1//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements C++ template instantiation for declarations. 10// 11//===----------------------------------------------------------------------===/ 12#include "clang/Sema/SemaInternal.h" 13#include "clang/AST/ASTConsumer.h" 14#include "clang/AST/ASTContext.h" 15#include "clang/AST/ASTMutationListener.h" 16#include "clang/AST/DeclTemplate.h" 17#include "clang/AST/DeclVisitor.h" 18#include "clang/AST/DependentDiagnostic.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/TypeLoc.h" 22#include "clang/Sema/Lookup.h" 23#include "clang/Sema/PrettyDeclStackTrace.h" 24#include "clang/Sema/Template.h" 25 26using namespace clang; 27 28static bool isDeclWithinFunction(const Decl *D) { 29 const DeclContext *DC = D->getDeclContext(); 30 if (DC->isFunctionOrMethod()) 31 return true; 32 33 if (DC->isRecord()) 34 return cast<CXXRecordDecl>(DC)->isLocalClass(); 35 36 return false; 37} 38 39template<typename DeclT> 40static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, 41 const MultiLevelTemplateArgumentList &TemplateArgs) { 42 if (!OldDecl->getQualifierLoc()) 43 return false; 44 45 assert((NewDecl->getFriendObjectKind() || 46 !OldDecl->getLexicalDeclContext()->isDependentContext()) && 47 "non-friend with qualified name defined in dependent context"); 48 Sema::ContextRAII SavedContext( 49 SemaRef, 50 const_cast<DeclContext *>(NewDecl->getFriendObjectKind() 51 ? NewDecl->getLexicalDeclContext() 52 : OldDecl->getLexicalDeclContext())); 53 54 NestedNameSpecifierLoc NewQualifierLoc 55 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), 56 TemplateArgs); 57 58 if (!NewQualifierLoc) 59 return true; 60 61 NewDecl->setQualifierInfo(NewQualifierLoc); 62 return false; 63} 64 65bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, 66 DeclaratorDecl *NewDecl) { 67 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 68} 69 70bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, 71 TagDecl *NewDecl) { 72 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); 73} 74 75// Include attribute instantiation code. 76#include "clang/Sema/AttrTemplateInstantiate.inc" 77 78static void instantiateDependentAlignedAttr( 79 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 80 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { 81 if (Aligned->isAlignmentExpr()) { 82 // The alignment expression is a constant expression. 83 EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated); 84 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); 85 if (!Result.isInvalid()) 86 S.AddAlignedAttr(Aligned->getLocation(), New, Result.getAs<Expr>(), 87 Aligned->getSpellingListIndex(), IsPackExpansion); 88 } else { 89 TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(), 90 TemplateArgs, Aligned->getLocation(), 91 DeclarationName()); 92 if (Result) 93 S.AddAlignedAttr(Aligned->getLocation(), New, Result, 94 Aligned->getSpellingListIndex(), IsPackExpansion); 95 } 96} 97 98static void instantiateDependentAlignedAttr( 99 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 100 const AlignedAttr *Aligned, Decl *New) { 101 if (!Aligned->isPackExpansion()) { 102 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 103 return; 104 } 105 106 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 107 if (Aligned->isAlignmentExpr()) 108 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), 109 Unexpanded); 110 else 111 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), 112 Unexpanded); 113 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); 114 115 // Determine whether we can expand this attribute pack yet. 116 bool Expand = true, RetainExpansion = false; 117 Optional<unsigned> NumExpansions; 118 // FIXME: Use the actual location of the ellipsis. 119 SourceLocation EllipsisLoc = Aligned->getLocation(); 120 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), 121 Unexpanded, TemplateArgs, Expand, 122 RetainExpansion, NumExpansions)) 123 return; 124 125 if (!Expand) { 126 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); 127 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); 128 } else { 129 for (unsigned I = 0; I != *NumExpansions; ++I) { 130 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); 131 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); 132 } 133 } 134} 135 136static void instantiateDependentAssumeAlignedAttr( 137 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 138 const AssumeAlignedAttr *Aligned, Decl *New) { 139 // The alignment expression is a constant expression. 140 EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated); 141 142 Expr *E, *OE = nullptr; 143 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 144 if (Result.isInvalid()) 145 return; 146 E = Result.getAs<Expr>(); 147 148 if (Aligned->getOffset()) { 149 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); 150 if (Result.isInvalid()) 151 return; 152 OE = Result.getAs<Expr>(); 153 } 154 155 S.AddAssumeAlignedAttr(Aligned->getLocation(), New, E, OE, 156 Aligned->getSpellingListIndex()); 157} 158 159static void instantiateDependentAlignValueAttr( 160 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 161 const AlignValueAttr *Aligned, Decl *New) { 162 // The alignment expression is a constant expression. 163 EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated); 164 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); 165 if (!Result.isInvalid()) 166 S.AddAlignValueAttr(Aligned->getLocation(), New, Result.getAs<Expr>(), 167 Aligned->getSpellingListIndex()); 168} 169 170static void instantiateDependentEnableIfAttr( 171 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 172 const EnableIfAttr *A, const Decl *Tmpl, Decl *New) { 173 Expr *Cond = nullptr; 174 { 175 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); 176 ExprResult Result = S.SubstExpr(A->getCond(), TemplateArgs); 177 if (Result.isInvalid()) 178 return; 179 Cond = Result.getAs<Expr>(); 180 } 181 if (A->getCond()->isTypeDependent() && !Cond->isTypeDependent()) { 182 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); 183 if (Converted.isInvalid()) 184 return; 185 Cond = Converted.get(); 186 } 187 188 SmallVector<PartialDiagnosticAt, 8> Diags; 189 if (A->getCond()->isValueDependent() && !Cond->isValueDependent() && 190 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(Tmpl), 191 Diags)) { 192 S.Diag(A->getLocation(), diag::err_enable_if_never_constant_expr); 193 for (int I = 0, N = Diags.size(); I != N; ++I) 194 S.Diag(Diags[I].first, Diags[I].second); 195 return; 196 } 197 198 EnableIfAttr *EIA = new (S.getASTContext()) 199 EnableIfAttr(A->getLocation(), S.getASTContext(), Cond, 200 A->getMessage(), 201 A->getSpellingListIndex()); 202 New->addAttr(EIA); 203} 204 205// Constructs and adds to New a new instance of CUDALaunchBoundsAttr using 206// template A as the base and arguments from TemplateArgs. 207static void instantiateDependentCUDALaunchBoundsAttr( 208 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, 209 const CUDALaunchBoundsAttr &Attr, Decl *New) { 210 // The alignment expression is a constant expression. 211 EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated); 212 213 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); 214 if (Result.isInvalid()) 215 return; 216 Expr *MaxThreads = Result.getAs<Expr>(); 217 218 Expr *MinBlocks = nullptr; 219 if (Attr.getMinBlocks()) { 220 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); 221 if (Result.isInvalid()) 222 return; 223 MinBlocks = Result.getAs<Expr>(); 224 } 225 226 S.AddLaunchBoundsAttr(Attr.getLocation(), New, MaxThreads, MinBlocks, 227 Attr.getSpellingListIndex()); 228} 229 230void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, 231 const Decl *Tmpl, Decl *New, 232 LateInstantiatedAttrVec *LateAttrs, 233 LocalInstantiationScope *OuterMostScope) { 234 for (const auto *TmplAttr : Tmpl->attrs()) { 235 // FIXME: This should be generalized to more than just the AlignedAttr. 236 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr); 237 if (Aligned && Aligned->isAlignmentDependent()) { 238 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); 239 continue; 240 } 241 242 const AssumeAlignedAttr *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr); 243 if (AssumeAligned) { 244 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); 245 continue; 246 } 247 248 const AlignValueAttr *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr); 249 if (AlignValue) { 250 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); 251 continue; 252 } 253 254 const EnableIfAttr *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr); 255 if (EnableIf && EnableIf->getCond()->isValueDependent()) { 256 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, 257 New); 258 continue; 259 } 260 261 if (const CUDALaunchBoundsAttr *CUDALaunchBounds = 262 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) { 263 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, 264 *CUDALaunchBounds, New); 265 continue; 266 } 267 268 // Existing DLL attribute on the instantiation takes precedence. 269 if (TmplAttr->getKind() == attr::DLLExport || 270 TmplAttr->getKind() == attr::DLLImport) { 271 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) { 272 continue; 273 } 274 } 275 276 assert(!TmplAttr->isPackExpansion()); 277 if (TmplAttr->isLateParsed() && LateAttrs) { 278 // Late parsed attributes must be instantiated and attached after the 279 // enclosing class has been instantiated. See Sema::InstantiateClass. 280 LocalInstantiationScope *Saved = nullptr; 281 if (CurrentInstantiationScope) 282 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); 283 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); 284 } else { 285 // Allow 'this' within late-parsed attributes. 286 NamedDecl *ND = dyn_cast<NamedDecl>(New); 287 CXXRecordDecl *ThisContext = 288 dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()); 289 CXXThisScopeRAII ThisScope(*this, ThisContext, /*TypeQuals*/0, 290 ND && ND->isCXXInstanceMember()); 291 292 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, 293 *this, TemplateArgs); 294 if (NewAttr) 295 New->addAttr(NewAttr); 296 } 297 } 298} 299 300/// Get the previous declaration of a declaration for the purposes of template 301/// instantiation. If this finds a previous declaration, then the previous 302/// declaration of the instantiation of D should be an instantiation of the 303/// result of this function. 304template<typename DeclT> 305static DeclT *getPreviousDeclForInstantiation(DeclT *D) { 306 DeclT *Result = D->getPreviousDecl(); 307 308 // If the declaration is within a class, and the previous declaration was 309 // merged from a different definition of that class, then we don't have a 310 // previous declaration for the purpose of template instantiation. 311 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) && 312 D->getLexicalDeclContext() != Result->getLexicalDeclContext()) 313 return nullptr; 314 315 return Result; 316} 317 318Decl * 319TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { 320 llvm_unreachable("Translation units cannot be instantiated"); 321} 322 323Decl * 324TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { 325 llvm_unreachable("extern \"C\" context cannot be instantiated"); 326} 327 328Decl * 329TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { 330 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), 331 D->getIdentifier()); 332 Owner->addDecl(Inst); 333 return Inst; 334} 335 336Decl * 337TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { 338 llvm_unreachable("Namespaces cannot be instantiated"); 339} 340 341Decl * 342TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { 343 NamespaceAliasDecl *Inst 344 = NamespaceAliasDecl::Create(SemaRef.Context, Owner, 345 D->getNamespaceLoc(), 346 D->getAliasLoc(), 347 D->getIdentifier(), 348 D->getQualifierLoc(), 349 D->getTargetNameLoc(), 350 D->getNamespace()); 351 Owner->addDecl(Inst); 352 return Inst; 353} 354 355Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, 356 bool IsTypeAlias) { 357 bool Invalid = false; 358 TypeSourceInfo *DI = D->getTypeSourceInfo(); 359 if (DI->getType()->isInstantiationDependentType() || 360 DI->getType()->isVariablyModifiedType()) { 361 DI = SemaRef.SubstType(DI, TemplateArgs, 362 D->getLocation(), D->getDeclName()); 363 if (!DI) { 364 Invalid = true; 365 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); 366 } 367 } else { 368 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 369 } 370 371 // HACK: g++ has a bug where it gets the value kind of ?: wrong. 372 // libstdc++ relies upon this bug in its implementation of common_type. 373 // If we happen to be processing that implementation, fake up the g++ ?: 374 // semantics. See LWG issue 2141 for more information on the bug. 375 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>(); 376 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); 377 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) && 378 DT->isReferenceType() && 379 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && 380 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && 381 D->getIdentifier() && D->getIdentifier()->isStr("type") && 382 SemaRef.getSourceManager().isInSystemHeader(D->getLocStart())) 383 // Fold it to the (non-reference) type which g++ would have produced. 384 DI = SemaRef.Context.getTrivialTypeSourceInfo( 385 DI->getType().getNonReferenceType()); 386 387 // Create the new typedef 388 TypedefNameDecl *Typedef; 389 if (IsTypeAlias) 390 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getLocStart(), 391 D->getLocation(), D->getIdentifier(), DI); 392 else 393 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getLocStart(), 394 D->getLocation(), D->getIdentifier(), DI); 395 if (Invalid) 396 Typedef->setInvalidDecl(); 397 398 // If the old typedef was the name for linkage purposes of an anonymous 399 // tag decl, re-establish that relationship for the new typedef. 400 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { 401 TagDecl *oldTag = oldTagType->getDecl(); 402 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { 403 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); 404 assert(!newTag->hasNameForLinkage()); 405 newTag->setTypedefNameForAnonDecl(Typedef); 406 } 407 } 408 409 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { 410 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, 411 TemplateArgs); 412 if (!InstPrev) 413 return nullptr; 414 415 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev); 416 417 // If the typedef types are not identical, reject them. 418 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); 419 420 Typedef->setPreviousDecl(InstPrevTypedef); 421 } 422 423 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); 424 425 Typedef->setAccess(D->getAccess()); 426 427 return Typedef; 428} 429 430Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { 431 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); 432 if (Typedef) 433 Owner->addDecl(Typedef); 434 return Typedef; 435} 436 437Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { 438 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); 439 if (Typedef) 440 Owner->addDecl(Typedef); 441 return Typedef; 442} 443 444Decl * 445TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { 446 // Create a local instantiation scope for this type alias template, which 447 // will contain the instantiations of the template parameters. 