1//=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements a flow-sensitive, path-insensitive analysis of 11// determining reachable blocks within a CFG. 12// 13//===----------------------------------------------------------------------===// 14 15#include "clang/Analysis/Analyses/ReachableCode.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/ExprObjC.h" 19#include "clang/AST/ParentMap.h" 20#include "clang/AST/StmtCXX.h" 21#include "clang/Analysis/AnalysisContext.h" 22#include "clang/Analysis/CFG.h" 23#include "clang/Basic/SourceManager.h" 24#include "clang/Lex/Preprocessor.h" 25#include "llvm/ADT/BitVector.h" 26#include "llvm/ADT/SmallVector.h" 27 28using namespace clang; 29 30//===----------------------------------------------------------------------===// 31// Core Reachability Analysis routines. 32//===----------------------------------------------------------------------===// 33 34static bool isEnumConstant(const Expr *Ex) { 35 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); 36 if (!DR) 37 return false; 38 return isa<EnumConstantDecl>(DR->getDecl()); 39} 40 41static bool isTrivialExpression(const Expr *Ex) { 42 Ex = Ex->IgnoreParenCasts(); 43 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || 44 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || 45 isa<CharacterLiteral>(Ex) || 46 isEnumConstant(Ex); 47} 48 49static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { 50 // Check if the block ends with a do...while() and see if 'S' is the 51 // condition. 52 if (const Stmt *Term = B->getTerminator()) { 53 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { 54 const Expr *Cond = DS->getCond()->IgnoreParenCasts(); 55 return Cond == S && isTrivialExpression(Cond); 56 } 57 } 58 return false; 59} 60 61static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { 62 // Look to see if the current control flow ends with a 'return', and see if 63 // 'S' is a substatement. The 'return' may not be the last element in the 64 // block, or may be in a subsequent block because of destructors. 65 const CFGBlock *Current = B; 66 while (true) { 67 for (CFGBlock::const_reverse_iterator I = Current->rbegin(), 68 E = Current->rend(); 69 I != E; ++I) { 70 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 71 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { 72 if (RS == S) 73 return true; 74 if (const Expr *RE = RS->getRetValue()) { 75 RE = RE->IgnoreParenCasts(); 76 if (RE == S) 77 return true; 78 ParentMap PM(const_cast<Expr *>(RE)); 79 // If 'S' is in the ParentMap, it is a subexpression of 80 // the return statement. 81 return PM.getParent(S); 82 } 83 } 84 break; 85 } 86 } 87 // Note also that we are restricting the search for the return statement 88 // to stop at control-flow; only part of a return statement may be dead, 89 // without the whole return statement being dead. 90 if (Current->getTerminator().isTemporaryDtorsBranch()) { 91 // Temporary destructors have a predictable control flow, thus we want to 92 // look into the next block for the return statement. 93 // We look into the false branch, as we know the true branch only contains 94 // the call to the destructor. 95 assert(Current->succ_size() == 2); 96 Current = *(Current->succ_begin() + 1); 97 } else if (!Current->getTerminator() && Current->succ_size() == 1) { 98 // If there is only one successor, we're not dealing with outgoing control 99 // flow. Thus, look into the next block. 100 Current = *Current->succ_begin(); 101 if (Current->pred_size() > 1) { 102 // If there is more than one predecessor, we're dealing with incoming 103 // control flow - if the return statement is in that block, it might 104 // well be reachable via a different control flow, thus it's not dead. 105 return false; 106 } 107 } else { 108 // We hit control flow or a dead end. Stop searching. 109 return false; 110 } 111 } 112 llvm_unreachable("Broke out of infinite loop."); 113} 114 115static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { 116 assert(Loc.isMacroID()); 117 SourceLocation Last; 118 while (Loc.isMacroID()) { 119 Last = Loc; 120 Loc = SM.getImmediateMacroCallerLoc(Loc); 121 } 122 return Last; 123} 124 125/// Returns true if the statement is expanded from a configuration macro. 