(), type); 514 HInstruction* second = LoadLocal(instruction.VRegC(), type); 515 AppendInstruction(new (arena_) T(type, first, second, dex_pc)); 516 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 517} 518 519template<typename T> 520void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction, 521 Primitive::Type type, 522 uint32_t dex_pc) { 523 HInstruction* first = LoadLocal(instruction.VRegB(), type); 524 HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt); 525 AppendInstruction(new (arena_) T(type, first, second, dex_pc)); 526 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 527} 528 529void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction, 530 Primitive::Type type, 531 ComparisonBias bias, 532 uint32_t dex_pc) { 533 HInstruction* first = LoadLocal(instruction.VRegB(), type); 534 HInstruction* second = LoadLocal(instruction.VRegC(), type); 535 AppendInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc)); 536 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 537} 538 539template<typename T> 540void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction, 541 Primitive::Type type, 542 uint32_t dex_pc) { 543 HInstruction* first = LoadLocal(instruction.VRegA(), type); 544 HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); 545 AppendInstruction(new (arena_) T(type, first, second, dex_pc)); 546 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 547} 548 549template<typename T> 550void HInstructionBuilder::Binop_12x(const Instruction& instruction, 551 Primitive::Type type, 552 uint32_t dex_pc) { 553 HInstruction* first = LoadLocal(instruction.VRegA(), type); 554 HInstruction* second = LoadLocal(instruction.VRegB(), type); 555 AppendInstruction(new (arena_) T(type, first, second, dex_pc)); 556 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 557} 558 559template<typename T> 560void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { 561 HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); 562 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); 563 if (reverse) { 564 std::swap(first, second); 565 } 566 AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); 567 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 568} 569 570template<typename T> 571void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { 572 HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); 573 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); 574 if (reverse) { 575 std::swap(first, second); 576 } 577 AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); 578 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 579} 580 581static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, CompilerDriver* driver) { 582 Thread* self = Thread::Current(); 583 return cu->IsConstructor() 584 && driver->RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex()); 585} 586 587// Returns true if `block` has only one successor which starts at the next 588// dex_pc after `instruction` at `dex_pc`. 589static bool IsFallthroughInstruction(const Instruction& instruction, 590 uint32_t dex_pc, 591 HBasicBlock* block) { 592 uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits(); 593 return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc; 594} 595 596void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) { 597 HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); 598 DexSwitchTable table(instruction, dex_pc); 599 600 if (table.GetNumEntries() == 0) { 601 // Empty Switch. Code falls through to the next block. 602 DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_)); 603 AppendInstruction(new (arena_) HGoto(dex_pc)); 604 } else if (table.ShouldBuildDecisionTree()) { 605 for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) { 606 HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc); 607 HEqual* comparison = new (arena_) HEqual(value, case_value, dex_pc); 608 AppendInstruction(comparison); 609 AppendInstruction(new (arena_) HIf(comparison, dex_pc)); 610 611 if (!it.IsLast()) { 612 current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex()); 613 } 614 } 615 } else { 616 AppendInstruction( 617 new (arena_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc)); 618 } 619 620 current_block_ = nullptr; 621} 622 623void HInstructionBuilder::BuildReturn(const Instruction& instruction, 624 Primitive::Type type, 625 uint32_t dex_pc) { 626 if (type == Primitive::kPrimVoid) { 627 if (graph_->ShouldGenerateConstructorBarrier()) { 628 // The compilation unit is null during testing. 629 if (dex_compilation_unit_ != nullptr) { 630 DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_)) 631 << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier."; 632 } 633 AppendInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc)); 634 } 635 AppendInstruction(new (arena_) HReturnVoid(dex_pc)); 636 } else { 637 HInstruction* value = LoadLocal(instruction.VRegA(), type); 638 AppendInstruction(new (arena_) HReturn(value, dex_pc)); 639 } 640 current_block_ = nullptr; 641} 642 643static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { 644 switch (opcode) { 645 case Instruction::INVOKE_STATIC: 646 case Instruction::INVOKE_STATIC_RANGE: 647 return kStatic; 648 case Instruction::INVOKE_DIRECT: 649 case Instruction::INVOKE_DIRECT_RANGE: 650 return kDirect; 651 case Instruction::INVOKE_VIRTUAL: 652 case Instruction::INVOKE_VIRTUAL_QUICK: 653 case Instruction::INVOKE_VIRTUAL_RANGE: 654 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: 655 return kVirtual; 656 case Instruction::INVOKE_INTERFACE: 657 case Instruction::INVOKE_INTERFACE_RANGE: 658 return kInterface; 659 case Instruction::INVOKE_SUPER_RANGE: 660 case Instruction::INVOKE_SUPER: 661 return kSuper; 662 default: 663 LOG(FATAL) << "Unexpected invoke opcode: " << opcode; 664 UNREACHABLE(); 665 } 666} 667 668ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) { 669 ScopedObjectAccess soa(Thread::Current()); 670 StackHandleScope<3> hs(soa.Self()); 671 672 ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); 673 Handle<mirror::ClassLoader> class_loader(hs.NewHandle( 674 soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); 675 Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass())); 676 // We fetch the referenced class eagerly (that is, the class pointed by in the MethodId 677 // at method_idx), as `CanAccessResolvedMethod` expects it be be in the dex cache. 678 Handle<mirror::Class> methods_class(hs.NewHandle(class_linker->ResolveReferencedClassOfMethod( 679 method_idx, dex_compilation_unit_->GetDexCache(), class_loader))); 680 681 if (UNLIKELY(methods_class.Get() == nullptr)) { 682 // Clean up any exception left by type resolution. 683 soa.Self()->ClearException(); 684 return nullptr; 685 } 686 687 ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>( 688 *dex_compilation_unit_->GetDexFile(), 689 method_idx, 690 dex_compilation_unit_->GetDexCache(), 691 class_loader, 692 /* referrer */ nullptr, 693 invoke_type); 694 695 if (UNLIKELY(resolved_method == nullptr)) { 696 // Clean up any exception left by type resolution. 697 soa.Self()->ClearException(); 698 return nullptr; 699 } 700 701 // Check access. The class linker has a fast path for looking into the dex cache 702 // and does not check the access if it hits it. 703 if (compiling_class.Get() == nullptr) { 704 if (!resolved_method->IsPublic()) { 705 return nullptr; 706 } 707 } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(), 708 resolved_method, 709 dex_compilation_unit_->GetDexCache().Get(), 710 method_idx)) { 711 return nullptr; 712 } 713 714 // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. 715 // We need to look at the referrer's super class vtable. We need to do this to know if we need to 716 // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of 717 // which require runtime handling. 718 if (invoke_type == kSuper) { 719 if (compiling_class.Get() == nullptr) { 720 // We could not determine the method's class we need to wait until runtime. 721 DCHECK(Runtime::Current()->IsAotCompiler()); 722 return nullptr; 723 } 724 if (!methods_class->IsAssignableFrom(compiling_class.Get())) { 725 // We cannot statically determine the target method. The runtime will throw a 726 // NoSuchMethodError on this one. 727 return nullptr; 728 } 729 ArtMethod* actual_method; 730 if (methods_class->IsInterface()) { 731 actual_method = methods_class->FindVirtualMethodForInterfaceSuper( 732 resolved_method, class_linker->GetImagePointerSize()); 733 } else { 734 uint16_t vtable_index = resolved_method->GetMethodIndex(); 735 actual_method = compiling_class->GetSuperClass()->GetVTableEntry( 736 vtable_index, class_linker->GetImagePointerSize()); 737 } 738 if (actual_method != resolved_method && 739 !