1//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Aggregate Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGObjCRuntime.h" 16#include "CodeGenModule.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/DeclCXX.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/AST/StmtVisitor.h" 21#include "llvm/IR/Constants.h" 22#include "llvm/IR/Function.h" 23#include "llvm/IR/GlobalVariable.h" 24#include "llvm/IR/Intrinsics.h" 25using namespace clang; 26using namespace CodeGen; 27 28//===----------------------------------------------------------------------===// 29// Aggregate Expression Emitter 30//===----------------------------------------------------------------------===// 31 32namespace { 33class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 bool IsResultUnused; 38 39 /// We want to use 'dest' as the return slot except under two 40 /// conditions: 41 /// - The destination slot requires garbage collection, so we 42 /// need to use the GC API. 43 /// - The destination slot is potentially aliased. 44 bool shouldUseDestForReturnSlot() const { 45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 46 } 47 48 ReturnValueSlot getReturnValueSlot() const { 49 if (!shouldUseDestForReturnSlot()) 50 return ReturnValueSlot(); 51 52 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(), 53 IsResultUnused); 54 } 55 56 AggValueSlot EnsureSlot(QualType T) { 57 if (!Dest.isIgnored()) return Dest; 58 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 59 } 60 void EnsureDest(QualType T) { 61 if (!Dest.isIgnored()) return; 62 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 63 } 64 65public: 66 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 67 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 68 IsResultUnused(IsResultUnused) { } 69 70 //===--------------------------------------------------------------------===// 71 // Utilities 72 //===--------------------------------------------------------------------===// 73 74 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 75 /// represents a value lvalue, this method emits the address of the lvalue, 76 /// then loads the result into DestPtr. 77 void EmitAggLoadOfLValue(const Expr *E); 78 79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 80 void EmitFinalDestCopy(QualType type, const LValue &src); 81 void EmitFinalDestCopy(QualType type, RValue src); 82 void EmitCopy(QualType type, const AggValueSlot &dest, 83 const AggValueSlot &src); 84 85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 86 87 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 88 QualType elementType, InitListExpr *E); 89 90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 92 return AggValueSlot::NeedsGCBarriers; 93 return AggValueSlot::DoesNotNeedGCBarriers; 94 } 95 96 bool TypeRequiresGCollection(QualType T); 97 98 //===--------------------------------------------------------------------===// 99 // Visitor Methods 100 //===--------------------------------------------------------------------===// 101 102 void Visit(Expr *E) { 103 ApplyDebugLocation DL(CGF, E); 104 StmtVisitor<AggExprEmitter>::Visit(E); 105 } 106 107 void VisitStmt(Stmt *S) { 108 CGF.ErrorUnsupported(S, "aggregate expression"); 109 } 110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 112 Visit(GE->getResultExpr()); 113 } 114 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 115 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 116 return Visit(E->getReplacement()); 117 } 118 119 // l-values. 120 void VisitDeclRefExpr(DeclRefExpr *E) { 121 // For aggregates, we should always be able to emit the variable 122 // as an l-value unless it's a reference. This is due to the fact 123 // that we can't actually ever see a normal l2r conversion on an 124 // aggregate in C++, and in C there's no language standard 125 // actively preventing us from listing variables in the captures 126 // list of a block. 127 if (E->getDecl()->getType()->isReferenceType()) { 128 if (CodeGenFunction::ConstantEmission result 129 = CGF.tryEmitAsConstant(E)) { 130 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 131 return; 132 } 133 } 134 135 EmitAggLoadOfLValue(E); 136 } 137 138 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 139 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 140 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 141 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 142 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 143 EmitAggLoadOfLValue(E); 144 } 145 void VisitPredefinedExpr(const PredefinedExpr *E) { 146 EmitAggLoadOfLValue(E); 147 } 148 149 // Operators. 150 void VisitCastExpr(CastExpr *E); 151 void VisitCallExpr(const CallExpr *E); 152 void VisitStmtExpr(const StmtExpr *E); 153 void VisitBinaryOperator(const BinaryOperator *BO); 154 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 155 void VisitBinAssign(const BinaryOperator *E); 156 void VisitBinComma(const BinaryOperator *E); 157 158 void VisitObjCMessageExpr(ObjCMessageExpr *E); 159 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 160 EmitAggLoadOfLValue(E); 161 } 162 163 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 164 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 165 void VisitChooseExpr(const ChooseExpr *CE); 166 void VisitInitListExpr(InitListExpr *E); 167 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 168 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 169 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 170 Visit(DAE->getExpr()); 171 } 172 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 173 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 174 Visit(DIE->getExpr()); 175 } 176 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 177 void VisitCXXConstructExpr(const CXXConstructExpr *E); 178 void VisitLambdaExpr(LambdaExpr *E); 179 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 180 void VisitExprWithCleanups(ExprWithCleanups *E); 181 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 182 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 183 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 184 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 185 186 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 187 if (E->isGLValue()) { 188 LValue LV = CGF.EmitPseudoObjectLValue(E); 189 return EmitFinalDestCopy(E->getType(), LV); 190 } 191 192 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 193 } 194 195 void VisitVAArgExpr(VAArgExpr *E); 196 197 void EmitInitializationToLValue(Expr *E, LValue Address); 198 void EmitNullInitializationToLValue(LValue Address); 199 // case Expr::ChooseExprClass: 200 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 201 void VisitAtomicExpr(AtomicExpr *E) { 202 RValue Res = CGF.EmitAtomicExpr(E); 203 EmitFinalDestCopy(E->getType(), Res); 204 } 205}; 206} // end anonymous namespace. 