126static bool isExpandedFromConfigurationMacro(const Stmt *S, 127 Preprocessor &PP, 128 bool IgnoreYES_NO = false) { 129 // FIXME: This is not very precise. Here we just check to see if the 130 // value comes from a macro, but we can do much better. This is likely 131 // to be over conservative. This logic is factored into a separate function 132 // so that we can refine it later. 133 SourceLocation L = S->getLocStart(); 134 if (L.isMacroID()) { 135 if (IgnoreYES_NO) { 136 // The Objective-C constant 'YES' and 'NO' 137 // are defined as macros. Do not treat them 138 // as configuration values. 139 SourceManager &SM = PP.getSourceManager(); 140 SourceLocation TopL = getTopMostMacro(L, SM); 141 StringRef MacroName = PP.getImmediateMacroName(TopL); 142 if (MacroName == "YES" || MacroName == "NO") 143 return false; 144 } 145 return true; 146 } 147 return false; 148} 149 150static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); 151 152/// Returns true if the statement represents a configuration value. 153/// 154/// A configuration value is something usually determined at compile-time 155/// to conditionally always execute some branch. Such guards are for 156/// "sometimes unreachable" code. Such code is usually not interesting 157/// to report as unreachable, and may mask truly unreachable code within 158/// those blocks. 159static bool isConfigurationValue(const Stmt *S, 160 Preprocessor &PP, 161 SourceRange *SilenceableCondVal = nullptr, 162 bool IncludeIntegers = true, 163 bool WrappedInParens = false) { 164 if (!S) 165 return false; 166 167 if (const Expr *Ex = dyn_cast<Expr>(S)) 168 S = Ex->IgnoreCasts(); 169 170 // Special case looking for the sigil '()' around an integer literal. 171 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) 172 if (!PE->getLocStart().isMacroID()) 173 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, 174 IncludeIntegers, true); 175 176 if (const Expr *Ex = dyn_cast<Expr>(S)) 177 S = Ex->IgnoreCasts(); 178 179 bool IgnoreYES_NO = false; 180 181 switch (S->getStmtClass()) { 182 case Stmt::CallExprClass: { 183 const FunctionDecl *Callee = 184 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); 185 return Callee ? Callee->isConstexpr() : false; 186 } 187 case Stmt::DeclRefExprClass: 188 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); 189 case Stmt::ObjCBoolLiteralExprClass: 190 IgnoreYES_NO = true; 191 // Fallthrough. 192 case Stmt::CXXBoolLiteralExprClass: 193 case Stmt::IntegerLiteralClass: { 194 const Expr *E = cast<Expr>(S); 195 if (IncludeIntegers) { 196 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) 197 *SilenceableCondVal = E->getSourceRange(); 198 return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); 199 } 200 return false; 201 } 202 case Stmt::MemberExprClass: 203 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); 204 case Stmt::UnaryExprOrTypeTraitExprClass: 205 return true; 206 case Stmt::BinaryOperatorClass: { 207 const BinaryOperator *B = cast<BinaryOperator>(S); 208 // Only include raw integers (not enums) as configuration 209 // values if they are used in a logical or comparison operator 210 // (not arithmetic). 211 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); 212 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, 213 IncludeIntegers) || 214 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, 215 IncludeIntegers); 216 } 217 case Stmt::UnaryOperatorClass: { 218 const UnaryOperator *UO = cast<UnaryOperator>(S); 219 if (SilenceableCondVal) 220 *SilenceableCondVal = UO->getSourceRange(); 221 return UO->getOpcode() == UO_LNot && 222 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, 223 IncludeIntegers, WrappedInParens); 224 } 225 default: 226 return false; 227 } 228} 229 230static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { 231 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) 232 return isConfigurationValue(ED->getInitExpr(), PP); 233 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 234 // As a heuristic, treat globals as configuration values. Note 235 // that we only will get here if Sema evaluated this 236 // condition to a constant expression, which means the global 237 // had to be declared in a way to be a truly constant value. 238 // We could generalize this to local variables, but it isn't 239 // clear if those truly represent configuration values that 240 // gate unreachable code. 241 if (!VD->hasLocalStorage()) 242 return true; 243 244 // As a heuristic, locals that have been marked 'const' explicitly 245 // can be treated as configuration values as well. 246 return VD->getType().isLocalConstQualified(); 247 } 248 return false; 249} 250 251/// Returns true if we should always explore all successors of a block. 