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { 740 // The back-end code generator relies on this check in order to ensure that it will not 741 // attempt to read the dex_cache with a dex_method_index that is not from the correct 742 // dex_file. If we didn't do this check then the dex_method_index will not be updated in the 743 // builder, which means that the code-generator (and compiler driver during sharpening and 744 // inliner, maybe) might invoke an incorrect method. 745 // TODO: The actual method could still be referenced in the current dex file, so we 746 // could try locating it. 747 // TODO: Remove the dex_file restriction. 748 return nullptr; 749 } 750 if (!actual_method->IsInvokable()) { 751 // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub 752 // could resolve the callee to the wrong method. 753 return nullptr; 754 } 755 resolved_method = actual_method; 756 } 757 758 // Check for incompatible class changes. The class linker has a fast path for 759 // looking into the dex cache and does not check incompatible class changes if it hits it. 760 if (resolved_method->CheckIncompatibleClassChange(invoke_type)) { 761 return nullptr; 762 } 763 764 return resolved_method; 765} 766 767bool HInstructionBuilder::BuildInvoke(const Instruction& instruction, 768 uint32_t dex_pc, 769 uint32_t method_idx, 770 uint32_t number_of_vreg_arguments, 771 bool is_range, 772 uint32_t* args, 773 uint32_t register_index) { 774 InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); 775 const char* descriptor = dex_file_->GetMethodShorty(method_idx); 776 Primitive::Type return_type = Primitive::GetType(descriptor[0]); 777 778 // Remove the return type from the 'proto'. 779 size_t number_of_arguments = strlen(descriptor) - 1; 780 if (invoke_type != kStatic) { // instance call 781 // One extra argument for 'this'. 782 number_of_arguments++; 783 } 784 785 MethodReference target_method(dex_file_, method_idx); 786 787 // Special handling for string init. 788 int32_t string_init_offset = 0; 789 bool is_string_init = compiler_driver_->IsStringInit(method_idx, 790 dex_file_, 791 &string_init_offset); 792 // Replace calls to String.<init> with StringFactory. 793 if (is_string_init) { 794 HInvokeStaticOrDirect::DispatchInfo dispatch_info = { 795 HInvokeStaticOrDirect::MethodLoadKind::kStringInit, 796 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, 797 dchecked_integral_cast<uint64_t>(string_init_offset), 798 0U 799 }; 800 HInvoke* invoke = new (arena_) HInvokeStaticOrDirect( 801 arena_, 802 number_of_arguments - 1, 803 Primitive::kPrimNot /*return_type */, 804 dex_pc, 805 method_idx, 806 target_method, 807 dispatch_info, 808 invoke_type, 809 kStatic /* optimized_invoke_type */, 810 HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); 811 return HandleStringInit(invoke, 812 number_of_vreg_arguments, 813 args, 814 register_index, 815 is_range, 816 descriptor); 817 } 818 819 ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type); 820 821 if (UNLIKELY(resolved_method == nullptr)) { 822 MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod); 823 HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_, 824 number_of_arguments, 825 return_type, 826 dex_pc, 827 method_idx, 828 invoke_type); 829 return HandleInvoke(invoke, 830 number_of_vreg_arguments, 831 args, 832 register_index, 833 is_range, 834 descriptor, 835 nullptr /* clinit_check */); 836 } 837 838 // Potential class initialization check, in the case of a static method call. 839 HClinitCheck* clinit_check = nullptr; 840 HInvoke* invoke = nullptr; 841 if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { 842 // By default, consider that the called method implicitly requires 843 // an initialization check of its declaring method. 844 HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement 845 = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; 846 ScopedObjectAccess soa(Thread::Current()); 847 if (invoke_type == kStatic) { 848 clinit_check = ProcessClinitCheckForInvoke( 849 dex_pc, resolved_method, method_idx, &clinit_check_requirement); 850 } else if (invoke_type == kSuper) { 851 if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { 852 // Update the target method to the one resolved. Note that this may be a no-op if 853 // we resolved to the method referenced by the instruction. 854 method_idx = resolved_method->GetDexMethodIndex(); 855 target_method = MethodReference(dex_file_, method_idx); 856 } 857 } 858 859 HInvokeStaticOrDirect::DispatchInfo dispatch_info = { 860 HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod, 861 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, 862 0u, 863 0U 864 }; 865 invoke = new (arena_) HInvokeStaticOrDirect(arena_, 866 number_of_arguments, 867 return_type, 868 dex_pc, 869 method_idx, 870 target_method, 871 dispatch_info, 872 invoke_type, 873 invoke_type, 874 clinit_check_requirement); 875 } else if (invoke_type == kVirtual) { 876 ScopedObjectAccess soa(Thread::Current()); // Needed for the method index 877 invoke = new (arena_) HInvokeVirtual(arena_, 878 number_of_arguments, 879 return_type, 880 dex_pc, 881 method_idx, 882 resolved_method->GetMethodIndex()); 883 } else { 884 DCHECK_EQ(invoke_type, kInterface); 885 ScopedObjectAccess soa(Thread::Current()); // Needed for the method index 886 invoke = new (arena_) HInvokeInterface(arena_, 887 number_of_arguments, 888 return_type, 889 dex_pc, 890 method_idx, 891 resolved_method->GetDexMethodIndex()); 892 } 893 894 return HandleInvoke(invoke, 895 number_of_vreg_arguments, 896 args, 897 register_index, 898 is_range, 899 descriptor, 900 clinit_check); 901} 902 903bool HInstructionBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) { 904 ScopedObjectAccess soa(Thread::Current()); 905 StackHandleScope<1> hs(soa.Self()); 906 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache(); 907 Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); 908 const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); 909 Handle<mirror::DexCache> outer_dex_cache = outer_compilation_unit_->GetDexCache(); 910 911 bool finalizable; 912 bool can_throw = NeedsAccessCheck(type_index, dex_cache, &finalizable); 913 914 // Only the non-resolved entrypoint handles the finalizable class case. If we 915 // need access checks, then we haven't resolved the method and the class may 916 // again be finalizable. 917 QuickEntrypointEnum entrypoint = (finalizable || can_throw) 918 ? kQuickAllocObject 919 : kQuickAllocObjectInitialized; 920 921 if (outer_dex_cache.Get() != dex_cache.Get()) { 922 // We currently do not support inlining allocations across dex files. 923 return false; 924 } 925 926 HLoadClass* load_class = new (arena_) HLoadClass( 927 graph_->GetCurrentMethod(), 928 type_index, 929 outer_dex_file, 930 IsOutermostCompilingClass(type_index), 931 dex_pc, 932 /*needs_access_check*/ can_throw, 933 compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_cache, type_index)); 934 935 AppendInstruction(load_class); 936 HInstruction* cls = load_class; 937 if (!IsInitialized(resolved_class)) { 938 cls = new (arena_) HClinitCheck(load_class, dex_pc); 939 AppendInstruction(cls); 940 } 941 942 AppendInstruction(new (arena_) HNewInstance( 943 cls, 944 graph_->GetCurrentMethod(), 945 dex_pc, 946 type_index, 947 *dex_compilation_unit_->GetDexFile(), 948 can_throw, 949 finalizable, 950 entrypoint)); 951 return true; 952} 953 954static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class) 955 SHARED_REQUIRES(Locks::mutator_lock_) { 956 return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); 957} 958 959bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const { 960 if (cls.Get() == nullptr) { 961 return false; 962 } 963 964 // `CanAssumeClassIsLoaded` will return true if we're JITting, or will 965 // check whether the class is in an image for the AOT compilation. 966 if (cls->IsInitialized() && 967 compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) { 968 return true; 969 } 970 971 if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) { 972 return true; 973 } 974 975 // TODO: We should walk over the inlined methods, but we don't pass 976 // that information to the builder. 977 if (IsSubClass(GetCompilingClass(), cls.Get())) { 978 return true; 979 } 980 981 return false; 982} 983 984HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke( 985 uint32_t dex_pc, 986 ArtMethod* resolved_method, 987 uint32_t method_idx, 988 HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { 989 const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); 990 Thread* self = Thread::Current(); 991 StackHandleScope<2> hs(self); 992 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache(); 993 Handle<mirror::DexCache> outer_dex_cache = outer_compilation_unit_->GetDexCache(); 994 Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); 995 Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass())); 996 997 // The index at which the method's class is stored in the DexCache's type array. 