1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGCXXABI.h" 16#include "CGDebugInfo.h" 17#include "CGObjCRuntime.h" 18#include "CodeGenModule.h" 19#include "TargetInfo.h" 20#include "clang/AST/ASTContext.h" 21#include "clang/AST/DeclObjC.h" 22#include "clang/AST/RecordLayout.h" 23#include "clang/AST/StmtVisitor.h" 24#include "clang/Basic/TargetInfo.h" 25#include "clang/Frontend/CodeGenOptions.h" 26#include "llvm/IR/CFG.h" 27#include "llvm/IR/Constants.h" 28#include "llvm/IR/DataLayout.h" 29#include "llvm/IR/Function.h" 30#include "llvm/IR/GlobalVariable.h" 31#include "llvm/IR/Intrinsics.h" 32#include "llvm/IR/Module.h" 33#include <cstdarg> 34 35using namespace clang; 36using namespace CodeGen; 37using llvm::Value; 38 39//===----------------------------------------------------------------------===// 40// Scalar Expression Emitter 41//===----------------------------------------------------------------------===// 42 43namespace { 44struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51}; 52 53static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58} 59 60class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// Emit a check that a conversion to or from a floating-point type does not 144 /// overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, QualType DstType, 147 llvm::Type *DstTy, SourceLocation Loc); 148 149 /// Emit a conversion from the specified type to the specified destination 150 /// type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 152 SourceLocation Loc); 153 154 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 155 SourceLocation Loc, bool TreatBooleanAsSigned); 156 157 /// Emit a conversion from the specified complex type to the specified 158 /// destination type, where the destination type is an LLVM scalar type. 159 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 160 QualType SrcTy, QualType DstTy, 161 SourceLocation Loc); 162 163 /// EmitNullValue - Emit a value that corresponds to null for the given type. 164 Value *EmitNullValue(QualType Ty); 165 166 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 167 Value *EmitFloatToBoolConversion(Value *V) { 168 // Compare against 0.0 for fp scalars. 169 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 170 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 171 } 172 173 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 174 Value *EmitPointerToBoolConversion(Value *V) { 175 Value *Zero = llvm::ConstantPointerNull::get( 176 cast<llvm::PointerType>(V->getType())); 177 return Builder.CreateICmpNE(V, Zero, "tobool"); 178 } 179 180 Value *EmitIntToBoolConversion(Value *V) { 181 // Because of the type rules of C, we often end up computing a 182 // logical value, then zero extending it to int, then wanting it 183 // as a logical value again. Optimize this common case. 184 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 185 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 186 Value *Result = ZI->getOperand(0); 187 // If there aren't any more uses, zap the instruction to save space. 188 // Note that there can be more uses, for example if this 189 // is the result of an assignment. 190 if (ZI->use_empty()) 191 ZI->eraseFromParent(); 192 return Result; 193 } 194 } 195 196 return Builder.CreateIsNotNull(V, "tobool"); 197 } 198 199 //===--------------------------------------------------------------------===// 200 // Visitor Methods 201 //===--------------------------------------------------------------------===// 202 203 Value *Visit(Expr *E) { 204 ApplyDebugLocation DL(CGF, E); 205 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 206 } 207 208 Value *VisitStmt(Stmt *S) { 209 S->dump(CGF.getContext().getSourceManager()); 210 llvm_unreachable("Stmt can't have complex result type!"); 211 } 212 Value *VisitExpr(Expr *S); 213 214 Value *VisitParenExpr(ParenExpr *PE) { 215 return Visit(PE->getSubExpr()); 216 } 217 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 218 return Visit(E->getReplacement()); 219 } 220 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 221 return Visit(GE->getResultExpr()); 222 } 223 224 // Leaves. 225 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 226 return Builder.getInt(E->getValue()); 227 } 228 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 229 return llvm::ConstantFP::get(VMContext, E->getValue()); 230 } 231 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 233 } 234 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 236 } 237 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 238 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 239 } 240 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 241 return EmitNullValue(E->getType()); 242 } 243 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 244 return EmitNullValue(E->getType()); 245 } 246 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 247 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 248 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 249 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 250 return Builder.CreateBitCast(V, ConvertType(E->getType())); 251 } 252 253 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 254 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 255 } 256 257 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 258 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 259 } 260 261 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 262 if (E->isGLValue()) 263 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 264 265 // Otherwise, assume the mapping is the scalar directly. 266 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 267 } 268 269 // l-values. 270 Value *VisitDeclRefExpr(DeclRefExpr *E) { 271 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 272 if (result.isReference()) 273 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 274 E->getExprLoc()); 275 return result.getValue(); 276 } 277 return EmitLoadOfLValue(E); 278 } 279 280 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 281 return CGF.EmitObjCSelectorExpr(E); 282 } 283 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 284 return CGF.EmitObjCProtocolExpr(E); 285 } 286 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 287 return EmitLoadOfLValue(E); 288 } 289 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 290 if (E->getMethodDecl() && 291 E->getMethodDecl()->getReturnType()->isReferenceType()) 292 return EmitLoadOfLValue(E); 293 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 294 } 295 296 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 297 LValue LV = CGF.EmitObjCIsaExpr(E); 298 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 299 return V; 300 } 301 302 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 303 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 304 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 305 Value *VisitMemberExpr(MemberExpr *E); 306 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 307 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 308 return EmitLoadOfLValue(E); 309 } 310 311 Value *VisitInitListExpr(InitListExpr *E); 312 313 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 314 return EmitNullValue(E->getType()); 315 } 316 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 317 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 318 return VisitCastExpr(E); 319 } 320 Value *VisitCastExpr(CastExpr *E); 321 322 Value *VisitCallExpr(const CallExpr *E) { 323 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 324 return EmitLoadOfLValue(E); 325 326 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 327 328 EmitLValueAlignmentAssumption(E, V); 329 return V; 330 } 331 332 Value *VisitStmtExpr(const StmtExpr *E); 333 334 // Unary Operators. 335 Value *VisitUnaryPostDec(const UnaryOperator *E) { 336 LValue LV = EmitLValue(E->getSubExpr()); 337 return EmitScalarPrePostIncDec(E, LV, false, false); 338 } 339 Value *VisitUnaryPostInc(const UnaryOperator *E) { 340 LValue LV = EmitLValue(E->getSubExpr()); 341 return EmitScalarPrePostIncDec(E, LV, true, false); 342 } 343 Value *VisitUnaryPreDec(const UnaryOperator *E) { 344 LValue LV = EmitLValue(E->getSubExpr()); 345 return EmitScalarPrePostIncDec(E, LV, false, true); 346 } 347 Value *VisitUnaryPreInc(const UnaryOperator *E) { 348 LValue LV = EmitLValue(E->getSubExpr()); 349 return EmitScalarPrePostIncDec(E, LV, true, true); 350 } 351 352 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 353 llvm::Value *InVal, 354 bool IsInc); 355 356 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 357 bool isInc, bool isPre); 358 359 360 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 361 if (isa<MemberPointerType>(E->getType())) // never sugared 362 return CGF.CGM.getMemberPointerConstant(E); 363 364 return EmitLValue(E->getSubExpr()).getPointer(); 365 } 366 Value *VisitUnaryDeref(const UnaryOperator *E) { 367 if (E->getType()->isVoidType()) 368 return Visit(E->getSubExpr()); // the actual value should be unused 369 return EmitLoadOfLValue(E); 370 } 371 Value *VisitUnaryPlus(const UnaryOperator *E) { 372 // This differs from gcc, though, most likely due to a bug in gcc. 373 TestAndClearIgnoreResultAssign(); 374 return Visit(E->getSubExpr()); 375 } 376 Value *VisitUnaryMinus (const UnaryOperator *E); 377 Value *VisitUnaryNot (const UnaryOperator *E); 378 Value *VisitUnaryLNot (const UnaryOperator *E); 379 Value *VisitUnaryReal (const UnaryOperator *E); 380 Value *VisitUnaryImag (const UnaryOperator *E); 381 Value *VisitUnaryExtension(const UnaryOperator *E) { 382 return Visit(E->getSubExpr()); 383 } 384 385 // C++ 386 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 387 return EmitLoadOfLValue(E); 388 } 389 390 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 391 return Visit(DAE->getExpr()); 392 } 393 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 394 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 395 return Visit(DIE->getExpr()); 396 } 397 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 398 return CGF.LoadCXXThis(); 399 } 400 401 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 402 CGF.enterFullExpression(E); 403 CodeGenFunction::RunCleanupsScope Scope(CGF); 404 return Visit(E->getSubExpr()); 405 } 406 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 407 return CGF.EmitCXXNewExpr(E); 408 } 409 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 410 CGF.EmitCXXDeleteExpr(E); 411 return nullptr; 412 } 413 414 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 416 } 417 418 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 419 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 420 } 421 422 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 423 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 424 } 425 426 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 427 // C++ [expr.pseudo]p1: 428 // The result shall only be used as the operand for the function call 429 // operator (), and the result of such a call has type void. The only 430 // effect is the evaluation of the postfix-expression before the dot or 431 // arrow. 432 CGF.EmitScalarExpr(E->getBase()); 433 return nullptr; 434 } 435 436 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 437 return EmitNullValue(E->getType()); 438 } 439 440 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 441 CGF.EmitCXXThrowExpr(E); 442 return nullptr; 443 } 444 445 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 446 return Builder.getInt1(E->getValue()); 447 } 448 449 // Binary Operators. 450 Value *EmitMul(const BinOpInfo &Ops) { 451 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 452 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 453 case LangOptions::SOB_Defined: 454 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 455 case LangOptions::SOB_Undefined: 456 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 457 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 458 // Fall through. 459 case LangOptions::SOB_Trapping: 460 return EmitOverflowCheckedBinOp(Ops); 461 } 462 } 463 464 if (Ops.Ty->isUnsignedIntegerType() && 465 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 466 return EmitOverflowCheckedBinOp(Ops); 467 468 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 469 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 470 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 471 } 472 /// Create a binary op that checks for overflow. 473 /// Currently only supports +, - and *. 474 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 475 476 // Check for undefined division and modulus behaviors. 477 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 478 llvm::Value *Zero,bool isDiv); 479 // Common helper for getting how wide LHS of shift is. 480 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 481 Value *EmitDiv(const BinOpInfo &Ops); 482 Value *EmitRem(const BinOpInfo &Ops); 483 Value *EmitAdd(const BinOpInfo &Ops); 484 Value *EmitSub(const BinOpInfo &Ops); 485 Value *EmitShl(const BinOpInfo &Ops); 486 Value *EmitShr(const BinOpInfo &Ops); 487 Value *EmitAnd(const BinOpInfo &Ops) { 488 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 489 } 490 Value *EmitXor(const BinOpInfo &Ops) { 491 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 492 } 493 Value *EmitOr (const BinOpInfo &Ops) { 494 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 495 } 496 497 BinOpInfo EmitBinOps(const BinaryOperator *E); 498 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 499 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 500 Value *&Result); 501 502 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 503 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 504 505 // Binary operators and binary compound assignment operators. 506#define HANDLEBINOP(OP) \ 507 Value *VisitBin ## OP(const BinaryOperator *E) { \ 508 return Emit ## OP(EmitBinOps(E)); \ 509 } \ 510 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 511 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 512 } 513 HANDLEBINOP(Mul) 514 HANDLEBINOP(Div) 515 HANDLEBINOP(Rem) 516 HANDLEBINOP(Add) 517 HANDLEBINOP(Sub) 518 HANDLEBINOP(Shl) 519 HANDLEBINOP(Shr) 520 HANDLEBINOP(And) 521 HANDLEBINOP(Xor) 522 HANDLEBINOP(Or) 523#undef HANDLEBINOP 524 525 // Comparisons. 526 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 527 llvm::CmpInst::Predicate SICmpOpc, 528 llvm::CmpInst::Predicate FCmpOpc); 529#define VISITCOMP(CODE, UI, SI, FP) \ 530 Value *VisitBin##CODE(const BinaryOperator *E) { \ 531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 532 llvm::FCmpInst::FP); } 533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 539#undef VISITCOMP 540 541 Value *VisitBinAssign (const BinaryOperator *E); 542 543 Value *VisitBinLAnd (const BinaryOperator *E); 544 Value *VisitBinLOr (const BinaryOperator *E); 545 Value *VisitBinComma (const BinaryOperator *E); 546 547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 549 550 // Other Operators. 551 Value *VisitBlockExpr(const BlockExpr *BE); 552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 553 Value *VisitChooseExpr(ChooseExpr *CE); 554 Value *VisitVAArgExpr(VAArgExpr *VE); 555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 556 return CGF.EmitObjCStringLiteral(E); 557 } 558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 559 return CGF.EmitObjCBoxedExpr(E); 560 } 561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 562 return CGF.EmitObjCArrayLiteral(E); 563 } 564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 565 return CGF.EmitObjCDictionaryLiteral(E); 566 } 567 Value *VisitAsTypeExpr(AsTypeExpr *CE); 568 Value *VisitAtomicExpr(AtomicExpr *AE); 569}; 570} // end anonymous namespace. 