207 208//===----------------------------------------------------------------------===// 209// Utilities 210//===----------------------------------------------------------------------===// 211 212/// EmitAggLoadOfLValue - Given an expression with aggregate type that 213/// represents a value lvalue, this method emits the address of the lvalue, 214/// then loads the result into DestPtr. 215void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 216 LValue LV = CGF.EmitLValue(E); 217 218 // If the type of the l-value is atomic, then do an atomic load. 219 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 220 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 221 return; 222 } 223 224 EmitFinalDestCopy(E->getType(), LV); 225} 226 227/// \brief True if the given aggregate type requires special GC API calls. 228bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 229 // Only record types have members that might require garbage collection. 230 const RecordType *RecordTy = T->getAs<RecordType>(); 231 if (!RecordTy) return false; 232 233 // Don't mess with non-trivial C++ types. 234 RecordDecl *Record = RecordTy->getDecl(); 235 if (isa<CXXRecordDecl>(Record) && 236 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 237 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 238 return false; 239 240 // Check whether the type has an object member. 241 return Record->hasObjectMember(); 242} 243 244/// \brief Perform the final move to DestPtr if for some reason 245/// getReturnValueSlot() didn't use it directly. 246/// 247/// The idea is that you do something like this: 248/// RValue Result = EmitSomething(..., getReturnValueSlot()); 249/// EmitMoveFromReturnSlot(E, Result); 250/// 251/// If nothing interferes, this will cause the result to be emitted 252/// directly into the return value slot. Otherwise, a final move 253/// will be performed. 254void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 255 if (shouldUseDestForReturnSlot()) { 256 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 257 // The possibility of undef rvalues complicates that a lot, 258 // though, so we can't really assert. 259 return; 260 } 261 262 // Otherwise, copy from there to the destination. 263 assert(Dest.getPointer() != src.getAggregatePointer()); 264 EmitFinalDestCopy(E->getType(), src); 265} 266 267/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 268void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 269 assert(src.isAggregate() && "value must be aggregate value!"); 270 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 271 EmitFinalDestCopy(type, srcLV); 272} 273 274/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 275void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 276 // If Dest is ignored, then we're evaluating an aggregate expression 277 // in a context that doesn't care about the result. Note that loads 278 // from volatile l-values force the existence of a non-ignored 279 // destination. 280 if (Dest.isIgnored()) 281 return; 282 283 AggValueSlot srcAgg = 284 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 285 needsGC(type), AggValueSlot::IsAliased); 286 EmitCopy(type, Dest, srcAgg); 287} 288 289/// Perform a copy from the source into the destination. 290/// 291/// \param type - the type of the aggregate being copied; qualifiers are 292/// ignored 293void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 294 const AggValueSlot &src) { 295 if (dest.requiresGCollection()) { 296 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 297 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 298 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 299 dest.getAddress(), 300 src.getAddress(), 301 size); 302 return; 303 } 304 305 // If the result of the assignment is used, copy the LHS there also. 306 // It's volatile if either side is. Use the minimum alignment of 307 // the two sides. 308 CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type, 309 dest.isVolatile() || src.isVolatile()); 310} 311 312/// \brief Emit the initializer for a std::initializer_list initialized with a 313/// real initializer list. 314void 315AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 316 // Emit an array containing the elements. The array is externally destructed 317 // if the std::initializer_list object is. 318 ASTContext &Ctx = CGF.getContext(); 319 LValue Array = CGF.EmitLValue(E->getSubExpr()); 320 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 321 Address ArrayPtr = Array.getAddress(); 322 323 const ConstantArrayType *ArrayType = 324 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 325 assert(ArrayType && "std::initializer_list constructed from non-array"); 326 327 // FIXME: Perform the checks on the field types in SemaInit. 328 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 329 RecordDecl::field_iterator Field = Record->field_begin(); 330 if (Field == Record->field_end()) { 331 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 332 return; 333 } 334 335 // Start pointer. 336 if (!Field->getType()->isPointerType() || 337 !Ctx.hasSameType(Field->getType()->getPointeeType(), 338 ArrayType->getElementType())) { 339 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 340 return; 341 } 342 343 AggValueSlot Dest = EnsureSlot(E->getType()); 344 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 345 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 346 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 347 llvm::Value *IdxStart[] = { Zero, Zero }; 348 llvm::Value *ArrayStart = 349 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 350 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 351 ++Field; 352 353 if (Field == Record->field_end()) { 354 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 355 return; 356 } 357 358 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 359 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 360 if (Field->getType()->isPointerType() && 361 Ctx.hasSameType(Field->getType()->getPointeeType(), 362 ArrayType->getElementType())) { 363 // End pointer. 364 llvm::Value *IdxEnd[] = { Zero, Size }; 365 llvm::Value *ArrayEnd = 366 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 367 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 368 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 369 // Length. 370 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 371 } else { 372 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 373 return; 374 } 375} 376 377/// \brief Determine if E is a trivial array filler, that is, one that is 378/// equivalent to zero-initialization. 379static bool isTrivialFiller(Expr *E) { 380 if (!E) 381 return true; 382 383 if (isa<ImplicitValueInitExpr>(E)) 384 return true; 385 386 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 387 if (ILE->getNumInits()) 388 return false; 389 return isTrivialFiller(ILE->getArrayFiller()); 390 } 391 392 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 393 return Cons->getConstructor()->isDefaultConstructor() && 394 Cons->getConstructor()->isTrivial(); 395 396 // FIXME: Are there other cases where we can avoid emitting an initializer? 