448 LocalInstantiationScope Scope(SemaRef); 449 450 TemplateParameterList *TempParams = D->getTemplateParameters(); 451 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 452 if (!InstParams) 453 return nullptr; 454 455 TypeAliasDecl *Pattern = D->getTemplatedDecl(); 456 457 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; 458 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) { 459 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 460 if (!Found.empty()) { 461 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front()); 462 } 463 } 464 465 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( 466 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); 467 if (!AliasInst) 468 return nullptr; 469 470 TypeAliasTemplateDecl *Inst 471 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), 472 D->getDeclName(), InstParams, AliasInst); 473 AliasInst->setDescribedAliasTemplate(Inst); 474 if (PrevAliasTemplate) 475 Inst->setPreviousDecl(PrevAliasTemplate); 476 477 Inst->setAccess(D->getAccess()); 478 479 if (!PrevAliasTemplate) 480 Inst->setInstantiatedFromMemberTemplate(D); 481 482 Owner->addDecl(Inst); 483 484 return Inst; 485} 486 487Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { 488 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); 489} 490 491Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, 492 bool InstantiatingVarTemplate) { 493 494 // If this is the variable for an anonymous struct or union, 495 // instantiate the anonymous struct/union type first. 496 if (const RecordType *RecordTy = D->getType()->getAs<RecordType>()) 497 if (RecordTy->getDecl()->isAnonymousStructOrUnion()) 498 if (!VisitCXXRecordDecl(cast<CXXRecordDecl>(RecordTy->getDecl()))) 499 return nullptr; 500 501 // Do substitution on the type of the declaration 502 TypeSourceInfo *DI = SemaRef.SubstType(D->getTypeSourceInfo(), 503 TemplateArgs, 504 D->getTypeSpecStartLoc(), 505 D->getDeclName()); 506 if (!DI) 507 return nullptr; 508 509 if (DI->getType()->isFunctionType()) { 510 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 511 << D->isStaticDataMember() << DI->getType(); 512 return nullptr; 513 } 514 515 DeclContext *DC = Owner; 516 if (D->isLocalExternDecl()) 517 SemaRef.adjustContextForLocalExternDecl(DC); 518 519 // Build the instantiated declaration. 520 VarDecl *Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 521 D->getLocation(), D->getIdentifier(), 522 DI->getType(), DI, D->getStorageClass()); 523 524 // In ARC, infer 'retaining' for variables of retainable type. 525 if (SemaRef.getLangOpts().ObjCAutoRefCount && 526 SemaRef.inferObjCARCLifetime(Var)) 527 Var->setInvalidDecl(); 528 529 // Substitute the nested name specifier, if any. 530 if (SubstQualifier(D, Var)) 531 return nullptr; 532 533 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, 534 StartingScope, InstantiatingVarTemplate); 535 536 if (D->isNRVOVariable()) { 537 QualType ReturnType = cast<FunctionDecl>(DC)->getReturnType(); 538 if (SemaRef.isCopyElisionCandidate(ReturnType, Var, false)) 539 Var->setNRVOVariable(true); 540 } 541 542 Var->setImplicit(D->isImplicit()); 543 544 return Var; 545} 546 547Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { 548 AccessSpecDecl* AD 549 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, 550 D->getAccessSpecifierLoc(), D->getColonLoc()); 551 Owner->addHiddenDecl(AD); 552 return AD; 553} 554 555Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { 556 bool Invalid = false; 557 TypeSourceInfo *DI = D->getTypeSourceInfo(); 558 if (DI->getType()->isInstantiationDependentType() || 559 DI->getType()->isVariablyModifiedType()) { 560 DI = SemaRef.SubstType(DI, TemplateArgs, 561 D->getLocation(), D->getDeclName()); 562 if (!DI) { 563 DI = D->getTypeSourceInfo(); 564 Invalid = true; 565 } else if (DI->getType()->isFunctionType()) { 566 // C++ [temp.arg.type]p3: 567 // If a declaration acquires a function type through a type 568 // dependent on a template-parameter and this causes a 569 // declaration that does not use the syntactic form of a 570 // function declarator to have function type, the program is 571 // ill-formed. 572 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 573 << DI->getType(); 574 Invalid = true; 575 } 576 } else { 577 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 578 } 579 580 Expr *BitWidth = D->getBitWidth(); 581 if (Invalid) 582 BitWidth = nullptr; 583 else if (BitWidth) { 584 // The bit-width expression is a constant expression. 585 EnterExpressionEvaluationContext Unevaluated(SemaRef, 586 Sema::ConstantEvaluated); 587 588 ExprResult InstantiatedBitWidth 589 = SemaRef.SubstExpr(BitWidth, TemplateArgs); 590 if (InstantiatedBitWidth.isInvalid()) { 591 Invalid = true; 592 BitWidth = nullptr; 593 } else 594 BitWidth = InstantiatedBitWidth.getAs<Expr>(); 595 } 596 597 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), 598 DI->getType(), DI, 599 cast<RecordDecl>(Owner), 600 D->getLocation(), 601 D->isMutable(), 602 BitWidth, 603 D->getInClassInitStyle(), 604 D->getInnerLocStart(), 605 D->getAccess(), 606 nullptr); 607 if (!Field) { 608 cast<Decl>(Owner)->setInvalidDecl(); 609 return nullptr; 610 } 611 612 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); 613 614 if (Field->hasAttrs()) 615 SemaRef.CheckAlignasUnderalignment(Field); 616 617 if (Invalid) 618 Field->setInvalidDecl(); 619 620 if (!Field->getDeclName()) { 621 // Keep track of where this decl came from. 622 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); 623 } 624 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { 625 if (Parent->isAnonymousStructOrUnion() && 626 Parent->getRedeclContext()->isFunctionOrMethod()) 627 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); 628 } 629 630 Field->setImplicit(D->isImplicit()); 631 Field->setAccess(D->getAccess()); 632 Owner->addDecl(Field); 633 634 return Field; 635} 636 637Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { 638 bool Invalid = false; 639 TypeSourceInfo *DI = D->getTypeSourceInfo(); 640 641 if (DI->getType()->isVariablyModifiedType()) { 642 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) 643 << D; 644 Invalid = true; 645 } else if (DI->getType()->isInstantiationDependentType()) { 646 DI = SemaRef.SubstType(DI, TemplateArgs, 647 D->getLocation(), D->getDeclName()); 648 if (!DI) { 649 DI = D->getTypeSourceInfo(); 650 Invalid = true; 651 } else if (DI->getType()->isFunctionType()) { 652 // C++ [temp.arg.type]p3: 653 // If a declaration acquires a function type through a type 654 // dependent on a template-parameter and this causes a 655 // declaration that does not use the syntactic form of a 656 // function declarator to have function type, the program is 657 // ill-formed. 658 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) 659 << DI->getType(); 660 Invalid = true; 661 } 662 } else { 663 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); 664 } 665 666 MSPropertyDecl *Property = MSPropertyDecl::Create( 667 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), 668 DI, D->getLocStart(), D->getGetterId(), D->getSetterId()); 669 670 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, 671 StartingScope); 672 673 if (Invalid) 674 Property->setInvalidDecl(); 675 676 Property->setAccess(D->getAccess()); 677 Owner->addDecl(Property); 678 679 return Property; 680} 681 682Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { 683 NamedDecl **NamedChain = 684 new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; 685 686 int i = 0; 687 for (auto *PI : D->chain()) { 688 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, 689 TemplateArgs); 690 if (!Next) 691 return nullptr; 692 693 NamedChain[i++] = Next; 694 } 695 696 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); 697 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 698 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, 699 NamedChain, D->getChainingSize()); 700 701 for (const auto *Attr : D->attrs()) 702 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 703 704 IndirectField->setImplicit(D->isImplicit()); 705 IndirectField->setAccess(D->getAccess()); 706 Owner->addDecl(IndirectField); 707 return IndirectField; 708} 709 710Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { 711 // Handle friend type expressions by simply substituting template 712 // parameters into the pattern type and checking the result. 713 if (TypeSourceInfo *Ty = D->getFriendType()) { 714 TypeSourceInfo *InstTy; 715 // If this is an unsupported friend, don't bother substituting template 716 // arguments into it. The actual type referred to won't be used by any 717 // parts of Clang, and may not be valid for instantiating. Just use the 718 // same info for the instantiated friend. 719 if (D->isUnsupportedFriend()) { 720 InstTy = Ty; 721 } else { 722 InstTy = SemaRef.SubstType(Ty, TemplateArgs, 723 D->getLocation(), DeclarationName()); 724 } 725 if (!InstTy) 726 return nullptr; 727 728 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getLocStart(), 729 D->getFriendLoc(), InstTy); 730 if (!FD) 731 return nullptr; 732 733 FD->setAccess(AS_public); 734 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 735 Owner->addDecl(FD); 736 return FD; 737 } 738 739 NamedDecl *ND = D->getFriendDecl(); 740 assert(ND && "friend decl must be a decl or a type!"); 741 742 // All of the Visit implementations for the various potential friend 743 // declarations have to be carefully written to work for friend 744 // objects, with the most important detail being that the target 745 // decl should almost certainly not be placed in Owner. 746 Decl *NewND = Visit(ND); 747 if (!NewND) return nullptr; 748 749 FriendDecl *FD = 750 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), 751 cast<NamedDecl>(NewND), D->getFriendLoc()); 752 FD->setAccess(AS_public); 753 FD->setUnsupportedFriend(D->isUnsupportedFriend()); 754 Owner->addDecl(FD); 755 return FD; 756} 757 758Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { 759 Expr *AssertExpr = D->getAssertExpr(); 760 761 // The expression in a static assertion is a constant expression. 762 EnterExpressionEvaluationContext Unevaluated(SemaRef, 763 Sema::ConstantEvaluated); 764 765 ExprResult InstantiatedAssertExpr 766 = SemaRef.SubstExpr(AssertExpr, TemplateArgs); 767 if (InstantiatedAssertExpr.isInvalid()) 768 return nullptr; 769 770 return SemaRef.BuildStaticAssertDeclaration(D->getLocation(), 771 InstantiatedAssertExpr.get(), 772 D->getMessage(), 773 D->getRParenLoc(), 774 D->isFailed()); 775} 776 777Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { 778 EnumDecl *PrevDecl = nullptr; 779 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 780 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 781 PatternPrev, 782 TemplateArgs); 783 if (!Prev) return nullptr; 784 PrevDecl = cast<EnumDecl>(Prev); 785 } 786 787 EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner, D->getLocStart(), 788 D->getLocation(), D->getIdentifier(), 789 PrevDecl, D->isScoped(), 790 D->isScopedUsingClassTag(), D->isFixed()); 791 if (D->isFixed()) { 792 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { 793 // If we have type source information for the underlying type, it means it 794 // has been explicitly set by the user. Perform substitution on it before 795 // moving on. 796 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 797 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, 798 DeclarationName()); 799 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) 800 Enum->setIntegerType(SemaRef.Context.IntTy); 801 else 802 Enum->setIntegerTypeSourceInfo(NewTI); 803 } else { 804 assert(!D->getIntegerType()->isDependentType() 805 && "Dependent type without type source info"); 806 Enum->setIntegerType(D->getIntegerType()); 807 } 808 } 809 810 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); 811 812 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); 813 Enum->setAccess(D->getAccess()); 814 // Forward the mangling number from the template to the instantiated decl. 815 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); 816 // See if the old tag was defined along with a declarator. 817 // If it did, mark the new tag as being associated with that declarator. 818 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 819 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); 820 // See if the old tag was defined along with a typedef. 821 // If it did, mark the new tag as being associated with that typedef. 822 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 823 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); 824 if (SubstQualifier(D, Enum)) return nullptr; 825 Owner->addDecl(Enum); 826 827 EnumDecl *Def = D->getDefinition(); 828 if (Def && Def != D) { 829 // If this is an out-of-line definition of an enum member template, check 830 // that the underlying types match in the instantiation of both 831 // declarations. 832 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { 833 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 834 QualType DefnUnderlying = 835 SemaRef.SubstType(TI->getType(), TemplateArgs, 836 UnderlyingLoc, DeclarationName()); 837 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), 838 DefnUnderlying, 839 /*EnumUnderlyingIsImplicit=*/false, Enum); 840 } 841 } 842 843 // C++11 [temp.inst]p1: The implicit instantiation of a class template 844 // specialization causes the implicit instantiation of the declarations, but 845 // not the definitions of scoped member enumerations. 846 // 847 // DR1484 clarifies that enumeration definitions inside of a template 848 // declaration aren't considered entities that can be separately instantiated 849 // from the rest of the entity they are declared inside of. 850 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { 851 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); 852 InstantiateEnumDefinition(Enum, Def); 853 } 854 855 return Enum; 856} 857 858void TemplateDeclInstantiator::InstantiateEnumDefinition( 859 EnumDecl *Enum, EnumDecl *Pattern) { 860 Enum->startDefinition(); 861 862 // Update the location to refer to the definition. 863 Enum->setLocation(Pattern->getLocation()); 864 865 SmallVector<Decl*, 4> Enumerators; 866 867 EnumConstantDecl *LastEnumConst = nullptr; 868 for (auto *EC : Pattern->enumerators()) { 869 // The specified value for the enumerator. 870 ExprResult Value((Expr *)nullptr); 871 if (Expr *UninstValue = EC->getInitExpr()) { 872 // The enumerator's value expression is a constant expression. 873 EnterExpressionEvaluationContext Unevaluated(SemaRef, 874 Sema::ConstantEvaluated); 875 876 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); 877 } 878 879 // Drop the initial value and continue. 880 bool isInvalid = false; 881 if (Value.isInvalid()) { 882 Value = nullptr; 883 isInvalid = true; 884 } 885 886 EnumConstantDecl *EnumConst 887 = SemaRef.CheckEnumConstant(Enum, LastEnumConst, 888 EC->getLocation(), EC->getIdentifier(), 889 Value.get()); 890 891 if (isInvalid) { 892 if (EnumConst) 893 EnumConst->setInvalidDecl(); 894 Enum->setInvalidDecl(); 895 } 896 897 if (EnumConst) { 898 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); 899 900 EnumConst->setAccess(Enum->getAccess()); 901 Enum->addDecl(EnumConst); 902 Enumerators.push_back(EnumConst); 903 LastEnumConst = EnumConst; 904 905 if (Pattern->getDeclContext()->isFunctionOrMethod() && 906 !Enum->isScoped()) { 907 // If the enumeration is within a function or method, record the enum 908 // constant as a local. 