998 uint32_t storage_index = DexFile::kDexNoIndex; 999 bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get()); 1000 if (is_outer_class) { 1001 storage_index = outer_class->GetDexTypeIndex(); 1002 } else if (outer_dex_cache.Get() == dex_cache.Get()) { 1003 // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer. 1004 compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(), 1005 GetCompilingClass(), 1006 resolved_method, 1007 method_idx, 1008 &storage_index); 1009 } 1010 1011 HClinitCheck* clinit_check = nullptr; 1012 1013 if (IsInitialized(resolved_method_class)) { 1014 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; 1015 } else if (storage_index != DexFile::kDexNoIndex) { 1016 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; 1017 HLoadClass* load_class = new (arena_) HLoadClass( 1018 graph_->GetCurrentMethod(), 1019 storage_index, 1020 outer_dex_file, 1021 is_outer_class, 1022 dex_pc, 1023 /*needs_access_check*/ false, 1024 compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_cache, storage_index)); 1025 AppendInstruction(load_class); 1026 clinit_check = new (arena_) HClinitCheck(load_class, dex_pc); 1027 AppendInstruction(clinit_check); 1028 } 1029 return clinit_check; 1030} 1031 1032bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke, 1033 uint32_t number_of_vreg_arguments, 1034 uint32_t* args, 1035 uint32_t register_index, 1036 bool is_range, 1037 const char* descriptor, 1038 size_t start_index, 1039 size_t* argument_index) { 1040 uint32_t descriptor_index = 1; // Skip the return type. 1041 1042 for (size_t i = start_index; 1043 // Make sure we don't go over the expected arguments or over the number of 1044 // dex registers given. If the instruction was seen as dead by the verifier, 1045 // it hasn't been properly checked. 1046 (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments()); 1047 i++, (*argument_index)++) { 1048 Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]); 1049 bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); 1050 if (!is_range 1051 && is_wide 1052 && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) { 1053 // Longs and doubles should be in pairs, that is, sequential registers. The verifier should 1054 // reject any class where this is violated. However, the verifier only does these checks 1055 // on non trivially dead instructions, so we just bailout the compilation. 1056 VLOG(compiler) << "Did not compile " 1057 << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) 1058 << " because of non-sequential dex register pair in wide argument"; 1059 MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); 1060 return false; 1061 } 1062 HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type); 1063 invoke->SetArgumentAt(*argument_index, arg); 1064 if (is_wide) { 1065 i++; 1066 } 1067 } 1068 1069 if (*argument_index != invoke->GetNumberOfArguments()) { 1070 VLOG(compiler) << "Did not compile " 1071 << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) 1072 << " because of wrong number of arguments in invoke instruction"; 1073 MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); 1074 return false; 1075 } 1076 1077 if (invoke->IsInvokeStaticOrDirect() && 1078 HInvokeStaticOrDirect::NeedsCurrentMethodInput( 1079 invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) { 1080 invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod()); 1081 (*argument_index)++; 1082 } 1083 1084 return true; 1085} 1086 1087bool HInstructionBuilder::HandleInvoke(HInvoke* invoke, 1088 uint32_t number_of_vreg_arguments, 1089 uint32_t* args, 1090 uint32_t register_index, 1091 bool is_range, 1092 const char* descriptor, 1093 HClinitCheck* clinit_check) { 1094 DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit()); 1095 1096 size_t start_index = 0; 1097 size_t argument_index = 0; 1098 if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) { // Instance call. 1099 HInstruction* arg = LoadNullCheckedLocal(is_range ? register_index : args[0], 1100 invoke->GetDexPc()); 1101 invoke->SetArgumentAt(0, arg); 1102 start_index = 1; 1103 argument_index = 1; 1104 } 1105 1106 if (!SetupInvokeArguments(invoke, 1107 number_of_vreg_arguments, 1108 args, 1109 register_index, 1110 is_range, 1111 descriptor, 1112 start_index, 1113 &argument_index)) { 1114 return false; 1115 } 1116 1117 if (clinit_check != nullptr) { 1118 // Add the class initialization check as last input of `invoke`. 1119 DCHECK(invoke->IsInvokeStaticOrDirect()); 1120 DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement() 1121 == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); 1122 invoke->SetArgumentAt(argument_index, clinit_check); 1123 argument_index++; 1124 } 1125 1126 AppendInstruction(invoke); 1127 latest_result_ = invoke; 1128 1129 return true; 1130} 1131 1132bool HInstructionBuilder::HandleStringInit(HInvoke* invoke, 1133 uint32_t number_of_vreg_arguments, 1134 uint32_t* args, 1135 uint32_t register_index, 1136 bool is_range, 1137 const char* descriptor) { 1138 DCHECK(invoke->IsInvokeStaticOrDirect()); 1139 DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); 1140 1141 size_t start_index = 1; 1142 size_t argument_index = 0; 1143 if (!SetupInvokeArguments(invoke, 1144 number_of_vreg_arguments, 1145 args, 1146 register_index, 1147 is_range, 1148 descriptor, 1149 start_index, 1150 &argument_index)) { 1151 return false; 1152 } 1153 1154 AppendInstruction(invoke); 1155 1156 // This is a StringFactory call, not an actual String constructor. Its result 1157 // replaces the empty String pre-allocated by NewInstance. 1158 uint32_t orig_this_reg = is_range ? register_index : args[0]; 1159 HInstruction* arg_this = LoadLocal(orig_this_reg, Primitive::kPrimNot); 1160 1161 // Replacing the NewInstance might render it redundant. Keep a list of these 1162 // to be visited once it is clear whether it is has remaining uses. 1163 if (arg_this->IsNewInstance()) { 1164 ssa_builder_->AddUninitializedString(arg_this->AsNewInstance()); 1165 } else { 1166 DCHECK(arg_this->IsPhi()); 1167 // NewInstance is not the direct input of the StringFactory call. It might 1168 // be redundant but optimizing this case is not worth the effort. 1169 } 1170 1171 // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. 1172 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { 1173 if ((*current_locals_)[vreg] == arg_this) { 1174 (*current_locals_)[vreg] = invoke; 1175 } 1176 } 1177 1178 return true; 1179} 1180 1181static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { 1182 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index); 1183 const char* type = dex_file.GetFieldTypeDescriptor(field_id); 1184 return Primitive::GetType(type[0]); 1185} 1186 1187bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction, 1188 uint32_t dex_pc, 1189 bool is_put) { 1190 uint32_t source_or_dest_reg = instruction.VRegA_22c(); 1191 uint32_t obj_reg = instruction.VRegB_22c(); 1192 uint16_t field_index; 1193 if (instruction.IsQuickened()) { 1194 if (!CanDecodeQuickenedInfo()) { 1195 return false; 1196 } 1197 field_index = LookupQuickenedInfo(dex_pc); 1198 } else { 1199 field_index = instruction.VRegC_22c(); 1200 } 1201 1202 ScopedObjectAccess soa(Thread::Current()); 1203 ArtField* resolved_field = 1204 compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa); 1205 1206 1207 HInstruction* object = LoadNullCheckedLocal(obj_reg, dex_pc); 1208 1209 Primitive::Type field_type = (resolved_field == nullptr) 1210 ? GetFieldAccessType(*dex_file_, field_index) 1211 : resolved_field->GetTypeAsPrimitiveType(); 1212 if (is_put) { 1213 HInstruction* value = LoadLocal(source_or_dest_reg, field_type); 1214 HInstruction* field_set = nullptr; 1215 if (resolved_field == nullptr) { 1216 MaybeRecordStat(MethodCompilationStat::kUnresolvedField); 1217 field_set = new (arena_) HUnresolvedInstanceFieldSet(object, 1218 value, 1219 field_type, 1220 field_index, 1221 dex_pc); 1222 } else { 1223 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); 1224 field_set = new (arena_) HInstanceFieldSet(object, 1225 value, 1226 field_type, 1227 resolved_field->GetOffset(), 1228 resolved_field->IsVolatile(), 1229 field_index, 1230 class_def_index, 1231 *dex_file_, 1232 dex_compilation_unit_->GetDexCache(), 1233 dex_pc); 1234 } 1235 AppendInstruction(field_set); 1236 } else { 1237 HInstruction* field_get = nullptr; 1238 if (resolved_field == nullptr) { 1239 MaybeRecordStat(MethodCompilationStat::kUnresolvedField); 1240 field_get = new (arena_) HUnresolvedInstanceFieldGet(object, 1241 field_type, 1242 field_index, 1243 dex_pc); 1244 } else { 1245 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); 1246 field_get = new (arena_) HInstanceFieldGet(object, 1247 field_type, 1248 resolved_field->GetOffset(), 1249 resolved_field->IsVolatile(), 1250 field_index, 1251 class_def_index, 1252 *dex_file_, 1253 dex_compilation_unit_->GetDexCache(), 1254 dex_pc); 1255 } 1256 AppendInstruction(field_get); 1257 UpdateLocal(source_or_dest_reg, field_get); 1258 } 1259 1260 return true; 1261} 1262 1263static mirror::Class* GetClassFrom(CompilerDriver* driver, 