397 return false; 398} 399 400/// \brief Emit initialization of an array from an initializer list. 401void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 402 QualType elementType, InitListExpr *E) { 403 uint64_t NumInitElements = E->getNumInits(); 404 405 uint64_t NumArrayElements = AType->getNumElements(); 406 assert(NumInitElements <= NumArrayElements); 407 408 // DestPtr is an array*. Construct an elementType* by drilling 409 // down a level. 410 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 411 llvm::Value *indices[] = { zero, zero }; 412 llvm::Value *begin = 413 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 414 415 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 416 CharUnits elementAlign = 417 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 418 419 // Exception safety requires us to destroy all the 420 // already-constructed members if an initializer throws. 421 // For that, we'll need an EH cleanup. 422 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 423 Address endOfInit = Address::invalid(); 424 EHScopeStack::stable_iterator cleanup; 425 llvm::Instruction *cleanupDominator = nullptr; 426 if (CGF.needsEHCleanup(dtorKind)) { 427 // In principle we could tell the cleanup where we are more 428 // directly, but the control flow can get so varied here that it 429 // would actually be quite complex. Therefore we go through an 430 // alloca. 431 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 432 "arrayinit.endOfInit"); 433 cleanupDominator = Builder.CreateStore(begin, endOfInit); 434 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 435 elementAlign, 436 CGF.getDestroyer(dtorKind)); 437 cleanup = CGF.EHStack.stable_begin(); 438 439 // Otherwise, remember that we didn't need a cleanup. 440 } else { 441 dtorKind = QualType::DK_none; 442 } 443 444 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 445 446 // The 'current element to initialize'. The invariants on this 447 // variable are complicated. Essentially, after each iteration of 448 // the loop, it points to the last initialized element, except 449 // that it points to the beginning of the array before any 450 // elements have been initialized. 451 llvm::Value *element = begin; 452 453 // Emit the explicit initializers. 454 for (uint64_t i = 0; i != NumInitElements; ++i) { 455 // Advance to the next element. 456 if (i > 0) { 457 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 458 459 // Tell the cleanup that it needs to destroy up to this 460 // element. TODO: some of these stores can be trivially 461 // observed to be unnecessary. 462 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 463 } 464 465 LValue elementLV = 466 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 467 EmitInitializationToLValue(E->getInit(i), elementLV); 468 } 469 470 // Check whether there's a non-trivial array-fill expression. 471 Expr *filler = E->getArrayFiller(); 472 bool hasTrivialFiller = isTrivialFiller(filler); 473 474 // Any remaining elements need to be zero-initialized, possibly 475 // using the filler expression. We can skip this if the we're 476 // emitting to zeroed memory. 477 if (NumInitElements != NumArrayElements && 478 !(Dest.isZeroed() && hasTrivialFiller && 479 CGF.getTypes().isZeroInitializable(elementType))) { 480 481 // Use an actual loop. This is basically 482 // do { *array++ = filler; } while (array != end); 483 484 // Advance to the start of the rest of the array. 485 if (NumInitElements) { 486 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 487 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 488 } 489 490 // Compute the end of the array. 491 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 492 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 493 "arrayinit.end"); 494 495 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 496 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 497 498 // Jump into the body. 499 CGF.EmitBlock(bodyBB); 500 llvm::PHINode *currentElement = 501 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 502 currentElement->addIncoming(element, entryBB); 503 504 // Emit the actual filler expression. 505 LValue elementLV = 506 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 507 if (filler) 508 EmitInitializationToLValue(filler, elementLV); 509 else 510 EmitNullInitializationToLValue(elementLV); 511 512 // Move on to the next element. 513 llvm::Value *nextElement = 514 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 515 516 // Tell the EH cleanup that we finished with the last element. 517 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 518 519 // Leave the loop if we're done. 520 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 521 "arrayinit.done"); 522 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 523 Builder.CreateCondBr(done, endBB, bodyBB); 524 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 525 526 CGF.EmitBlock(endBB); 527 } 528 529 // Leave the partial-array cleanup if we entered one. 530 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 531} 532 533//===----------------------------------------------------------------------===// 534// Visitor Methods 535//===----------------------------------------------------------------------===// 536 537void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 538 Visit(E->GetTemporaryExpr()); 539} 540 541void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 542 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 543} 544 545void 546AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 547 if (Dest.isPotentiallyAliased() && 548 E->getType().isPODType(CGF.getContext())) { 549 // For a POD type, just emit a load of the lvalue + a copy, because our 550 // compound literal might alias the destination. 551 EmitAggLoadOfLValue(E); 552 return; 553 } 554 555 AggValueSlot Slot = EnsureSlot(E->getType()); 556 CGF.EmitAggExpr(E->getInitializer(), Slot); 557} 558 559/// Attempt to look through various unimportant expressions to find a 560/// cast of the given kind. 561static Expr *findPeephole(Expr *op, CastKind kind) { 562 while (true) { 563 op = op->IgnoreParens(); 564 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 565 if (castE->getCastKind() == kind) 566 return castE->getSubExpr(); 567 if (castE->getCastKind() == CK_NoOp) 568 continue; 569 } 570 return nullptr; 571 } 572} 573 574void AggExprEmitter::VisitCastExpr(CastExpr *E) { 575 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 576 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 577 switch (E->getCastKind()) { 578 case CK_Dynamic: { 579 // FIXME: Can this actually happen? We have no test coverage for it. 580 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 581 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 582 CodeGenFunction::TCK_Load); 583 // FIXME: Do we also need to handle property references here? 584 if (LV.isSimple()) 585 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 586 else 587 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 588 589 if (!Dest.isIgnored()) 590 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 591 break; 592 } 593 594 case CK_ToUnion: { 595 // Evaluate even if the destination is ignored. 