571 572//===----------------------------------------------------------------------===// 573// Utilities 574//===----------------------------------------------------------------------===// 575 576/// EmitConversionToBool - Convert the specified expression value to a 577/// boolean (i1) truth value. This is equivalent to "Val != 0". 578Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 580 581 if (SrcType->isRealFloatingType()) 582 return EmitFloatToBoolConversion(Src); 583 584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 586 587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 588 "Unknown scalar type to convert"); 589 590 if (isa<llvm::IntegerType>(Src->getType())) 591 return EmitIntToBoolConversion(Src); 592 593 assert(isa<llvm::PointerType>(Src->getType())); 594 return EmitPointerToBoolConversion(Src); 595} 596 597void ScalarExprEmitter::EmitFloatConversionCheck( 598 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 599 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 600 CodeGenFunction::SanitizerScope SanScope(&CGF); 601 using llvm::APFloat; 602 using llvm::APSInt; 603 604 llvm::Type *SrcTy = Src->getType(); 605 606 llvm::Value *Check = nullptr; 607 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 608 // Integer to floating-point. This can fail for unsigned short -> __half 609 // or unsigned __int128 -> float. 610 assert(DstType->isFloatingType()); 611 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 612 613 APFloat LargestFloat = 614 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 615 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 616 617 bool IsExact; 618 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 619 &IsExact) != APFloat::opOK) 620 // The range of representable values of this floating point type includes 621 // all values of this integer type. Don't need an overflow check. 622 return; 623 624 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 625 if (SrcIsUnsigned) 626 Check = Builder.CreateICmpULE(Src, Max); 627 else { 628 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 629 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 630 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 631 Check = Builder.CreateAnd(GE, LE); 632 } 633 } else { 634 const llvm::fltSemantics &SrcSema = 635 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 636 if (isa<llvm::IntegerType>(DstTy)) { 637 // Floating-point to integer. This has undefined behavior if the source is 638 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 639 // to an integer). 640 unsigned Width = CGF.getContext().getIntWidth(DstType); 641 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 642 643 APSInt Min = APSInt::getMinValue(Width, Unsigned); 644 APFloat MinSrc(SrcSema, APFloat::uninitialized); 645 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 646 APFloat::opOverflow) 647 // Don't need an overflow check for lower bound. Just check for 648 // -Inf/NaN. 649 MinSrc = APFloat::getInf(SrcSema, true); 650 else 651 // Find the largest value which is too small to represent (before 652 // truncation toward zero). 653 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 654 655 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 656 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 657 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 658 APFloat::opOverflow) 659 // Don't need an overflow check for upper bound. Just check for 660 // +Inf/NaN. 661 MaxSrc = APFloat::getInf(SrcSema, false); 662 else 663 // Find the smallest value which is too large to represent (before 664 // truncation toward zero). 665 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 666 667 // If we're converting from __half, convert the range to float to match 668 // the type of src. 669 if (OrigSrcType->isHalfType()) { 670 const llvm::fltSemantics &Sema = 671 CGF.getContext().getFloatTypeSemantics(SrcType); 672 bool IsInexact; 673 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 674 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 675 } 676 677 llvm::Value *GE = 678 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 679 llvm::Value *LE = 680 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 681 Check = Builder.CreateAnd(GE, LE); 682 } else { 683 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 684 // 685 // Floating-point to floating-point. This has undefined behavior if the 686 // source is not in the range of representable values of the destination 687 // type. The C and C++ standards are spectacularly unclear here. We 688 // diagnose finite out-of-range conversions, but allow infinities and NaNs 689 // to convert to the corresponding value in the smaller type. 690 // 691 // C11 Annex F gives all such conversions defined behavior for IEC 60559 692 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 693 // does not. 694 695 // Converting from a lower rank to a higher rank can never have 696 // undefined behavior, since higher-rank types must have a superset 697 // of values of lower-rank types. 698 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 699 return; 700 701 assert(!OrigSrcType->isHalfType() && 702 "should not check conversion from __half, it has the lowest rank"); 703 704 const llvm::fltSemantics &DstSema = 705 CGF.getContext().getFloatTypeSemantics(DstType); 706 APFloat MinBad = APFloat::getLargest(DstSema, false); 707 APFloat MaxBad = APFloat::getInf(DstSema, false); 708 709 bool IsInexact; 710 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 711 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 712 713 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 714 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 715 llvm::Value *GE = 716 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 717 llvm::Value *LE = 718 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 719 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 720 } 721 } 722 723 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 724 CGF.EmitCheckTypeDescriptor(OrigSrcType), 725 CGF.EmitCheckTypeDescriptor(DstType)}; 726 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 727 "float_cast_overflow", StaticArgs, OrigSrc); 728} 729 730/// Emit a conversion from the specified type to the specified destination type, 731/// both of which are LLVM scalar types. 732Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 733 QualType DstType, 734 SourceLocation Loc) { 735 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 736} 737 738Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 739 QualType DstType, 740 SourceLocation Loc, 741 bool TreatBooleanAsSigned) { 742 SrcType = CGF.getContext().getCanonicalType(SrcType); 743 DstType = CGF.getContext().getCanonicalType(DstType); 744 if (SrcType == DstType) return Src; 745 746 if (DstType->isVoidType()) return nullptr; 747 748 llvm::Value *OrigSrc = Src; 749 QualType OrigSrcType = SrcType; 750 llvm::Type *SrcTy = Src->getType(); 751 752 // Handle conversions to bool first, they are special: comparisons against 0. 753 if (DstType->isBooleanType()) 754 return EmitConversionToBool(Src, SrcType); 755 756 llvm::Type *DstTy = ConvertType(DstType); 757 758 // Cast from half through float if half isn't a native type. 759 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 760 // Cast to FP using the intrinsic if the half type itself isn't supported. 761 if (DstTy->isFloatingPointTy()) { 762 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 763 return Builder.CreateCall( 764 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 765 Src); 766 } else { 767 // Cast to other types through float, using either the intrinsic or FPExt, 768 // depending on whether the half type itself is supported 769 // (as opposed to operations on half, available with NativeHalfType). 770 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 771 Src = Builder.CreateCall( 772 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 773 CGF.CGM.FloatTy), 774 Src); 775 } else { 776 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 777 } 778 SrcType = CGF.getContext().FloatTy; 779 SrcTy = CGF.FloatTy; 780 } 781 } 782 783 // Ignore conversions like int -> uint. 784 if (SrcTy == DstTy) 785 return Src; 786 787 // Handle pointer conversions next: pointers can only be converted to/from 788 // other pointers and integers. Check for pointer types in terms of LLVM, as 789 // some native types (like Obj-C id) may map to a pointer type. 790 if (isa<llvm::PointerType>(DstTy)) { 791 // The source value may be an integer, or a pointer. 792 if (isa<llvm::PointerType>(SrcTy)) 793 return Builder.CreateBitCast(Src, DstTy, "conv"); 794 795 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 796 // First, convert to the correct width so that we control the kind of 797 // extension. 798 llvm::Type *MiddleTy = CGF.IntPtrTy; 799 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 800 llvm::Value* IntResult = 801 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 802 // Then, cast to pointer. 803 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 804 } 805 806 if (isa<llvm::PointerType>(SrcTy)) { 807 // Must be an ptr to int cast. 808 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 809 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 810 } 811 812 // A scalar can be splatted to an extended vector of the same element type 813 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 814 // Cast the scalar to element type 815 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 816 llvm::Value *Elt = EmitScalarConversion( 817 Src, SrcType, EltTy, Loc, CGF.getContext().getLangOpts().OpenCL); 818 819 // Splat the element across to all elements 820 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 821 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 822 } 823 824 // Allow bitcast from vector to integer/fp of the same size. 825 if (isa<llvm::VectorType>(SrcTy) || 826 isa<llvm::VectorType>(DstTy)) 827 return Builder.CreateBitCast(Src, DstTy, "conv"); 828 829 // Finally, we have the arithmetic types: real int/float. 830 Value *Res = nullptr; 831 llvm::Type *ResTy = DstTy; 832 833 // An overflowing conversion has undefined behavior if either the source type 834 // or the destination type is a floating-point type. 835 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 836 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 837 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 838 Loc); 839 840 // Cast to half through float if half isn't a native type. 841 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 842 // Make sure we cast in a single step if from another FP type. 843 if (SrcTy->isFloatingPointTy()) { 844 // Use the intrinsic if the half type itself isn't supported 845 // (as opposed to operations on half, available with NativeHalfType). 846 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 847 return Builder.CreateCall( 848 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 849 // If the half type is supported, just use an fptrunc. 850 return Builder.CreateFPTrunc(Src, DstTy); 851 } 852 DstTy = CGF.FloatTy; 853 } 854 855 if (isa<llvm::IntegerType>(SrcTy)) { 856 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 857 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 858 InputSigned = true; 859 } 860 if (isa<llvm::IntegerType>(DstTy)) 861 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 862 else if (InputSigned) 863 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 864 else 865 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 866 } else if (isa<llvm::IntegerType>(DstTy)) { 867 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 868 if (DstType->isSignedIntegerOrEnumerationType()) 869 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 870 else 871 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 872 } else { 873 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 874 "Unknown real conversion"); 875 if (DstTy->getTypeID() < SrcTy->getTypeID()) 876 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 877 else 878 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 879 } 880 881 if (DstTy != ResTy) { 882 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 883 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 884 Res = Builder.CreateCall( 885 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 886 Res); 887 } else { 888 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 889 } 890 } 891 892 return Res; 893} 894 895/// Emit a conversion from the specified complex type to the specified 896/// destination type, where the destination type is an LLVM scalar type. 897Value *ScalarExprEmitter::EmitComplexToScalarConversion( 898 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 899 SourceLocation Loc) { 900 // Get the source element type. 901 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 902 903 // Handle conversions to bool first, they are special: comparisons against 0. 904 if (DstTy->isBooleanType()) { 905 // Complex != 0 -> (Real != 0) | (Imag != 0) 906 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 907 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 908 return Builder.CreateOr(Src.first, Src.second, "tobool"); 909 } 910 911 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 912 // the imaginary part of the complex value is discarded and the value of the 913 // real part is converted according to the conversion rules for the 914 // corresponding real type. 915 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 916} 917 918Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 919 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 920} 921 922/// \brief Emit a sanitization check for the given "binary" operation (which 923/// might actually be a unary increment which has been lowered to a binary 924/// operation). The check passes if all values in \p Checks (which are \c i1), 925/// are \c true. 926void ScalarExprEmitter::EmitBinOpCheck( 927 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 928 assert(CGF.IsSanitizerScope); 929 StringRef CheckName; 930 SmallVector<llvm::Constant *, 4> StaticData; 931 SmallVector<llvm::Value *, 2> DynamicData; 932 933 BinaryOperatorKind Opcode = Info.Opcode; 934 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 935 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 936 937 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 938 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 939 if (UO && UO->getOpcode() == UO_Minus) { 940 CheckName = "negate_overflow"; 941 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 942 DynamicData.push_back(Info.RHS); 943 } else { 944 if (BinaryOperator::isShiftOp(Opcode)) { 945 // Shift LHS negative or too large, or RHS out of bounds. 946 CheckName = "shift_out_of_bounds"; 947 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 948 StaticData.push_back( 949 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 950 StaticData.push_back( 951 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 952 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 953 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 954 CheckName = "divrem_overflow"; 955 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 956 } else { 957 // Arithmetic overflow (+, -, *). 