1/* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "bit_vector.h" 18 19#include <limits> 20#include <sstream> 21 22#include "allocator.h" 23#include "bit_vector-inl.h" 24 25namespace art { 26 27BitVector::BitVector(bool expandable, 28 Allocator* allocator, 29 uint32_t storage_size, 30 uint32_t* storage) 31 : storage_(storage), 32 storage_size_(storage_size), 33 allocator_(allocator), 34 expandable_(expandable) { 35 DCHECK(storage_ != nullptr); 36 37 static_assert(sizeof(*storage_) == kWordBytes, "word bytes"); 38 static_assert(sizeof(*storage_) * 8u == kWordBits, "word bits"); 39} 40 41BitVector::BitVector(uint32_t start_bits, 42 bool expandable, 43 Allocator* allocator) 44 : BitVector(expandable, 45 allocator, 46 BitsToWords(start_bits), 47 static_cast<uint32_t*>(allocator->Alloc(BitsToWords(start_bits) * kWordBytes))) { 48} 49 50 51BitVector::BitVector(const BitVector& src, 52 bool expandable, 53 Allocator* allocator) 54 : BitVector(expandable, 55 allocator, 56 src.storage_size_, 57 static_cast<uint32_t*>(allocator->Alloc(src.storage_size_ * kWordBytes))) { 58 // Direct memcpy would be faster, but this should be fine too and is cleaner. 59 Copy(&src); 60} 61 62BitVector::~BitVector() { 63 allocator_->Free(storage_); 64} 65 66bool BitVector::SameBitsSet(const BitVector *src) const { 67 int our_highest = GetHighestBitSet(); 68 int src_highest = src->GetHighestBitSet(); 69 70 // If the highest bit set is different, we are different. 71 if (our_highest != src_highest) { 72 return false; 73 } 74 75 // If the highest bit set is -1, both are cleared, we are the same. 76 // If the highest bit set is 0, both have a unique bit set, we are the same. 77 if (our_highest <= 0) { 78 return true; 79 } 80 81 // Get the highest bit set's cell's index 82 // No need of highest + 1 here because it can't be 0 so BitsToWords will work here. 83 int our_highest_index = BitsToWords(our_highest); 84 85 // This memcmp is enough: we know that the highest bit set is the same for both: 86 // - Therefore, min_size goes up to at least that, we are thus comparing at least what we need to, but not less. 87 // ie. we are comparing all storage cells that could have difference, if both vectors have cells above our_highest_index, 88 // they are automatically at 0. 89 return (memcmp(storage_, src->GetRawStorage(), our_highest_index * kWordBytes) == 0); 90} 91 92bool BitVector::IsSubsetOf(const BitVector *other) const { 93 int this_highest = GetHighestBitSet(); 94 int other_highest = other->GetHighestBitSet(); 95 96 // If the highest bit set is -1, this is empty and a trivial subset. 97 if (this_highest < 0) { 98 return true; 99 } 100 101 // If the highest bit set is higher, this cannot be a subset. 102 if (this_highest > other_highest) { 103 return false; 104 } 105 106 // Compare each 32-bit word. 107 size_t this_highest_index = BitsToWords(this_highest + 1); 108 for (size_t i = 0; i < this_highest_index; ++i) { 109 uint32_t this_storage = storage_[i]; 110 uint32_t other_storage = other->storage_[i]; 111 if ((this_storage | other_storage) != other_storage) { 112 return false; 113 } 114 } 115 return true; 116} 117 118void BitVector::Intersect(const BitVector* src) { 119 uint32_t src_storage_size = src->storage_size_; 120 121 // Get the minimum size between us and source. 122 uint32_t min_size = (storage_size_ < src_storage_size) ? storage_size_ : src_storage_size; 123 124 uint32_t idx; 125 for (idx = 0; idx < min_size; idx++) { 126 storage_[idx] &= src->GetRawStorageWord(idx); 127 } 128 129 // Now, due to this being an intersection, there are two possibilities: 130 // - Either src was larger than us: we don't care, all upper bits would thus be 0. 