596 if (Dest.isIgnored()) { 597 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 598 /*ignoreResult=*/true); 599 break; 600 } 601 602 // GCC union extension 603 QualType Ty = E->getSubExpr()->getType(); 604 Address CastPtr = 605 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 606 EmitInitializationToLValue(E->getSubExpr(), 607 CGF.MakeAddrLValue(CastPtr, Ty)); 608 break; 609 } 610 611 case CK_DerivedToBase: 612 case CK_BaseToDerived: 613 case CK_UncheckedDerivedToBase: { 614 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 615 "should have been unpacked before we got here"); 616 } 617 618 case CK_NonAtomicToAtomic: 619 case CK_AtomicToNonAtomic: { 620 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 621 622 // Determine the atomic and value types. 623 QualType atomicType = E->getSubExpr()->getType(); 624 QualType valueType = E->getType(); 625 if (isToAtomic) std::swap(atomicType, valueType); 626 627 assert(atomicType->isAtomicType()); 628 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 629 atomicType->castAs<AtomicType>()->getValueType())); 630 631 // Just recurse normally if we're ignoring the result or the 632 // atomic type doesn't change representation. 633 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 634 return Visit(E->getSubExpr()); 635 } 636 637 CastKind peepholeTarget = 638 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 639 640 // These two cases are reverses of each other; try to peephole them. 641 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 642 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 643 E->getType()) && 644 "peephole significantly changed types?"); 645 return Visit(op); 646 } 647 648 // If we're converting an r-value of non-atomic type to an r-value 649 // of atomic type, just emit directly into the relevant sub-object. 650 if (isToAtomic) { 651 AggValueSlot valueDest = Dest; 652 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 653 // Zero-initialize. (Strictly speaking, we only need to intialize 654 // the padding at the end, but this is simpler.) 655 if (!Dest.isZeroed()) 656 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 657 658 // Build a GEP to refer to the subobject. 659 Address valueAddr = 660 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0, 661 CharUnits()); 662 valueDest = AggValueSlot::forAddr(valueAddr, 663 valueDest.getQualifiers(), 664 valueDest.isExternallyDestructed(), 665 valueDest.requiresGCollection(), 666 valueDest.isPotentiallyAliased(), 667 AggValueSlot::IsZeroed); 668 } 669 670 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 671 return; 672 } 673 674 // Otherwise, we're converting an atomic type to a non-atomic type. 675 // Make an atomic temporary, emit into that, and then copy the value out. 676 AggValueSlot atomicSlot = 677 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 678 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 679 680 Address valueAddr = 681 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits()); 682 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 683 return EmitFinalDestCopy(valueType, rvalue); 684 } 685 686 case CK_LValueToRValue: 687 // If we're loading from a volatile type, force the destination 688 // into existence. 689 if (E->getSubExpr()->getType().isVolatileQualified()) { 690 EnsureDest(E->getType()); 691 return Visit(E->getSubExpr()); 692 } 693 694 // fallthrough 695 696 case CK_NoOp: 697 case CK_UserDefinedConversion: 698 case CK_ConstructorConversion: 699 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 700 E->getType()) && 701 "Implicit cast types must be compatible"); 702 Visit(E->getSubExpr()); 703 break; 704 705 case CK_LValueBitCast: 706 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 707 708 case CK_Dependent: 709 case CK_BitCast: 710 case CK_ArrayToPointerDecay: 711 case CK_FunctionToPointerDecay: 712 case CK_NullToPointer: 713 case CK_NullToMemberPointer: 714 case CK_BaseToDerivedMemberPointer: 715 case CK_DerivedToBaseMemberPointer: 716 case CK_MemberPointerToBoolean: 717 case CK_ReinterpretMemberPointer: 718 case CK_IntegralToPointer: 719 case CK_PointerToIntegral: 720 case CK_PointerToBoolean: 721 case CK_ToVoid: 722 case CK_VectorSplat: 723 case CK_IntegralCast: 724 case CK_IntegralToBoolean: 725 case CK_IntegralToFloating: 726 case CK_FloatingToIntegral: 727 case CK_FloatingToBoolean: 728 case CK_FloatingCast: 729 case CK_CPointerToObjCPointerCast: 730 case CK_BlockPointerToObjCPointerCast: 731 case CK_AnyPointerToBlockPointerCast: 732 case CK_ObjCObjectLValueCast: 733 case CK_FloatingRealToComplex: 734 case CK_FloatingComplexToReal: 735 case CK_FloatingComplexToBoolean: 736 case CK_FloatingComplexCast: 737 case CK_FloatingComplexToIntegralComplex: 738 case CK_IntegralRealToComplex: 739 case CK_IntegralComplexToReal: 740 case CK_IntegralComplexToBoolean: 741 case CK_IntegralComplexCast: 742 case CK_IntegralComplexToFloatingComplex: 743 case CK_ARCProduceObject: 744 case CK_ARCConsumeObject: 745 case CK_ARCReclaimReturnedObject: 746 case CK_ARCExtendBlockObject: 747 case CK_CopyAndAutoreleaseBlockObject: 748 case CK_BuiltinFnToFnPtr: 749 case CK_ZeroToOCLEvent: 750 case CK_AddressSpaceConversion: 751 llvm_unreachable("cast kind invalid for aggregate types"); 752 } 753} 754 755void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 756 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 757 EmitAggLoadOfLValue(E); 758 return; 759 } 760 761 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 762 EmitMoveFromReturnSlot(E, RV); 763} 764 765void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 766 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 767 EmitMoveFromReturnSlot(E, RV); 768} 769 770void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 771 CGF.EmitIgnoredExpr(E->getLHS()); 772 Visit(E->getRHS()); 773} 774 775void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 776 CodeGenFunction::StmtExprEvaluation eval(CGF); 777 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 778} 779 780void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 781 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 782 VisitPointerToDataMemberBinaryOperator(E); 783 else 784 CGF.ErrorUnsupported(E, "aggregate binary expression"); 785} 786 787void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 788 const BinaryOperator *E) { 789 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 790 EmitFinalDestCopy(E->getType(), LV); 791} 792 793/// Is the value of the given expression possibly a reference to or 794/// into a __block variable? 