958 switch (Opcode) { 959 case BO_Add: CheckName = "add_overflow"; break; 960 case BO_Sub: CheckName = "sub_overflow"; break; 961 case BO_Mul: CheckName = "mul_overflow"; break; 962 default: llvm_unreachable("unexpected opcode for bin op check"); 963 } 964 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 965 } 966 DynamicData.push_back(Info.LHS); 967 DynamicData.push_back(Info.RHS); 968 } 969 970 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 971} 972 973//===----------------------------------------------------------------------===// 974// Visitor Methods 975//===----------------------------------------------------------------------===// 976 977Value *ScalarExprEmitter::VisitExpr(Expr *E) { 978 CGF.ErrorUnsupported(E, "scalar expression"); 979 if (E->getType()->isVoidType()) 980 return nullptr; 981 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 982} 983 984Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 985 // Vector Mask Case 986 if (E->getNumSubExprs() == 2 || 987 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 988 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 989 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 990 Value *Mask; 991 992 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 993 unsigned LHSElts = LTy->getNumElements(); 994 995 if (E->getNumSubExprs() == 3) { 996 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 997 998 // Shuffle LHS & RHS into one input vector. 999 SmallVector<llvm::Constant*, 32> concat; 1000 for (unsigned i = 0; i != LHSElts; ++i) { 1001 concat.push_back(Builder.getInt32(2*i)); 1002 concat.push_back(Builder.getInt32(2*i+1)); 1003 } 1004 1005 Value* CV = llvm::ConstantVector::get(concat); 1006 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 1007 LHSElts *= 2; 1008 } else { 1009 Mask = RHS; 1010 } 1011 1012 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1013 1014 // Mask off the high bits of each shuffle index. 1015 Value *MaskBits = 1016 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1017 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1018 1019 // newv = undef 1020 // mask = mask & maskbits 1021 // for each elt 1022 // n = extract mask i 1023 // x = extract val n 1024 // newv = insert newv, x, i 1025 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1026 MTy->getNumElements()); 1027 Value* NewV = llvm::UndefValue::get(RTy); 1028 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1029 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1030 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1031 1032 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1033 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1034 } 1035 return NewV; 1036 } 1037 1038 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1039 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1040 1041 SmallVector<llvm::Constant*, 32> indices; 1042 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1043 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1044 // Check for -1 and output it as undef in the IR. 1045 if (Idx.isSigned() && Idx.isAllOnesValue()) 1046 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1047 else 1048 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1049 } 1050 1051 Value *SV = llvm::ConstantVector::get(indices); 1052 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1053} 1054 1055Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1056 QualType SrcType = E->getSrcExpr()->getType(), 1057 DstType = E->getType(); 1058 1059 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1060 1061 SrcType = CGF.getContext().getCanonicalType(SrcType); 1062 DstType = CGF.getContext().getCanonicalType(DstType); 1063 if (SrcType == DstType) return Src; 1064 1065 assert(SrcType->isVectorType() && 1066 "ConvertVector source type must be a vector"); 1067 assert(DstType->isVectorType() && 1068 "ConvertVector destination type must be a vector"); 1069 1070 llvm::Type *SrcTy = Src->getType(); 1071 llvm::Type *DstTy = ConvertType(DstType); 1072 1073 // Ignore conversions like int -> uint. 1074 if (SrcTy == DstTy) 1075 return Src; 1076 1077 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1078 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1079 1080 assert(SrcTy->isVectorTy() && 1081 "ConvertVector source IR type must be a vector"); 1082 assert(DstTy->isVectorTy() && 1083 "ConvertVector destination IR type must be a vector"); 1084 1085 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1086 *DstEltTy = DstTy->getVectorElementType(); 1087 1088 if (DstEltType->isBooleanType()) { 1089 assert((SrcEltTy->isFloatingPointTy() || 1090 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1091 1092 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1093 if (SrcEltTy->isFloatingPointTy()) { 1094 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1095 } else { 1096 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1097 } 1098 } 1099 1100 // We have the arithmetic types: real int/float. 1101 Value *Res = nullptr; 1102 1103 if (isa<llvm::IntegerType>(SrcEltTy)) { 1104 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1105 if (isa<llvm::IntegerType>(DstEltTy)) 1106 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1107 else if (InputSigned) 1108 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1109 else 1110 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1111 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1112 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1113 if (DstEltType->isSignedIntegerOrEnumerationType()) 1114 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1115 else 1116 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1117 } else { 1118 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1119 "Unknown real conversion"); 1120 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1121 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1122 else 1123 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1124 } 1125 1126 return Res; 1127} 1128 1129Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1130 llvm::APSInt Value; 1131 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1132 if (E->isArrow()) 1133 CGF.EmitScalarExpr(E->getBase()); 1134 else 1135 EmitLValue(E->getBase()); 1136 return Builder.getInt(Value); 1137 } 1138 1139 return EmitLoadOfLValue(E); 1140} 1141 1142Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1143 TestAndClearIgnoreResultAssign(); 1144 1145 // Emit subscript expressions in rvalue context's. For most cases, this just 1146 // loads the lvalue formed by the subscript expr. However, we have to be 1147 // careful, because the base of a vector subscript is occasionally an rvalue, 1148 // so we can't get it as an lvalue. 1149 if (!E->getBase()->getType()->isVectorType()) 1150 return EmitLoadOfLValue(E); 1151 1152 // Handle the vector case. The base must be a vector, the index must be an 1153 // integer value. 1154 Value *Base = Visit(E->getBase()); 1155 Value *Idx = Visit(E->getIdx()); 1156 QualType IdxTy = E->getIdx()->getType(); 1157 1158 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1159 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1160 1161 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1162} 1163 1164static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1165 unsigned Off, llvm::Type *I32Ty) { 1166 int MV = SVI->getMaskValue(Idx); 1167 if (MV == -1) 1168 return llvm::UndefValue::get(I32Ty); 1169 return llvm::ConstantInt::get(I32Ty, Off+MV); 1170} 1171 1172static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1173 if (C->getBitWidth() != 32) { 1174 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1175 C->getZExtValue()) && 1176 "Index operand too large for shufflevector mask!"); 1177 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1178 } 1179 return C; 1180} 1181 1182Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1183 bool Ignore = TestAndClearIgnoreResultAssign(); 1184 (void)Ignore; 1185 assert (Ignore == false && "init list ignored"); 1186 unsigned NumInitElements = E->getNumInits(); 1187 1188 if (E->hadArrayRangeDesignator()) 1189 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1190 1191 llvm::VectorType *VType = 1192 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1193 1194 if (!VType) { 1195 if (NumInitElements == 0) { 1196 // C++11 value-initialization for the scalar. 1197 return EmitNullValue(E->getType()); 1198 } 1199 // We have a scalar in braces. Just use the first element. 1200 return Visit(E->getInit(0)); 1201 } 1202 1203 unsigned ResElts = VType->getNumElements(); 1204 1205 // Loop over initializers collecting the Value for each, and remembering 1206 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1207 // us to fold the shuffle for the swizzle into the shuffle for the vector 1208 // initializer, since LLVM optimizers generally do not want to touch 1209 // shuffles. 1210 unsigned CurIdx = 0; 1211 bool VIsUndefShuffle = false; 1212 llvm::Value *V = llvm::UndefValue::get(VType); 1213 for (unsigned i = 0; i != NumInitElements; ++i) { 1214 Expr *IE = E->getInit(i); 1215 Value *Init = Visit(IE); 1216 SmallVector<llvm::Constant*, 16> Args; 1217 1218 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1219 1220 // Handle scalar elements. If the scalar initializer is actually one 1221 // element of a different vector of the same width, use shuffle instead of 1222 // extract+insert. 1223 if (!VVT) { 1224 if (isa<ExtVectorElementExpr>(IE)) { 1225 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1226 1227 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1228 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1229 Value *LHS = nullptr, *RHS = nullptr; 1230 if (CurIdx == 0) { 1231 // insert into undef -> shuffle (src, undef) 1232 // shufflemask must use an i32 1233 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1234 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1235 1236 LHS = EI->getVectorOperand(); 1237 RHS = V; 1238 VIsUndefShuffle = true; 1239 } else if (VIsUndefShuffle) { 1240 // insert into undefshuffle && size match -> shuffle (v, src) 1241 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1242 for (unsigned j = 0; j != CurIdx; ++j) 1243 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1244 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1245 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1246 1247 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1248 RHS = EI->getVectorOperand(); 1249 VIsUndefShuffle = false; 1250 } 1251 if (!Args.empty()) { 1252 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1253 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1254 ++CurIdx; 1255 continue; 1256 } 1257 } 1258 } 1259 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1260 "vecinit"); 1261 VIsUndefShuffle = false; 1262 ++CurIdx; 1263 continue; 1264 } 1265 1266 unsigned InitElts = VVT->getNumElements(); 1267 1268 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1269 // input is the same width as the vector being constructed, generate an 1270 // optimized shuffle of the swizzle input into the result. 1271 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1272 if (isa<ExtVectorElementExpr>(IE)) { 1273 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1274 Value *SVOp = SVI->getOperand(0); 1275 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1276 1277 if (OpTy->getNumElements() == ResElts) { 1278 for (unsigned j = 0; j != CurIdx; ++j) { 1279 // If the current vector initializer is a shuffle with undef, merge 1280 // this shuffle directly into it. 1281 if (VIsUndefShuffle) { 1282 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1283 CGF.Int32Ty)); 1284 } else { 1285 Args.push_back(Builder.getInt32(j)); 1286 } 1287 } 1288 for (unsigned j = 0, je = InitElts; j != je; ++j) 1289 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1290 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1291 1292 if (VIsUndefShuffle) 1293 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1294 1295 Init = SVOp; 1296 } 1297 } 1298 1299 // Extend init to result vector length, and then shuffle its contribution 1300 // to the vector initializer into V. 1301 if (Args.empty()) { 1302 for (unsigned j = 0; j != InitElts; ++j) 1303 Args.push_back(Builder.getInt32(j)); 1304 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1305 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1306 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1307 Mask, "vext"); 1308 1309 Args.clear(); 1310 for (unsigned j = 0; j != CurIdx; ++j) 1311 Args.push_back(Builder.getInt32(j)); 1312 for (unsigned j = 0; j != InitElts; ++j) 1313 Args.push_back(Builder.getInt32(j+Offset)); 1314 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1315 } 1316 1317 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1318 // merging subsequent shuffles into this one. 1319 if (CurIdx == 0) 1320 std::swap(V, Init); 1321 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1322 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1323 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1324 CurIdx += InitElts; 1325 } 1326 1327 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1328 // Emit remaining default initializers. 1329 llvm::Type *EltTy = VType->getElementType(); 1330 1331 // Emit remaining default initializers 1332 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1333 Value *Idx = Builder.getInt32(CurIdx); 1334 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1335 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1336 } 1337 return V; 1338} 1339 1340bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1341 const Expr *E = CE->getSubExpr(); 1342 1343 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1344 return false; 1345 1346 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1347 // We always assume that 'this' is never null. 1348 return false; 1349 } 1350 1351 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1352 // And that glvalue casts are never null. 1353 if (ICE->getValueKind() != VK_RValue) 1354 return false; 1355 } 1356 1357 return true; 1358} 1359 1360// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1361// have to handle a more broad range of conversions than explicit casts, as they 1362// handle things like function to ptr-to-function decay etc. 1363Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1364 Expr *E = CE->getSubExpr(); 1365 QualType DestTy = CE->getType(); 1366 CastKind Kind = CE->getCastKind(); 1367 1368 if (!DestTy->isVoidType()) 1369 TestAndClearIgnoreResultAssign(); 1370 1371 // Since almost all cast kinds apply to scalars, this switch doesn't have 1372 // a default case, so the compiler will warn on a missing case. The cases 1373 // are in the same order as in the CastKind enum. 1374 switch (Kind) { 1375 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1376 case CK_BuiltinFnToFnPtr: 1377 llvm_unreachable("builtin functions are handled elsewhere"); 1378 1379 case CK_LValueBitCast: 1380 case CK_ObjCObjectLValueCast: { 1381 Address Addr = EmitLValue(E).getAddress(); 1382 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1383 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1384 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1385 } 1386 1387 case CK_CPointerToObjCPointerCast: 1388 case CK_BlockPointerToObjCPointerCast: 1389 case CK_AnyPointerToBlockPointerCast: 1390 case CK_BitCast: { 1391 Value *Src = Visit(const_cast<Expr*>(E)); 1392 llvm::Type *SrcTy = Src->getType(); 1393 llvm::Type *DstTy = ConvertType(DestTy); 1394 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1395 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1396 llvm_unreachable("wrong cast for pointers in different address spaces" 1397 "(must be an address space cast)!"); 1398 } 1399 1400 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1401 if (auto PT = DestTy->getAs<PointerType>()) 1402 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1403 /*MayBeNull=*/true, 1404 CodeGenFunction::CFITCK_UnrelatedCast, 1405 CE->getLocStart()); 1406 } 1407 1408 return Builder.CreateBitCast(Src, DstTy); 1409 } 1410 case CK_AddressSpaceConversion: { 1411 Value *Src = Visit(const_cast<Expr*>(E)); 1412 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1413 } 1414 case CK_AtomicToNonAtomic: 1415 case CK_NonAtomicToAtomic: 1416 case CK_NoOp: 1417 case CK_UserDefinedConversion: 1418 return Visit(const_cast<Expr*>(E)); 1419 1420 case CK_BaseToDerived: { 1421 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1422 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1423 1424 Address Base = CGF.EmitPointerWithAlignment(E); 1425 Address Derived = 1426 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1427 CE->path_begin(), CE->path_end(), 1428 CGF.ShouldNullCheckClassCastValue(CE)); 1429 1430 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1431 // performed and the object is not of the derived type. 1432 if (CGF.sanitizePerformTypeCheck()) 1433 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1434 Derived.getPointer(), DestTy->getPointeeType()); 1435 1436 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1437 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1438 Derived.getPointer(), 1439 /*MayBeNull=*/true, 1440 CodeGenFunction::CFITCK_DerivedCast, 1441 CE->getLocStart()); 1442 1443 return Derived.getPointer(); 1444 } 1445 case CK_UncheckedDerivedToBase: 1446 case CK_DerivedToBase: { 1447 // The EmitPointerWithAlignment path does this fine; just discard 1448 // the alignment. 