909 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); 910 } 911 } 912 } 913 914 // FIXME: Fixup LBraceLoc 915 SemaRef.ActOnEnumBody(Enum->getLocation(), SourceLocation(), 916 Enum->getRBraceLoc(), Enum, 917 Enumerators, 918 nullptr, nullptr); 919} 920 921Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { 922 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); 923} 924 925Decl * 926TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { 927 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); 928} 929 930Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { 931 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 932 933 // Create a local instantiation scope for this class template, which 934 // will contain the instantiations of the template parameters. 935 LocalInstantiationScope Scope(SemaRef); 936 TemplateParameterList *TempParams = D->getTemplateParameters(); 937 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 938 if (!InstParams) 939 return nullptr; 940 941 CXXRecordDecl *Pattern = D->getTemplatedDecl(); 942 943 // Instantiate the qualifier. We have to do this first in case 944 // we're a friend declaration, because if we are then we need to put 945 // the new declaration in the appropriate context. 946 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); 947 if (QualifierLoc) { 948 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 949 TemplateArgs); 950 if (!QualifierLoc) 951 return nullptr; 952 } 953 954 CXXRecordDecl *PrevDecl = nullptr; 955 ClassTemplateDecl *PrevClassTemplate = nullptr; 956 957 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { 958 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 959 if (!Found.empty()) { 960 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front()); 961 if (PrevClassTemplate) 962 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 963 } 964 } 965 966 // If this isn't a friend, then it's a member template, in which 967 // case we just want to build the instantiation in the 968 // specialization. If it is a friend, we want to build it in 969 // the appropriate context. 970 DeclContext *DC = Owner; 971 if (isFriend) { 972 if (QualifierLoc) { 973 CXXScopeSpec SS; 974 SS.Adopt(QualifierLoc); 975 DC = SemaRef.computeDeclContext(SS); 976 if (!DC) return nullptr; 977 } else { 978 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), 979 Pattern->getDeclContext(), 980 TemplateArgs); 981 } 982 983 // Look for a previous declaration of the template in the owning 984 // context. 985 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), 986 Sema::LookupOrdinaryName, Sema::ForRedeclaration); 987 SemaRef.LookupQualifiedName(R, DC); 988 989 if (R.isSingleResult()) { 990 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); 991 if (PrevClassTemplate) 992 PrevDecl = PrevClassTemplate->getTemplatedDecl(); 993 } 994 995 if (!PrevClassTemplate && QualifierLoc) { 996 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) 997 << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC 998 << QualifierLoc.getSourceRange(); 999 return nullptr; 1000 } 1001 1002 bool AdoptedPreviousTemplateParams = false; 1003 if (PrevClassTemplate) { 1004 bool Complain = true; 1005 1006 // HACK: libstdc++ 4.2.1 contains an ill-formed friend class 1007 // template for struct std::tr1::__detail::_Map_base, where the 1008 // template parameters of the friend declaration don't match the 1009 // template parameters of the original declaration. In this one 1010 // case, we don't complain about the ill-formed friend 1011 // declaration. 1012 if (isFriend && Pattern->getIdentifier() && 1013 Pattern->getIdentifier()->isStr("_Map_base") && 1014 DC->isNamespace() && 1015 cast<NamespaceDecl>(DC)->getIdentifier() && 1016 cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) { 1017 DeclContext *DCParent = DC->getParent(); 1018 if (DCParent->isNamespace() && 1019 cast<NamespaceDecl>(DCParent)->getIdentifier() && 1020 cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) { 1021 if (cast<Decl>(DCParent)->isInStdNamespace()) 1022 Complain = false; 1023 } 1024 } 1025 1026 TemplateParameterList *PrevParams 1027 = PrevClassTemplate->getTemplateParameters(); 1028 1029 // Make sure the parameter lists match. 1030 if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, 1031 Complain, 1032 Sema::TPL_TemplateMatch)) { 1033 if (Complain) 1034 return nullptr; 1035 1036 AdoptedPreviousTemplateParams = true; 1037 InstParams = PrevParams; 1038 } 1039 1040 // Do some additional validation, then merge default arguments 1041 // from the existing declarations. 1042 if (!AdoptedPreviousTemplateParams && 1043 SemaRef.CheckTemplateParameterList(InstParams, PrevParams, 1044 Sema::TPC_ClassTemplate)) 1045 return nullptr; 1046 } 1047 } 1048 1049 CXXRecordDecl *RecordInst 1050 = CXXRecordDecl::Create(SemaRef.Context, Pattern->getTagKind(), DC, 1051 Pattern->getLocStart(), Pattern->getLocation(), 1052 Pattern->getIdentifier(), PrevDecl, 1053 /*DelayTypeCreation=*/true); 1054 1055 if (QualifierLoc) 1056 RecordInst->setQualifierInfo(QualifierLoc); 1057 1058 ClassTemplateDecl *Inst 1059 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), 1060 D->getIdentifier(), InstParams, RecordInst, 1061 PrevClassTemplate); 1062 RecordInst->setDescribedClassTemplate(Inst); 1063 1064 if (isFriend) { 1065 if (PrevClassTemplate) 1066 Inst->setAccess(PrevClassTemplate->getAccess()); 1067 else 1068 Inst->setAccess(D->getAccess()); 1069 1070 Inst->setObjectOfFriendDecl(); 1071 // TODO: do we want to track the instantiation progeny of this 1072 // friend target decl? 1073 } else { 1074 Inst->setAccess(D->getAccess()); 1075 if (!PrevClassTemplate) 1076 Inst->setInstantiatedFromMemberTemplate(D); 1077 } 1078 1079 // Trigger creation of the type for the instantiation. 1080 SemaRef.Context.getInjectedClassNameType(RecordInst, 1081 Inst->getInjectedClassNameSpecialization()); 1082 1083 // Finish handling of friends. 1084 if (isFriend) { 1085 DC->makeDeclVisibleInContext(Inst); 1086 Inst->setLexicalDeclContext(Owner); 1087 RecordInst->setLexicalDeclContext(Owner); 1088 return Inst; 1089 } 1090 1091 if (D->isOutOfLine()) { 1092 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1093 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1094 } 1095 1096 Owner->addDecl(Inst); 1097 1098 if (!PrevClassTemplate) { 1099 // Queue up any out-of-line partial specializations of this member 1100 // class template; the client will force their instantiation once 1101 // the enclosing class has been instantiated. 1102 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1103 D->getPartialSpecializations(PartialSpecs); 1104 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1105 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1106 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); 1107 } 1108 1109 return Inst; 1110} 1111 1112Decl * 1113TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( 1114 ClassTemplatePartialSpecializationDecl *D) { 1115 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 1116 1117 // Lookup the already-instantiated declaration in the instantiation 1118 // of the class template and return that. 1119 DeclContext::lookup_result Found 1120 = Owner->lookup(ClassTemplate->getDeclName()); 1121 if (Found.empty()) 1122 return nullptr; 1123 1124 ClassTemplateDecl *InstClassTemplate 1125 = dyn_cast<ClassTemplateDecl>(Found.front()); 1126 if (!InstClassTemplate) 1127 return nullptr; 1128 1129 if (ClassTemplatePartialSpecializationDecl *Result 1130 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) 1131 return Result; 1132 1133 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); 1134} 1135 1136Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { 1137 assert(D->getTemplatedDecl()->isStaticDataMember() && 1138 "Only static data member templates are allowed."); 1139 1140 // Create a local instantiation scope for this variable template, which 1141 // will contain the instantiations of the template parameters. 1142 LocalInstantiationScope Scope(SemaRef); 1143 TemplateParameterList *TempParams = D->getTemplateParameters(); 1144 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1145 if (!InstParams) 1146 return nullptr; 1147 1148 VarDecl *Pattern = D->getTemplatedDecl(); 1149 VarTemplateDecl *PrevVarTemplate = nullptr; 1150 1151 if (getPreviousDeclForInstantiation(Pattern)) { 1152 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); 1153 if (!Found.empty()) 1154 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1155 } 1156 1157 VarDecl *VarInst = 1158 cast_or_null<VarDecl>(VisitVarDecl(Pattern, 1159 /*InstantiatingVarTemplate=*/true)); 1160 if (!VarInst) return nullptr; 1161 1162 DeclContext *DC = Owner; 1163 1164 VarTemplateDecl *Inst = VarTemplateDecl::Create( 1165 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, 1166 VarInst); 1167 VarInst->setDescribedVarTemplate(Inst); 1168 Inst->setPreviousDecl(PrevVarTemplate); 1169 1170 Inst->setAccess(D->getAccess()); 1171 if (!PrevVarTemplate) 1172 Inst->setInstantiatedFromMemberTemplate(D); 1173 1174 if (D->isOutOfLine()) { 1175 Inst->setLexicalDeclContext(D->getLexicalDeclContext()); 1176 VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); 1177 } 1178 1179 Owner->addDecl(Inst); 1180 1181 if (!PrevVarTemplate) { 1182 // Queue up any out-of-line partial specializations of this member 1183 // variable template; the client will force their instantiation once 1184 // the enclosing class has been instantiated. 1185 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 1186 D->getPartialSpecializations(PartialSpecs); 1187 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) 1188 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) 1189 OutOfLineVarPartialSpecs.push_back( 1190 std::make_pair(Inst, PartialSpecs[I])); 1191 } 1192 1193 return Inst; 1194} 1195 1196Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( 1197 VarTemplatePartialSpecializationDecl *D) { 1198 assert(D->isStaticDataMember() && 1199 "Only static data member templates are allowed."); 1200 1201 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 1202 1203 // Lookup the already-instantiated declaration and return that. 1204 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); 1205 assert(!Found.empty() && "Instantiation found nothing?"); 1206 1207 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front()); 1208 assert(InstVarTemplate && "Instantiation did not find a variable template?"); 1209 1210 if (VarTemplatePartialSpecializationDecl *Result = 1211 InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) 1212 return Result; 1213 1214 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); 1215} 1216 1217Decl * 1218TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { 1219 // Create a local instantiation scope for this function template, which 1220 // will contain the instantiations of the template parameters and then get 1221 // merged with the local instantiation scope for the function template 1222 // itself. 1223 LocalInstantiationScope Scope(SemaRef); 1224 1225 TemplateParameterList *TempParams = D->getTemplateParameters(); 1226 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1227 if (!InstParams) 1228 return nullptr; 1229 1230 FunctionDecl *Instantiated = nullptr; 1231 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) 1232 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, 1233 InstParams)); 1234 else 1235 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( 1236 D->getTemplatedDecl(), 1237 InstParams)); 1238 1239 if (!Instantiated) 1240 return nullptr; 1241 1242 // Link the instantiated function template declaration to the function 1243 // template from which it was instantiated. 1244 FunctionTemplateDecl *InstTemplate 1245 = Instantiated->getDescribedFunctionTemplate(); 1246 InstTemplate->setAccess(D->getAccess()); 1247 assert(InstTemplate && 1248 "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); 1249 1250 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); 1251 1252 // Link the instantiation back to the pattern *unless* this is a 1253 // non-definition friend declaration. 1254 if (!InstTemplate->getInstantiatedFromMemberTemplate() && 1255 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) 1256 InstTemplate->setInstantiatedFromMemberTemplate(D); 1257 1258 // Make declarations visible in the appropriate context. 1259 if (!isFriend) { 1260 Owner->addDecl(InstTemplate); 1261 } else if (InstTemplate->getDeclContext()->isRecord() && 1262 !getPreviousDeclForInstantiation(D)) { 1263 SemaRef.CheckFriendAccess(InstTemplate); 1264 } 1265 1266 return InstTemplate; 1267} 1268 1269Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { 1270 CXXRecordDecl *PrevDecl = nullptr; 1271 if (D->isInjectedClassName()) 1272 PrevDecl = cast<CXXRecordDecl>(Owner); 1273 else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { 1274 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), 1275 PatternPrev, 1276 TemplateArgs); 1277 if (!Prev) return nullptr; 1278 PrevDecl = cast<CXXRecordDecl>(Prev); 1279 } 1280 1281 CXXRecordDecl *Record 1282 = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, 1283 D->getLocStart(), D->getLocation(), 1284 D->getIdentifier(), PrevDecl); 1285 1286 // Substitute the nested name specifier, if any. 1287 if (SubstQualifier(D, Record)) 1288 return nullptr; 1289 1290 Record->setImplicit(D->isImplicit()); 1291 // FIXME: Check against AS_none is an ugly hack to work around the issue that 1292 // the tag decls introduced by friend class declarations don't have an access 1293 // specifier. Remove once this area of the code gets sorted out. 1294 if (D->getAccess() != AS_none) 1295 Record->setAccess(D->getAccess()); 1296 if (!D->isInjectedClassName()) 1297 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 1298 1299 // If the original function was part of a friend declaration, 1300 // inherit its namespace state. 1301 if (D->getFriendObjectKind()) 1302 Record->setObjectOfFriendDecl(); 1303 1304 // Make sure that anonymous structs and unions are recorded. 1305 if (D->isAnonymousStructOrUnion()) 1306 Record->setAnonymousStructOrUnion(true); 1307 1308 if (D->isLocalClass()) 1309 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); 1310 1311 // Forward the mangling number from the template to the instantiated decl. 1312 SemaRef.Context.setManglingNumber(Record, 1313 SemaRef.Context.getManglingNumber(D)); 1314 1315 // See if the old tag was defined along with a declarator. 1316 // If it did, mark the new tag as being associated with that declarator. 1317 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) 1318 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); 1319 1320 // See if the old tag was defined along with a typedef. 1321 // If it did, mark the new tag as being associated with that typedef. 1322 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) 1323 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); 1324 1325 Owner->addDecl(Record); 1326 1327 // DR1484 clarifies that the members of a local class are instantiated as part 1328 // of the instantiation of their enclosing entity. 1329 if (D->isCompleteDefinition() && D->isLocalClass()) { 1330 Sema::SavePendingLocalImplicitInstantiationsRAII 1331 SavedPendingLocalImplicitInstantiations(SemaRef); 1332 1333 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, 1334 TSK_ImplicitInstantiation, 1335 /*Complain=*/true); 1336 1337 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, 1338 TSK_ImplicitInstantiation); 1339 1340 // This class may have local implicit instantiations that need to be 1341 // performed within this scope. 