795static bool isBlockVarRef(const Expr *E) { 796 // Make sure we look through parens. 797 E = E->IgnoreParens(); 798 799 // Check for a direct reference to a __block variable. 800 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 801 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 802 return (var && var->hasAttr<BlocksAttr>()); 803 } 804 805 // More complicated stuff. 806 807 // Binary operators. 808 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 809 // For an assignment or pointer-to-member operation, just care 810 // about the LHS. 811 if (op->isAssignmentOp() || op->isPtrMemOp()) 812 return isBlockVarRef(op->getLHS()); 813 814 // For a comma, just care about the RHS. 815 if (op->getOpcode() == BO_Comma) 816 return isBlockVarRef(op->getRHS()); 817 818 // FIXME: pointer arithmetic? 819 return false; 820 821 // Check both sides of a conditional operator. 822 } else if (const AbstractConditionalOperator *op 823 = dyn_cast<AbstractConditionalOperator>(E)) { 824 return isBlockVarRef(op->getTrueExpr()) 825 || isBlockVarRef(op->getFalseExpr()); 826 827 // OVEs are required to support BinaryConditionalOperators. 828 } else if (const OpaqueValueExpr *op 829 = dyn_cast<OpaqueValueExpr>(E)) { 830 if (const Expr *src = op->getSourceExpr()) 831 return isBlockVarRef(src); 832 833 // Casts are necessary to get things like (*(int*)&var) = foo(). 834 // We don't really care about the kind of cast here, except 835 // we don't want to look through l2r casts, because it's okay 836 // to get the *value* in a __block variable. 837 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 838 if (cast->getCastKind() == CK_LValueToRValue) 839 return false; 840 return isBlockVarRef(cast->getSubExpr()); 841 842 // Handle unary operators. Again, just aggressively look through 843 // it, ignoring the operation. 844 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 845 return isBlockVarRef(uop->getSubExpr()); 846 847 // Look into the base of a field access. 848 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 849 return isBlockVarRef(mem->getBase()); 850 851 // Look into the base of a subscript. 852 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 853 return isBlockVarRef(sub->getBase()); 854 } 855 856 return false; 857} 858 859void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 860 // For an assignment to work, the value on the right has 861 // to be compatible with the value on the left. 862 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 863 E->getRHS()->getType()) 864 && "Invalid assignment"); 865 866 // If the LHS might be a __block variable, and the RHS can 867 // potentially cause a block copy, we need to evaluate the RHS first 868 // so that the assignment goes the right place. 869 // This is pretty semantically fragile. 870 if (isBlockVarRef(E->getLHS()) && 871 E->getRHS()->HasSideEffects(CGF.getContext())) { 872 // Ensure that we have a destination, and evaluate the RHS into that. 873 EnsureDest(E->getRHS()->getType()); 874 Visit(E->getRHS()); 875 876 // Now emit the LHS and copy into it. 877 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 878 879 // That copy is an atomic copy if the LHS is atomic. 880 if (LHS.getType()->isAtomicType() || 881 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 882 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 883 return; 884 } 885 886 EmitCopy(E->getLHS()->getType(), 887 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 888 needsGC(E->getLHS()->getType()), 889 AggValueSlot::IsAliased), 890 Dest); 891 return; 892 } 893 894 LValue LHS = CGF.EmitLValue(E->getLHS()); 895 896 // If we have an atomic type, evaluate into the destination and then 897 // do an atomic copy. 898 if (LHS.getType()->isAtomicType() || 899 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 900 EnsureDest(E->getRHS()->getType()); 901 Visit(E->getRHS()); 902 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 903 return; 904 } 905 906 // Codegen the RHS so that it stores directly into the LHS. 907 AggValueSlot LHSSlot = 908 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 909 needsGC(E->getLHS()->getType()), 910 AggValueSlot::IsAliased); 911 // A non-volatile aggregate destination might have volatile member. 912 if (!LHSSlot.isVolatile() && 913 CGF.hasVolatileMember(E->getLHS()->getType())) 914 LHSSlot.setVolatile(true); 915 916 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 917 918 // Copy into the destination if the assignment isn't ignored. 919 EmitFinalDestCopy(E->getType(), LHS); 920} 921 922void AggExprEmitter:: 923VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 924 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 925 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 926 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 927 928 // Bind the common expression if necessary. 929 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 930 931 CodeGenFunction::ConditionalEvaluation eval(CGF); 932 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 933 CGF.getProfileCount(E)); 934 935 // Save whether the destination's lifetime is externally managed. 936 bool isExternallyDestructed = Dest.isExternallyDestructed(); 937 938 eval.begin(CGF); 939 CGF.EmitBlock(LHSBlock); 940 CGF.incrementProfileCounter(E); 941 Visit(E->getTrueExpr()); 942 eval.end(CGF); 943 944 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 945 CGF.Builder.CreateBr(ContBlock); 946 947 // If the result of an agg expression is unused, then the emission 948 // of the LHS might need to create a destination slot. That's fine 949 // with us, and we can safely emit the RHS into the same slot, but 950 // we shouldn't claim that it's already being destructed. 951 Dest.setExternallyDestructed(isExternallyDestructed); 952 953 eval.begin(CGF); 954 CGF.EmitBlock(RHSBlock); 955 Visit(E->getFalseExpr()); 956 eval.end(CGF); 957 958 CGF.EmitBlock(ContBlock); 959} 960 961void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 962 Visit(CE->getChosenSubExpr()); 963} 964 965void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 966 Address ArgValue = Address::invalid(); 967 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 968 969 if (!ArgPtr.isValid()) { 970 // If EmitVAArg fails, we fall back to the LLVM instruction. 971 llvm::Value *Val = Builder.CreateVAArg(ArgValue.getPointer(), 972 CGF.ConvertType(VE->getType())); 973 if (!Dest.isIgnored()) 974 Builder.CreateStore(Val, Dest.getAddress()); 975 return; 976 } 977 978 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 979} 980 981void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 982 // Ensure that we have a slot, but if we already do, remember 983 // whether it was externally destructed. 