1449 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1450 } 1451 1452 case CK_Dynamic: { 1453 Address V = CGF.EmitPointerWithAlignment(E); 1454 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1455 return CGF.EmitDynamicCast(V, DCE); 1456 } 1457 1458 case CK_ArrayToPointerDecay: 1459 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1460 case CK_FunctionToPointerDecay: 1461 return EmitLValue(E).getPointer(); 1462 1463 case CK_NullToPointer: 1464 if (MustVisitNullValue(E)) 1465 (void) Visit(E); 1466 1467 return llvm::ConstantPointerNull::get( 1468 cast<llvm::PointerType>(ConvertType(DestTy))); 1469 1470 case CK_NullToMemberPointer: { 1471 if (MustVisitNullValue(E)) 1472 (void) Visit(E); 1473 1474 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1475 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1476 } 1477 1478 case CK_ReinterpretMemberPointer: 1479 case CK_BaseToDerivedMemberPointer: 1480 case CK_DerivedToBaseMemberPointer: { 1481 Value *Src = Visit(E); 1482 1483 // Note that the AST doesn't distinguish between checked and 1484 // unchecked member pointer conversions, so we always have to 1485 // implement checked conversions here. This is inefficient when 1486 // actual control flow may be required in order to perform the 1487 // check, which it is for data member pointers (but not member 1488 // function pointers on Itanium and ARM). 1489 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1490 } 1491 1492 case CK_ARCProduceObject: 1493 return CGF.EmitARCRetainScalarExpr(E); 1494 case CK_ARCConsumeObject: 1495 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1496 case CK_ARCReclaimReturnedObject: { 1497 llvm::Value *value = Visit(E); 1498 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1499 return CGF.EmitObjCConsumeObject(E->getType(), value); 1500 } 1501 case CK_ARCExtendBlockObject: 1502 return CGF.EmitARCExtendBlockObject(E); 1503 1504 case CK_CopyAndAutoreleaseBlockObject: 1505 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1506 1507 case CK_FloatingRealToComplex: 1508 case CK_FloatingComplexCast: 1509 case CK_IntegralRealToComplex: 1510 case CK_IntegralComplexCast: 1511 case CK_IntegralComplexToFloatingComplex: 1512 case CK_FloatingComplexToIntegralComplex: 1513 case CK_ConstructorConversion: 1514 case CK_ToUnion: 1515 llvm_unreachable("scalar cast to non-scalar value"); 1516 1517 case CK_LValueToRValue: 1518 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1519 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1520 return Visit(const_cast<Expr*>(E)); 1521 1522 case CK_IntegralToPointer: { 1523 Value *Src = Visit(const_cast<Expr*>(E)); 1524 1525 // First, convert to the correct width so that we control the kind of 1526 // extension. 1527 llvm::Type *MiddleTy = CGF.IntPtrTy; 1528 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1529 llvm::Value* IntResult = 1530 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1531 1532 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1533 } 1534 case CK_PointerToIntegral: 1535 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1536 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1537 1538 case CK_ToVoid: { 1539 CGF.EmitIgnoredExpr(E); 1540 return nullptr; 1541 } 1542 case CK_VectorSplat: { 1543 llvm::Type *DstTy = ConvertType(DestTy); 1544 // Need an IgnoreImpCasts here as by default a boolean will be promoted to 1545 // an int, which will not perform the sign extension, so if we know we are 1546 // going to cast to a vector we have to strip the implicit cast off. 1547 Value *Elt = Visit(const_cast<Expr*>(E->IgnoreImpCasts())); 1548 Elt = EmitScalarConversion(Elt, E->IgnoreImpCasts()->getType(), 1549 DestTy->getAs<VectorType>()->getElementType(), 1550 CE->getExprLoc(), 1551 CGF.getContext().getLangOpts().OpenCL); 1552 1553 // Splat the element across to all elements 1554 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1555 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1556 } 1557 1558 case CK_IntegralCast: 1559 case CK_IntegralToFloating: 1560 case CK_FloatingToIntegral: 1561 case CK_FloatingCast: 1562 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1563 CE->getExprLoc()); 1564 case CK_IntegralToBoolean: 1565 return EmitIntToBoolConversion(Visit(E)); 1566 case CK_PointerToBoolean: 1567 return EmitPointerToBoolConversion(Visit(E)); 1568 case CK_FloatingToBoolean: 1569 return EmitFloatToBoolConversion(Visit(E)); 1570 case CK_MemberPointerToBoolean: { 1571 llvm::Value *MemPtr = Visit(E); 1572 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1573 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1574 } 1575 1576 case CK_FloatingComplexToReal: 1577 case CK_IntegralComplexToReal: 1578 return CGF.EmitComplexExpr(E, false, true).first; 1579 1580 case CK_FloatingComplexToBoolean: 1581 case CK_IntegralComplexToBoolean: { 1582 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1583 1584 // TODO: kill this function off, inline appropriate case here 1585 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1586 CE->getExprLoc()); 1587 } 1588 1589 case CK_ZeroToOCLEvent: { 1590 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1591 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1592 } 1593 1594 } 1595 1596 llvm_unreachable("unknown scalar cast"); 1597} 1598 1599Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1600 CodeGenFunction::StmtExprEvaluation eval(CGF); 1601 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1602 !E->getType()->isVoidType()); 1603 if (!RetAlloca.isValid()) 1604 return nullptr; 1605 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1606 E->getExprLoc()); 1607} 1608 1609//===----------------------------------------------------------------------===// 1610// Unary Operators 1611//===----------------------------------------------------------------------===// 1612 1613static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1614 llvm::Value *InVal, bool IsInc) { 1615 BinOpInfo BinOp; 1616 BinOp.LHS = InVal; 1617 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1618 BinOp.Ty = E->getType(); 1619 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1620 BinOp.FPContractable = false; 1621 BinOp.E = E; 1622 return BinOp; 1623} 1624 1625llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1626 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1627 llvm::Value *Amount = 1628 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1629 StringRef Name = IsInc ? "inc" : "dec"; 1630 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1631 case LangOptions::SOB_Defined: 1632 return Builder.CreateAdd(InVal, Amount, Name); 1633 case LangOptions::SOB_Undefined: 1634 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1635 return Builder.CreateNSWAdd(InVal, Amount, Name); 1636 // Fall through. 1637 case LangOptions::SOB_Trapping: 1638 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1639 } 1640 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1641} 1642 1643llvm::Value * 1644ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1645 bool isInc, bool isPre) { 1646 1647 QualType type = E->getSubExpr()->getType(); 1648 llvm::PHINode *atomicPHI = nullptr; 1649 llvm::Value *value; 1650 llvm::Value *input; 1651 1652 int amount = (isInc ? 1 : -1); 1653 1654 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1655 type = atomicTy->getValueType(); 1656 if (isInc && type->isBooleanType()) { 1657 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1658 if (isPre) { 1659 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1660 ->setAtomic(llvm::SequentiallyConsistent); 1661 return Builder.getTrue(); 1662 } 1663 // For atomic bool increment, we just store true and return it for 1664 // preincrement, do an atomic swap with true for postincrement 1665 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1666 LV.getPointer(), True, llvm::SequentiallyConsistent); 1667 } 1668 // Special case for atomic increment / decrement on integers, emit 1669 // atomicrmw instructions. We skip this if we want to be doing overflow 1670 // checking, and fall into the slow path with the atomic cmpxchg loop. 1671 if (!type->isBooleanType() && type->isIntegerType() && 1672 !(type->isUnsignedIntegerType() && 1673 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1674 CGF.getLangOpts().getSignedOverflowBehavior() != 1675 LangOptions::SOB_Trapping) { 1676 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1677 llvm::AtomicRMWInst::Sub; 1678 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1679 llvm::Instruction::Sub; 1680 llvm::Value *amt = CGF.EmitToMemory( 1681 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1682 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1683 LV.getPointer(), amt, llvm::SequentiallyConsistent); 1684 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1685 } 1686 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1687 input = value; 1688 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1689 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1690 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1691 value = CGF.EmitToMemory(value, type); 1692 Builder.CreateBr(opBB); 1693 Builder.SetInsertPoint(opBB); 1694 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1695 atomicPHI->addIncoming(value, startBB); 1696 value = atomicPHI; 1697 } else { 1698 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1699 input = value; 1700 } 1701 1702 // Special case of integer increment that we have to check first: bool++. 1703 // Due to promotion rules, we get: 1704 // bool++ -> bool = bool + 1 1705 // -> bool = (int)bool + 1 1706 // -> bool = ((int)bool + 1 != 0) 1707 // An interesting aspect of this is that increment is always true. 1708 // Decrement does not have this property. 1709 if (isInc && type->isBooleanType()) { 1710 value = Builder.getTrue(); 1711 1712 // Most common case by far: integer increment. 1713 } else if (type->isIntegerType()) { 1714 // Note that signed integer inc/dec with width less than int can't 1715 // overflow because of promotion rules; we're just eliding a few steps here. 1716 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1717 CGF.IntTy->getIntegerBitWidth(); 1718 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1719 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1720 } else if (CanOverflow && type->isUnsignedIntegerType() && 1721 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1722 value = 1723 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1724 } else { 1725 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1726 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1727 } 1728 1729 // Next most common: pointer increment. 1730 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1731 QualType type = ptr->getPointeeType(); 1732 1733 // VLA types don't have constant size. 1734 if (const VariableArrayType *vla 1735 = CGF.getContext().getAsVariableArrayType(type)) { 1736 llvm::Value *numElts = CGF.getVLASize(vla).first; 1737 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1738 if (CGF.getLangOpts().isSignedOverflowDefined()) 1739 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1740 else 1741 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1742 1743 // Arithmetic on function pointers (!) is just +-1. 1744 } else if (type->isFunctionType()) { 1745 llvm::Value *amt = Builder.getInt32(amount); 1746 1747 value = CGF.EmitCastToVoidPtr(value); 1748 if (CGF.getLangOpts().isSignedOverflowDefined()) 1749 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1750 else 1751 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1752 value = Builder.CreateBitCast(value, input->getType()); 1753 1754 // For everything else, we can just do a simple increment. 1755 } else { 1756 llvm::Value *amt = Builder.getInt32(amount); 1757 if (CGF.getLangOpts().isSignedOverflowDefined()) 1758 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1759 else 1760 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1761 } 1762 1763 // Vector increment/decrement. 1764 } else if (type->isVectorType()) { 1765 if (type->hasIntegerRepresentation()) { 1766 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1767 1768 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1769 } else { 1770 value = Builder.CreateFAdd( 1771 value, 1772 llvm::ConstantFP::get(value->getType(), amount), 1773 isInc ? "inc" : "dec"); 1774 } 1775 1776 // Floating point. 1777 } else if (type->isRealFloatingType()) { 1778 // Add the inc/dec to the real part. 1779 llvm::Value *amt; 1780 1781 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1782 // Another special case: half FP increment should be done via float 1783 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1784 value = Builder.CreateCall( 1785 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1786 CGF.CGM.FloatTy), 1787 input, "incdec.conv"); 1788 } else { 1789 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1790 } 1791 } 1792 1793 if (value->getType()->isFloatTy()) 1794 amt = llvm::ConstantFP::get(VMContext, 1795 llvm::APFloat(static_cast<float>(amount))); 1796 else if (value->getType()->isDoubleTy()) 1797 amt = llvm::ConstantFP::get(VMContext, 1798 llvm::APFloat(static_cast<double>(amount))); 1799 else { 1800 // Remaining types are either Half or LongDouble. Convert from float. 1801 llvm::APFloat F(static_cast<float>(amount)); 1802 bool ignored; 1803 // Don't use getFloatTypeSemantics because Half isn't 1804 // necessarily represented using the "half" LLVM type. 1805 F.convert(value->getType()->isHalfTy() 1806 ? CGF.getTarget().getHalfFormat() 1807 : CGF.getTarget().getLongDoubleFormat(), 1808 llvm::APFloat::rmTowardZero, &ignored); 1809 amt = llvm::ConstantFP::get(VMContext, F); 1810 } 1811 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1812 1813 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1814 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1815 value = Builder.CreateCall( 1816 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1817 CGF.CGM.FloatTy), 1818 value, "incdec.conv"); 1819 } else { 1820 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1821 } 1822 } 1823 1824 // Objective-C pointer types. 