1342 SemaRef.PerformPendingInstantiations(/*LocalOnly=*/true); 1343 } 1344 1345 SemaRef.DiagnoseUnusedNestedTypedefs(Record); 1346 1347 return Record; 1348} 1349 1350/// \brief Adjust the given function type for an instantiation of the 1351/// given declaration, to cope with modifications to the function's type that 1352/// aren't reflected in the type-source information. 1353/// 1354/// \param D The declaration we're instantiating. 1355/// \param TInfo The already-instantiated type. 1356static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, 1357 FunctionDecl *D, 1358 TypeSourceInfo *TInfo) { 1359 const FunctionProtoType *OrigFunc 1360 = D->getType()->castAs<FunctionProtoType>(); 1361 const FunctionProtoType *NewFunc 1362 = TInfo->getType()->castAs<FunctionProtoType>(); 1363 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) 1364 return TInfo->getType(); 1365 1366 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); 1367 NewEPI.ExtInfo = OrigFunc->getExtInfo(); 1368 return Context.getFunctionType(NewFunc->getReturnType(), 1369 NewFunc->getParamTypes(), NewEPI); 1370} 1371 1372/// Normal class members are of more specific types and therefore 1373/// don't make it here. This function serves two purposes: 1374/// 1) instantiating function templates 1375/// 2) substituting friend declarations 1376Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D, 1377 TemplateParameterList *TemplateParams) { 1378 // Check whether there is already a function template specialization for 1379 // this declaration. 1380 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 1381 if (FunctionTemplate && !TemplateParams) { 1382 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 1383 1384 void *InsertPos = nullptr; 1385 FunctionDecl *SpecFunc 1386 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 1387 1388 // If we already have a function template specialization, return it. 1389 if (SpecFunc) 1390 return SpecFunc; 1391 } 1392 1393 bool isFriend; 1394 if (FunctionTemplate) 1395 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 1396 else 1397 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1398 1399 bool MergeWithParentScope = (TemplateParams != nullptr) || 1400 Owner->isFunctionOrMethod() || 1401 !(isa<Decl>(Owner) && 1402 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 1403 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 1404 1405 SmallVector<ParmVarDecl *, 4> Params; 1406 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 1407 if (!TInfo) 1408 return nullptr; 1409 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 1410 1411 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 1412 if (QualifierLoc) { 1413 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1414 TemplateArgs); 1415 if (!QualifierLoc) 1416 return nullptr; 1417 } 1418 1419 // If we're instantiating a local function declaration, put the result 1420 // in the enclosing namespace; otherwise we need to find the instantiated 1421 // context. 1422 DeclContext *DC; 1423 if (D->isLocalExternDecl()) { 1424 DC = Owner; 1425 SemaRef.adjustContextForLocalExternDecl(DC); 1426 } else if (isFriend && QualifierLoc) { 1427 CXXScopeSpec SS; 1428 SS.Adopt(QualifierLoc); 1429 DC = SemaRef.computeDeclContext(SS); 1430 if (!DC) return nullptr; 1431 } else { 1432 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), 1433 TemplateArgs); 1434 } 1435 1436 FunctionDecl *Function = 1437 FunctionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), 1438 D->getNameInfo(), T, TInfo, 1439 D->getCanonicalDecl()->getStorageClass(), 1440 D->isInlineSpecified(), D->hasWrittenPrototype(), 1441 D->isConstexpr()); 1442 Function->setRangeEnd(D->getSourceRange().getEnd()); 1443 1444 if (D->isInlined()) 1445 Function->setImplicitlyInline(); 1446 1447 if (QualifierLoc) 1448 Function->setQualifierInfo(QualifierLoc); 1449 1450 if (D->isLocalExternDecl()) 1451 Function->setLocalExternDecl(); 1452 1453 DeclContext *LexicalDC = Owner; 1454 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { 1455 assert(D->getDeclContext()->isFileContext()); 1456 LexicalDC = D->getDeclContext(); 1457 } 1458 1459 Function->setLexicalDeclContext(LexicalDC); 1460 1461 // Attach the parameters 1462 for (unsigned P = 0; P < Params.size(); ++P) 1463 if (Params[P]) 1464 Params[P]->setOwningFunction(Function); 1465 Function->setParams(Params); 1466 1467 SourceLocation InstantiateAtPOI; 1468 if (TemplateParams) { 1469 // Our resulting instantiation is actually a function template, since we 1470 // are substituting only the outer template parameters. For example, given 1471 // 1472 // template<typename T> 1473 // struct X { 1474 // template<typename U> friend void f(T, U); 1475 // }; 1476 // 1477 // X<int> x; 1478 // 1479 // We are instantiating the friend function template "f" within X<int>, 1480 // which means substituting int for T, but leaving "f" as a friend function 1481 // template. 1482 // Build the function template itself. 1483 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, 1484 Function->getLocation(), 1485 Function->getDeclName(), 1486 TemplateParams, Function); 1487 Function->setDescribedFunctionTemplate(FunctionTemplate); 1488 1489 FunctionTemplate->setLexicalDeclContext(LexicalDC); 1490 1491 if (isFriend && D->isThisDeclarationADefinition()) { 1492 // TODO: should we remember this connection regardless of whether 1493 // the friend declaration provided a body? 1494 FunctionTemplate->setInstantiatedFromMemberTemplate( 1495 D->getDescribedFunctionTemplate()); 1496 } 1497 } else if (FunctionTemplate) { 1498 // Record this function template specialization. 1499 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 1500 Function->setFunctionTemplateSpecialization(FunctionTemplate, 1501 TemplateArgumentList::CreateCopy(SemaRef.Context, 1502 Innermost.begin(), 1503 Innermost.size()), 1504 /*InsertPos=*/nullptr); 1505 } else if (isFriend) { 1506 // Note, we need this connection even if the friend doesn't have a body. 1507 // Its body may exist but not have been attached yet due to deferred 1508 // parsing. 1509 // FIXME: It might be cleaner to set this when attaching the body to the 1510 // friend function declaration, however that would require finding all the 1511 // instantiations and modifying them. 1512 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 1513 } 1514 1515 if (InitFunctionInstantiation(Function, D)) 1516 Function->setInvalidDecl(); 1517 1518 bool isExplicitSpecialization = false; 1519 1520 LookupResult Previous( 1521 SemaRef, Function->getDeclName(), SourceLocation(), 1522 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 1523 : Sema::LookupOrdinaryName, 1524 Sema::ForRedeclaration); 1525 1526 if (DependentFunctionTemplateSpecializationInfo *Info 1527 = D->getDependentSpecializationInfo()) { 1528 assert(isFriend && "non-friend has dependent specialization info?"); 1529 1530 // This needs to be set now for future sanity. 1531 Function->setObjectOfFriendDecl(); 1532 1533 // Instantiate the explicit template arguments. 1534 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), 1535 Info->getRAngleLoc()); 1536 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), 1537 ExplicitArgs, TemplateArgs)) 1538 return nullptr; 1539 1540 // Map the candidate templates to their instantiations. 1541 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { 1542 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), 1543 Info->getTemplate(I), 1544 TemplateArgs); 1545 if (!Temp) return nullptr; 1546 1547 Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); 1548 } 1549 1550 if (SemaRef.CheckFunctionTemplateSpecialization(Function, 1551 &ExplicitArgs, 1552 Previous)) 1553 Function->setInvalidDecl(); 1554 1555 isExplicitSpecialization = true; 1556 1557 } else if (TemplateParams || !FunctionTemplate) { 1558 // Look only into the namespace where the friend would be declared to 1559 // find a previous declaration. This is the innermost enclosing namespace, 1560 // as described in ActOnFriendFunctionDecl. 1561 SemaRef.LookupQualifiedName(Previous, DC); 1562 1563 // In C++, the previous declaration we find might be a tag type 1564 // (class or enum). In this case, the new declaration will hide the 1565 // tag type. Note that this does does not apply if we're declaring a 1566 // typedef (C++ [dcl.typedef]p4). 1567 if (Previous.isSingleTagDecl()) 1568 Previous.clear(); 1569 } 1570 1571 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, 1572 isExplicitSpecialization); 1573 1574 NamedDecl *PrincipalDecl = (TemplateParams 1575 ? cast<NamedDecl>(FunctionTemplate) 1576 : Function); 1577 1578 // If the original function was part of a friend declaration, 1579 // inherit its namespace state and add it to the owner. 1580 if (isFriend) { 1581 PrincipalDecl->setObjectOfFriendDecl(); 1582 DC->makeDeclVisibleInContext(PrincipalDecl); 1583 1584 bool QueuedInstantiation = false; 1585 1586 // C++11 [temp.friend]p4 (DR329): 1587 // When a function is defined in a friend function declaration in a class 1588 // template, the function is instantiated when the function is odr-used. 1589 // The same restrictions on multiple declarations and definitions that 1590 // apply to non-template function declarations and definitions also apply 1591 // to these implicit definitions. 1592 if (D->isThisDeclarationADefinition()) { 1593 // Check for a function body. 1594 const FunctionDecl *Definition = nullptr; 1595 if (Function->isDefined(Definition) && 1596 Definition->getTemplateSpecializationKind() == TSK_Undeclared) { 1597 SemaRef.Diag(Function->getLocation(), diag::err_redefinition) 1598 << Function->getDeclName(); 1599 SemaRef.Diag(Definition->getLocation(), diag::note_previous_definition); 1600 } 1601 // Check for redefinitions due to other instantiations of this or 1602 // a similar friend function. 1603 else for (auto R : Function->redecls()) { 1604 if (R == Function) 1605 continue; 1606 1607 // If some prior declaration of this function has been used, we need 1608 // to instantiate its definition. 1609 if (!QueuedInstantiation && R->isUsed(false)) { 1610 if (MemberSpecializationInfo *MSInfo = 1611 Function->getMemberSpecializationInfo()) { 1612 if (MSInfo->getPointOfInstantiation().isInvalid()) { 1613 SourceLocation Loc = R->getLocation(); // FIXME 1614 MSInfo->setPointOfInstantiation(Loc); 1615 SemaRef.PendingLocalImplicitInstantiations.push_back( 1616 std::make_pair(Function, Loc)); 1617 QueuedInstantiation = true; 1618 } 1619 } 1620 } 1621 1622 // If some prior declaration of this function was a friend with an 1623 // uninstantiated definition, reject it. 1624 if (R->getFriendObjectKind()) { 1625 if (const FunctionDecl *RPattern = 1626 R->getTemplateInstantiationPattern()) { 1627 if (RPattern->isDefined(RPattern)) { 1628 SemaRef.Diag(Function->getLocation(), diag::err_redefinition) 1629 << Function->getDeclName(); 1630 SemaRef.Diag(R->getLocation(), diag::note_previous_definition); 1631 break; 1632 } 1633 } 1634 } 1635 } 1636 } 1637 } 1638 1639 if (Function->isLocalExternDecl() && !Function->getPreviousDecl()) 1640 DC->makeDeclVisibleInContext(PrincipalDecl); 1641 1642 if (Function->isOverloadedOperator() && !DC->isRecord() && 1643 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 1644 PrincipalDecl->setNonMemberOperator(); 1645 1646 assert(!D->isDefaulted() && "only methods should be defaulted"); 1647 return Function; 1648} 1649 1650Decl * 1651TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D, 1652 TemplateParameterList *TemplateParams, 1653 bool IsClassScopeSpecialization) { 1654 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); 1655 if (FunctionTemplate && !TemplateParams) { 1656 // We are creating a function template specialization from a function 1657 // template. Check whether there is already a function template 1658 // specialization for this particular set of template arguments. 1659 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 1660 1661 void *InsertPos = nullptr; 1662 FunctionDecl *SpecFunc 1663 = FunctionTemplate->findSpecialization(Innermost, InsertPos); 1664 1665 // If we already have a function template specialization, return it. 1666 if (SpecFunc) 1667 return SpecFunc; 1668 } 1669 1670 bool isFriend; 1671 if (FunctionTemplate) 1672 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); 1673 else 1674 isFriend = (D->getFriendObjectKind() != Decl::FOK_None); 1675 1676 bool MergeWithParentScope = (TemplateParams != nullptr) || 1677 !(isa<Decl>(Owner) && 1678 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); 1679 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); 1680 1681 // Instantiate enclosing template arguments for friends. 1682 SmallVector<TemplateParameterList *, 4> TempParamLists; 1683 unsigned NumTempParamLists = 0; 1684 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { 1685 TempParamLists.resize(NumTempParamLists); 1686 for (unsigned I = 0; I != NumTempParamLists; ++I) { 1687 TemplateParameterList *TempParams = D->getTemplateParameterList(I); 1688 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 1689 if (!InstParams) 1690 return nullptr; 1691 TempParamLists[I] = InstParams; 1692 } 1693 } 1694 1695 SmallVector<ParmVarDecl *, 4> Params; 1696 TypeSourceInfo *TInfo = SubstFunctionType(D, Params); 1697 if (!TInfo) 1698 return nullptr; 1699 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); 1700 1701 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); 1702 if (QualifierLoc) { 1703 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 1704 TemplateArgs); 1705 if (!QualifierLoc) 1706 return nullptr; 1707 } 1708 1709 DeclContext *DC = Owner; 1710 if (isFriend) { 1711 if (QualifierLoc) { 1712 CXXScopeSpec SS; 1713 SS.Adopt(QualifierLoc); 1714 DC = SemaRef.computeDeclContext(SS); 1715 1716 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) 1717 return nullptr; 1718 } else { 1719 DC = SemaRef.FindInstantiatedContext(D->getLocation(), 1720 D->getDeclContext(), 1721 TemplateArgs); 1722 } 1723 if (!DC) return nullptr; 1724 } 1725 1726 // Build the instantiated method declaration. 1727 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 1728 CXXMethodDecl *Method = nullptr; 1729 1730 SourceLocation StartLoc = D->getInnerLocStart(); 1731 DeclarationNameInfo NameInfo 1732 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 1733 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { 1734 Method = CXXConstructorDecl::Create(SemaRef.Context, Record, 1735 StartLoc, NameInfo, T, TInfo, 1736 Constructor->isExplicit(), 1737 Constructor->isInlineSpecified(), 1738 false, Constructor->isConstexpr()); 1739 1740 // Claim that the instantiation of a constructor or constructor template 1741 // inherits the same constructor that the template does. 1742 if (CXXConstructorDecl *Inh = const_cast<CXXConstructorDecl *>( 1743 Constructor->getInheritedConstructor())) { 1744 // If we're instantiating a specialization of a function template, our 1745 // "inherited constructor" will actually itself be a function template. 1746 // Instantiate a declaration of it, too. 1747 if (FunctionTemplate) { 1748 assert(!TemplateParams && Inh->getDescribedFunctionTemplate() && 1749 !Inh->getParent()->isDependentContext() && 1750 "inheriting constructor template in dependent context?"); 1751 Sema::InstantiatingTemplate Inst(SemaRef, Constructor->getLocation(), 1752 Inh); 1753 if (Inst.isInvalid()) 1754 return nullptr; 1755 Sema::ContextRAII SavedContext(SemaRef, Inh->getDeclContext()); 1756 LocalInstantiationScope LocalScope(SemaRef); 1757 1758 // Use the same template arguments that we deduced for the inheriting 1759 // constructor. There's no way they could be deduced differently. 