131 // - Either we are larger than src: we don't care, all upper bits would have been 0 too. 132 // So all we need to do is set all remaining bits to 0. 133 for (; idx < storage_size_; idx++) { 134 storage_[idx] = 0; 135 } 136} 137 138bool BitVector::Union(const BitVector* src) { 139 // Get the highest bit to determine how much we need to expand. 140 int highest_bit = src->GetHighestBitSet(); 141 bool changed = false; 142 143 // If src has no bit set, we are done: there is no need for a union with src. 144 if (highest_bit == -1) { 145 return changed; 146 } 147 148 // Update src_size to how many cells we actually care about: where the bit is + 1. 149 uint32_t src_size = BitsToWords(highest_bit + 1); 150 151 // Is the storage size smaller than src's? 152 if (storage_size_ < src_size) { 153 changed = true; 154 155 EnsureSize(highest_bit); 156 157 // Paranoid: storage size should be big enough to hold this bit now. 158 DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits); 159 } 160 161 for (uint32_t idx = 0; idx < src_size; idx++) { 162 uint32_t existing = storage_[idx]; 163 uint32_t update = existing | src->GetRawStorageWord(idx); 164 if (existing != update) { 165 changed = true; 166 storage_[idx] = update; 167 } 168 } 169 return changed; 170} 171 172bool BitVector::UnionIfNotIn(const BitVector* union_with, const BitVector* not_in) { 173 // Get the highest bit to determine how much we need to expand. 174 int highest_bit = union_with->GetHighestBitSet(); 175 bool changed = false; 176 177 // If src has no bit set, we are done: there is no need for a union with src. 178 if (highest_bit == -1) { 179 return changed; 180 } 181 182 // Update union_with_size to how many cells we actually care about: where the bit is + 1. 183 uint32_t union_with_size = BitsToWords(highest_bit + 1); 184 185 // Is the storage size smaller than src's? 186 if (storage_size_ < union_with_size) { 187 EnsureSize(highest_bit); 188 189 // Paranoid: storage size should be big enough to hold this bit now. 190 DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * kWordBits); 191 } 192 193 uint32_t not_in_size = not_in->GetStorageSize(); 194 195 uint32_t idx = 0; 196 for (; idx < std::min(not_in_size, union_with_size); idx++) { 197 uint32_t existing = storage_[idx]; 198 uint32_t update = existing | 199 (union_with->GetRawStorageWord(idx) & ~not_in->GetRawStorageWord(idx)); 200 if (existing != update) { 201 changed = true; 202 storage_[idx] = update; 203 } 204 } 205 206 for (; idx < union_with_size; idx++) { 207 uint32_t existing = storage_[idx]; 208 uint32_t update = existing | union_with->GetRawStorageWord(idx); 209 if (existing != update) { 210 changed = true; 211 storage_[idx] = update; 212 } 213 } 214 return changed; 215} 216 217void BitVector::Subtract(const BitVector *src) { 218 uint32_t src_size = src->storage_size_; 219 220 // We only need to operate on bytes up to the smaller of the sizes of the two operands. 221 unsigned int min_size = (storage_size_ > src_size) ? src_size : storage_size_; 222 223 // Difference until max, we know both accept it: 224 // There is no need to do more: 225 // If we are bigger than src, the upper bits are unchanged. 226 // If we are smaller than src, the non-existant upper bits are 0 and thus can't get subtracted. 227 for (uint32_t idx = 0; idx < min_size; idx++) { 228 storage_[idx] &= (~(src->GetRawStorageWord(idx))); 229 } 230} 231 232uint32_t BitVector::NumSetBits() const { 233 uint32_t count = 0; 234 for (uint32_t word = 0; word < storage_size_; word++) { 235 count += POPCOUNT(storage_[word]); 236 } 237 return count; 238} 239 240uint32_t BitVector::NumSetBits(uint32_t end) const { 241 DCHECK_LE(end, storage_size_ * kWordBits); 242 return NumSetBits(storage_, end); 243} 244 245void BitVector::SetInitialBits(uint32_t num_bits) { 246 // If num_bits is 0, clear everything. 