1264 const DexCompilationUnit& compilation_unit) { 1265 ScopedObjectAccess soa(Thread::Current()); 1266 StackHandleScope<1> hs(soa.Self()); 1267 Handle<mirror::ClassLoader> class_loader(hs.NewHandle( 1268 soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader()))); 1269 Handle<mirror::DexCache> dex_cache = compilation_unit.GetDexCache(); 1270 1271 return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit); 1272} 1273 1274mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const { 1275 return GetClassFrom(compiler_driver_, *outer_compilation_unit_); 1276} 1277 1278mirror::Class* HInstructionBuilder::GetCompilingClass() const { 1279 return GetClassFrom(compiler_driver_, *dex_compilation_unit_); 1280} 1281 1282bool HInstructionBuilder::IsOutermostCompilingClass(uint16_t type_index) const { 1283 ScopedObjectAccess soa(Thread::Current()); 1284 StackHandleScope<3> hs(soa.Self()); 1285 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache(); 1286 Handle<mirror::ClassLoader> class_loader(hs.NewHandle( 1287 soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); 1288 Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass( 1289 soa, dex_cache, class_loader, type_index, dex_compilation_unit_))); 1290 Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); 1291 1292 // GetOutermostCompilingClass returns null when the class is unresolved 1293 // (e.g. if it derives from an unresolved class). This is bogus knowing that 1294 // we are compiling it. 1295 // When this happens we cannot establish a direct relation between the current 1296 // class and the outer class, so we return false. 1297 // (Note that this is only used for optimizing invokes and field accesses) 1298 return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get()); 1299} 1300 1301void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, 1302 uint32_t dex_pc, 1303 bool is_put, 1304 Primitive::Type field_type) { 1305 uint32_t source_or_dest_reg = instruction.VRegA_21c(); 1306 uint16_t field_index = instruction.VRegB_21c(); 1307 1308 if (is_put) { 1309 HInstruction* value = LoadLocal(source_or_dest_reg, field_type); 1310 AppendInstruction( 1311 new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); 1312 } else { 1313 AppendInstruction(new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); 1314 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); 1315 } 1316} 1317 1318bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction, 1319 uint32_t dex_pc, 1320 bool is_put) { 1321 uint32_t source_or_dest_reg = instruction.VRegA_21c(); 1322 uint16_t field_index = instruction.VRegB_21c(); 1323 1324 ScopedObjectAccess soa(Thread::Current()); 1325 StackHandleScope<3> hs(soa.Self()); 1326 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache(); 1327 Handle<mirror::ClassLoader> class_loader(hs.NewHandle( 1328 soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); 1329 ArtField* resolved_field = compiler_driver_->ResolveField( 1330 soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true); 1331 1332 if (resolved_field == nullptr) { 1333 MaybeRecordStat(MethodCompilationStat::kUnresolvedField); 1334 Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index); 1335 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); 1336 return true; 1337 } 1338 1339 Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType(); 1340 const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); 1341 Handle<mirror::DexCache> outer_dex_cache = outer_compilation_unit_->GetDexCache(); 1342 Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); 1343 1344 // The index at which the field's class is stored in the DexCache's type array. 1345 uint32_t storage_index; 1346 bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass()); 1347 if (is_outer_class) { 1348 storage_index = outer_class->GetDexTypeIndex(); 1349 } else if (outer_dex_cache.Get() != dex_cache.Get()) { 1350 // The compiler driver cannot currently understand multiple dex caches involved. Just bailout. 1351 return false; 1352 } else { 1353 // TODO: This is rather expensive. Perf it and cache the results if needed. 1354 std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField( 1355 outer_dex_cache.Get(), 1356 GetCompilingClass(), 1357 resolved_field, 1358 field_index, 1359 &storage_index); 1360 bool can_easily_access = is_put ? pair.second : pair.first; 1361 if (!can_easily_access) { 1362 MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess); 1363 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); 1364 return true; 1365 } 1366 } 1367 1368 bool is_in_cache = 1369 compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_cache, storage_index); 1370 HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(), 1371 storage_index, 1372 outer_dex_file, 1373 is_outer_class, 1374 dex_pc, 1375 /*needs_access_check*/ false, 1376 is_in_cache); 1377 AppendInstruction(constant); 1378 1379 HInstruction* cls = constant; 1380 1381 Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass())); 1382 if (!IsInitialized(klass)) { 1383 cls = new (arena_) HClinitCheck(constant, dex_pc); 1384 AppendInstruction(cls); 1385 } 1386 1387 uint16_t class_def_index = klass->GetDexClassDefIndex(); 1388 if (is_put) { 1389 // We need to keep the class alive before loading the value. 1390 HInstruction* value = LoadLocal(source_or_dest_reg, field_type); 1391 DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type)); 1392 AppendInstruction(new (arena_) HStaticFieldSet(cls, 1393 value, 1394 field_type, 1395 resolved_field->GetOffset(), 1396 resolved_field->IsVolatile(), 1397 field_index, 1398 class_def_index, 1399 *dex_file_, 1400 dex_cache_, 1401 dex_pc)); 1402 } else { 1403 AppendInstruction(new (arena_) HStaticFieldGet(cls, 1404 field_type, 1405 resolved_field->GetOffset(), 1406 resolved_field->IsVolatile(), 1407 field_index, 1408 class_def_index, 1409 *dex_file_, 1410 dex_cache_, 1411 dex_pc)); 1412 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); 1413 } 1414 return true; 1415} 1416 1417void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg, 1418 uint16_t first_vreg, 1419 int64_t second_vreg_or_constant, 1420 uint32_t dex_pc, 1421 Primitive::Type type, 1422 bool second_is_constant, 1423 bool isDiv) { 1424 DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); 1425 1426 HInstruction* first = LoadLocal(first_vreg, type); 1427 HInstruction* second = nullptr; 1428 if (second_is_constant) { 1429 if (type == Primitive::kPrimInt) { 1430 second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); 1431 } else { 1432 second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); 1433 } 1434 } else { 1435 second = LoadLocal(second_vreg_or_constant, type); 1436 } 1437 1438 if (!second_is_constant 1439 || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0) 1440 || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) { 1441 second = new (arena_) HDivZeroCheck(second, dex_pc); 1442 AppendInstruction(second); 1443 } 1444 1445 if (isDiv) { 1446 AppendInstruction(new (arena_) HDiv(type, first, second, dex_pc)); 1447 } else { 1448 AppendInstruction(new (arena_) HRem(type, first, second, dex_pc)); 1449 } 1450 UpdateLocal(out_vreg, current_block_->GetLastInstruction()); 1451} 1452 1453void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction, 1454 uint32_t dex_pc, 1455 bool is_put, 1456 Primitive::Type anticipated_type) { 1457 uint8_t source_or_dest_reg = instruction.VRegA_23x(); 1458 uint8_t array_reg = instruction.VRegB_23x(); 1459 uint8_t index_reg = instruction.VRegC_23x(); 1460 1461 HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc); 1462 HInstruction* length = new (arena_) HArrayLength(object, dex_pc); 1463 AppendInstruction(length); 1464 HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt); 1465 index = new (arena_) HBoundsCheck(index, length, dex_pc); 1466 AppendInstruction(index); 1467 if (is_put) { 1468 HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); 1469 // TODO: Insert a type check node if the type is Object. 