1760 MultiLevelTemplateArgumentList InheritedArgs; 1761 InheritedArgs.addOuterTemplateArguments(TemplateArgs.getInnermost()); 1762 Inh = cast_or_null<CXXConstructorDecl>( 1763 SemaRef.SubstDecl(Inh, Inh->getDeclContext(), InheritedArgs)); 1764 if (!Inh) 1765 return nullptr; 1766 } 1767 cast<CXXConstructorDecl>(Method)->setInheritedConstructor(Inh); 1768 } 1769 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { 1770 Method = CXXDestructorDecl::Create(SemaRef.Context, Record, 1771 StartLoc, NameInfo, T, TInfo, 1772 Destructor->isInlineSpecified(), 1773 false); 1774 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { 1775 Method = CXXConversionDecl::Create(SemaRef.Context, Record, 1776 StartLoc, NameInfo, T, TInfo, 1777 Conversion->isInlineSpecified(), 1778 Conversion->isExplicit(), 1779 Conversion->isConstexpr(), 1780 Conversion->getLocEnd()); 1781 } else { 1782 StorageClass SC = D->isStatic() ? SC_Static : SC_None; 1783 Method = CXXMethodDecl::Create(SemaRef.Context, Record, 1784 StartLoc, NameInfo, T, TInfo, 1785 SC, D->isInlineSpecified(), 1786 D->isConstexpr(), D->getLocEnd()); 1787 } 1788 1789 if (D->isInlined()) 1790 Method->setImplicitlyInline(); 1791 1792 if (QualifierLoc) 1793 Method->setQualifierInfo(QualifierLoc); 1794 1795 if (TemplateParams) { 1796 // Our resulting instantiation is actually a function template, since we 1797 // are substituting only the outer template parameters. For example, given 1798 // 1799 // template<typename T> 1800 // struct X { 1801 // template<typename U> void f(T, U); 1802 // }; 1803 // 1804 // X<int> x; 1805 // 1806 // We are instantiating the member template "f" within X<int>, which means 1807 // substituting int for T, but leaving "f" as a member function template. 1808 // Build the function template itself. 1809 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, 1810 Method->getLocation(), 1811 Method->getDeclName(), 1812 TemplateParams, Method); 1813 if (isFriend) { 1814 FunctionTemplate->setLexicalDeclContext(Owner); 1815 FunctionTemplate->setObjectOfFriendDecl(); 1816 } else if (D->isOutOfLine()) 1817 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); 1818 Method->setDescribedFunctionTemplate(FunctionTemplate); 1819 } else if (FunctionTemplate) { 1820 // Record this function template specialization. 1821 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost(); 1822 Method->setFunctionTemplateSpecialization(FunctionTemplate, 1823 TemplateArgumentList::CreateCopy(SemaRef.Context, 1824 Innermost.begin(), 1825 Innermost.size()), 1826 /*InsertPos=*/nullptr); 1827 } else if (!isFriend) { 1828 // Record that this is an instantiation of a member function. 1829 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); 1830 } 1831 1832 // If we are instantiating a member function defined 1833 // out-of-line, the instantiation will have the same lexical 1834 // context (which will be a namespace scope) as the template. 1835 if (isFriend) { 1836 if (NumTempParamLists) 1837 Method->setTemplateParameterListsInfo( 1838 SemaRef.Context, 1839 llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists)); 1840 1841 Method->setLexicalDeclContext(Owner); 1842 Method->setObjectOfFriendDecl(); 1843 } else if (D->isOutOfLine()) 1844 Method->setLexicalDeclContext(D->getLexicalDeclContext()); 1845 1846 // Attach the parameters 1847 for (unsigned P = 0; P < Params.size(); ++P) 1848 Params[P]->setOwningFunction(Method); 1849 Method->setParams(Params); 1850 1851 if (InitMethodInstantiation(Method, D)) 1852 Method->setInvalidDecl(); 1853 1854 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, 1855 Sema::ForRedeclaration); 1856 1857 if (!FunctionTemplate || TemplateParams || isFriend) { 1858 SemaRef.LookupQualifiedName(Previous, Record); 1859 1860 // In C++, the previous declaration we find might be a tag type 1861 // (class or enum). In this case, the new declaration will hide the 1862 // tag type. Note that this does does not apply if we're declaring a 1863 // typedef (C++ [dcl.typedef]p4). 1864 if (Previous.isSingleTagDecl()) 1865 Previous.clear(); 1866 } 1867 1868 if (!IsClassScopeSpecialization) 1869 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, false); 1870 1871 if (D->isPure()) 1872 SemaRef.CheckPureMethod(Method, SourceRange()); 1873 1874 // Propagate access. For a non-friend declaration, the access is 1875 // whatever we're propagating from. For a friend, it should be the 1876 // previous declaration we just found. 1877 if (isFriend && Method->getPreviousDecl()) 1878 Method->setAccess(Method->getPreviousDecl()->getAccess()); 1879 else 1880 Method->setAccess(D->getAccess()); 1881 if (FunctionTemplate) 1882 FunctionTemplate->setAccess(Method->getAccess()); 1883 1884 SemaRef.CheckOverrideControl(Method); 1885 1886 // If a function is defined as defaulted or deleted, mark it as such now. 1887 if (D->isExplicitlyDefaulted()) 1888 SemaRef.SetDeclDefaulted(Method, Method->getLocation()); 1889 if (D->isDeletedAsWritten()) 1890 SemaRef.SetDeclDeleted(Method, Method->getLocation()); 1891 1892 // If there's a function template, let our caller handle it. 1893 if (FunctionTemplate) { 1894 // do nothing 1895 1896 // Don't hide a (potentially) valid declaration with an invalid one. 1897 } else if (Method->isInvalidDecl() && !Previous.empty()) { 1898 // do nothing 1899 1900 // Otherwise, check access to friends and make them visible. 1901 } else if (isFriend) { 1902 // We only need to re-check access for methods which we didn't 1903 // manage to match during parsing. 1904 if (!D->getPreviousDecl()) 1905 SemaRef.CheckFriendAccess(Method); 1906 1907 Record->makeDeclVisibleInContext(Method); 1908 1909 // Otherwise, add the declaration. We don't need to do this for 1910 // class-scope specializations because we'll have matched them with 1911 // the appropriate template. 1912 } else if (!IsClassScopeSpecialization) { 1913 Owner->addDecl(Method); 1914 } 1915 1916 return Method; 1917} 1918 1919Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { 1920 return VisitCXXMethodDecl(D); 1921} 1922 1923Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { 1924 return VisitCXXMethodDecl(D); 1925} 1926 1927Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { 1928 return VisitCXXMethodDecl(D); 1929} 1930 1931Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { 1932 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None, 1933 /*ExpectParameterPack=*/ false); 1934} 1935 1936Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( 1937 TemplateTypeParmDecl *D) { 1938 // TODO: don't always clone when decls are refcounted. 1939 assert(D->getTypeForDecl()->isTemplateTypeParmType()); 1940 1941 TemplateTypeParmDecl *Inst = 1942 TemplateTypeParmDecl::Create(SemaRef.Context, Owner, 1943 D->getLocStart(), D->getLocation(), 1944 D->getDepth() - TemplateArgs.getNumLevels(), 1945 D->getIndex(), D->getIdentifier(), 1946 D->wasDeclaredWithTypename(), 1947 D->isParameterPack()); 1948 Inst->setAccess(AS_public); 1949 1950 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 1951 TypeSourceInfo *InstantiatedDefaultArg = 1952 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs, 1953 D->getDefaultArgumentLoc(), D->getDeclName()); 1954 if (InstantiatedDefaultArg) 1955 Inst->setDefaultArgument(InstantiatedDefaultArg); 1956 } 1957 1958 // Introduce this template parameter's instantiation into the instantiation 1959 // scope. 1960 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); 1961 1962 return Inst; 1963} 1964 1965Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( 1966 NonTypeTemplateParmDecl *D) { 1967 // Substitute into the type of the non-type template parameter. 1968 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); 1969 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; 1970 SmallVector<QualType, 4> ExpandedParameterPackTypes; 1971 bool IsExpandedParameterPack = false; 1972 TypeSourceInfo *DI; 1973 QualType T; 1974 bool Invalid = false; 1975 1976 if (D->isExpandedParameterPack()) { 1977 // The non-type template parameter pack is an already-expanded pack 1978 // expansion of types. Substitute into each of the expanded types. 1979 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); 1980 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); 1981 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { 1982 TypeSourceInfo *NewDI =SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), 1983 TemplateArgs, 1984 D->getLocation(), 1985 D->getDeclName()); 1986 if (!NewDI) 1987 return nullptr; 1988 1989 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 1990 QualType NewT =SemaRef.CheckNonTypeTemplateParameterType(NewDI->getType(), 1991 D->getLocation()); 1992 if (NewT.isNull()) 1993 return nullptr; 1994 ExpandedParameterPackTypes.push_back(NewT); 1995 } 1996 1997 IsExpandedParameterPack = true; 1998 DI = D->getTypeSourceInfo(); 1999 T = DI->getType(); 2000 } else if (D->isPackExpansion()) { 2001 // The non-type template parameter pack's type is a pack expansion of types. 2002 // Determine whether we need to expand this parameter pack into separate 2003 // types. 2004 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>(); 2005 TypeLoc Pattern = Expansion.getPatternLoc(); 2006 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2007 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); 2008 2009 // Determine whether the set of unexpanded parameter packs can and should 2010 // be expanded. 2011 bool Expand = true; 2012 bool RetainExpansion = false; 2013 Optional<unsigned> OrigNumExpansions 2014 = Expansion.getTypePtr()->getNumExpansions(); 2015 Optional<unsigned> NumExpansions = OrigNumExpansions; 2016 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), 2017 Pattern.getSourceRange(), 2018 Unexpanded, 2019 TemplateArgs, 2020 Expand, RetainExpansion, 2021 NumExpansions)) 2022 return nullptr; 2023 2024 if (Expand) { 2025 for (unsigned I = 0; I != *NumExpansions; ++I) { 2026 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 2027 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, 2028 D->getLocation(), 2029 D->getDeclName()); 2030 if (!NewDI) 2031 return nullptr; 2032 2033 ExpandedParameterPackTypesAsWritten.push_back(NewDI); 2034 QualType NewT = SemaRef.CheckNonTypeTemplateParameterType( 2035 NewDI->getType(), 2036 D->getLocation()); 2037 if (NewT.isNull()) 2038 return nullptr; 2039 ExpandedParameterPackTypes.push_back(NewT); 2040 } 2041 2042 // Note that we have an expanded parameter pack. The "type" of this 2043 // expanded parameter pack is the original expansion type, but callers 2044 // will end up using the expanded parameter pack types for type-checking. 2045 IsExpandedParameterPack = true; 2046 DI = D->getTypeSourceInfo(); 2047 T = DI->getType(); 2048 } else { 2049 // We cannot fully expand the pack expansion now, so substitute into the 2050 // pattern and create a new pack expansion type. 2051 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 2052 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, 2053 D->getLocation(), 2054 D->getDeclName()); 2055 if (!NewPattern) 2056 return nullptr; 2057 2058 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), 2059 NumExpansions); 2060 if (!DI) 2061 return nullptr; 2062 2063 T = DI->getType(); 2064 } 2065 } else { 2066 // Simple case: substitution into a parameter that is not a parameter pack. 2067 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 2068 D->getLocation(), D->getDeclName()); 2069 if (!DI) 2070 return nullptr; 2071 2072 // Check that this type is acceptable for a non-type template parameter. 2073 T = SemaRef.CheckNonTypeTemplateParameterType(DI->getType(), 2074 D->getLocation()); 2075 if (T.isNull()) { 2076 T = SemaRef.Context.IntTy; 2077 Invalid = true; 2078 } 2079 } 2080 2081 NonTypeTemplateParmDecl *Param; 2082 if (IsExpandedParameterPack) 2083 Param = NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner, 2084 D->getInnerLocStart(), 2085 D->getLocation(), 2086 D->getDepth() - TemplateArgs.getNumLevels(), 2087 D->getPosition(), 2088 D->getIdentifier(), T, 2089 DI, 2090 ExpandedParameterPackTypes.data(), 2091 ExpandedParameterPackTypes.size(), 2092 ExpandedParameterPackTypesAsWritten.data()); 2093 else 2094 Param = NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner, 2095 D->getInnerLocStart(), 2096 D->getLocation(), 2097 D->getDepth() - TemplateArgs.getNumLevels(), 2098 D->getPosition(), 2099 D->getIdentifier(), T, 2100 D->isParameterPack(), DI); 2101 2102 Param->setAccess(AS_public); 2103 if (Invalid) 2104 Param->setInvalidDecl(); 2105 2106 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2107 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs); 2108 if (!Value.isInvalid()) 2109 Param->setDefaultArgument(Value.get()); 2110 } 2111 2112 // Introduce this template parameter's instantiation into the instantiation 2113 // scope. 2114 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 2115 return Param; 2116} 2117 2118static void collectUnexpandedParameterPacks( 2119 Sema &S, 2120 TemplateParameterList *Params, 2121 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) { 2122 for (const auto &P : *Params) { 2123 if (P->isTemplateParameterPack()) 2124 continue; 2125 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) 2126 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), 2127 Unexpanded); 2128 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P)) 2129 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), 2130 Unexpanded); 2131 } 2132} 2133 2134Decl * 2135TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( 2136 TemplateTemplateParmDecl *D) { 2137 // Instantiate the template parameter list of the template template parameter. 2138 TemplateParameterList *TempParams = D->getTemplateParameters(); 2139 TemplateParameterList *InstParams; 2140 SmallVector<TemplateParameterList*, 8> ExpandedParams; 2141 2142 bool IsExpandedParameterPack = false; 2143 2144 if (D->isExpandedParameterPack()) { 2145 // The template template parameter pack is an already-expanded pack 2146 // expansion of template parameters. Substitute into each of the expanded 2147 // parameters. 2148 ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); 2149 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); 2150 I != N; ++I) { 2151 LocalInstantiationScope Scope(SemaRef); 2152 TemplateParameterList *Expansion = 2153 SubstTemplateParams(D->getExpansionTemplateParameters(I)); 2154 if (!Expansion) 2155 return nullptr; 2156 ExpandedParams.push_back(Expansion); 2157 } 2158 2159 IsExpandedParameterPack = true; 2160 InstParams = TempParams; 2161 } else if (D->isPackExpansion()) { 2162 // The template template parameter pack expands to a pack of template 2163 // template parameters. Determine whether we need to expand this parameter 2164 // pack into separate parameters. 2165 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 2166 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), 2167 Unexpanded); 2168 2169 // Determine whether the set of unexpanded parameter packs can and should 2170 // be expanded. 2171 bool Expand = true; 2172 bool RetainExpansion = false; 2173 Optional<unsigned> NumExpansions; 2174 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), 2175 TempParams->getSourceRange(), 2176 Unexpanded, 2177 TemplateArgs, 2178 Expand, RetainExpansion, 2179 NumExpansions)) 2180 return nullptr; 2181 2182 if (Expand) { 2183 for (unsigned I = 0; I != *NumExpansions; ++I) { 2184 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); 2185 LocalInstantiationScope Scope(SemaRef); 2186 TemplateParameterList *Expansion = SubstTemplateParams(TempParams); 2187 if (!Expansion) 2188 return nullptr; 2189 ExpandedParams.push_back(Expansion); 2190 } 2191 2192 // Note that we have an expanded parameter pack. The "type" of this 2193 // expanded parameter pack is the original expansion type, but callers 2194 // will end up using the expanded parameter pack types for type-checking. 