252static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, 253 Preprocessor &PP) { 254 if (const Stmt *Term = B->getTerminator()) { 255 if (isa<SwitchStmt>(Term)) 256 return true; 257 // Specially handle '||' and '&&'. 258 if (isa<BinaryOperator>(Term)) { 259 return isConfigurationValue(Term, PP); 260 } 261 } 262 263 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); 264 return isConfigurationValue(Cond, PP); 265} 266 267static unsigned scanFromBlock(const CFGBlock *Start, 268 llvm::BitVector &Reachable, 269 Preprocessor *PP, 270 bool IncludeSometimesUnreachableEdges) { 271 unsigned count = 0; 272 273 // Prep work queue 274 SmallVector<const CFGBlock*, 32> WL; 275 276 // The entry block may have already been marked reachable 277 // by the caller. 278 if (!Reachable[Start->getBlockID()]) { 279 ++count; 280 Reachable[Start->getBlockID()] = true; 281 } 282 283 WL.push_back(Start); 284 285 // Find the reachable blocks from 'Start'. 286 while (!WL.empty()) { 287 const CFGBlock *item = WL.pop_back_val(); 288 289 // There are cases where we want to treat all successors as reachable. 290 // The idea is that some "sometimes unreachable" code is not interesting, 291 // and that we should forge ahead and explore those branches anyway. 292 // This allows us to potentially uncover some "always unreachable" code 293 // within the "sometimes unreachable" code. 294 // Look at the successors and mark then reachable. 295 Optional<bool> TreatAllSuccessorsAsReachable; 296 if (!IncludeSometimesUnreachableEdges) 297 TreatAllSuccessorsAsReachable = false; 298 299 for (CFGBlock::const_succ_iterator I = item->succ_begin(), 300 E = item->succ_end(); I != E; ++I) { 301 const CFGBlock *B = *I; 302 if (!B) do { 303 const CFGBlock *UB = I->getPossiblyUnreachableBlock(); 304 if (!UB) 305 break; 306 307 if (!TreatAllSuccessorsAsReachable.hasValue()) { 308 assert(PP); 309 TreatAllSuccessorsAsReachable = 310 shouldTreatSuccessorsAsReachable(item, *PP); 311 } 312 313 if (TreatAllSuccessorsAsReachable.getValue()) { 314 B = UB; 315 break; 316 } 317 } 318 while (false); 319 320 if (B) { 321 unsigned blockID = B->getBlockID(); 322 if (!Reachable[blockID]) { 323 Reachable.set(blockID); 324 WL.push_back(B); 325 ++count; 326 } 327 } 328 } 329 } 330 return count; 331} 332 333static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, 334 Preprocessor &PP, 335 llvm::BitVector &Reachable) { 336 return scanFromBlock(Start, Reachable, &PP, true); 337} 338 339//===----------------------------------------------------------------------===// 340// Dead Code Scanner. 341//===----------------------------------------------------------------------===// 342 343namespace { 344 class DeadCodeScan { 345 llvm::BitVector Visited; 346 llvm::BitVector &Reachable; 347 SmallVector<const CFGBlock *, 10> WorkList; 348 Preprocessor &PP; 349 350 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> 351 DeferredLocsTy; 352 353 DeferredLocsTy DeferredLocs; 354 355 public: 356 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP) 357 : Visited(reachable.size()), 358 Reachable(reachable), 359 PP(PP) {} 360 361 void enqueue(const CFGBlock *block); 362 unsigned scanBackwards(const CFGBlock *Start, 363 clang::reachable_code::Callback &CB); 364 365 bool isDeadCodeRoot(const CFGBlock *Block); 366 367 const Stmt *findDeadCode(const CFGBlock *Block); 368 369 void reportDeadCode(const CFGBlock *B, 370 const Stmt *S, 371 clang::reachable_code::Callback &CB); 372 }; 373} 374 375void DeadCodeScan::enqueue(const CFGBlock *block) { 376 unsigned blockID = block->getBlockID(); 377 if (Reachable[blockID] || Visited[blockID]) 378 return; 379 Visited[blockID] = true; 380 WorkList.push_back(block); 381} 382 383bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { 384 bool isDeadRoot = true; 385 386 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 387 E = Block->pred_end(); I != E; ++I) { 388 if (const CFGBlock *PredBlock = *I) { 389 unsigned blockID = PredBlock->getBlockID(); 390 if (Visited[blockID]) { 391 isDeadRoot = false; 392 continue; 393 } 394 if (!Reachable[blockID]) { 395 isDeadRoot = false; 396 