247 if (num_bits == 0) { 248 ClearAllBits(); 249 return; 250 } 251 252 // Set the highest bit we want to set to get the BitVector allocated if need be. 253 SetBit(num_bits - 1); 254 255 uint32_t idx; 256 // We can set every storage element with -1. 257 for (idx = 0; idx < WordIndex(num_bits); idx++) { 258 storage_[idx] = std::numeric_limits<uint32_t>::max(); 259 } 260 261 // Handle the potentially last few bits. 262 uint32_t rem_num_bits = num_bits & 0x1f; 263 if (rem_num_bits != 0) { 264 storage_[idx] = (1U << rem_num_bits) - 1; 265 ++idx; 266 } 267 268 // Now set the upper ones to 0. 269 for (; idx < storage_size_; idx++) { 270 storage_[idx] = 0; 271 } 272} 273 274int BitVector::GetHighestBitSet() const { 275 unsigned int max = storage_size_; 276 for (int idx = max - 1; idx >= 0; idx--) { 277 // If not 0, we have more work: check the bits. 278 uint32_t value = storage_[idx]; 279 280 if (value != 0) { 281 // Return highest bit set in value plus bits from previous storage indexes. 282 return 31 - CLZ(value) + (idx * kWordBits); 283 } 284 } 285 286 // All zero, therefore return -1. 287 return -1; 288} 289 290void BitVector::Copy(const BitVector *src) { 291 // Get highest bit set, we only need to copy till then. 292 int highest_bit = src->GetHighestBitSet(); 293 294 // If nothing is set, clear everything. 295 if (highest_bit == -1) { 296 ClearAllBits(); 297 return; 298 } 299 300 // Set upper bit to ensure right size before copy. 301 SetBit(highest_bit); 302 303 // Now set until highest bit's storage. 304 uint32_t size = 1 + (highest_bit / kWordBits); 305 memcpy(storage_, src->GetRawStorage(), kWordBytes * size); 306 307 // Set upper bits to 0. 308 uint32_t left = storage_size_ - size; 309 310 if (left > 0) { 311 memset(storage_ + size, 0, kWordBytes * left); 312 } 313} 314 315uint32_t BitVector::NumSetBits(const uint32_t* storage, uint32_t end) { 316 uint32_t word_end = WordIndex(end); 317 uint32_t partial_word_bits = end & 0x1f; 318 319 uint32_t count = 0u; 320 for (uint32_t word = 0u; word < word_end; word++) { 321 count += POPCOUNT(storage[word]); 322 } 323 if (partial_word_bits != 0u) { 324 count += POPCOUNT(storage[word_end] & ~(0xffffffffu << partial_word_bits)); 325 } 326 return count; 327} 328 329void BitVector::Dump(std::ostream& os, const char *prefix) const { 330 std::ostringstream buffer; 331 DumpHelper(prefix, buffer); 332 os << buffer.str() << std::endl; 333} 334 335void BitVector::DumpHelper(const char* prefix, std::ostringstream& buffer) const { 336 // Initialize it. 337 if (prefix != nullptr) { 338 buffer << prefix; 339 } 340 341 buffer << '('; 342 for (size_t i = 0; i < storage_size_ * kWordBits; i++) { 343 buffer << IsBitSet(i); 344 } 345 buffer << ')'; 346} 347 348void BitVector::EnsureSize(uint32_t idx) { 349 if (idx >= storage_size_ * kWordBits) { 350 DCHECK(expandable_) << "Attempted to expand a non-expandable bitmap to position " << idx; 351 352 /* Round up to word boundaries for "idx+1" bits */ 353 uint32_t new_size = BitsToWords(idx + 1); 354 DCHECK_GT(new_size, storage_size_); 355 uint32_t *new_storage = 356 static_cast<uint32_t*>(allocator_->Alloc(new_size * kWordBytes)); 357 memcpy(new_storage, storage_, storage_size_ * kWordBytes); 358 // Zero out the new storage words. 359 memset(&new_storage[storage_size_], 0, (new_size - storage_size_) * kWordBytes); 360 // TODO: collect stats on space wasted because of resize. 361 362 // Free old storage. 363 allocator_->Free(storage_); 364 365 // Set fields. 366 storage_ = new_storage; 367 storage_size_ = new_size; 368 } 369} 370 371Allocator* BitVector::GetAllocator() const { 372 return allocator_; 373} 374 375} // namespace art 376