2195 IsExpandedParameterPack = true; 2196 InstParams = TempParams; 2197 } else { 2198 // We cannot fully expand the pack expansion now, so just substitute 2199 // into the pattern. 2200 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); 2201 2202 LocalInstantiationScope Scope(SemaRef); 2203 InstParams = SubstTemplateParams(TempParams); 2204 if (!InstParams) 2205 return nullptr; 2206 } 2207 } else { 2208 // Perform the actual substitution of template parameters within a new, 2209 // local instantiation scope. 2210 LocalInstantiationScope Scope(SemaRef); 2211 InstParams = SubstTemplateParams(TempParams); 2212 if (!InstParams) 2213 return nullptr; 2214 } 2215 2216 // Build the template template parameter. 2217 TemplateTemplateParmDecl *Param; 2218 if (IsExpandedParameterPack) 2219 Param = TemplateTemplateParmDecl::Create(SemaRef.Context, Owner, 2220 D->getLocation(), 2221 D->getDepth() - TemplateArgs.getNumLevels(), 2222 D->getPosition(), 2223 D->getIdentifier(), InstParams, 2224 ExpandedParams); 2225 else 2226 Param = TemplateTemplateParmDecl::Create(SemaRef.Context, Owner, 2227 D->getLocation(), 2228 D->getDepth() - TemplateArgs.getNumLevels(), 2229 D->getPosition(), 2230 D->isParameterPack(), 2231 D->getIdentifier(), InstParams); 2232 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { 2233 NestedNameSpecifierLoc QualifierLoc = 2234 D->getDefaultArgument().getTemplateQualifierLoc(); 2235 QualifierLoc = 2236 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); 2237 TemplateName TName = SemaRef.SubstTemplateName( 2238 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), 2239 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); 2240 if (!TName.isNull()) 2241 Param->setDefaultArgument( 2242 SemaRef.Context, 2243 TemplateArgumentLoc(TemplateArgument(TName), 2244 D->getDefaultArgument().getTemplateQualifierLoc(), 2245 D->getDefaultArgument().getTemplateNameLoc())); 2246 } 2247 Param->setAccess(AS_public); 2248 2249 // Introduce this template parameter's instantiation into the instantiation 2250 // scope. 2251 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); 2252 2253 return Param; 2254} 2255 2256Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { 2257 // Using directives are never dependent (and never contain any types or 2258 // expressions), so they require no explicit instantiation work. 2259 2260 UsingDirectiveDecl *Inst 2261 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), 2262 D->getNamespaceKeyLocation(), 2263 D->getQualifierLoc(), 2264 D->getIdentLocation(), 2265 D->getNominatedNamespace(), 2266 D->getCommonAncestor()); 2267 2268 // Add the using directive to its declaration context 2269 // only if this is not a function or method. 2270 if (!Owner->isFunctionOrMethod()) 2271 Owner->addDecl(Inst); 2272 2273 return Inst; 2274} 2275 2276Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { 2277 2278 // The nested name specifier may be dependent, for example 2279 // template <typename T> struct t { 2280 // struct s1 { T f1(); }; 2281 // struct s2 : s1 { using s1::f1; }; 2282 // }; 2283 // template struct t<int>; 2284 // Here, in using s1::f1, s1 refers to t<T>::s1; 2285 // we need to substitute for t<int>::s1. 2286 NestedNameSpecifierLoc QualifierLoc 2287 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 2288 TemplateArgs); 2289 if (!QualifierLoc) 2290 return nullptr; 2291 2292 // The name info is non-dependent, so no transformation 2293 // is required. 2294 DeclarationNameInfo NameInfo = D->getNameInfo(); 2295 2296 // We only need to do redeclaration lookups if we're in a class 2297 // scope (in fact, it's not really even possible in non-class 2298 // scopes). 2299 bool CheckRedeclaration = Owner->isRecord(); 2300 2301 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, 2302 Sema::ForRedeclaration); 2303 2304 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, 2305 D->getUsingLoc(), 2306 QualifierLoc, 2307 NameInfo, 2308 D->hasTypename()); 2309 2310 CXXScopeSpec SS; 2311 SS.Adopt(QualifierLoc); 2312 if (CheckRedeclaration) { 2313 Prev.setHideTags(false); 2314 SemaRef.LookupQualifiedName(Prev, Owner); 2315 2316 // Check for invalid redeclarations. 2317 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), 2318 D->hasTypename(), SS, 2319 D->getLocation(), Prev)) 2320 NewUD->setInvalidDecl(); 2321 2322 } 2323 2324 if (!NewUD->isInvalidDecl() && 2325 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), SS, NameInfo, 2326 D->getLocation())) 2327 NewUD->setInvalidDecl(); 2328 2329 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); 2330 NewUD->setAccess(D->getAccess()); 2331 Owner->addDecl(NewUD); 2332 2333 // Don't process the shadow decls for an invalid decl. 2334 if (NewUD->isInvalidDecl()) 2335 return NewUD; 2336 2337 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) { 2338 SemaRef.CheckInheritingConstructorUsingDecl(NewUD); 2339 return NewUD; 2340 } 2341 2342 bool isFunctionScope = Owner->isFunctionOrMethod(); 2343 2344 // Process the shadow decls. 2345 for (auto *Shadow : D->shadows()) { 2346 NamedDecl *InstTarget = 2347 cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( 2348 Shadow->getLocation(), Shadow->getTargetDecl(), TemplateArgs)); 2349 if (!InstTarget) 2350 return nullptr; 2351 2352 UsingShadowDecl *PrevDecl = nullptr; 2353 if (CheckRedeclaration) { 2354 if (SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev, PrevDecl)) 2355 continue; 2356 } else if (UsingShadowDecl *OldPrev = 2357 getPreviousDeclForInstantiation(Shadow)) { 2358 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl( 2359 Shadow->getLocation(), OldPrev, TemplateArgs)); 2360 } 2361 2362 UsingShadowDecl *InstShadow = 2363 SemaRef.BuildUsingShadowDecl(/*Scope*/nullptr, NewUD, InstTarget, 2364 PrevDecl); 2365 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); 2366 2367 if (isFunctionScope) 2368 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); 2369 } 2370 2371 return NewUD; 2372} 2373 2374Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { 2375 // Ignore these; we handle them in bulk when processing the UsingDecl. 2376 return nullptr; 2377} 2378 2379Decl * TemplateDeclInstantiator 2380 ::VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) { 2381 NestedNameSpecifierLoc QualifierLoc 2382 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), 2383 TemplateArgs); 2384 if (!QualifierLoc) 2385 return nullptr; 2386 2387 CXXScopeSpec SS; 2388 SS.Adopt(QualifierLoc); 2389 2390 // Since NameInfo refers to a typename, it cannot be a C++ special name. 2391 // Hence, no transformation is required for it. 2392 DeclarationNameInfo NameInfo(D->getDeclName(), D->getLocation()); 2393 NamedDecl *UD = 2394 SemaRef.BuildUsingDeclaration(/*Scope*/ nullptr, D->getAccess(), 2395 D->getUsingLoc(), SS, NameInfo, nullptr, 2396 /*instantiation*/ true, 2397 /*typename*/ true, D->getTypenameLoc()); 2398 if (UD) 2399 SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D); 2400 2401 return UD; 2402} 2403 2404Decl * TemplateDeclInstantiator 2405 ::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) { 2406 NestedNameSpecifierLoc QualifierLoc 2407 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); 2408 if (!QualifierLoc) 2409 return nullptr; 2410 2411 CXXScopeSpec SS; 2412 SS.Adopt(QualifierLoc); 2413 2414 DeclarationNameInfo NameInfo 2415 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); 2416 2417 NamedDecl *UD = 2418 SemaRef.BuildUsingDeclaration(/*Scope*/ nullptr, D->getAccess(), 2419 D->getUsingLoc(), SS, NameInfo, nullptr, 2420 /*instantiation*/ true, 2421 /*typename*/ false, SourceLocation()); 2422 if (UD) 2423 SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D); 2424 2425 return UD; 2426} 2427 2428 2429Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl( 2430 ClassScopeFunctionSpecializationDecl *Decl) { 2431 CXXMethodDecl *OldFD = Decl->getSpecialization(); 2432 CXXMethodDecl *NewFD = 2433 cast_or_null<CXXMethodDecl>(VisitCXXMethodDecl(OldFD, nullptr, true)); 2434 if (!NewFD) 2435 return nullptr; 2436 2437 LookupResult Previous(SemaRef, NewFD->getNameInfo(), Sema::LookupOrdinaryName, 2438 Sema::ForRedeclaration); 2439 2440 TemplateArgumentListInfo TemplateArgs; 2441 TemplateArgumentListInfo *TemplateArgsPtr = nullptr; 2442 if (Decl->hasExplicitTemplateArgs()) { 2443 TemplateArgs = Decl->templateArgs(); 2444 TemplateArgsPtr = &TemplateArgs; 2445 } 2446 2447 SemaRef.LookupQualifiedName(Previous, SemaRef.CurContext); 2448 if (SemaRef.CheckFunctionTemplateSpecialization(NewFD, TemplateArgsPtr, 2449 Previous)) { 2450 NewFD->setInvalidDecl(); 2451 return NewFD; 2452 } 2453 2454 // Associate the specialization with the pattern. 2455 FunctionDecl *Specialization = cast<FunctionDecl>(Previous.getFoundDecl()); 2456 assert(Specialization && "Class scope Specialization is null"); 2457 SemaRef.Context.setClassScopeSpecializationPattern(Specialization, OldFD); 2458 2459 return NewFD; 2460} 2461 2462Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( 2463 OMPThreadPrivateDecl *D) { 2464 SmallVector<Expr *, 5> Vars; 2465 for (auto *I : D->varlists()) { 2466 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); 2467 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr"); 2468 Vars.push_back(Var); 2469 } 2470 2471 OMPThreadPrivateDecl *TD = 2472 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars); 2473 2474 TD->setAccess(AS_public); 2475 Owner->addDecl(TD); 2476 2477 return TD; 2478} 2479 2480Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { 2481 return VisitFunctionDecl(D, nullptr); 2482} 2483 2484Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { 2485 return VisitCXXMethodDecl(D, nullptr); 2486} 2487 2488Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { 2489 llvm_unreachable("There are only CXXRecordDecls in C++"); 2490} 2491 2492Decl * 2493TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( 2494 ClassTemplateSpecializationDecl *D) { 2495 // As a MS extension, we permit class-scope explicit specialization 2496 // of member class templates. 2497 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); 2498 assert(ClassTemplate->getDeclContext()->isRecord() && 2499 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 2500 "can only instantiate an explicit specialization " 2501 "for a member class template"); 2502 2503 // Lookup the already-instantiated declaration in the instantiation 2504 // of the class template. FIXME: Diagnose or assert if this fails? 2505 DeclContext::lookup_result Found 2506 = Owner->lookup(ClassTemplate->getDeclName()); 2507 if (Found.empty()) 2508 return nullptr; 2509 ClassTemplateDecl *InstClassTemplate 2510 = dyn_cast<ClassTemplateDecl>(Found.front()); 2511 if (!InstClassTemplate) 2512 return nullptr; 2513 2514 // Substitute into the template arguments of the class template explicit 2515 // specialization. 2516 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc(). 2517 castAs<TemplateSpecializationTypeLoc>(); 2518 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(), 2519 Loc.getRAngleLoc()); 2520 SmallVector<TemplateArgumentLoc, 4> ArgLocs; 2521 for (unsigned I = 0; I != Loc.getNumArgs(); ++I) 2522 ArgLocs.push_back(Loc.getArgLoc(I)); 2523 if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(), 2524 InstTemplateArgs, TemplateArgs)) 2525 return nullptr; 2526 2527 // Check that the template argument list is well-formed for this 2528 // class template. 2529 SmallVector<TemplateArgument, 4> Converted; 2530 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, 2531 D->getLocation(), 2532 InstTemplateArgs, 2533 false, 2534 Converted)) 2535 return nullptr; 2536 2537 // Figure out where to insert this class template explicit specialization 2538 // in the member template's set of class template explicit specializations. 2539 void *InsertPos = nullptr; 2540 ClassTemplateSpecializationDecl *PrevDecl = 2541 InstClassTemplate->findSpecialization(Converted, InsertPos); 2542 2543 // Check whether we've already seen a conflicting instantiation of this 2544 // declaration (for instance, if there was a prior implicit instantiation). 2545 bool Ignored; 2546 if (PrevDecl && 2547 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), 2548 D->getSpecializationKind(), 2549 PrevDecl, 2550 PrevDecl->getSpecializationKind(), 2551 PrevDecl->getPointOfInstantiation(), 2552 Ignored)) 2553 return nullptr; 2554 2555 // If PrevDecl was a definition and D is also a definition, diagnose. 2556 // This happens in cases like: 2557 // 2558 // template<typename T, typename U> 2559 // struct Outer { 2560 // template<typename X> struct Inner; 2561 // template<> struct Inner<T> {}; 2562 // template<> struct Inner<U> {}; 2563 // }; 2564 // 2565 // Outer<int, int> outer; // error: the explicit specializations of Inner 2566 // // have the same signature. 2567 if (PrevDecl && PrevDecl->getDefinition() && 2568 D->isThisDeclarationADefinition()) { 2569 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; 2570 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), 2571 diag::note_previous_definition); 2572 return nullptr; 2573 } 2574 2575 // Create the class template partial specialization declaration. 2576 ClassTemplateSpecializationDecl *InstD 2577 = ClassTemplateSpecializationDecl::Create(SemaRef.Context, 2578 D->getTagKind(), 2579 Owner, 2580 D->getLocStart(), 2581 D->getLocation(), 2582 InstClassTemplate, 2583 Converted.data(), 2584 Converted.size(), 2585 PrevDecl); 2586 2587 // Add this partial specialization to the set of class template partial 2588 // specializations. 2589 if (!PrevDecl) 2590 InstClassTemplate->AddSpecialization(InstD, InsertPos); 2591 2592 // Substitute the nested name specifier, if any. 2593 if (SubstQualifier(D, InstD)) 2594 return nullptr; 2595 2596 // Build the canonical type that describes the converted template 2597 // arguments of the class template explicit specialization. 2598 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 2599 TemplateName(InstClassTemplate), Converted.data(), Converted.size(), 2600 SemaRef.Context.getRecordType(InstD)); 2601 2602 // Build the fully-sugared type for this class template 2603 // specialization as the user wrote in the specialization 2604 // itself. This means that we'll pretty-print the type retrieved 2605 // from the specialization's declaration the way that the user 2606 // actually wrote the specialization, rather than formatting the 2607 // name based on the "canonical" representation used to store the 2608 // template arguments in the specialization. 2609 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 2610 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs, 2611 CanonType); 2612 2613 InstD->setAccess(D->getAccess()); 2614 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); 2615 InstD->setSpecializationKind(D->getSpecializationKind()); 2616 InstD->setTypeAsWritten(WrittenTy); 2617 InstD->setExternLoc(D->getExternLoc()); 2618 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); 2619 2620 Owner->addDecl(InstD); 2621 2622 // Instantiate the members of the class-scope explicit specialization eagerly. 