984 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 985 EnsureDest(E->getType()); 986 987 // We're going to push a destructor if there isn't already one. 988 Dest.setExternallyDestructed(); 989 990 Visit(E->getSubExpr()); 991 992 // Push that destructor we promised. 993 if (!wasExternallyDestructed) 994 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 995} 996 997void 998AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 999 AggValueSlot Slot = EnsureSlot(E->getType()); 1000 CGF.EmitCXXConstructExpr(E, Slot); 1001} 1002 1003void 1004AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1005 AggValueSlot Slot = EnsureSlot(E->getType()); 1006 CGF.EmitLambdaExpr(E, Slot); 1007} 1008 1009void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1010 CGF.enterFullExpression(E); 1011 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1012 Visit(E->getSubExpr()); 1013} 1014 1015void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1016 QualType T = E->getType(); 1017 AggValueSlot Slot = EnsureSlot(T); 1018 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1019} 1020 1021void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1022 QualType T = E->getType(); 1023 AggValueSlot Slot = EnsureSlot(T); 1024 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1025} 1026 1027/// isSimpleZero - If emitting this value will obviously just cause a store of 1028/// zero to memory, return true. This can return false if uncertain, so it just 1029/// handles simple cases. 1030static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1031 E = E->IgnoreParens(); 1032 1033 // 0 1034 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1035 return IL->getValue() == 0; 1036 // +0.0 1037 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1038 return FL->getValue().isPosZero(); 1039 // int() 1040 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1041 CGF.getTypes().isZeroInitializable(E->getType())) 1042 return true; 1043 // (int*)0 - Null pointer expressions. 1044 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1045 return ICE->getCastKind() == CK_NullToPointer; 1046 // '\0' 1047 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1048 return CL->getValue() == 0; 1049 1050 // Otherwise, hard case: conservatively return false. 1051 return false; 1052} 1053 1054 1055void 1056AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1057 QualType type = LV.getType(); 1058 // FIXME: Ignore result? 1059 // FIXME: Are initializers affected by volatile? 1060 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1061 // Storing "i32 0" to a zero'd memory location is a noop. 1062 return; 1063 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1064 return EmitNullInitializationToLValue(LV); 1065 } else if (isa<NoInitExpr>(E)) { 1066 // Do nothing. 1067 return; 1068 } else if (type->isReferenceType()) { 1069 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1070 return CGF.EmitStoreThroughLValue(RV, LV); 1071 } 1072 1073 switch (CGF.getEvaluationKind(type)) { 1074 case TEK_Complex: 1075 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1076 return; 1077 case TEK_Aggregate: 1078 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1079 AggValueSlot::IsDestructed, 1080 AggValueSlot::DoesNotNeedGCBarriers, 1081 AggValueSlot::IsNotAliased, 1082 Dest.isZeroed())); 1083 return; 1084 case TEK_Scalar: 1085 if (LV.isSimple()) { 1086 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1087 } else { 1088 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1089 } 1090 return; 1091 } 1092 llvm_unreachable("bad evaluation kind"); 1093} 1094 1095void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1096 QualType type = lv.getType(); 1097 1098 // If the destination slot is already zeroed out before the aggregate is 1099 // copied into it, we don't have to emit any zeros here. 1100 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1101 return; 1102 1103 if (CGF.hasScalarEvaluationKind(type)) { 1104 // For non-aggregates, we can store the appropriate null constant. 1105 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1106 // Note that the following is not equivalent to 1107 // EmitStoreThroughBitfieldLValue for ARC types. 1108 if (lv.isBitField()) { 1109 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1110 } else { 1111 assert(lv.isSimple()); 1112 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1113 } 1114 } else { 1115 // There's a potential optimization opportunity in combining 1116 // memsets; that would be easy for arrays, but relatively 1117 // difficult for structures with the current code. 1118 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1119 } 1120} 1121 1122void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1123#if 0 1124 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1125 // (Length of globals? Chunks of zeroed-out space?). 1126 // 1127 // If we can, prefer a copy from a global; this is a lot less code for long 1128 // globals, and it's easier for the current optimizers to analyze. 1129 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1130 llvm::GlobalVariable* GV = 1131 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1132 llvm::GlobalValue::InternalLinkage, C, ""); 1133 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1134 return; 1135 } 1136#endif 1137 if (E->hadArrayRangeDesignator()) 1138 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1139 1140 AggValueSlot Dest = EnsureSlot(E->getType()); 1141 1142 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1143 1144 // Handle initialization of an array. 1145 if (E->getType()->isArrayType()) { 1146 if (E->isStringLiteralInit()) 1147 return Visit(E->getInit(0)); 1148 1149 QualType elementType = 1150 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1151 1152 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1153 EmitArrayInit(Dest.getAddress(), AType, elementType, E); 1154 return; 1155 } 1156 1157 if (E->getType()->isAtomicType()) { 1158 // An _Atomic(T) object can be list-initialized from an expression 1159 // of the same type. 1160 assert(E->getNumInits() == 1 && 1161 CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(), 1162 E->getType()) && 1163 "unexpected list initialization for atomic object"); 1164 return Visit(E->getInit(0)); 1165 } 1166 1167 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1168 1169 // Do struct initialization; this code just sets each individual member 1170 // to the approprate value. This makes bitfield support automatic; 1171 // the disadvantage is that the generated code is more difficult for 1172 // the optimizer, especially with bitfields. 1173 unsigned NumInitElements = E->getNumInits(); 1174 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1175 1176 // Prepare a 'this' for CXXDefaultInitExprs. 