1825 } else { 1826 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1827 value = CGF.EmitCastToVoidPtr(value); 1828 1829 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1830 if (!isInc) size = -size; 1831 llvm::Value *sizeValue = 1832 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1833 1834 if (CGF.getLangOpts().isSignedOverflowDefined()) 1835 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1836 else 1837 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1838 value = Builder.CreateBitCast(value, input->getType()); 1839 } 1840 1841 if (atomicPHI) { 1842 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1843 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1844 auto Pair = CGF.EmitAtomicCompareExchange( 1845 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1846 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1847 llvm::Value *success = Pair.second; 1848 atomicPHI->addIncoming(old, opBB); 1849 Builder.CreateCondBr(success, contBB, opBB); 1850 Builder.SetInsertPoint(contBB); 1851 return isPre ? value : input; 1852 } 1853 1854 // Store the updated result through the lvalue. 1855 if (LV.isBitField()) 1856 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1857 else 1858 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1859 1860 // If this is a postinc, return the value read from memory, otherwise use the 1861 // updated value. 1862 return isPre ? value : input; 1863} 1864 1865 1866 1867Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1868 TestAndClearIgnoreResultAssign(); 1869 // Emit unary minus with EmitSub so we handle overflow cases etc. 1870 BinOpInfo BinOp; 1871 BinOp.RHS = Visit(E->getSubExpr()); 1872 1873 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1874 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1875 else 1876 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1877 BinOp.Ty = E->getType(); 1878 BinOp.Opcode = BO_Sub; 1879 BinOp.FPContractable = false; 1880 BinOp.E = E; 1881 return EmitSub(BinOp); 1882} 1883 1884Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1885 TestAndClearIgnoreResultAssign(); 1886 Value *Op = Visit(E->getSubExpr()); 1887 return Builder.CreateNot(Op, "neg"); 1888} 1889 1890Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1891 // Perform vector logical not on comparison with zero vector. 1892 if (E->getType()->isExtVectorType()) { 1893 Value *Oper = Visit(E->getSubExpr()); 1894 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1895 Value *Result; 1896 if (Oper->getType()->isFPOrFPVectorTy()) 1897 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1898 else 1899 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1900 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1901 } 1902 1903 // Compare operand to zero. 1904 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1905 1906 // Invert value. 1907 // TODO: Could dynamically modify easy computations here. For example, if 1908 // the operand is an icmp ne, turn into icmp eq. 1909 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1910 1911 // ZExt result to the expr type. 1912 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1913} 1914 1915Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1916 // Try folding the offsetof to a constant. 1917 llvm::APSInt Value; 1918 if (E->EvaluateAsInt(Value, CGF.getContext())) 1919 return Builder.getInt(Value); 1920 1921 // Loop over the components of the offsetof to compute the value. 1922 unsigned n = E->getNumComponents(); 1923 llvm::Type* ResultType = ConvertType(E->getType()); 1924 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1925 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1926 for (unsigned i = 0; i != n; ++i) { 1927 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1928 llvm::Value *Offset = nullptr; 1929 switch (ON.getKind()) { 1930 case OffsetOfExpr::OffsetOfNode::Array: { 1931 // Compute the index 1932 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1933 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1934 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1935 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1936 1937 // Save the element type 1938 CurrentType = 1939 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1940 1941 // Compute the element size 1942 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1943 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1944 1945 // Multiply out to compute the result 1946 Offset = Builder.CreateMul(Idx, ElemSize); 1947 break; 1948 } 1949 1950 case OffsetOfExpr::OffsetOfNode::Field: { 1951 FieldDecl *MemberDecl = ON.getField(); 1952 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1953 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1954 1955 // Compute the index of the field in its parent. 1956 unsigned i = 0; 1957 // FIXME: It would be nice if we didn't have to loop here! 1958 for (RecordDecl::field_iterator Field = RD->field_begin(), 1959 FieldEnd = RD->field_end(); 1960 Field != FieldEnd; ++Field, ++i) { 1961 if (*Field == MemberDecl) 1962 break; 1963 } 1964 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1965 1966 // Compute the offset to the field 1967 int64_t OffsetInt = RL.getFieldOffset(i) / 1968 CGF.getContext().getCharWidth(); 1969 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1970 1971 // Save the element type. 1972 CurrentType = MemberDecl->getType(); 1973 break; 1974 } 1975 1976 case OffsetOfExpr::OffsetOfNode::Identifier: 1977 llvm_unreachable("dependent __builtin_offsetof"); 1978 1979 case OffsetOfExpr::OffsetOfNode::Base: { 1980 if (ON.getBase()->isVirtual()) { 1981 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1982 continue; 1983 } 1984 1985 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1986 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1987 1988 // Save the element type. 1989 CurrentType = ON.getBase()->getType(); 1990 1991 // Compute the offset to the base. 1992 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 1993 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 1994 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 1995 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 1996 break; 1997 } 1998 } 1999 Result = Builder.CreateAdd(Result, Offset); 2000 } 2001 return Result; 2002} 2003 2004/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2005/// argument of the sizeof expression as an integer. 2006Value * 2007ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2008 const UnaryExprOrTypeTraitExpr *E) { 2009 QualType TypeToSize = E->getTypeOfArgument(); 2010 if (E->getKind() == UETT_SizeOf) { 2011 if (const VariableArrayType *VAT = 2012 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2013 if (E->isArgumentType()) { 2014 // sizeof(type) - make sure to emit the VLA size. 2015 CGF.EmitVariablyModifiedType(TypeToSize); 2016 } else { 2017 // C99 6.5.3.4p2: If the argument is an expression of type 2018 // VLA, it is evaluated. 2019 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2020 } 2021 2022 QualType eltType; 2023 llvm::Value *numElts; 2024 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2025 2026 llvm::Value *size = numElts; 2027 2028 // Scale the number of non-VLA elements by the non-VLA element size. 2029 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2030 if (!eltSize.isOne()) 2031 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2032 2033 return size; 2034 } 2035 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2036 auto Alignment = 2037 CGF.getContext() 2038 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2039 E->getTypeOfArgument()->getPointeeType())) 2040 .getQuantity(); 2041 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2042 } 2043 2044 // If this isn't sizeof(vla), the result must be constant; use the constant 2045 // folding logic so we don't have to duplicate it here. 2046 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2047} 2048 2049Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2050 Expr *Op = E->getSubExpr(); 2051 if (Op->getType()->isAnyComplexType()) { 2052 // If it's an l-value, load through the appropriate subobject l-value. 2053 // Note that we have to ask E because Op might be an l-value that 2054 // this won't work for, e.g. an Obj-C property. 2055 if (E->isGLValue()) 2056 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2057 E->getExprLoc()).getScalarVal(); 2058 2059 // Otherwise, calculate and project. 2060 return CGF.EmitComplexExpr(Op, false, true).first; 2061 } 2062 2063 return Visit(Op); 2064} 2065 2066Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2067 Expr *Op = E->getSubExpr(); 2068 if (Op->getType()->isAnyComplexType()) { 2069 // If it's an l-value, load through the appropriate subobject l-value. 2070 // Note that we have to ask E because Op might be an l-value that 2071 // this won't work for, e.g. an Obj-C property. 2072 if (Op->isGLValue()) 2073 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2074 E->getExprLoc()).getScalarVal(); 2075 2076 // Otherwise, calculate and project. 2077 return CGF.EmitComplexExpr(Op, true, false).second; 2078 } 2079 2080 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2081 // effects are evaluated, but not the actual value. 2082 if (Op->isGLValue()) 2083 CGF.EmitLValue(Op); 2084 else 2085 CGF.EmitScalarExpr(Op, true); 2086 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2087} 2088 2089//===----------------------------------------------------------------------===// 2090// Binary Operators 2091//===----------------------------------------------------------------------===// 2092 2093BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2094 TestAndClearIgnoreResultAssign(); 2095 BinOpInfo Result; 2096 Result.LHS = Visit(E->getLHS()); 2097 Result.RHS = Visit(E->getRHS()); 2098 Result.Ty = E->getType(); 2099 Result.Opcode = E->getOpcode(); 2100 Result.FPContractable = E->isFPContractable(); 2101 Result.E = E; 2102 return Result; 2103} 2104 2105LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2106 const CompoundAssignOperator *E, 2107 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2108 Value *&Result) { 2109 QualType LHSTy = E->getLHS()->getType(); 2110 BinOpInfo OpInfo; 2111 2112 if (E->getComputationResultType()->isAnyComplexType()) 2113 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2114 2115 // Emit the RHS first. __block variables need to have the rhs evaluated 2116 // first, plus this should improve codegen a little. 2117 OpInfo.RHS = Visit(E->getRHS()); 2118 OpInfo.Ty = E->getComputationResultType(); 2119 OpInfo.Opcode = E->getOpcode(); 2120 OpInfo.FPContractable = E->isFPContractable(); 2121 OpInfo.E = E; 2122 // Load/convert the LHS. 2123 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2124 2125 llvm::PHINode *atomicPHI = nullptr; 2126 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2127 QualType type = atomicTy->getValueType(); 2128 if (!type->isBooleanType() && type->isIntegerType() && 2129 !(type->isUnsignedIntegerType() && 2130 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2131 CGF.getLangOpts().getSignedOverflowBehavior() != 2132 LangOptions::SOB_Trapping) { 2133 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2134 switch (OpInfo.Opcode) { 2135 // We don't have atomicrmw operands for *, %, /, <<, >> 2136 case BO_MulAssign: case BO_DivAssign: 2137 case BO_RemAssign: 2138 case BO_ShlAssign: 2139 case BO_ShrAssign: 2140 break; 2141 case BO_AddAssign: 2142 aop = llvm::AtomicRMWInst::Add; 2143 break; 2144 case BO_SubAssign: 2145 aop = llvm::AtomicRMWInst::Sub; 2146 break; 2147 case BO_AndAssign: 2148 aop = llvm::AtomicRMWInst::And; 2149 break; 2150 case BO_XorAssign: 2151 aop = llvm::AtomicRMWInst::Xor; 2152 break; 2153 case BO_OrAssign: 2154 aop = llvm::AtomicRMWInst::Or; 2155 break; 2156 default: 2157 llvm_unreachable("Invalid compound assignment type"); 2158 } 2159 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2160 llvm::Value *amt = CGF.EmitToMemory( 2161 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2162 E->getExprLoc()), 2163 LHSTy); 2164 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2165 llvm::SequentiallyConsistent); 2166 return LHSLV; 2167 } 2168 } 2169 // FIXME: For floating point types, we should be saving and restoring the 2170 // floating point environment in the loop. 2171 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2172 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2173 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2174 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2175 Builder.CreateBr(opBB); 2176 Builder.SetInsertPoint(opBB); 2177 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2178 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2179 OpInfo.LHS = atomicPHI; 2180 } 2181 else 2182 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2183 2184 SourceLocation Loc = E->getExprLoc(); 2185 OpInfo.LHS = 2186 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2187 2188 // Expand the binary operator. 2189 Result = (this->*Func)(OpInfo); 2190 2191 // Convert the result back to the LHS type. 2192 Result = 2193 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2194 2195 if (atomicPHI) { 2196 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2197 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2198 auto Pair = CGF.EmitAtomicCompareExchange( 2199 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2200 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2201 llvm::Value *success = Pair.second; 2202 atomicPHI->addIncoming(old, opBB); 2203 Builder.CreateCondBr(success, contBB, opBB); 2204 Builder.SetInsertPoint(contBB); 2205 return LHSLV; 2206 } 2207 2208 // Store the result value into the LHS lvalue. Bit-fields are handled 2209 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2210 // 'An assignment expression has the value of the left operand after the 2211 // assignment...'. 2212 if (LHSLV.isBitField()) 2213 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2214 else 2215 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2216 2217 return LHSLV; 2218} 2219 2220Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2221 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2222 bool Ignore = TestAndClearIgnoreResultAssign(); 2223 Value *RHS; 2224 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2225 2226 // If the result is clearly ignored, return now. 2227 if (Ignore) 2228 return nullptr; 2229 2230 // The result of an assignment in C is the assigned r-value. 2231 if (!CGF.getLangOpts().CPlusPlus) 2232 return RHS; 2233 2234 // If the lvalue is non-volatile, return the computed value of the assignment. 2235 if (!LHS.isVolatileQualified()) 2236 return RHS; 2237 2238 // Otherwise, reload the value. 