2623 // We don't have support for lazy instantiation of an explicit specialization 2624 // yet, and MSVC eagerly instantiates in this case. 2625 if (D->isThisDeclarationADefinition() && 2626 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, 2627 TSK_ImplicitInstantiation, 2628 /*Complain=*/true)) 2629 return nullptr; 2630 2631 return InstD; 2632} 2633 2634Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 2635 VarTemplateSpecializationDecl *D) { 2636 2637 TemplateArgumentListInfo VarTemplateArgsInfo; 2638 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); 2639 assert(VarTemplate && 2640 "A template specialization without specialized template?"); 2641 2642 // Substitute the current template arguments. 2643 const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo(); 2644 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc()); 2645 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc()); 2646 2647 if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(), 2648 TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs)) 2649 return nullptr; 2650 2651 // Check that the template argument list is well-formed for this template. 2652 SmallVector<TemplateArgument, 4> Converted; 2653 if (SemaRef.CheckTemplateArgumentList( 2654 VarTemplate, VarTemplate->getLocStart(), 2655 const_cast<TemplateArgumentListInfo &>(VarTemplateArgsInfo), false, 2656 Converted)) 2657 return nullptr; 2658 2659 // Find the variable template specialization declaration that 2660 // corresponds to these arguments. 2661 void *InsertPos = nullptr; 2662 if (VarTemplateSpecializationDecl *VarSpec = VarTemplate->findSpecialization( 2663 Converted, InsertPos)) 2664 // If we already have a variable template specialization, return it. 2665 return VarSpec; 2666 2667 return VisitVarTemplateSpecializationDecl(VarTemplate, D, InsertPos, 2668 VarTemplateArgsInfo, Converted); 2669} 2670 2671Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( 2672 VarTemplateDecl *VarTemplate, VarDecl *D, void *InsertPos, 2673 const TemplateArgumentListInfo &TemplateArgsInfo, 2674 ArrayRef<TemplateArgument> Converted) { 2675 2676 // If this is the variable for an anonymous struct or union, 2677 // instantiate the anonymous struct/union type first. 2678 if (const RecordType *RecordTy = D->getType()->getAs<RecordType>()) 2679 if (RecordTy->getDecl()->isAnonymousStructOrUnion()) 2680 if (!VisitCXXRecordDecl(cast<CXXRecordDecl>(RecordTy->getDecl()))) 2681 return nullptr; 2682 2683 // Do substitution on the type of the declaration 2684 TypeSourceInfo *DI = 2685 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, 2686 D->getTypeSpecStartLoc(), D->getDeclName()); 2687 if (!DI) 2688 return nullptr; 2689 2690 if (DI->getType()->isFunctionType()) { 2691 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) 2692 << D->isStaticDataMember() << DI->getType(); 2693 return nullptr; 2694 } 2695 2696 // Build the instantiated declaration 2697 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( 2698 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), 2699 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted.data(), 2700 Converted.size()); 2701 Var->setTemplateArgsInfo(TemplateArgsInfo); 2702 if (InsertPos) 2703 VarTemplate->AddSpecialization(Var, InsertPos); 2704 2705 // Substitute the nested name specifier, if any. 2706 if (SubstQualifier(D, Var)) 2707 return nullptr; 2708 2709 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, 2710 Owner, StartingScope); 2711 2712 return Var; 2713} 2714 2715Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { 2716 llvm_unreachable("@defs is not supported in Objective-C++"); 2717} 2718 2719Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { 2720 // FIXME: We need to be able to instantiate FriendTemplateDecls. 2721 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( 2722 DiagnosticsEngine::Error, 2723 "cannot instantiate %0 yet"); 2724 SemaRef.Diag(D->getLocation(), DiagID) 2725 << D->getDeclKindName(); 2726 2727 return nullptr; 2728} 2729 2730Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { 2731 llvm_unreachable("Unexpected decl"); 2732} 2733 2734Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, 2735 const MultiLevelTemplateArgumentList &TemplateArgs) { 2736 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); 2737 if (D->isInvalidDecl()) 2738 return nullptr; 2739 2740 return Instantiator.Visit(D); 2741} 2742 2743/// \brief Instantiates a nested template parameter list in the current 2744/// instantiation context. 2745/// 2746/// \param L The parameter list to instantiate 2747/// 2748/// \returns NULL if there was an error 2749TemplateParameterList * 2750TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { 2751 // Get errors for all the parameters before bailing out. 2752 bool Invalid = false; 2753 2754 unsigned N = L->size(); 2755 typedef SmallVector<NamedDecl *, 8> ParamVector; 2756 ParamVector Params; 2757 Params.reserve(N); 2758 for (auto &P : *L) { 2759 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P)); 2760 Params.push_back(D); 2761 Invalid = Invalid || !D || D->isInvalidDecl(); 2762 } 2763 2764 // Clean up if we had an error. 2765 if (Invalid) 2766 return nullptr; 2767 2768 TemplateParameterList *InstL 2769 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), 2770 L->getLAngleLoc(), &Params.front(), N, 2771 L->getRAngleLoc()); 2772 return InstL; 2773} 2774 2775/// \brief Instantiate the declaration of a class template partial 2776/// specialization. 2777/// 2778/// \param ClassTemplate the (instantiated) class template that is partially 2779// specialized by the instantiation of \p PartialSpec. 2780/// 2781/// \param PartialSpec the (uninstantiated) class template partial 2782/// specialization that we are instantiating. 2783/// 2784/// \returns The instantiated partial specialization, if successful; otherwise, 2785/// NULL to indicate an error. 2786ClassTemplatePartialSpecializationDecl * 2787TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( 2788 ClassTemplateDecl *ClassTemplate, 2789 ClassTemplatePartialSpecializationDecl *PartialSpec) { 2790 // Create a local instantiation scope for this class template partial 2791 // specialization, which will contain the instantiations of the template 2792 // parameters. 2793 LocalInstantiationScope Scope(SemaRef); 2794 2795 // Substitute into the template parameters of the class template partial 2796 // specialization. 2797 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 2798 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 2799 if (!InstParams) 2800 return nullptr; 2801 2802 // Substitute into the template arguments of the class template partial 2803 // specialization. 2804 const ASTTemplateArgumentListInfo *TemplArgInfo 2805 = PartialSpec->getTemplateArgsAsWritten(); 2806 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 2807 TemplArgInfo->RAngleLoc); 2808 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), 2809 TemplArgInfo->NumTemplateArgs, 2810 InstTemplateArgs, TemplateArgs)) 2811 return nullptr; 2812 2813 // Check that the template argument list is well-formed for this 2814 // class template. 2815 SmallVector<TemplateArgument, 4> Converted; 2816 if (SemaRef.CheckTemplateArgumentList(ClassTemplate, 2817 PartialSpec->getLocation(), 2818 InstTemplateArgs, 2819 false, 2820 Converted)) 2821 return nullptr; 2822 2823 // Figure out where to insert this class template partial specialization 2824 // in the member template's set of class template partial specializations. 2825 void *InsertPos = nullptr; 2826 ClassTemplateSpecializationDecl *PrevDecl 2827 = ClassTemplate->findPartialSpecialization(Converted, InsertPos); 2828 2829 // Build the canonical type that describes the converted template 2830 // arguments of the class template partial specialization. 2831 QualType CanonType 2832 = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate), 2833 Converted.data(), 2834 Converted.size()); 2835 2836 // Build the fully-sugared type for this class template 2837 // specialization as the user wrote in the specialization 2838 // itself. This means that we'll pretty-print the type retrieved 2839 // from the specialization's declaration the way that the user 2840 // actually wrote the specialization, rather than formatting the 2841 // name based on the "canonical" representation used to store the 2842 // template arguments in the specialization. 2843 TypeSourceInfo *WrittenTy 2844 = SemaRef.Context.getTemplateSpecializationTypeInfo( 2845 TemplateName(ClassTemplate), 2846 PartialSpec->getLocation(), 2847 InstTemplateArgs, 2848 CanonType); 2849 2850 if (PrevDecl) { 2851 // We've already seen a partial specialization with the same template 2852 // parameters and template arguments. This can happen, for example, when 2853 // substituting the outer template arguments ends up causing two 2854 // class template partial specializations of a member class template 2855 // to have identical forms, e.g., 2856 // 2857 // template<typename T, typename U> 2858 // struct Outer { 2859 // template<typename X, typename Y> struct Inner; 2860 // template<typename Y> struct Inner<T, Y>; 2861 // template<typename Y> struct Inner<U, Y>; 2862 // }; 2863 // 2864 // Outer<int, int> outer; // error: the partial specializations of Inner 2865 // // have the same signature. 2866 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) 2867 << WrittenTy->getType(); 2868 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) 2869 << SemaRef.Context.getTypeDeclType(PrevDecl); 2870 return nullptr; 2871 } 2872 2873 2874 // Create the class template partial specialization declaration. 2875 ClassTemplatePartialSpecializationDecl *InstPartialSpec 2876 = ClassTemplatePartialSpecializationDecl::Create(SemaRef.Context, 2877 PartialSpec->getTagKind(), 2878 Owner, 2879 PartialSpec->getLocStart(), 2880 PartialSpec->getLocation(), 2881 InstParams, 2882 ClassTemplate, 2883 Converted.data(), 2884 Converted.size(), 2885 InstTemplateArgs, 2886 CanonType, 2887 nullptr); 2888 // Substitute the nested name specifier, if any. 2889 if (SubstQualifier(PartialSpec, InstPartialSpec)) 2890 return nullptr; 2891 2892 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 2893 InstPartialSpec->setTypeAsWritten(WrittenTy); 2894 2895 // Add this partial specialization to the set of class template partial 2896 // specializations. 2897 ClassTemplate->AddPartialSpecialization(InstPartialSpec, 2898 /*InsertPos=*/nullptr); 2899 return InstPartialSpec; 2900} 2901 2902/// \brief Instantiate the declaration of a variable template partial 2903/// specialization. 2904/// 2905/// \param VarTemplate the (instantiated) variable template that is partially 2906/// specialized by the instantiation of \p PartialSpec. 2907/// 2908/// \param PartialSpec the (uninstantiated) variable template partial 2909/// specialization that we are instantiating. 2910/// 2911/// \returns The instantiated partial specialization, if successful; otherwise, 2912/// NULL to indicate an error. 2913VarTemplatePartialSpecializationDecl * 2914TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( 2915 VarTemplateDecl *VarTemplate, 2916 VarTemplatePartialSpecializationDecl *PartialSpec) { 2917 // Create a local instantiation scope for this variable template partial 2918 // specialization, which will contain the instantiations of the template 2919 // parameters. 2920 LocalInstantiationScope Scope(SemaRef); 2921 2922 // Substitute into the template parameters of the variable template partial 2923 // specialization. 2924 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); 2925 TemplateParameterList *InstParams = SubstTemplateParams(TempParams); 2926 if (!InstParams) 2927 return nullptr; 2928 2929 // Substitute into the template arguments of the variable template partial 2930 // specialization. 2931 const ASTTemplateArgumentListInfo *TemplArgInfo 2932 = PartialSpec->getTemplateArgsAsWritten(); 2933 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, 2934 TemplArgInfo->RAngleLoc); 2935 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), 2936 TemplArgInfo->NumTemplateArgs, 2937 InstTemplateArgs, TemplateArgs)) 2938 return nullptr; 2939 2940 // Check that the template argument list is well-formed for this 2941 // class template. 2942 SmallVector<TemplateArgument, 4> Converted; 2943 if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(), 2944 InstTemplateArgs, false, Converted)) 2945 return nullptr; 2946 2947 // Figure out where to insert this variable template partial specialization 2948 // in the member template's set of variable template partial specializations. 2949 void *InsertPos = nullptr; 2950 VarTemplateSpecializationDecl *PrevDecl = 2951 VarTemplate->findPartialSpecialization(Converted, InsertPos); 2952 2953 // Build the canonical type that describes the converted template 2954 // arguments of the variable template partial specialization. 2955 QualType CanonType = SemaRef.Context.getTemplateSpecializationType( 2956 TemplateName(VarTemplate), Converted.data(), Converted.size()); 2957 2958 // Build the fully-sugared type for this variable template 2959 // specialization as the user wrote in the specialization 2960 // itself. This means that we'll pretty-print the type retrieved 2961 // from the specialization's declaration the way that the user 2962 // actually wrote the specialization, rather than formatting the 2963 // name based on the "canonical" representation used to store the 2964 // template arguments in the specialization. 2965 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( 2966 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs, 2967 CanonType); 2968 2969 if (PrevDecl) { 2970 // We've already seen a partial specialization with the same template 2971 // parameters and template arguments. This can happen, for example, when 2972 // substituting the outer template arguments ends up causing two 2973 // variable template partial specializations of a member variable template 2974 // to have identical forms, e.g., 2975 // 2976 // template<typename T, typename U> 2977 // struct Outer { 2978 // template<typename X, typename Y> pair<X,Y> p; 2979 // template<typename Y> pair<T, Y> p; 2980 // template<typename Y> pair<U, Y> p; 2981 // }; 2982 // 2983 // Outer<int, int> outer; // error: the partial specializations of Inner 2984 // // have the same signature. 2985 SemaRef.Diag(PartialSpec->getLocation(), 2986 diag::err_var_partial_spec_redeclared) 2987 << WrittenTy->getType(); 2988 SemaRef.Diag(PrevDecl->getLocation(), 2989 diag::note_var_prev_partial_spec_here); 2990 return nullptr; 2991 } 2992 2993 // Do substitution on the type of the declaration 2994 TypeSourceInfo *DI = SemaRef.SubstType( 2995 PartialSpec->getTypeSourceInfo(), TemplateArgs, 2996 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); 2997 if (!DI) 2998 return nullptr; 2999 3000 if (DI->getType()->isFunctionType()) { 3001 SemaRef.Diag(PartialSpec->getLocation(), 3002 diag::err_variable_instantiates_to_function) 3003 << PartialSpec->isStaticDataMember() << DI->getType(); 3004 return nullptr; 3005 } 3006 3007 // Create the variable template partial specialization declaration. 3008 VarTemplatePartialSpecializationDecl *InstPartialSpec = 3009 VarTemplatePartialSpecializationDecl::Create( 3010 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), 3011 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), 3012 DI, PartialSpec->getStorageClass(), Converted.data(), 3013 Converted.size(), InstTemplateArgs); 3014 3015 // Substitute the nested name specifier, if any. 3016 if (SubstQualifier(PartialSpec, InstPartialSpec)) 3017 return nullptr; 3018 3019 InstPartialSpec->setInstantiatedFromMember(PartialSpec); 3020 InstPartialSpec->setTypeAsWritten(WrittenTy); 3021 3022 // Add this partial specialization to the set of variable template partial 3023 // specializations. The instantiation of the initializer is not necessary. 