1470 HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc); 1471 ssa_builder_->MaybeAddAmbiguousArraySet(aset); 1472 AppendInstruction(aset); 1473 } else { 1474 HArrayGet* aget = new (arena_) HArrayGet(object, index, anticipated_type, dex_pc); 1475 ssa_builder_->MaybeAddAmbiguousArrayGet(aget); 1476 AppendInstruction(aget); 1477 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); 1478 } 1479 graph_->SetHasBoundsChecks(true); 1480} 1481 1482void HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc, 1483 uint32_t type_index, 1484 uint32_t number_of_vreg_arguments, 1485 bool is_range, 1486 uint32_t* args, 1487 uint32_t register_index) { 1488 HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc); 1489 bool finalizable; 1490 QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) 1491 ? kQuickAllocArrayWithAccessCheck 1492 : kQuickAllocArray; 1493 HInstruction* object = new (arena_) HNewArray(length, 1494 graph_->GetCurrentMethod(), 1495 dex_pc, 1496 type_index, 1497 *dex_compilation_unit_->GetDexFile(), 1498 entrypoint); 1499 AppendInstruction(object); 1500 1501 const char* descriptor = dex_file_->StringByTypeIdx(type_index); 1502 DCHECK_EQ(descriptor[0], '[') << descriptor; 1503 char primitive = descriptor[1]; 1504 DCHECK(primitive == 'I' 1505 || primitive == 'L' 1506 || primitive == '[') << descriptor; 1507 bool is_reference_array = (primitive == 'L') || (primitive == '['); 1508 Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt; 1509 1510 for (size_t i = 0; i < number_of_vreg_arguments; ++i) { 1511 HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type); 1512 HInstruction* index = graph_->GetIntConstant(i, dex_pc); 1513 HArraySet* aset = new (arena_) HArraySet(object, index, value, type, dex_pc); 1514 ssa_builder_->MaybeAddAmbiguousArraySet(aset); 1515 AppendInstruction(aset); 1516 } 1517 latest_result_ = object; 1518} 1519 1520template <typename T> 1521void HInstructionBuilder::BuildFillArrayData(HInstruction* object, 1522 const T* data, 1523 uint32_t element_count, 1524 Primitive::Type anticipated_type, 1525 uint32_t dex_pc) { 1526 for (uint32_t i = 0; i < element_count; ++i) { 1527 HInstruction* index = graph_->GetIntConstant(i, dex_pc); 1528 HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); 1529 HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc); 1530 ssa_builder_->MaybeAddAmbiguousArraySet(aset); 1531 AppendInstruction(aset); 1532 } 1533} 1534 1535void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { 1536 HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc); 1537 HInstruction* length = new (arena_) HArrayLength(array, dex_pc); 1538 AppendInstruction(length); 1539 1540 int32_t payload_offset = instruction.VRegB_31t() + dex_pc; 1541 const Instruction::ArrayDataPayload* payload = 1542 reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset); 1543 const uint8_t* data = payload->data; 1544 uint32_t element_count = payload->element_count; 1545 1546 // Implementation of this DEX instruction seems to be that the bounds check is 1547 // done before doing any stores. 1548 HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); 1549 AppendInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc)); 1550 1551 switch (payload->element_width) { 1552 case 1: 1553 BuildFillArrayData(array, 1554 reinterpret_cast<const int8_t*>(data), 1555 element_count, 1556 Primitive::kPrimByte, 1557 dex_pc); 1558 break; 1559 case 2: 1560 BuildFillArrayData(array, 1561 reinterpret_cast<const int16_t*>(data), 1562 element_count, 1563 Primitive::kPrimShort, 1564 dex_pc); 1565 break; 1566 case 4: 1567 BuildFillArrayData(array, 1568 reinterpret_cast<const int32_t*>(data), 1569 element_count, 1570 Primitive::kPrimInt, 1571 dex_pc); 1572 break; 1573 case 8: 1574 BuildFillWideArrayData(array, 1575 reinterpret_cast<const int64_t*>(data), 1576 element_count, 1577 dex_pc); 1578 break; 1579 default: 1580 LOG(FATAL) << "Unknown element width for " << payload->element_width; 1581 } 1582 graph_->SetHasBoundsChecks(true); 1583} 1584 1585void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object, 1586 const int64_t* data, 1587 uint32_t element_count, 1588 uint32_t dex_pc) { 1589 for (uint32_t i = 0; i < element_count; ++i) { 1590 HInstruction* index = graph_->GetIntConstant(i, dex_pc); 1591 HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); 1592 HArraySet* aset = new (arena_) HArraySet(object, index, value, Primitive::kPrimLong, dex_pc); 1593 ssa_builder_->MaybeAddAmbiguousArraySet(aset); 1594 AppendInstruction(aset); 1595 } 1596} 1597 1598static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls) 1599 SHARED_REQUIRES(Locks::mutator_lock_) { 1600 if (cls.Get() == nullptr) { 1601 return TypeCheckKind::kUnresolvedCheck; 1602 } else if (cls->IsInterface()) { 1603 return TypeCheckKind::kInterfaceCheck; 1604 } else if (cls->IsArrayClass()) { 1605 if (cls->GetComponentType()->IsObjectClass()) { 1606 return TypeCheckKind::kArrayObjectCheck; 1607 } else if (cls->CannotBeAssignedFromOtherTypes()) { 1608 return TypeCheckKind::kExactCheck; 1609 } else { 1610 return TypeCheckKind::kArrayCheck; 1611 } 1612 } else if (cls->IsFinal()) { 1613 return TypeCheckKind::kExactCheck; 1614 } else if (cls->IsAbstract()) { 1615 return TypeCheckKind::kAbstractClassCheck; 1616 } else { 1617 return TypeCheckKind::kClassHierarchyCheck; 1618 } 1619} 1620 1621void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction, 1622 uint8_t destination, 1623 uint8_t reference, 1624 uint16_t type_index, 1625 uint32_t dex_pc) { 1626 ScopedObjectAccess soa(Thread::Current()); 1627 StackHandleScope<1> hs(soa.Self()); 1628 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); 1629 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache(); 1630 Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); 1631 1632 bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( 1633 dex_compilation_unit_->GetDexMethodIndex(), 1634 dex_cache, 1635 type_index); 1636 1637 HInstruction* object = LoadLocal(reference, Primitive::kPrimNot); 1638 HLoadClass* cls = new (arena_) HLoadClass( 1639 graph_->GetCurrentMethod(), 1640 type_index, 1641 dex_file, 1642 IsOutermostCompilingClass(type_index), 1643 dex_pc, 1644 !can_access, 1645 compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_cache, type_index)); 1646 AppendInstruction(cls); 1647 1648 TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class); 1649 if (instruction.Opcode() == Instruction::INSTANCE_OF) { 1650 AppendInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc)); 1651 UpdateLocal(destination, current_block_->GetLastInstruction()); 1652 } else { 1653 DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); 1654 // We emit a CheckCast followed by a BoundType. CheckCast is a statement 1655 // which may throw. If it succeeds BoundType sets the new type of `object` 1656 // for all subsequent uses. 1657 AppendInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc)); 1658 AppendInstruction(new (arena_) HBoundType(object, dex_pc)); 1659 UpdateLocal(reference, current_block_->GetLastInstruction()); 1660 } 1661} 1662 1663bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index, 1664 Handle<mirror::DexCache> dex_cache, 1665 bool* finalizable) const { 1666 return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks( 1667 dex_compilation_unit_->GetDexMethodIndex(), dex_cache, type_index, finalizable); 1668} 1669 1670bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const { 1671 ScopedObjectAccess soa(Thread::Current()); 1672 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache(); 1673 return NeedsAccessCheck(type_index, dex_cache, finalizable); 1674} 1675 1676bool HInstructionBuilder::CanDecodeQuickenedInfo() const { 1677 return interpreter_metadata_ != nullptr; 1678} 1679 1680uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t dex_pc) { 1681 DCHECK(interpreter_metadata_ != nullptr); 1682 1683 // First check if the info has already been decoded from `interpreter_metadata_`. 1684 auto it = skipped_interpreter_metadata_.find(dex_pc); 1685 if (it != skipped_interpreter_metadata_.end()) { 1686 // Remove the entry from the map and return the parsed info. 1687 uint16_t value_in_map = it->second; 1688 skipped_interpreter_metadata_.erase(it); 1689 return value_in_map; 1690 } 1691 1692 // Otherwise start parsing `interpreter_metadata_` until the slot for `dex_pc` 1693 // is found. Store skipped values in the `skipped_interpreter_metadata_` map. 1694 while (true) { 1695 uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_); 1696 uint16_t value_in_map = DecodeUnsignedLeb128(&interpreter_metadata_); 1697 DCHECK_LE(dex_pc_in_map, dex_pc); 1698 1699 if (dex_pc_in_map == dex_pc) { 1700 return value_in_map; 1701 } else { 1702 skipped_interpreter_metadata_.Put(dex_pc_in_map, value_in_map); 1703 } 1704 } 1705} 1706 1707bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) { 1708 switch (instruction.Opcode()) { 1709 case Instruction::CONST_4: { 1710 int32_t register_index = instruction.VRegA(); 1711 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); 1712 UpdateLocal(register_index, constant); 1713 break; 1714 } 1715 1716 case Instruction::CONST_16: { 1717 int32_t register_index = instruction.VRegA(); 1718 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); 1719 UpdateLocal(register_index, constant); 1720 break; 1721 } 1722 1723 case Instruction::CONST: { 1724 int32_t register_index = instruction.VRegA(); 1725 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); 1726 UpdateLocal(register_index, constant); 1727 break; 1728 } 1729 1730 case Instruction::CONST_HIGH16: { 1731 int32_t register_index = instruction.VRegA(); 1732 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); 1733 UpdateLocal(register_index, constant); 1734 break; 1735 } 1736 1737 case Instruction::CONST_WIDE_16: { 1738 int32_t register_index = instruction.VRegA(); 1739 // Get 16 bits of constant value, sign extended to 64 bits. 1740 int64_t value = instruction.VRegB_21s(); 1741 value <<= 48; 1742 value >>= 48; 1743 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); 1744 UpdateLocal(register_index, constant); 1745 break; 1746 } 1747 1748 case Instruction::CONST_WIDE_32: { 1749 int32_t register_index = instruction.VRegA(); 1750 // Get 32 bits of constant value, sign extended to 64 bits. 1751 int64_t value = instruction.VRegB_31i(); 1752 value <<= 32; 1753 value >>= 32; 1754 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); 1755 UpdateLocal(register_index, constant); 1756 break; 1757 } 1758 1759 case Instruction::CONST_WIDE: { 1760 int32_t register_index = instruction.VRegA(); 1761 HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); 1762 UpdateLocal(register_index, constant); 1763 break; 1764 } 1765 1766 case Instruction::CONST_WIDE_HIGH16: { 1767 int32_t register_index = instruction.VRegA(); 1768 int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48; 1769 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); 1770 UpdateLocal(register_index, constant); 1771 break; 1772 } 1773 1774 // Note that the SSA building will refine the types. 