1177 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1178 1179 if (record->isUnion()) { 1180 // Only initialize one field of a union. The field itself is 1181 // specified by the initializer list. 1182 if (!E->getInitializedFieldInUnion()) { 1183 // Empty union; we have nothing to do. 1184 1185#ifndef NDEBUG 1186 // Make sure that it's really an empty and not a failure of 1187 // semantic analysis. 1188 for (const auto *Field : record->fields()) 1189 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1190#endif 1191 return; 1192 } 1193 1194 // FIXME: volatility 1195 FieldDecl *Field = E->getInitializedFieldInUnion(); 1196 1197 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1198 if (NumInitElements) { 1199 // Store the initializer into the field 1200 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1201 } else { 1202 // Default-initialize to null. 1203 EmitNullInitializationToLValue(FieldLoc); 1204 } 1205 1206 return; 1207 } 1208 1209 // We'll need to enter cleanup scopes in case any of the member 1210 // initializers throw an exception. 1211 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1212 llvm::Instruction *cleanupDominator = nullptr; 1213 1214 // Here we iterate over the fields; this makes it simpler to both 1215 // default-initialize fields and skip over unnamed fields. 1216 unsigned curInitIndex = 0; 1217 for (const auto *field : record->fields()) { 1218 // We're done once we hit the flexible array member. 1219 if (field->getType()->isIncompleteArrayType()) 1220 break; 1221 1222 // Always skip anonymous bitfields. 1223 if (field->isUnnamedBitfield()) 1224 continue; 1225 1226 // We're done if we reach the end of the explicit initializers, we 1227 // have a zeroed object, and the rest of the fields are 1228 // zero-initializable. 1229 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1230 CGF.getTypes().isZeroInitializable(E->getType())) 1231 break; 1232 1233 1234 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1235 // We never generate write-barries for initialized fields. 1236 LV.setNonGC(true); 1237 1238 if (curInitIndex < NumInitElements) { 1239 // Store the initializer into the field. 1240 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1241 } else { 1242 // We're out of initalizers; default-initialize to null 1243 EmitNullInitializationToLValue(LV); 1244 } 1245 1246 // Push a destructor if necessary. 1247 // FIXME: if we have an array of structures, all explicitly 1248 // initialized, we can end up pushing a linear number of cleanups. 1249 bool pushedCleanup = false; 1250 if (QualType::DestructionKind dtorKind 1251 = field->getType().isDestructedType()) { 1252 assert(LV.isSimple()); 1253 if (CGF.needsEHCleanup(dtorKind)) { 1254 if (!cleanupDominator) 1255 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1256 CGF.Int8Ty, 1257 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1258 CharUnits::One()); // placeholder 1259 1260 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1261 CGF.getDestroyer(dtorKind), false); 1262 cleanups.push_back(CGF.EHStack.stable_begin()); 1263 pushedCleanup = true; 1264 } 1265 } 1266 1267 // If the GEP didn't get used because of a dead zero init or something 1268 // else, clean it up for -O0 builds and general tidiness. 1269 if (!pushedCleanup && LV.isSimple()) 1270 if (llvm::GetElementPtrInst *GEP = 1271 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer())) 1272 if (GEP->use_empty()) 1273 GEP->eraseFromParent(); 1274 } 1275 1276 // Deactivate all the partial cleanups in reverse order, which 1277 // generally means popping them. 1278 for (unsigned i = cleanups.size(); i != 0; --i) 1279 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1280 1281 // Destroy the placeholder if we made one. 1282 if (cleanupDominator) 1283 cleanupDominator->eraseFromParent(); 1284} 1285 1286void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1287 AggValueSlot Dest = EnsureSlot(E->getType()); 1288 1289 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1290 EmitInitializationToLValue(E->getBase(), DestLV); 1291 VisitInitListExpr(E->getUpdater()); 1292} 1293 1294//===----------------------------------------------------------------------===// 1295// Entry Points into this File 1296//===----------------------------------------------------------------------===// 1297 1298/// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1299/// non-zero bytes that will be stored when outputting the initializer for the 1300/// specified initializer expression. 1301static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1302 E = E->IgnoreParens(); 1303 1304 // 0 and 0.0 won't require any non-zero stores! 1305 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1306 1307 // If this is an initlist expr, sum up the size of sizes of the (present) 1308 // elements. If this is something weird, assume the whole thing is non-zero. 1309 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1310 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1311 return CGF.getContext().getTypeSizeInChars(E->getType()); 1312 1313 // InitListExprs for structs have to be handled carefully. If there are 1314 // reference members, we need to consider the size of the reference, not the 1315 // referencee. InitListExprs for unions and arrays can't have references. 1316 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1317 if (!RT->isUnionType()) { 1318 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1319 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1320 1321 unsigned ILEElement = 0; 1322 for (const auto *Field : SD->fields()) { 1323 // We're done once we hit the flexible array member or run out of 1324 // InitListExpr elements. 1325 if (Field->getType()->isIncompleteArrayType() || 1326 ILEElement == ILE->getNumInits()) 1327 break; 1328 if (Field->isUnnamedBitfield()) 1329 continue; 1330 1331 const Expr *E = ILE->getInit(ILEElement++); 1332 1333 // Reference values are always non-null and have the width of a pointer. 1334 if (Field->getType()->isReferenceType()) 1335 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1336 CGF.getTarget().getPointerWidth(0)); 1337 else 1338 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1339 } 1340 1341 return NumNonZeroBytes; 1342 } 1343 } 1344 1345 1346 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1347 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1348 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1349 return NumNonZeroBytes; 1350} 1351 1352/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1353/// zeros in it, emit a memset and avoid storing the individual zeros. 1354/// 1355static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1356 CodeGenFunction &CGF) { 1357 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1358 // volatile stores. 