2239 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2240} 2241 2242void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2243 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2244 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2245 2246 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2247 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2248 SanitizerKind::IntegerDivideByZero)); 2249 } 2250 2251 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2252 Ops.Ty->hasSignedIntegerRepresentation()) { 2253 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2254 2255 llvm::Value *IntMin = 2256 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2257 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2258 2259 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2260 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2261 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2262 Checks.push_back( 2263 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2264 } 2265 2266 if (Checks.size() > 0) 2267 EmitBinOpCheck(Checks, Ops); 2268} 2269 2270Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2271 { 2272 CodeGenFunction::SanitizerScope SanScope(&CGF); 2273 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2274 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2275 Ops.Ty->isIntegerType()) { 2276 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2277 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2278 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2279 Ops.Ty->isRealFloatingType()) { 2280 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2281 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2282 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2283 Ops); 2284 } 2285 } 2286 2287 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2288 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2289 if (CGF.getLangOpts().OpenCL) { 2290 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2291 llvm::Type *ValTy = Val->getType(); 2292 if (ValTy->isFloatTy() || 2293 (isa<llvm::VectorType>(ValTy) && 2294 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2295 CGF.SetFPAccuracy(Val, 2.5); 2296 } 2297 return Val; 2298 } 2299 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2300 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2301 else 2302 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2303} 2304 2305Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2306 // Rem in C can't be a floating point type: C99 6.5.5p2. 2307 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2308 CodeGenFunction::SanitizerScope SanScope(&CGF); 2309 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2310 2311 if (Ops.Ty->isIntegerType()) 2312 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2313 } 2314 2315 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2316 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2317 else 2318 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2319} 2320 2321Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2322 unsigned IID; 2323 unsigned OpID = 0; 2324 2325 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2326 switch (Ops.Opcode) { 2327 case BO_Add: 2328 case BO_AddAssign: 2329 OpID = 1; 2330 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2331 llvm::Intrinsic::uadd_with_overflow; 2332 break; 2333 case BO_Sub: 2334 case BO_SubAssign: 2335 OpID = 2; 2336 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2337 llvm::Intrinsic::usub_with_overflow; 2338 break; 2339 case BO_Mul: 2340 case BO_MulAssign: 2341 OpID = 3; 2342 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2343 llvm::Intrinsic::umul_with_overflow; 2344 break; 2345 default: 2346 llvm_unreachable("Unsupported operation for overflow detection"); 2347 } 2348 OpID <<= 1; 2349 if (isSigned) 2350 OpID |= 1; 2351 2352 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2353 2354 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2355 2356 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2357 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2358 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2359 2360 // Handle overflow with llvm.trap if no custom handler has been specified. 2361 const std::string *handlerName = 2362 &CGF.getLangOpts().OverflowHandler; 2363 if (handlerName->empty()) { 2364 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2365 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2366 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2367 CodeGenFunction::SanitizerScope SanScope(&CGF); 2368 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2369 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2370 : SanitizerKind::UnsignedIntegerOverflow; 2371 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2372 } else 2373 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2374 return result; 2375 } 2376 2377 // Branch in case of overflow. 2378 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2379 llvm::Function::iterator insertPt = initialBB->getIterator(); 2380 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2381 &*std::next(insertPt)); 2382 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2383 2384 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2385 2386 // If an overflow handler is set, then we want to call it and then use its 2387 // result, if it returns. 2388 Builder.SetInsertPoint(overflowBB); 2389 2390 // Get the overflow handler. 2391 llvm::Type *Int8Ty = CGF.Int8Ty; 2392 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2393 llvm::FunctionType *handlerTy = 2394 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2395 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2396 2397 // Sign extend the args to 64-bit, so that we can use the same handler for 2398 // all types of overflow. 2399 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2400 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2401 2402 // Call the handler with the two arguments, the operation, and the size of 2403 // the result. 2404 llvm::Value *handlerArgs[] = { 2405 lhs, 2406 rhs, 2407 Builder.getInt8(OpID), 2408 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2409 }; 2410 llvm::Value *handlerResult = 2411 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2412 2413 // Truncate the result back to the desired size. 2414 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2415 Builder.CreateBr(continueBB); 2416 2417 Builder.SetInsertPoint(continueBB); 2418 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2419 phi->addIncoming(result, initialBB); 2420 phi->addIncoming(handlerResult, overflowBB); 2421 2422 return phi; 2423} 2424 2425/// Emit pointer + index arithmetic. 2426static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2427 const BinOpInfo &op, 2428 bool isSubtraction) { 2429 // Must have binary (not unary) expr here. Unary pointer 2430 // increment/decrement doesn't use this path. 2431 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2432 2433 Value *pointer = op.LHS; 2434 Expr *pointerOperand = expr->getLHS(); 2435 Value *index = op.RHS; 2436 Expr *indexOperand = expr->getRHS(); 2437 2438 // In a subtraction, the LHS is always the pointer. 2439 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2440 std::swap(pointer, index); 2441 std::swap(pointerOperand, indexOperand); 2442 } 2443 2444 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2445 if (width != CGF.PointerWidthInBits) { 2446 // Zero-extend or sign-extend the pointer value according to 2447 // whether the index is signed or not. 2448 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2449 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2450 "idx.ext"); 2451 } 2452 2453 // If this is subtraction, negate the index. 2454 if (isSubtraction) 2455 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2456 2457 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2458 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2459 /*Accessed*/ false); 2460 2461 const PointerType *pointerType 2462 = pointerOperand->getType()->getAs<PointerType>(); 2463 if (!pointerType) { 2464 QualType objectType = pointerOperand->getType() 2465 ->castAs<ObjCObjectPointerType>() 2466 ->getPointeeType(); 2467 llvm::Value *objectSize 2468 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2469 2470 index = CGF.Builder.CreateMul(index, objectSize); 2471 2472 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2473 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2474 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2475 } 2476 2477 QualType elementType = pointerType->getPointeeType(); 2478 if (const VariableArrayType *vla 2479 = CGF.getContext().getAsVariableArrayType(elementType)) { 2480 // The element count here is the total number of non-VLA elements. 2481 llvm::Value *numElements = CGF.getVLASize(vla).first; 2482 2483 // Effectively, the multiply by the VLA size is part of the GEP. 2484 // GEP indexes are signed, and scaling an index isn't permitted to 2485 // signed-overflow, so we use the same semantics for our explicit 2486 // multiply. We suppress this if overflow is not undefined behavior. 2487 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2488 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2489 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2490 } else { 2491 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2492 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2493 } 2494 return pointer; 2495 } 2496 2497 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2498 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2499 // future proof. 2500 if (elementType->isVoidType() || elementType->isFunctionType()) { 2501 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2502 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2503 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2504 } 2505 2506 if (CGF.getLangOpts().isSignedOverflowDefined()) 2507 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2508 2509 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2510} 2511 2512// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2513// Addend. Use negMul and negAdd to negate the first operand of the Mul or 2514// the add operand respectively. This allows fmuladd to represent a*b-c, or 2515// c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2516// efficient operations. 2517static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2518 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2519 bool negMul, bool negAdd) { 2520 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2521 2522 Value *MulOp0 = MulOp->getOperand(0); 2523 Value *MulOp1 = MulOp->getOperand(1); 2524 if (negMul) { 2525 MulOp0 = 2526 Builder.CreateFSub( 2527 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2528 "neg"); 2529 } else if (negAdd) { 2530 Addend = 2531 Builder.CreateFSub( 2532 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2533 "neg"); 2534 } 2535 2536 Value *FMulAdd = Builder.CreateCall( 2537 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2538 {MulOp0, MulOp1, Addend}); 2539 MulOp->eraseFromParent(); 2540 2541 return FMulAdd; 2542} 2543 2544// Check whether it would be legal to emit an fmuladd intrinsic call to 2545// represent op and if so, build the fmuladd. 2546// 2547// Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2548// Does NOT check the type of the operation - it's assumed that this function 2549// will be called from contexts where it's known that the type is contractable. 2550static Value* tryEmitFMulAdd(const BinOpInfo &op, 2551 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2552 bool isSub=false) { 2553 2554 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2555 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2556 "Only fadd/fsub can be the root of an fmuladd."); 2557 2558 // Check whether this op is marked as fusable. 2559 if (!op.FPContractable) 2560 return nullptr; 2561 2562 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2563 // either disabled, or handled entirely by the LLVM backend). 2564 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2565 return nullptr; 2566 2567 // We have a potentially fusable op. Look for a mul on one of the operands. 2568 // Also, make sure that the mul result isn't used directly. In that case, 2569 // there's no point creating a muladd operation. 2570 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2571 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2572 LHSBinOp->use_empty()) 2573 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2574 } 2575 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2576 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2577 RHSBinOp->use_empty()) 2578 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2579 } 2580 2581 return nullptr; 2582} 2583 2584Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2585 if (op.LHS->getType()->isPointerTy() || 2586 op.RHS->getType()->isPointerTy()) 2587 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2588 2589 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2590 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2591 case LangOptions::SOB_Defined: 2592 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2593 case LangOptions::SOB_Undefined: 2594 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2595 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2596 // Fall through. 2597 case LangOptions::SOB_Trapping: 2598 return EmitOverflowCheckedBinOp(op); 2599 } 2600 } 2601 2602 if (op.Ty->isUnsignedIntegerType() && 2603 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2604 return EmitOverflowCheckedBinOp(op); 2605 2606 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2607 // Try to form an fmuladd. 2608 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2609 return FMulAdd; 2610 2611 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2612 } 2613 2614 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2615} 2616 2617Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2618 // The LHS is always a pointer if either side is. 2619 if (!op.LHS->getType()->isPointerTy()) { 2620 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2621 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2622 case LangOptions::SOB_Defined: 2623 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2624 case LangOptions::SOB_Undefined: 2625 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2626 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2627 // Fall through. 2628 case LangOptions::SOB_Trapping: 2629 return EmitOverflowCheckedBinOp(op); 2630 } 2631 } 2632 2633 if (op.Ty->isUnsignedIntegerType() && 2634 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2635 return EmitOverflowCheckedBinOp(op); 2636 2637 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2638 // Try to form an fmuladd. 2639 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2640 return FMulAdd; 2641 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2642 } 2643 2644 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2645 } 2646 2647 // If the RHS is not a pointer, then we have normal pointer 2648 // arithmetic. 2649 if (!op.RHS->getType()->isPointerTy()) 2650 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2651 2652 // Otherwise, this is a pointer subtraction. 2653 2654 // Do the raw subtraction part. 2655 llvm::Value *LHS 2656 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2657 llvm::Value *RHS 2658 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2659 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2660 2661 // Okay, figure out the element size. 2662 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2663 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2664 2665 llvm::Value *divisor = nullptr; 2666 2667 // For a variable-length array, this is going to be non-constant. 2668 if (const VariableArrayType *vla 2669 = CGF.getContext().getAsVariableArrayType(elementType)) { 2670 llvm::Value *numElements; 2671 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2672 2673 divisor = numElements; 2674 2675 // Scale the number of non-VLA elements by the non-VLA element size. 2676 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2677 if (!eltSize.isOne()) 2678 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2679 2680 // For everything elese, we can just compute it, safe in the 2681 // assumption that Sema won't let anything through that we can't 2682 // safely compute the size of. 2683 } else { 2684 CharUnits elementSize; 2685 // Handle GCC extension for pointer arithmetic on void* and 2686 // function pointer types. 