1775 case Instruction::MOVE: 1776 case Instruction::MOVE_FROM16: 1777 case Instruction::MOVE_16: { 1778 HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); 1779 UpdateLocal(instruction.VRegA(), value); 1780 break; 1781 } 1782 1783 // Note that the SSA building will refine the types. 1784 case Instruction::MOVE_WIDE: 1785 case Instruction::MOVE_WIDE_FROM16: 1786 case Instruction::MOVE_WIDE_16: { 1787 HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong); 1788 UpdateLocal(instruction.VRegA(), value); 1789 break; 1790 } 1791 1792 case Instruction::MOVE_OBJECT: 1793 case Instruction::MOVE_OBJECT_16: 1794 case Instruction::MOVE_OBJECT_FROM16: { 1795 HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot); 1796 UpdateLocal(instruction.VRegA(), value); 1797 break; 1798 } 1799 1800 case Instruction::RETURN_VOID_NO_BARRIER: 1801 case Instruction::RETURN_VOID: { 1802 BuildReturn(instruction, Primitive::kPrimVoid, dex_pc); 1803 break; 1804 } 1805 1806#define IF_XX(comparison, cond) \ 1807 case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \ 1808 case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break 1809 1810 IF_XX(HEqual, EQ); 1811 IF_XX(HNotEqual, NE); 1812 IF_XX(HLessThan, LT); 1813 IF_XX(HLessThanOrEqual, LE); 1814 IF_XX(HGreaterThan, GT); 1815 IF_XX(HGreaterThanOrEqual, GE); 1816 1817 case Instruction::GOTO: 1818 case Instruction::GOTO_16: 1819 case Instruction::GOTO_32: { 1820 AppendInstruction(new (arena_) HGoto(dex_pc)); 1821 current_block_ = nullptr; 1822 break; 1823 } 1824 1825 case Instruction::RETURN: { 1826 BuildReturn(instruction, return_type_, dex_pc); 1827 break; 1828 } 1829 1830 case Instruction::RETURN_OBJECT: { 1831 BuildReturn(instruction, return_type_, dex_pc); 1832 break; 1833 } 1834 1835 case Instruction::RETURN_WIDE: { 1836 BuildReturn(instruction, return_type_, dex_pc); 1837 break; 1838 } 1839 1840 case Instruction::INVOKE_DIRECT: 1841 case Instruction::INVOKE_INTERFACE: 1842 case Instruction::INVOKE_STATIC: 1843 case Instruction::INVOKE_SUPER: 1844 case Instruction::INVOKE_VIRTUAL: 1845 case Instruction::INVOKE_VIRTUAL_QUICK: { 1846 uint16_t method_idx; 1847 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) { 1848 if (!CanDecodeQuickenedInfo()) { 1849 return false; 1850 } 1851 method_idx = LookupQuickenedInfo(dex_pc); 1852 } else { 1853 method_idx = instruction.VRegB_35c(); 1854 } 1855 uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); 1856 uint32_t args[5]; 1857 instruction.GetVarArgs(args); 1858 if (!BuildInvoke(instruction, dex_pc, method_idx, 1859 number_of_vreg_arguments, false, args, -1)) { 1860 return false; 1861 } 1862 break; 1863 } 1864 1865 case Instruction::INVOKE_DIRECT_RANGE: 1866 case Instruction::INVOKE_INTERFACE_RANGE: 1867 case Instruction::INVOKE_STATIC_RANGE: 1868 case Instruction::INVOKE_SUPER_RANGE: 1869 case Instruction::INVOKE_VIRTUAL_RANGE: 1870 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { 1871 uint16_t method_idx; 1872 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) { 1873 if (!CanDecodeQuickenedInfo()) { 1874 return false; 1875 } 1876 method_idx = LookupQuickenedInfo(dex_pc); 1877 } else { 1878 method_idx = instruction.VRegB_3rc(); 1879 } 1880 uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); 1881 uint32_t register_index = instruction.VRegC(); 1882 if (!BuildInvoke(instruction, dex_pc, method_idx, 1883 number_of_vreg_arguments, true, nullptr, register_index)) { 1884 return false; 1885 } 1886 break; 1887 } 1888 1889 case Instruction::NEG_INT: { 1890 Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc); 1891 break; 1892 } 1893 1894 case Instruction::NEG_LONG: { 1895 Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc); 1896 break; 1897 } 1898 1899 case Instruction::NEG_FLOAT: { 1900 Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc); 1901 break; 1902 } 1903 1904 case Instruction::NEG_DOUBLE: { 1905 Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc); 1906 break; 1907 } 1908 1909 case Instruction::NOT_INT: { 1910 Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc); 1911 break; 1912 } 1913 1914 case Instruction::NOT_LONG: { 1915 Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc); 1916 break; 1917 } 1918 1919 case Instruction::INT_TO_LONG: { 1920 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc); 1921 break; 1922 } 1923 1924 case Instruction::INT_TO_FLOAT: { 1925 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc); 1926 break; 1927 } 1928 1929 case Instruction::INT_TO_DOUBLE: { 1930 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc); 1931 break; 1932 } 1933 1934 case Instruction::LONG_TO_INT: { 1935 Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc); 1936 break; 1937 } 1938 1939 case Instruction::LONG_TO_FLOAT: { 1940 Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc); 1941 break; 1942 } 1943 1944 case Instruction::LONG_TO_DOUBLE: { 1945 Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc); 1946 break; 1947 } 1948 1949 case Instruction::FLOAT_TO_INT: { 1950 Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc); 1951 break; 1952 } 1953 1954 case Instruction::FLOAT_TO_LONG: { 1955 Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc); 1956 break; 1957 } 1958 1959 case Instruction::FLOAT_TO_DOUBLE: { 1960 Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc); 1961 break; 1962 } 1963 1964 case Instruction::DOUBLE_TO_INT: { 1965 Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc); 1966 break; 1967 } 1968 1969 case Instruction::DOUBLE_TO_LONG: { 1970 Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc); 1971 break; 1972 } 1973 1974 case Instruction::DOUBLE_TO_FLOAT: { 1975 Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc); 1976 break; 1977 } 1978 1979 case Instruction::INT_TO_BYTE: { 1980 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc); 1981 break; 1982 } 1983 1984 case Instruction::INT_TO_SHORT: { 1985 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc); 1986 break; 1987 } 1988 1989 case Instruction::INT_TO_CHAR: { 1990 Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc); 1991 break; 1992 } 1993 1994 case Instruction::ADD_INT: { 1995 Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); 1996 break; 1997 } 1998 1999 case Instruction::ADD_LONG: { 2000 Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); 2001 break; 2002 } 2003 2004 case Instruction::ADD_DOUBLE: { 2005 Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); 2006 break; 2007 } 2008 2009 case Instruction::ADD_FLOAT: { 2010 Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); 2011 break; 2012 } 2013 2014 case Instruction::SUB_INT: { 2015 Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc); 2016 break; 2017 } 2018 2019 case Instruction::SUB_LONG: { 2020 Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc); 2021 break; 2022 } 2023 2024 case Instruction::SUB_FLOAT: { 2025 Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); 2026 break; 2027 } 2028 2029 case Instruction::SUB_DOUBLE: { 2030 Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); 2031 break; 2032 } 2033 2034 case Instruction::ADD_INT_2ADDR: { 2035 Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); 2036 break; 2037 } 2038 2039 case Instruction::MUL_INT: { 2040 Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc); 2041 break; 2042 } 2043 2044 case Instruction::MUL_LONG: { 2045 Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc); 2046 break; 2047 } 2048 2049 case Instruction::MUL_FLOAT: { 2050 Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); 2051 break; 2052 } 2053 2054 case Instruction::MUL_DOUBLE: { 2055 Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); 2056 break; 2057 } 2058 2059 