1359 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1360 return; 1361 1362 // C++ objects with a user-declared constructor don't need zero'ing. 1363 if (CGF.getLangOpts().CPlusPlus) 1364 if (const RecordType *RT = CGF.getContext() 1365 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1366 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1367 if (RD->hasUserDeclaredConstructor()) 1368 return; 1369 } 1370 1371 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1372 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType()); 1373 if (Size <= CharUnits::fromQuantity(16)) 1374 return; 1375 1376 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1377 // we prefer to emit memset + individual stores for the rest. 1378 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1379 if (NumNonZeroBytes*4 > Size) 1380 return; 1381 1382 // Okay, it seems like a good idea to use an initial memset, emit the call. 1383 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1384 1385 Address Loc = Slot.getAddress(); 1386 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1387 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1388 1389 // Tell the AggExprEmitter that the slot is known zero. 1390 Slot.setZeroed(); 1391} 1392 1393 1394 1395 1396/// EmitAggExpr - Emit the computation of the specified expression of aggregate 1397/// type. The result is computed into DestPtr. Note that if DestPtr is null, 1398/// the value of the aggregate expression is not needed. If VolatileDest is 1399/// true, DestPtr cannot be 0. 1400void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1401 assert(E && hasAggregateEvaluationKind(E->getType()) && 1402 "Invalid aggregate expression to emit"); 1403 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1404 "slot has bits but no address"); 1405 1406 // Optimize the slot if possible. 1407 CheckAggExprForMemSetUse(Slot, E, *this); 1408 1409 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1410} 1411 1412LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1413 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1414 Address Temp = CreateMemTemp(E->getType()); 1415 LValue LV = MakeAddrLValue(Temp, E->getType()); 1416 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1417 AggValueSlot::DoesNotNeedGCBarriers, 1418 AggValueSlot::IsNotAliased)); 1419 return LV; 1420} 1421 1422void CodeGenFunction::EmitAggregateCopy(Address DestPtr, 1423 Address SrcPtr, QualType Ty, 1424 bool isVolatile, 1425 bool isAssignment) { 1426 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1427 1428 if (getLangOpts().CPlusPlus) { 1429 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1430 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1431 assert((Record->hasTrivialCopyConstructor() || 1432 Record->hasTrivialCopyAssignment() || 1433 Record->hasTrivialMoveConstructor() || 1434 Record->hasTrivialMoveAssignment() || 1435 Record->isUnion()) && 1436 "Trying to aggregate-copy a type without a trivial copy/move " 1437 "constructor or assignment operator"); 1438 // Ignore empty classes in C++. 1439 if (Record->isEmpty()) 1440 return; 1441 } 1442 } 1443 1444 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1445 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1446 // read from another object that overlaps in anyway the storage of the first 1447 // object, then the overlap shall be exact and the two objects shall have 1448 // qualified or unqualified versions of a compatible type." 1449 // 1450 // memcpy is not defined if the source and destination pointers are exactly 1451 // equal, but other compilers do this optimization, and almost every memcpy 1452 // implementation handles this case safely. If there is a libc that does not 1453 // safely handle this, we can add a target hook. 1454 1455 // Get data size info for this aggregate. If this is an assignment, 1456 // don't copy the tail padding, because we might be assigning into a 1457 // base subobject where the tail padding is claimed. Otherwise, 1458 // copying it is fine. 1459 std::pair<CharUnits, CharUnits> TypeInfo; 1460 if (isAssignment) 1461 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1462 else 1463 TypeInfo = getContext().getTypeInfoInChars(Ty); 1464 1465 llvm::Value *SizeVal = nullptr; 1466 if (TypeInfo.first.isZero()) { 1467 // But note that getTypeInfo returns 0 for a VLA. 1468 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 1469 getContext().getAsArrayType(Ty))) { 1470 QualType BaseEltTy; 1471 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 1472 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy); 1473 std::pair<CharUnits, CharUnits> LastElementTypeInfo; 1474 if (!isAssignment) 1475 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 1476 assert(!TypeInfo.first.isZero()); 1477 SizeVal = Builder.CreateNUWMul( 1478 SizeVal, 1479 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1480 if (!isAssignment) { 1481 SizeVal = Builder.CreateNUWSub( 1482 SizeVal, 1483 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity())); 1484 SizeVal = Builder.CreateNUWAdd( 1485 SizeVal, llvm::ConstantInt::get( 1486 SizeTy, LastElementTypeInfo.first.getQuantity())); 1487 } 1488 } 1489 } 1490 if (!SizeVal) { 1491 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()); 1492 } 1493 1494 // FIXME: If we have a volatile struct, the optimizer can remove what might 1495 // appear to be `extra' memory ops: 1496 // 1497 // volatile struct { int i; } a, b; 1498 // 1499 // int main() { 1500 // a = b; 1501 // a = b; 1502 // } 1503 // 1504 // we need to use a different call here. We use isVolatile to indicate when 1505 // either the source or the destination is volatile. 1506 1507 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1508 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 1509 1510 // Don't do any of the memmove_collectable tests if GC isn't set. 1511 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1512 // fall through 1513 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1514 RecordDecl *Record = RecordTy->getDecl(); 1515 if (Record->hasObjectMember()) { 1516 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1517 SizeVal); 1518 return; 1519 } 1520 } else if (Ty->isArrayType()) { 1521 QualType BaseType = getContext().getBaseElementType(Ty); 1522 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1523 if (RecordTy->getDecl()->hasObjectMember()) { 1524 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1525 SizeVal); 1526 return; 1527 } 1528 } 1529 } 1530 1531 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 1532 1533 // Determine the metadata to describe the position of any padding in this 1534 // memcpy, as well as the TBAA tags for the members of the struct, in case 1535 // the optimizer wishes to expand it in to scalar memory operations. 1536 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 1537 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 1538} 1539