2687 if (elementType->isVoidType() || elementType->isFunctionType()) 2688 elementSize = CharUnits::One(); 2689 else 2690 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2691 2692 // Don't even emit the divide for element size of 1. 2693 if (elementSize.isOne()) 2694 return diffInChars; 2695 2696 divisor = CGF.CGM.getSize(elementSize); 2697 } 2698 2699 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2700 // pointer difference in C is only defined in the case where both operands 2701 // are pointing to elements of an array. 2702 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2703} 2704 2705Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2706 llvm::IntegerType *Ty; 2707 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2708 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2709 else 2710 Ty = cast<llvm::IntegerType>(LHS->getType()); 2711 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2712} 2713 2714Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2715 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2716 // RHS to the same size as the LHS. 2717 Value *RHS = Ops.RHS; 2718 if (Ops.LHS->getType() != RHS->getType()) 2719 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2720 2721 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2722 Ops.Ty->hasSignedIntegerRepresentation(); 2723 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2724 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2725 if (CGF.getLangOpts().OpenCL) 2726 RHS = 2727 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2728 else if ((SanitizeBase || SanitizeExponent) && 2729 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2730 CodeGenFunction::SanitizerScope SanScope(&CGF); 2731 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2732 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2733 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2734 2735 if (SanitizeExponent) { 2736 Checks.push_back( 2737 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2738 } 2739 2740 if (SanitizeBase) { 2741 // Check whether we are shifting any non-zero bits off the top of the 2742 // integer. We only emit this check if exponent is valid - otherwise 2743 // instructions below will have undefined behavior themselves. 2744 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2745 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2746 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2747 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2748 CGF.EmitBlock(CheckShiftBase); 2749 llvm::Value *BitsShiftedOff = 2750 Builder.CreateLShr(Ops.LHS, 2751 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2752 /*NUW*/true, /*NSW*/true), 2753 "shl.check"); 2754 if (CGF.getLangOpts().CPlusPlus) { 2755 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2756 // Under C++11's rules, shifting a 1 bit into the sign bit is 2757 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2758 // define signed left shifts, so we use the C99 and C++11 rules there). 2759 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2760 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2761 } 2762 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2763 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2764 CGF.EmitBlock(Cont); 2765 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2766 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2767 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2768 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2769 } 2770 2771 assert(!Checks.empty()); 2772 EmitBinOpCheck(Checks, Ops); 2773 } 2774 2775 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2776} 2777 2778Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2779 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2780 // RHS to the same size as the LHS. 2781 Value *RHS = Ops.RHS; 2782 if (Ops.LHS->getType() != RHS->getType()) 2783 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2784 2785 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2786 if (CGF.getLangOpts().OpenCL) 2787 RHS = 2788 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2789 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2790 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2791 CodeGenFunction::SanitizerScope SanScope(&CGF); 2792 llvm::Value *Valid = 2793 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2794 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2795 } 2796 2797 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2798 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2799 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2800} 2801 2802enum IntrinsicType { VCMPEQ, VCMPGT }; 2803// return corresponding comparison intrinsic for given vector type 2804static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2805 BuiltinType::Kind ElemKind) { 2806 switch (ElemKind) { 2807 default: llvm_unreachable("unexpected element type"); 2808 case BuiltinType::Char_U: 2809 case BuiltinType::UChar: 2810 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2811 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2812 case BuiltinType::Char_S: 2813 case BuiltinType::SChar: 2814 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2815 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2816 case BuiltinType::UShort: 2817 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2818 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2819 case BuiltinType::Short: 2820 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2821 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2822 case BuiltinType::UInt: 2823 case BuiltinType::ULong: 2824 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2825 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2826 case BuiltinType::Int: 2827 case BuiltinType::Long: 2828 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2829 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2830 case BuiltinType::Float: 2831 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2832 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2833 } 2834} 2835 2836Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 2837 llvm::CmpInst::Predicate UICmpOpc, 2838 llvm::CmpInst::Predicate SICmpOpc, 2839 llvm::CmpInst::Predicate FCmpOpc) { 2840 TestAndClearIgnoreResultAssign(); 2841 Value *Result; 2842 QualType LHSTy = E->getLHS()->getType(); 2843 QualType RHSTy = E->getRHS()->getType(); 2844 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2845 assert(E->getOpcode() == BO_EQ || 2846 E->getOpcode() == BO_NE); 2847 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2848 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2849 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2850 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2851 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2852 Value *LHS = Visit(E->getLHS()); 2853 Value *RHS = Visit(E->getRHS()); 2854 2855 // If AltiVec, the comparison results in a numeric type, so we use 2856 // intrinsics comparing vectors and giving 0 or 1 as a result 2857 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2858 // constants for mapping CR6 register bits to predicate result 2859 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2860 2861 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2862 2863 // in several cases vector arguments order will be reversed 2864 Value *FirstVecArg = LHS, 2865 *SecondVecArg = RHS; 2866 2867 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2868 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2869 BuiltinType::Kind ElementKind = BTy->getKind(); 2870 2871 switch(E->getOpcode()) { 2872 default: llvm_unreachable("is not a comparison operation"); 2873 case BO_EQ: 2874 CR6 = CR6_LT; 2875 ID = GetIntrinsic(VCMPEQ, ElementKind); 2876 break; 2877 case BO_NE: 2878 CR6 = CR6_EQ; 2879 ID = GetIntrinsic(VCMPEQ, ElementKind); 2880 break; 2881 case BO_LT: 2882 CR6 = CR6_LT; 2883 ID = GetIntrinsic(VCMPGT, ElementKind); 2884 std::swap(FirstVecArg, SecondVecArg); 2885 break; 2886 case BO_GT: 2887 CR6 = CR6_LT; 2888 ID = GetIntrinsic(VCMPGT, ElementKind); 2889 break; 2890 case BO_LE: 2891 if (ElementKind == BuiltinType::Float) { 2892 CR6 = CR6_LT; 2893 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2894 std::swap(FirstVecArg, SecondVecArg); 2895 } 2896 else { 2897 CR6 = CR6_EQ; 2898 ID = GetIntrinsic(VCMPGT, ElementKind); 2899 } 2900 break; 2901 case BO_GE: 2902 if (ElementKind == BuiltinType::Float) { 2903 CR6 = CR6_LT; 2904 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2905 } 2906 else { 2907 CR6 = CR6_EQ; 2908 ID = GetIntrinsic(VCMPGT, ElementKind); 2909 std::swap(FirstVecArg, SecondVecArg); 2910 } 2911 break; 2912 } 2913 2914 Value *CR6Param = Builder.getInt32(CR6); 2915 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2916 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2917 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2918 E->getExprLoc()); 2919 } 2920 2921 if (LHS->getType()->isFPOrFPVectorTy()) { 2922 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 2923 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2924 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 2925 } else { 2926 // Unsigned integers and pointers. 2927 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 2928 } 2929 2930 // If this is a vector comparison, sign extend the result to the appropriate 2931 // vector integer type and return it (don't convert to bool). 2932 if (LHSTy->isVectorType()) 2933 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2934 2935 } else { 2936 // Complex Comparison: can only be an equality comparison. 2937 CodeGenFunction::ComplexPairTy LHS, RHS; 2938 QualType CETy; 2939 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2940 LHS = CGF.EmitComplexExpr(E->getLHS()); 2941 CETy = CTy->getElementType(); 2942 } else { 2943 LHS.first = Visit(E->getLHS()); 2944 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2945 CETy = LHSTy; 2946 } 2947 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2948 RHS = CGF.EmitComplexExpr(E->getRHS()); 2949 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2950 CTy->getElementType()) && 2951 "The element types must always match."); 2952 (void)CTy; 2953 } else { 2954 RHS.first = Visit(E->getRHS()); 2955 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2956 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2957 "The element types must always match."); 2958 } 2959 2960 Value *ResultR, *ResultI; 2961 if (CETy->isRealFloatingType()) { 2962 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 2963 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 2964 } else { 2965 // Complex comparisons can only be equality comparisons. As such, signed 2966 // and unsigned opcodes are the same. 2967 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 2968 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 2969 } 2970 2971 if (E->getOpcode() == BO_EQ) { 2972 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2973 } else { 2974 assert(E->getOpcode() == BO_NE && 2975 "Complex comparison other than == or != ?"); 2976 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2977 } 2978 } 2979 2980 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 2981 E->getExprLoc()); 2982} 2983 2984Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 2985 bool Ignore = TestAndClearIgnoreResultAssign(); 2986 2987 Value *RHS; 2988 LValue LHS; 2989 2990 switch (E->getLHS()->getType().getObjCLifetime()) { 2991 case Qualifiers::OCL_Strong: 2992 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 2993 break; 2994 2995 case Qualifiers::OCL_Autoreleasing: 2996 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 2997 break; 2998 2999 case Qualifiers::OCL_Weak: 3000 RHS = Visit(E->getRHS()); 3001 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3002 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3003 break; 3004 3005 // No reason to do any of these differently. 3006 case Qualifiers::OCL_None: 3007 case Qualifiers::OCL_ExplicitNone: 3008 // __block variables need to have the rhs evaluated first, plus 3009 // this should improve codegen just a little. 3010 RHS = Visit(E->getRHS()); 3011 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3012 3013 // Store the value into the LHS. Bit-fields are handled specially 3014 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3015 // 'An assignment expression has the value of the left operand after 3016 // the assignment...'. 3017 if (LHS.isBitField()) 3018 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3019 else 3020 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3021 } 3022 3023 // If the result is clearly ignored, return now. 3024 if (Ignore) 3025 return nullptr; 3026 3027 // The result of an assignment in C is the assigned r-value. 3028 if (!CGF.getLangOpts().CPlusPlus) 3029 return RHS; 3030 3031 // If the lvalue is non-volatile, return the computed value of the assignment. 3032 if (!LHS.isVolatileQualified()) 3033 return RHS; 3034 3035 // Otherwise, reload the value. 3036 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3037} 3038 3039Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3040 // Perform vector logical and on comparisons with zero vectors. 3041 if (E->getType()->isVectorType()) { 3042 CGF.incrementProfileCounter(E); 3043 3044 Value *LHS = Visit(E->getLHS()); 3045 Value *RHS = Visit(E->getRHS()); 3046 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3047 if (LHS->getType()->isFPOrFPVectorTy()) { 3048 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3049 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3050 } else { 3051 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3052 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3053 } 3054 Value *And = Builder.CreateAnd(LHS, RHS); 3055 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3056 } 3057 3058 llvm::Type *ResTy = ConvertType(E->getType()); 3059 3060 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3061 // If we have 1 && X, just emit X without inserting the control flow. 3062 bool LHSCondVal; 3063 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3064 if (LHSCondVal) { // If we have 1 && X, just emit X. 3065 CGF.incrementProfileCounter(E); 3066 3067 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3068 // ZExt result to int or bool. 3069 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3070 } 3071 3072 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3073 if (!CGF.ContainsLabel(E->getRHS())) 3074 return llvm::Constant::getNullValue(ResTy); 3075 } 3076 3077 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3078 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3079 3080 CodeGenFunction::ConditionalEvaluation eval(CGF); 3081 3082 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3083 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3084 CGF.getProfileCount(E->getRHS())); 3085 3086 // Any edges into the ContBlock are now from an (indeterminate number of) 3087 // edges from this first condition. All of these values will be false. Start 3088 // setting up the PHI node in the Cont Block for this. 3089 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3090 "", ContBlock); 3091 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3092 PI != PE; ++PI) 3093 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3094 3095 eval.begin(CGF); 3096 CGF.EmitBlock(RHSBlock); 3097 CGF.incrementProfileCounter(E); 3098 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3099 eval.end(CGF); 3100 3101 // Reaquire the RHS block, as there may be subblocks inserted. 3102 RHSBlock = Builder.GetInsertBlock(); 3103 3104 // Emit an unconditional branch from this block to ContBlock. 