Visited[blockID] = true; 397 WorkList.push_back(PredBlock); 398 continue; 399 } 400 } 401 } 402 403 return isDeadRoot; 404} 405 406static bool isValidDeadStmt(const Stmt *S) { 407 if (S->getLocStart().isInvalid()) 408 return false; 409 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) 410 return BO->getOpcode() != BO_Comma; 411 return true; 412} 413 414const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { 415 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) 416 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 417 const Stmt *S = CS->getStmt(); 418 if (isValidDeadStmt(S)) 419 return S; 420 } 421 422 if (CFGTerminator T = Block->getTerminator()) { 423 if (!T.isTemporaryDtorsBranch()) { 424 const Stmt *S = T.getStmt(); 425 if (isValidDeadStmt(S)) 426 return S; 427 } 428 } 429 430 return nullptr; 431} 432 433static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, 434 const std::pair<const CFGBlock *, const Stmt *> *p2) { 435 if (p1->second->getLocStart() < p2->second->getLocStart()) 436 return -1; 437 if (p2->second->getLocStart() < p1->second->getLocStart()) 438 return 1; 439 return 0; 440} 441 442unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, 443 clang::reachable_code::Callback &CB) { 444 445 unsigned count = 0; 446 enqueue(Start); 447 448 while (!WorkList.empty()) { 449 const CFGBlock *Block = WorkList.pop_back_val(); 450 451 // It is possible that this block has been marked reachable after 452 // it was enqueued. 453 if (Reachable[Block->getBlockID()]) 454 continue; 455 456 // Look for any dead code within the block. 457 const Stmt *S = findDeadCode(Block); 458 459 if (!S) { 460 // No dead code. Possibly an empty block. Look at dead predecessors. 461 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 462 E = Block->pred_end(); I != E; ++I) { 463 if (const CFGBlock *predBlock = *I) 464 enqueue(predBlock); 465 } 466 continue; 467 } 468 469 // Specially handle macro-expanded code. 470 if (S->getLocStart().isMacroID()) { 471 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 472 continue; 473 } 474 475 if (isDeadCodeRoot(Block)) { 476 reportDeadCode(Block, S, CB); 477 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 478 } 479 else { 480 // Record this statement as the possibly best location in a 481 // strongly-connected component of dead code for emitting a 482 // warning. 483 DeferredLocs.push_back(std::make_pair(Block, S)); 484 } 485 } 486 487 // If we didn't find a dead root, then report the dead code with the 488 // earliest location. 489 if (!DeferredLocs.empty()) { 490 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); 491 for (DeferredLocsTy::iterator I = DeferredLocs.begin(), 492 E = DeferredLocs.end(); I != E; ++I) { 493 const CFGBlock *Block = I->first; 494 if (Reachable[Block->getBlockID()]) 495 continue; 496 reportDeadCode(Block, I->second, CB); 497 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 498 } 499 } 500 501 return count; 502} 503 504static SourceLocation GetUnreachableLoc(const Stmt *S, 505 SourceRange &R1, 506 SourceRange &R2) { 507 R1 = R2 = SourceRange(); 508 509 if (const Expr *Ex = dyn_cast<Expr>(S)) 510 S = Ex->IgnoreParenImpCasts(); 511 512 switch (S->getStmtClass()) { 513 case Expr::BinaryOperatorClass: { 514 const BinaryOperator *BO = cast<BinaryOperator>(S); 515 return BO->getOperatorLoc(); 516 } 517 case Expr::UnaryOperatorClass: { 518 const UnaryOperator *UO = cast<UnaryOperator>(S); 519 R1 = UO->getSubExpr()->getSourceRange(); 520 return UO->getOperatorLoc(); 521 } 522 case Expr::CompoundAssignOperatorClass: { 523 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); 524 R1 = CAO->getLHS()->getSourceRange(); 525 R2 = CAO->getRHS()->getSourceRange(); 526 return CAO->getOperatorLoc(); 527 } 528 case Expr::BinaryConditionalOperatorClass: 529 case Expr::ConditionalOperatorClass: { 530 const AbstractConditionalOperator *CO = 531 cast<AbstractConditionalOperator>(S); 532 return CO->getQuestionLoc(); 533 } 534 case Expr::MemberExprClass: { 535 const MemberExpr *ME = cast<MemberExpr>(S); 536 R1 = ME->getSourceRange(); 537 return ME->getMemberLoc(); 538 } 539 case Expr::ArraySubscriptExprClass: { 540 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); 541 R1 = ASE->getLHS()->getSourceRange(); 542 R2 = ASE->getRHS()->getSourceRange(); 543 return ASE->getRBracketLoc(); 544 } 545 case Expr::CStyleCastExprClass: { 546 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); 547 R1 = CSC->getSubExpr()->getSourceRange(); 548 return CSC->getLParenLoc(); 549 } 550 case Expr::CXXFunctionalCastExprClass: { 551 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); 552 R1 = CE->getSubExpr()->getSourceRange(); 553 return CE->getLocStart(); 554 } 555 case Stmt::CXXTryStmtClass: { 556 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); 557 } 558 case Expr::ObjCBridgedCastExprClass: { 559 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); 560 R1 = CSC->getSubExpr()->getSourceRange(); 561 return CSC->getLParenLoc(); 562 } 563 default: ; 564 } 565 R1 = S->getSourceRange(); 566 return S->getLocStart(); 567} 568 569void DeadCodeScan::reportDeadCode(const CFGBlock *B, 570 const Stmt *S, 571 clang::reachable_code::Callback &CB) { 572 // Classify the unreachable code found, or suppress it in some cases. 573 reachable_code::UnreachableKind UK = reachable_code::UK_Other; 574 575 if (isa<BreakStmt>(S)) { 576 UK = reachable_code::UK_Break; 577 } 578 else if (isTrivialDoWhile(B, S)) { 579 return; 580 } 581 else if (isDeadReturn(B, S)) { 582 UK = reachable_code::UK_Return; 583 } 584 585 SourceRange SilenceableCondVal; 586 587 if (UK == reachable_code::UK_Other) { 588 // Check if the dead code is part of the "loop target" of 589 // a for/for-range loop. This is the block that contains 590 // the increment code. 591 if (const Stmt *LoopTarget = B->getLoopTarget()) { 592 SourceLocation Loc = LoopTarget->getLocStart(); 593 SourceRange R1(Loc, Loc), R2; 594 595 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { 596 const Expr *Inc = FS->getInc(); 597 Loc = Inc->getLocStart(); 598 R2 = Inc->getSourceRange(); 599 } 600 601 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, 602 Loc, SourceRange(), SourceRange(Loc, Loc), R2); 603 return; 604 } 605 606 // Check if the dead block has a predecessor whose branch has 607 // a configuration value that *could* be modified to 608 // silence the warning. 609 CFGBlock::const_pred_iterator PI = B->pred_begin(); 610 if (PI != B->pred_end()) { 611 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { 612 const Stmt *TermCond = 613 PredBlock->getTerminatorCondition(/* strip parens */ false); 614 isConfigurationValue(TermCond, PP, &SilenceableCondVal); 615 } 616 } 617 } 618 619 SourceRange R1, R2; 620 SourceLocation Loc = GetUnreachableLoc(S, R1, R2); 621 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2); 622} 623 624//===----------------------------------------------------------------------===// 625// Reachability APIs. 626//===----------------------------------------------------------------------===// 627 628namespace clang { namespace reachable_code { 629 630void Callback::anchor() { } 631 632unsigned ScanReachableFromBlock(const CFGBlock *Start, 633 llvm::BitVector &Reachable) { 634 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); 635} 636 637void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, 638 Callback &CB) { 639 640 CFG *cfg = AC.getCFG(); 641 if (!cfg) 642 return; 643 644 // Scan for reachable blocks from the entrance of the CFG. 645 // If there are no unreachable blocks, we're done. 646 llvm::BitVector reachable(cfg->getNumBlockIDs()); 647 unsigned numReachable = 648 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); 649 if (numReachable == cfg->getNumBlockIDs()) 650 return; 651 652 // If there aren't explicit EH edges, we should include the 'try' dispatch 653 // blocks as roots. 654 if (!AC.getCFGBuildOptions().AddEHEdges) { 655 for (CFG::try_block_iterator I = cfg->try_blocks_begin(), 656 E = cfg->try_blocks_end() ; I != E; ++I) { 657 numReachable += scanMaybeReachableFromBlock(*I, PP, reachable); 658 } 659 if (numReachable == cfg->getNumBlockIDs()) 660 return; 661 } 662 663 // There are some unreachable blocks. We need to find the root blocks that 664 // contain code that should be considered unreachable. 665 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) { 666 const CFGBlock *block = *I; 667 // A block may have been marked reachable during this loop. 668 if (reachable[block->getBlockID()]) 669 continue; 670 671 DeadCodeScan DS(reachable, PP); 672 numReachable += DS.scanBackwards(block, CB); 673 674 if (numReachable == cfg->getNumBlockIDs()) 675 return; 676 } 677} 678 679}} // end namespace clang::reachable_code 680