case Instruction::DIV_INT: { 2060 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), 2061 dex_pc, Primitive::kPrimInt, false, true); 2062 break; 2063 } 2064 2065 case Instruction::DIV_LONG: { 2066 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), 2067 dex_pc, Primitive::kPrimLong, false, true); 2068 break; 2069 } 2070 2071 case Instruction::DIV_FLOAT: { 2072 Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); 2073 break; 2074 } 2075 2076 case Instruction::DIV_DOUBLE: { 2077 Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); 2078 break; 2079 } 2080 2081 case Instruction::REM_INT: { 2082 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), 2083 dex_pc, Primitive::kPrimInt, false, false); 2084 break; 2085 } 2086 2087 case Instruction::REM_LONG: { 2088 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), 2089 dex_pc, Primitive::kPrimLong, false, false); 2090 break; 2091 } 2092 2093 case Instruction::REM_FLOAT: { 2094 Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); 2095 break; 2096 } 2097 2098 case Instruction::REM_DOUBLE: { 2099 Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); 2100 break; 2101 } 2102 2103 case Instruction::AND_INT: { 2104 Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); 2105 break; 2106 } 2107 2108 case Instruction::AND_LONG: { 2109 Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); 2110 break; 2111 } 2112 2113 case Instruction::SHL_INT: { 2114 Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); 2115 break; 2116 } 2117 2118 case Instruction::SHL_LONG: { 2119 Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); 2120 break; 2121 } 2122 2123 case Instruction::SHR_INT: { 2124 Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); 2125 break; 2126 } 2127 2128 case Instruction::SHR_LONG: { 2129 Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); 2130 break; 2131 } 2132 2133 case Instruction::USHR_INT: { 2134 Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); 2135 break; 2136 } 2137 2138 case Instruction::USHR_LONG: { 2139 Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); 2140 break; 2141 } 2142 2143 case Instruction::OR_INT: { 2144 Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc); 2145 break; 2146 } 2147 2148 case Instruction::OR_LONG: { 2149 Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc); 2150 break; 2151 } 2152 2153 case Instruction::XOR_INT: { 2154 Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc); 2155 break; 2156 } 2157 2158 case Instruction::XOR_LONG: { 2159 Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc); 2160 break; 2161 } 2162 2163 case Instruction::ADD_LONG_2ADDR: { 2164 Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); 2165 break; 2166 } 2167 2168 case Instruction::ADD_DOUBLE_2ADDR: { 2169 Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); 2170 break; 2171 } 2172 2173 case Instruction::ADD_FLOAT_2ADDR: { 2174 Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); 2175 break; 2176 } 2177 2178 case Instruction::SUB_INT_2ADDR: { 2179 Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc); 2180 break; 2181 } 2182 2183 case Instruction::SUB_LONG_2ADDR: { 2184 Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc); 2185 break; 2186 } 2187 2188 case Instruction::SUB_FLOAT_2ADDR: { 2189 Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); 2190 break; 2191 } 2192 2193 case Instruction::SUB_DOUBLE_2ADDR: { 2194 Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); 2195 break; 2196 } 2197 2198 case Instruction::MUL_INT_2ADDR: { 2199 Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc); 2200 break; 2201 } 2202 2203 case Instruction::MUL_LONG_2ADDR: { 2204 Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc); 2205 break; 2206 } 2207 2208 case Instruction::MUL_FLOAT_2ADDR: { 2209 Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); 2210 break; 2211 } 2212 2213 case Instruction::MUL_DOUBLE_2ADDR: { 2214 Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); 2215 break; 2216 } 2217 2218 case Instruction::DIV_INT_2ADDR: { 2219 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), 2220 dex_pc, Primitive::kPrimInt, false, true); 2221 break; 2222 } 2223 2224 case Instruction::DIV_LONG_2ADDR: { 2225 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), 2226 dex_pc, Primitive::kPrimLong, false, true); 2227 break; 2228 } 2229 2230 case Instruction::REM_INT_2ADDR: { 2231 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), 2232 dex_pc, Primitive::kPrimInt, false, false); 2233 break; 2234 } 2235 2236 case Instruction::REM_LONG_2ADDR: { 2237 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), 2238 dex_pc, Primitive::kPrimLong, false, false); 2239 break; 2240 } 2241 2242 case Instruction::REM_FLOAT_2ADDR: { 2243 Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); 2244 break; 2245 } 2246 2247 case Instruction::REM_DOUBLE_2ADDR: { 2248 Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); 2249 break; 2250 } 2251 2252 case Instruction::SHL_INT_2ADDR: { 2253 Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); 2254 break; 2255 } 2256 2257 case Instruction::SHL_LONG_2ADDR: { 2258 Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); 2259 break; 2260 } 2261 2262 case Instruction::SHR_INT_2ADDR: { 2263 Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); 2264 break; 2265 } 2266 2267 case Instruction::SHR_LONG_2ADDR: { 2268 Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); 2269 break; 2270 } 2271 2272 case Instruction::USHR_INT_2ADDR: { 2273 Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); 2274 break; 2275 } 2276 2277 case Instruction::USHR_LONG_2ADDR: { 2278 Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); 2279 break; 2280 } 2281 2282 case Instruction::DIV_FLOAT_2ADDR: { 2283 Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); 2284 break; 2285 } 2286 2287 case Instruction::DIV_DOUBLE_2ADDR: { 2288 Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); 2289 break; 2290 } 2291 2292 case Instruction::AND_INT_2ADDR: { 2293 Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); 2294 break; 2295 } 2296 2297 case Instruction::AND_LONG_2ADDR: { 2298 Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); 2299 break; 2300 } 2301 2302 case Instruction::OR_INT_2ADDR: { 2303 Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc); 2304 break; 2305 } 2306 2307 case Instruction::OR_LONG_2ADDR: { 2308 Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc); 2309 break; 2310 } 2311 2312 case Instruction::XOR_INT_2ADDR: { 2313 Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc); 2314 break; 2315 } 2316 2317 case Instruction::XOR_LONG_2ADDR: { 2318 Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc); 2319 break; 2320 } 2321 2322 case Instruction::ADD_INT_LIT16: { 2323 Binop_22s<HAdd>(instruction, false, dex_pc); 2324 break; 2325 } 2326 2327 case Instruction::AND_INT_LIT16: { 2328 Binop_22s<HAnd>(instruction, false, dex_pc); 2329 break; 2330 } 2331 2332 case Instruction::OR_INT_LIT16: { 2333 Binop_22s<HOr>(instruction, false, dex_pc); 2334 break; 2335 } 2336 2337 case Instruction::XOR_INT_LIT16: { 2338 Binop_22s<HXor>(instruction, false, dex_pc); 2339 break; 2340 } 2341 2342 case Instruction::RSUB_INT: { 2343 Binop_22s<HSub>(instruction, true, dex_pc); 2344 break; 2345 } 2346 2347 case Instruction::MUL_INT_LIT16: { 2348 Binop_22s<HMul>(instruction, false, dex_pc); 2349 break; 2350 } 2351 2352 case Instruction::ADD_INT_LIT8: { 2353 Binop_22b<HAdd>(instruction, false, dex_pc); 2354 break; 2355 } 2356 2357 case Instruction::AND_INT_LIT8: { 2358 Binop_22b<HAnd>(instruction, false, dex_pc); 2359 break; 2360 } 2361 2362 case Instruction::OR_INT_LIT8: { 2363 Binop_22b<HOr>(instruction, false, dex_pc); 2364 break; 2365 } 2366 2367 case Instruction::XOR_INT_LIT8: { 2368 Binop_22b<HXor>(instruction, false, dex_pc); 2369 break; 2370 } 2371 2372 case Instruction::RSUB_INT_LIT8: { 2373 Binop_22b<HSub>(instruction, true, dex_pc); 2374 break; 2375 } 2376 2377 case Instruction::MUL_INT_LIT8: { 2378 Binop_22b<HMul>(instruction, false, dex_pc); 2379 break; 2380 } 2381 2382 case Instruction::DIV_INT_LIT16: 2383 case Instruction::DIV_INT_LIT8: { 2384 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), 2385 dex_pc, Primitive::kPrimInt, true, true); 2386 break; 2387 } 2388 2389 case Instruction::REM_INT_LIT16: 2390 case Instruction::REM_INT_LIT8: { 2391 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), 2392 dex_pc, Primitive::kPrimInt, true, false); 2393 break; 2394 } 2395 2396 case Instruction::SHL_INT_LIT8: { 2397 Binop_22b<HShl>(instruction, false, dex_pc); 2398 break; 2399 } 2400 2401 case Instruction::SHR_INT_LIT8: { 2402 Binop_22b<HShr>(instruction, false, dex_pc); 2403 break; 2404 } 2405 2406 case Instruction::USHR_INT_LIT8: { 2407 Binop_22b<HUShr>(instruction, false, dex_pc); 2408 break; 2409 } 2410 2411 case Instruction::NEW_INSTANCE: { 2412 if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) { 