3105 { 3106 // There is no need to emit line number for unconditional branch. 3107 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3108 CGF.EmitBlock(ContBlock); 3109 } 3110 // Insert an entry into the phi node for the edge with the value of RHSCond. 3111 PN->addIncoming(RHSCond, RHSBlock); 3112 3113 // ZExt result to int. 3114 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3115} 3116 3117Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3118 // Perform vector logical or on comparisons with zero vectors. 3119 if (E->getType()->isVectorType()) { 3120 CGF.incrementProfileCounter(E); 3121 3122 Value *LHS = Visit(E->getLHS()); 3123 Value *RHS = Visit(E->getRHS()); 3124 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3125 if (LHS->getType()->isFPOrFPVectorTy()) { 3126 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3127 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3128 } else { 3129 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3130 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3131 } 3132 Value *Or = Builder.CreateOr(LHS, RHS); 3133 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3134 } 3135 3136 llvm::Type *ResTy = ConvertType(E->getType()); 3137 3138 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3139 // If we have 0 || X, just emit X without inserting the control flow. 3140 bool LHSCondVal; 3141 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3142 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3143 CGF.incrementProfileCounter(E); 3144 3145 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3146 // ZExt result to int or bool. 3147 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3148 } 3149 3150 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3151 if (!CGF.ContainsLabel(E->getRHS())) 3152 return llvm::ConstantInt::get(ResTy, 1); 3153 } 3154 3155 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3156 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3157 3158 CodeGenFunction::ConditionalEvaluation eval(CGF); 3159 3160 // Branch on the LHS first. If it is true, go to the success (cont) block. 3161 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3162 CGF.getCurrentProfileCount() - 3163 CGF.getProfileCount(E->getRHS())); 3164 3165 // Any edges into the ContBlock are now from an (indeterminate number of) 3166 // edges from this first condition. All of these values will be true. Start 3167 // setting up the PHI node in the Cont Block for this. 3168 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3169 "", ContBlock); 3170 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3171 PI != PE; ++PI) 3172 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3173 3174 eval.begin(CGF); 3175 3176 // Emit the RHS condition as a bool value. 3177 CGF.EmitBlock(RHSBlock); 3178 CGF.incrementProfileCounter(E); 3179 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3180 3181 eval.end(CGF); 3182 3183 // Reaquire the RHS block, as there may be subblocks inserted. 3184 RHSBlock = Builder.GetInsertBlock(); 3185 3186 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3187 // into the phi node for the edge with the value of RHSCond. 3188 CGF.EmitBlock(ContBlock); 3189 PN->addIncoming(RHSCond, RHSBlock); 3190 3191 // ZExt result to int. 3192 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3193} 3194 3195Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3196 CGF.EmitIgnoredExpr(E->getLHS()); 3197 CGF.EnsureInsertPoint(); 3198 return Visit(E->getRHS()); 3199} 3200 3201//===----------------------------------------------------------------------===// 3202// Other Operators 3203//===----------------------------------------------------------------------===// 3204 3205/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3206/// expression is cheap enough and side-effect-free enough to evaluate 3207/// unconditionally instead of conditionally. This is used to convert control 3208/// flow into selects in some cases. 3209static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3210 CodeGenFunction &CGF) { 3211 // Anything that is an integer or floating point constant is fine. 3212 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3213 3214 // Even non-volatile automatic variables can't be evaluated unconditionally. 3215 // Referencing a thread_local may cause non-trivial initialization work to 3216 // occur. If we're inside a lambda and one of the variables is from the scope 3217 // outside the lambda, that function may have returned already. Reading its 3218 // locals is a bad idea. Also, these reads may introduce races there didn't 3219 // exist in the source-level program. 3220} 3221 3222 3223Value *ScalarExprEmitter:: 3224VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3225 TestAndClearIgnoreResultAssign(); 3226 3227 // Bind the common expression if necessary. 3228 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3229 3230 Expr *condExpr = E->getCond(); 3231 Expr *lhsExpr = E->getTrueExpr(); 3232 Expr *rhsExpr = E->getFalseExpr(); 3233 3234 // If the condition constant folds and can be elided, try to avoid emitting 3235 // the condition and the dead arm. 3236 bool CondExprBool; 3237 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3238 Expr *live = lhsExpr, *dead = rhsExpr; 3239 if (!CondExprBool) std::swap(live, dead); 3240 3241 // If the dead side doesn't have labels we need, just emit the Live part. 3242 if (!CGF.ContainsLabel(dead)) { 3243 if (CondExprBool) 3244 CGF.incrementProfileCounter(E); 3245 Value *Result = Visit(live); 3246 3247 // If the live part is a throw expression, it acts like it has a void 3248 // type, so evaluating it returns a null Value*. However, a conditional 3249 // with non-void type must return a non-null Value*. 3250 if (!Result && !E->getType()->isVoidType()) 3251 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3252 3253 return Result; 3254 } 3255 } 3256 3257 // OpenCL: If the condition is a vector, we can treat this condition like 3258 // the select function. 3259 if (CGF.getLangOpts().OpenCL 3260 && condExpr->getType()->isVectorType()) { 3261 CGF.incrementProfileCounter(E); 3262 3263 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3264 llvm::Value *LHS = Visit(lhsExpr); 3265 llvm::Value *RHS = Visit(rhsExpr); 3266 3267 llvm::Type *condType = ConvertType(condExpr->getType()); 3268 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3269 3270 unsigned numElem = vecTy->getNumElements(); 3271 llvm::Type *elemType = vecTy->getElementType(); 3272 3273 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3274 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3275 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3276 llvm::VectorType::get(elemType, 3277 numElem), 3278 "sext"); 3279 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3280 3281 // Cast float to int to perform ANDs if necessary. 3282 llvm::Value *RHSTmp = RHS; 3283 llvm::Value *LHSTmp = LHS; 3284 bool wasCast = false; 3285 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3286 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3287 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3288 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3289 wasCast = true; 3290 } 3291 3292 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3293 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3294 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3295 if (wasCast) 3296 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3297 3298 return tmp5; 3299 } 3300 3301 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3302 // select instead of as control flow. We can only do this if it is cheap and 3303 // safe to evaluate the LHS and RHS unconditionally. 3304 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3305 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3306 CGF.incrementProfileCounter(E); 3307 3308 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3309 llvm::Value *LHS = Visit(lhsExpr); 3310 llvm::Value *RHS = Visit(rhsExpr); 3311 if (!LHS) { 3312 // If the conditional has void type, make sure we return a null Value*. 3313 assert(!RHS && "LHS and RHS types must match"); 3314 return nullptr; 3315 } 3316 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3317 } 3318 3319 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3320 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3321 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3322 3323 CodeGenFunction::ConditionalEvaluation eval(CGF); 3324 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3325 CGF.getProfileCount(lhsExpr)); 3326 3327 CGF.EmitBlock(LHSBlock); 3328 CGF.incrementProfileCounter(E); 3329 eval.begin(CGF); 3330 Value *LHS = Visit(lhsExpr); 3331 eval.end(CGF); 3332 3333 LHSBlock = Builder.GetInsertBlock(); 3334 Builder.CreateBr(ContBlock); 3335 3336 CGF.EmitBlock(RHSBlock); 3337 eval.begin(CGF); 3338 Value *RHS = Visit(rhsExpr); 3339 eval.end(CGF); 3340 3341 RHSBlock = Builder.GetInsertBlock(); 3342 CGF.EmitBlock(ContBlock); 3343 3344 // If the LHS or RHS is a throw expression, it will be legitimately null. 3345 if (!LHS) 3346 return RHS; 3347 if (!RHS) 3348 return LHS; 3349 3350 // Create a PHI node for the real part. 3351 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3352 PN->addIncoming(LHS, LHSBlock); 3353 PN->addIncoming(RHS, RHSBlock); 3354 return PN; 3355} 3356 3357Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3358 return Visit(E->getChosenSubExpr()); 3359} 3360 3361Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3362 QualType Ty = VE->getType(); 3363 3364 if (Ty->isVariablyModifiedType()) 3365 CGF.EmitVariablyModifiedType(Ty); 3366 3367 Address ArgValue = Address::invalid(); 3368 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3369 3370 llvm::Type *ArgTy = ConvertType(VE->getType()); 3371 3372 // If EmitVAArg fails, we fall back to the LLVM instruction. 3373 if (!ArgPtr.isValid()) 3374 return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy); 3375 3376 // FIXME Volatility. 3377 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3378 3379 // If EmitVAArg promoted the type, we must truncate it. 3380 if (ArgTy != Val->getType()) { 3381 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3382 Val = Builder.CreateIntToPtr(Val, ArgTy); 3383 else 3384 Val = Builder.CreateTrunc(Val, ArgTy); 3385 } 3386 3387 return Val; 3388} 3389 3390Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3391 return CGF.EmitBlockLiteral(block); 3392} 3393 3394Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3395 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3396 llvm::Type *DstTy = ConvertType(E->getType()); 3397 3398 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3399 // a shuffle vector instead of a bitcast. 3400 llvm::Type *SrcTy = Src->getType(); 3401 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3402 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3403 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3404 if ((numElementsDst == 3 && numElementsSrc == 4) 3405 || (numElementsDst == 4 && numElementsSrc == 3)) { 3406 3407 3408 // In the case of going from int4->float3, a bitcast is needed before 3409 // doing a shuffle. 3410 llvm::Type *srcElemTy = 3411 cast<llvm::VectorType>(SrcTy)->getElementType(); 3412 llvm::Type *dstElemTy = 3413 cast<llvm::VectorType>(DstTy)->getElementType(); 3414 3415 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3416 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3417 // Create a float type of the same size as the source or destination. 3418 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3419 numElementsSrc); 3420 3421 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3422 } 3423 3424 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3425 3426 SmallVector<llvm::Constant*, 3> Args; 3427 Args.push_back(Builder.getInt32(0)); 3428 Args.push_back(Builder.getInt32(1)); 3429 Args.push_back(Builder.getInt32(2)); 3430 3431 if (numElementsDst == 4) 3432 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3433 3434 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3435 3436 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3437 } 3438 } 3439 3440 return Builder.CreateBitCast(Src, DstTy, "astype"); 3441} 3442 3443Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3444 return CGF.EmitAtomicExpr(E).getScalarVal(); 3445} 3446 3447//===----------------------------------------------------------------------===// 3448// Entry Point into this File 3449//===----------------------------------------------------------------------===// 3450 3451/// Emit the computation of the specified expression of scalar type, ignoring 3452/// the result. 3453Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3454 assert(E && hasScalarEvaluationKind(E->getType()) && 3455 "Invalid scalar expression to emit"); 3456 3457 return ScalarExprEmitter(*this, IgnoreResultAssign) 3458 .Visit(const_cast<Expr *>(E)); 3459} 3460 3461/// Emit a conversion from the specified type to the specified destination type, 3462/// both of which are LLVM scalar types. 3463Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3464 QualType DstTy, 3465 SourceLocation Loc) { 3466 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3467 "Invalid scalar expression to emit"); 3468 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3469} 3470 3471/// Emit a conversion from the specified complex type to the specified 3472/// destination type, where the destination type is an LLVM scalar type. 3473Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3474 QualType SrcTy, 3475 QualType DstTy, 3476 SourceLocation Loc) { 3477 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3478 "Invalid complex -> scalar conversion"); 3479 return ScalarExprEmitter(*this) 3480 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3481} 3482 3483 3484llvm::Value *CodeGenFunction:: 3485EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3486 bool isInc, bool isPre) { 3487 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3488} 3489 3490LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3491 // object->isa or (*object).isa 3492 // Generate code as for: *(Class*)object 3493 3494 Expr *BaseExpr = E->getBase(); 3495 Address Addr = Address::invalid(); 3496 if (BaseExpr->isRValue()) { 3497 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3498 } else { 3499 Addr = EmitLValue(BaseExpr).getAddress(); 3500 } 3501 3502 // Cast the address to Class*. 3503 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3504 return MakeAddrLValue(Addr, E->getType()); 3505} 3506 3507 3508LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3509 const CompoundAssignOperator *E) { 3510 ScalarExprEmitter Scalar(*this); 3511 Value *Result = nullptr; 3512 switch (E->getOpcode()) { 3513#define COMPOUND_OP(Op) \ 3514 case BO_##Op##Assign: \ 3515 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3516 Result) 3517 COMPOUND_OP(Mul); 3518 COMPOUND_OP(Div); 3519 COMPOUND_OP(Rem); 3520 COMPOUND_OP(Add); 3521 COMPOUND_OP(Sub); 3522 COMPOUND_OP(Shl); 3523 COMPOUND_OP(Shr); 3524 COMPOUND_OP(And); 3525 COMPOUND_OP(Xor); 3526 COMPOUND_OP(Or); 3527#undef COMPOUND_OP 3528 3529 case BO_PtrMemD: 3530 case BO_PtrMemI: 3531 case BO_Mul: 3532 case BO_Div: 3533 case BO_Rem: 3534 case BO_Add: 3535 case BO_Sub: 3536 case BO_Shl: 3537 case BO_Shr: 3538 case BO_LT: 3539 case BO_GT: 3540 case BO_LE: 3541 case BO_GE: 3542 case BO_EQ: 3543 case BO_NE: 3544 case BO_And: 3545 case BO_Xor: 3546 case BO_Or: 3547 case BO_LAnd: 3548 case BO_LOr: 3549 case BO_Assign: 3550 case BO_Comma: 3551 llvm_unreachable("Not valid compound assignment operators"); 3552 } 3553 3554 llvm_unreachable("Unhandled compound assignment operator"); 3555} 3556