2413 return false; 2414 } 2415 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); 2416 break; 2417 } 2418 2419 case Instruction::NEW_ARRAY: { 2420 uint16_t type_index = instruction.VRegC_22c(); 2421 HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt); 2422 bool finalizable; 2423 QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) 2424 ? kQuickAllocArrayWithAccessCheck 2425 : kQuickAllocArray; 2426 AppendInstruction(new (arena_) HNewArray(length, 2427 graph_->GetCurrentMethod(), 2428 dex_pc, 2429 type_index, 2430 *dex_compilation_unit_->GetDexFile(), 2431 entrypoint)); 2432 UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction()); 2433 break; 2434 } 2435 2436 case Instruction::FILLED_NEW_ARRAY: { 2437 uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); 2438 uint32_t type_index = instruction.VRegB_35c(); 2439 uint32_t args[5]; 2440 instruction.GetVarArgs(args); 2441 BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0); 2442 break; 2443 } 2444 2445 case Instruction::FILLED_NEW_ARRAY_RANGE: { 2446 uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); 2447 uint32_t type_index = instruction.VRegB_3rc(); 2448 uint32_t register_index = instruction.VRegC_3rc(); 2449 BuildFilledNewArray( 2450 dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index); 2451 break; 2452 } 2453 2454 case Instruction::FILL_ARRAY_DATA: { 2455 BuildFillArrayData(instruction, dex_pc); 2456 break; 2457 } 2458 2459 case Instruction::MOVE_RESULT: 2460 case Instruction::MOVE_RESULT_WIDE: 2461 case Instruction::MOVE_RESULT_OBJECT: { 2462 DCHECK(latest_result_ != nullptr); 2463 UpdateLocal(instruction.VRegA(), latest_result_); 2464 latest_result_ = nullptr; 2465 break; 2466 } 2467 2468 case Instruction::CMP_LONG: { 2469 Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc); 2470 break; 2471 } 2472 2473 case Instruction::CMPG_FLOAT: { 2474 Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc); 2475 break; 2476 } 2477 2478 case Instruction::CMPG_DOUBLE: { 2479 Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc); 2480 break; 2481 } 2482 2483 case Instruction::CMPL_FLOAT: { 2484 Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc); 2485 break; 2486 } 2487 2488 case Instruction::CMPL_DOUBLE: { 2489 Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc); 2490 break; 2491 } 2492 2493 case Instruction::NOP: 2494 break; 2495 2496 case Instruction::IGET: 2497 case Instruction::IGET_QUICK: 2498 case Instruction::IGET_WIDE: 2499 case Instruction::IGET_WIDE_QUICK: 2500 case Instruction::IGET_OBJECT: 2501 case Instruction::IGET_OBJECT_QUICK: 2502 case Instruction::IGET_BOOLEAN: 2503 case Instruction::IGET_BOOLEAN_QUICK: 2504 case Instruction::IGET_BYTE: 2505 case Instruction::IGET_BYTE_QUICK: 2506 case Instruction::IGET_CHAR: 2507 case Instruction::IGET_CHAR_QUICK: 2508 case Instruction::IGET_SHORT: 2509 case Instruction::IGET_SHORT_QUICK: { 2510 if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) { 2511 return false; 2512 } 2513 break; 2514 } 2515 2516 case Instruction::IPUT: 2517 case Instruction::IPUT_QUICK: 2518 case Instruction::IPUT_WIDE: 2519 case Instruction::IPUT_WIDE_QUICK: 2520 case Instruction::IPUT_OBJECT: 2521 case Instruction::IPUT_OBJECT_QUICK: 2522 case Instruction::IPUT_BOOLEAN: 2523 case Instruction::IPUT_BOOLEAN_QUICK: 2524 case Instruction::IPUT_BYTE: 2525 case Instruction::IPUT_BYTE_QUICK: 2526 case Instruction::IPUT_CHAR: 2527 case Instruction::IPUT_CHAR_QUICK: 2528 case Instruction::IPUT_SHORT: 2529 case Instruction::IPUT_SHORT_QUICK: { 2530 if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) { 2531 return false; 2532 } 2533 break; 2534 } 2535 2536 case Instruction::SGET: 2537 case Instruction::SGET_WIDE: 2538 case Instruction::SGET_OBJECT: 2539 case Instruction::SGET_BOOLEAN: 2540 case Instruction::SGET_BYTE: 2541 case Instruction::SGET_CHAR: 2542 case Instruction::SGET_SHORT: { 2543 if (!BuildStaticFieldAccess(instruction, dex_pc, false)) { 2544 return false; 2545 } 2546 break; 2547 } 2548 2549 case Instruction::SPUT: 2550 case Instruction::SPUT_WIDE: 2551 case Instruction::SPUT_OBJECT: 2552 case Instruction::SPUT_BOOLEAN: 2553 case Instruction::SPUT_BYTE: 2554 case Instruction::SPUT_CHAR: 2555 case Instruction::SPUT_SHORT: { 2556 if (!BuildStaticFieldAccess(instruction, dex_pc, true)) { 2557 return false; 2558 } 2559 break; 2560 } 2561 2562#define ARRAY_XX(kind, anticipated_type) \ 2563 case Instruction::AGET##kind: { \ 2564 BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \ 2565 break; \ 2566 } \ 2567 case Instruction::APUT##kind: { \ 2568 BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \ 2569 break; \ 2570 } 2571 2572 ARRAY_XX(, Primitive::kPrimInt); 2573 ARRAY_XX(_WIDE, Primitive::kPrimLong); 2574 ARRAY_XX(_OBJECT, Primitive::kPrimNot); 2575 ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean); 2576 ARRAY_XX(_BYTE, Primitive::kPrimByte); 2577 ARRAY_XX(_CHAR, Primitive::kPrimChar); 2578 ARRAY_XX(_SHORT, Primitive::kPrimShort); 2579 2580 case Instruction::ARRAY_LENGTH: { 2581 HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc); 2582 AppendInstruction(new (arena_) HArrayLength(object, dex_pc)); 2583 UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction()); 2584 break; 2585 } 2586 2587 case Instruction::CONST_STRING: { 2588 uint32_t string_index = instruction.VRegB_21c(); 2589 AppendInstruction( 2590 new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); 2591 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); 2592 break; 2593 } 2594 2595 case Instruction::CONST_STRING_JUMBO: { 2596 uint32_t string_index = instruction.VRegB_31c(); 2597 AppendInstruction( 2598 new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); 2599 UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction()); 2600 break; 2601 } 2602 2603 case Instruction::CONST_CLASS: { 2604 uint16_t type_index = instruction.VRegB_21c(); 2605 // `CanAccessTypeWithoutChecks` will tell whether the method being 2606 // built is trying to access its own class, so that the generated 2607 // code can optimize for this case. However, the optimization does not 2608 // work for inlining, so we use `IsOutermostCompilingClass` instead. 2609 ScopedObjectAccess soa(Thread::Current()); 2610 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache(); 2611 bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( 2612 dex_compilation_unit_->GetDexMethodIndex(), dex_cache, type_index); 2613 bool is_in_dex_cache = 2614 compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_cache, type_index); 2615 AppendInstruction(new (arena_) HLoadClass( 2616 graph_->GetCurrentMethod(), 2617 type_index, 2618 *dex_file_, 2619 IsOutermostCompilingClass(type_index), 2620 dex_pc, 2621 !can_access, 2622 is_in_dex_cache)); 2623 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); 2624 break; 2625 } 2626 2627 case Instruction::MOVE_EXCEPTION: { 2628 AppendInstruction(new (arena_) HLoadException(dex_pc)); 2629 UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction()); 2630 AppendInstruction(new (arena_) HClearException(dex_pc)); 2631 break; 2632 } 2633 2634 case Instruction::THROW: { 2635 HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot); 2636 AppendInstruction(new (arena_) HThrow(exception, dex_pc)); 2637 // We finished building this block. Set the current block to null to avoid 2638 // adding dead instructions to it. 2639 current_block_ = nullptr; 2640 break; 2641 } 2642 2643 case Instruction::INSTANCE_OF: { 2644 uint8_t destination = instruction.VRegA_22c(); 2645 uint8_t reference = instruction.VRegB_22c(); 2646 uint16_t type_index = instruction.VRegC_22c(); 2647 BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); 2648 break; 2649 } 2650 2651 case Instruction::CHECK_CAST: { 2652 uint8_t reference = instruction.VRegA_21c(); 2653 uint16_t type_index = instruction.VRegB_21c(); 2654 BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); 2655 break; 2656 } 2657 2658 case Instruction::MONITOR_ENTER: { 2659 AppendInstruction(new (arena_) HMonitorOperation( 2660 LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), 2661 HMonitorOperation::OperationKind::kEnter, 2662 dex_pc)); 2663 break; 2664 } 2665 2666 case Instruction::MONITOR_EXIT: { 2667 AppendInstruction(new (arena_) HMonitorOperation( 2668 LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), 2669 HMonitorOperation::OperationKind::kExit, 2670 dex_pc)); 2671 break; 2672 } 2673 2674 case Instruction::SPARSE_SWITCH: 2675 case Instruction::PACKED_SWITCH: { 2676 BuildSwitch(instruction, dex_pc); 2677 break; 2678 } 2679 2680 default: 2681 VLOG(compiler) << "Did not compile " 2682 << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) 2683 << " because of unhandled instruction " 2684 << instruction.Name(); 2685 MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction); 2686 return false; 2687 } 2688 return true; 2689} // NOLINT(readability/fn_size) 2690 2691} // namespace art 2692