3024 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); 3025 3026 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, 3027 LateAttrs, Owner, StartingScope); 3028 3029 return InstPartialSpec; 3030} 3031 3032TypeSourceInfo* 3033TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, 3034 SmallVectorImpl<ParmVarDecl *> &Params) { 3035 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); 3036 assert(OldTInfo && "substituting function without type source info"); 3037 assert(Params.empty() && "parameter vector is non-empty at start"); 3038 3039 CXXRecordDecl *ThisContext = nullptr; 3040 unsigned ThisTypeQuals = 0; 3041 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 3042 ThisContext = cast<CXXRecordDecl>(Owner); 3043 ThisTypeQuals = Method->getTypeQualifiers(); 3044 } 3045 3046 TypeSourceInfo *NewTInfo 3047 = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs, 3048 D->getTypeSpecStartLoc(), 3049 D->getDeclName(), 3050 ThisContext, ThisTypeQuals); 3051 if (!NewTInfo) 3052 return nullptr; 3053 3054 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); 3055 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) { 3056 if (NewTInfo != OldTInfo) { 3057 // Get parameters from the new type info. 3058 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); 3059 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>(); 3060 unsigned NewIdx = 0; 3061 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); 3062 OldIdx != NumOldParams; ++OldIdx) { 3063 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); 3064 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; 3065 3066 Optional<unsigned> NumArgumentsInExpansion; 3067 if (OldParam->isParameterPack()) 3068 NumArgumentsInExpansion = 3069 SemaRef.getNumArgumentsInExpansion(OldParam->getType(), 3070 TemplateArgs); 3071 if (!NumArgumentsInExpansion) { 3072 // Simple case: normal parameter, or a parameter pack that's 3073 // instantiated to a (still-dependent) parameter pack. 3074 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 3075 Params.push_back(NewParam); 3076 Scope->InstantiatedLocal(OldParam, NewParam); 3077 } else { 3078 // Parameter pack expansion: make the instantiation an argument pack. 3079 Scope->MakeInstantiatedLocalArgPack(OldParam); 3080 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { 3081 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); 3082 Params.push_back(NewParam); 3083 Scope->InstantiatedLocalPackArg(OldParam, NewParam); 3084 } 3085 } 3086 } 3087 } else { 3088 // The function type itself was not dependent and therefore no 3089 // substitution occurred. However, we still need to instantiate 3090 // the function parameters themselves. 3091 const FunctionProtoType *OldProto = 3092 cast<FunctionProtoType>(OldProtoLoc.getType()); 3093 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; 3094 ++i) { 3095 ParmVarDecl *OldParam = OldProtoLoc.getParam(i); 3096 if (!OldParam) { 3097 Params.push_back(SemaRef.BuildParmVarDeclForTypedef( 3098 D, D->getLocation(), OldProto->getParamType(i))); 3099 continue; 3100 } 3101 3102 ParmVarDecl *Parm = 3103 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam)); 3104 if (!Parm) 3105 return nullptr; 3106 Params.push_back(Parm); 3107 } 3108 } 3109 } else { 3110 // If the type of this function, after ignoring parentheses, is not 3111 // *directly* a function type, then we're instantiating a function that 3112 // was declared via a typedef or with attributes, e.g., 3113 // 3114 // typedef int functype(int, int); 3115 // functype func; 3116 // int __cdecl meth(int, int); 3117 // 3118 // In this case, we'll just go instantiate the ParmVarDecls that we 3119 // synthesized in the method declaration. 3120 SmallVector<QualType, 4> ParamTypes; 3121 if (SemaRef.SubstParmTypes(D->getLocation(), D->param_begin(), 3122 D->getNumParams(), TemplateArgs, ParamTypes, 3123 &Params)) 3124 return nullptr; 3125 } 3126 3127 return NewTInfo; 3128} 3129 3130/// Introduce the instantiated function parameters into the local 3131/// instantiation scope, and set the parameter names to those used 3132/// in the template. 3133static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function, 3134 const FunctionDecl *PatternDecl, 3135 LocalInstantiationScope &Scope, 3136 const MultiLevelTemplateArgumentList &TemplateArgs) { 3137 unsigned FParamIdx = 0; 3138 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { 3139 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); 3140 if (!PatternParam->isParameterPack()) { 3141 // Simple case: not a parameter pack. 3142 assert(FParamIdx < Function->getNumParams()); 3143 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 3144 FunctionParam->setDeclName(PatternParam->getDeclName()); 3145 // If the parameter's type is not dependent, update it to match the type 3146 // in the pattern. They can differ in top-level cv-qualifiers, and we want 3147 // the pattern's type here. If the type is dependent, they can't differ, 3148 // per core issue 1668. Substitute into the type from the pattern, in case 3149 // it's instantiation-dependent. 3150 // FIXME: Updating the type to work around this is at best fragile. 3151 if (!PatternDecl->getType()->isDependentType()) { 3152 QualType T = S.SubstType(PatternParam->getType(), TemplateArgs, 3153 FunctionParam->getLocation(), 3154 FunctionParam->getDeclName()); 3155 if (T.isNull()) 3156 return true; 3157 FunctionParam->setType(T); 3158 } 3159 3160 Scope.InstantiatedLocal(PatternParam, FunctionParam); 3161 ++FParamIdx; 3162 continue; 3163 } 3164 3165 // Expand the parameter pack. 3166 Scope.MakeInstantiatedLocalArgPack(PatternParam); 3167 Optional<unsigned> NumArgumentsInExpansion 3168 = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); 3169 assert(NumArgumentsInExpansion && 3170 "should only be called when all template arguments are known"); 3171 QualType PatternType = 3172 PatternParam->getType()->castAs<PackExpansionType>()->getPattern(); 3173 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { 3174 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); 3175 FunctionParam->setDeclName(PatternParam->getDeclName()); 3176 if (!PatternDecl->getType()->isDependentType()) { 3177 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg); 3178 QualType T = S.SubstType(PatternType, TemplateArgs, 3179 FunctionParam->getLocation(), 3180 FunctionParam->getDeclName()); 3181 if (T.isNull()) 3182 return true; 3183 FunctionParam->setType(T); 3184 } 3185 3186 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); 3187 ++FParamIdx; 3188 } 3189 } 3190 3191 return false; 3192} 3193 3194void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, 3195 FunctionDecl *Decl) { 3196 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>(); 3197 if (Proto->getExceptionSpecType() != EST_Uninstantiated) 3198 return; 3199 3200 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, 3201 InstantiatingTemplate::ExceptionSpecification()); 3202 if (Inst.isInvalid()) { 3203 // We hit the instantiation depth limit. Clear the exception specification 3204 // so that our callers don't have to cope with EST_Uninstantiated. 3205 UpdateExceptionSpec(Decl, EST_None); 3206 return; 3207 } 3208 3209 // Enter the scope of this instantiation. We don't use 3210 // PushDeclContext because we don't have a scope. 3211 Sema::ContextRAII savedContext(*this, Decl); 3212 LocalInstantiationScope Scope(*this); 3213 3214 MultiLevelTemplateArgumentList TemplateArgs = 3215 getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true); 3216 3217 FunctionDecl *Template = Proto->getExceptionSpecTemplate(); 3218 if (addInstantiatedParametersToScope(*this, Decl, Template, Scope, 3219 TemplateArgs)) { 3220 UpdateExceptionSpec(Decl, EST_None); 3221 return; 3222 } 3223 3224 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(), 3225 TemplateArgs); 3226} 3227 3228/// \brief Initializes the common fields of an instantiation function 3229/// declaration (New) from the corresponding fields of its template (Tmpl). 3230/// 3231/// \returns true if there was an error 3232bool 3233TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, 3234 FunctionDecl *Tmpl) { 3235 if (Tmpl->isDeleted()) 3236 New->setDeletedAsWritten(); 3237 3238 // Forward the mangling number from the template to the instantiated decl. 3239 SemaRef.Context.setManglingNumber(New, 3240 SemaRef.Context.getManglingNumber(Tmpl)); 3241 3242 // If we are performing substituting explicitly-specified template arguments 3243 // or deduced template arguments into a function template and we reach this 3244 // point, we are now past the point where SFINAE applies and have committed 3245 // to keeping the new function template specialization. We therefore 3246 // convert the active template instantiation for the function template 3247 // into a template instantiation for this specific function template 3248 // specialization, which is not a SFINAE context, so that we diagnose any 3249 // further errors in the declaration itself. 3250 typedef Sema::ActiveTemplateInstantiation ActiveInstType; 3251 ActiveInstType &ActiveInst = SemaRef.ActiveTemplateInstantiations.back(); 3252 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || 3253 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { 3254 if (FunctionTemplateDecl *FunTmpl 3255 = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) { 3256 assert(FunTmpl->getTemplatedDecl() == Tmpl && 3257 "Deduction from the wrong function template?"); 3258 (void) FunTmpl; 3259 ActiveInst.Kind = ActiveInstType::TemplateInstantiation; 3260 ActiveInst.Entity = New; 3261 } 3262 } 3263 3264 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); 3265 assert(Proto && "Function template without prototype?"); 3266 3267 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { 3268 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); 3269 3270 // DR1330: In C++11, defer instantiation of a non-trivial 3271 // exception specification. 3272 // DR1484: Local classes and their members are instantiated along with the 3273 // containing function. 3274 if (SemaRef.getLangOpts().CPlusPlus11 && 3275 EPI.ExceptionSpec.Type != EST_None && 3276 EPI.ExceptionSpec.Type != EST_DynamicNone && 3277 EPI.ExceptionSpec.Type != EST_BasicNoexcept && 3278 !Tmpl->isLexicallyWithinFunctionOrMethod()) { 3279 FunctionDecl *ExceptionSpecTemplate = Tmpl; 3280 if (EPI.ExceptionSpec.Type == EST_Uninstantiated) 3281 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; 3282 ExceptionSpecificationType NewEST = EST_Uninstantiated; 3283 if (EPI.ExceptionSpec.Type == EST_Unevaluated) 3284 NewEST = EST_Unevaluated; 3285 3286 // Mark the function has having an uninstantiated exception specification. 3287 const FunctionProtoType *NewProto 3288 = New->getType()->getAs<FunctionProtoType>(); 3289 assert(NewProto && "Template instantiation without function prototype?"); 3290 EPI = NewProto->getExtProtoInfo(); 3291 EPI.ExceptionSpec.Type = NewEST; 3292 EPI.ExceptionSpec.SourceDecl = New; 3293 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; 3294 New->setType(SemaRef.Context.getFunctionType( 3295 NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); 3296 } else { 3297 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); 3298 } 3299 } 3300 3301 // Get the definition. Leaves the variable unchanged if undefined. 3302 const FunctionDecl *Definition = Tmpl; 3303 Tmpl->isDefined(Definition); 3304 3305 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, 3306 LateAttrs, StartingScope); 3307 3308 return false; 3309} 3310 3311/// \brief Initializes common fields of an instantiated method 3312/// declaration (New) from the corresponding fields of its template 3313/// (Tmpl). 3314/// 3315/// \returns true if there was an error 3316bool 3317TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, 3318 CXXMethodDecl *Tmpl) { 3319 if (InitFunctionInstantiation(New, Tmpl)) 3320 return true; 3321 3322 New->setAccess(Tmpl->getAccess()); 3323 if (Tmpl->isVirtualAsWritten()) 3324 New->setVirtualAsWritten(true); 3325 3326 // FIXME: New needs a pointer to Tmpl 3327 return false; 3328} 3329 3330/// \brief Instantiate the definition of the given function from its 3331/// template. 3332/// 3333/// \param PointOfInstantiation the point at which the instantiation was 3334/// required. Note that this is not precisely a "point of instantiation" 3335/// for the function, but it's close. 3336/// 3337/// \param Function the already-instantiated declaration of a 3338/// function template specialization or member function of a class template 3339/// specialization. 3340/// 3341/// \param Recursive if true, recursively instantiates any functions that 3342/// are required by this instantiation. 3343/// 3344/// \param DefinitionRequired if true, then we are performing an explicit 3345/// instantiation where the body of the function is required. Complain if 3346/// there is no such body. 3347void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, 3348 FunctionDecl *Function, 3349 bool Recursive, 3350 bool DefinitionRequired) { 3351 if (Function->isInvalidDecl() || Function->isDefined()) 3352 return; 3353 3354 // Never instantiate an explicit specialization except if it is a class scope 3355 // explicit specialization. 3356 if (Function->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 3357 !Function->getClassScopeSpecializationPattern()) 3358 return; 3359 3360 // Find the function body that we'll be substituting. 3361 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); 3362 assert(PatternDecl && "instantiating a non-template"); 3363 3364 Stmt *Pattern = PatternDecl->getBody(PatternDecl); 3365 assert(PatternDecl && "template definition is not a template"); 3366 if (!Pattern) { 3367 // Try to find a defaulted definition 3368 PatternDecl->isDefined(PatternDecl); 3369 } 3370 assert(PatternDecl && "template definition is not a template"); 3371 3372 // Postpone late parsed template instantiations. 3373 if (PatternDecl->isLateTemplateParsed() && 3374 !LateTemplateParser) { 3375 PendingInstantiations.push_back( 3376 std::make_pair(Function, PointOfInstantiation)); 3377 return; 3378 } 3379 3380 // If we're performing recursive template instantiation, create our own 3381 // queue of pending implicit instantiations that we will instantiate later, 3382 // while we're still within our own instantiation context. 3383 // This has to happen before LateTemplateParser below is called, so that 3384 // it marks vtables used in late parsed templates as used. 3385 SavePendingLocalImplicitInstantiationsRAII 3386 SavedPendingLocalImplicitInstantiations(*this); 3387 SavePendingInstantiationsAndVTableUsesRAII 3388 SavePendingInstantiationsAndVTableUses(*this, /*Enabled=*/Recursive); 3389 3390 // Call the LateTemplateParser callback if there is a need to late parse 3391 // a templated function definition. 3392 if (!Pattern && PatternDecl->isLateTemplateParsed() && 3393 LateTemplateParser) { 3394 // FIXME: Optimize to allow individual templates to be deserialized. 3395 if (PatternDecl->isFromASTFile()) 3396 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); 3397 3398 LateParsedTemplate *LPT = LateParsedTemplateMap.lookup(PatternDecl); 3399 assert(LPT && "missing LateParsedTemplate"); 3400 LateTemplateParser(OpaqueParser, *LPT); 3401 Pattern = PatternDecl->getBody(PatternDecl); 3402 } 3403 3404 if (!Pattern && !PatternDecl->isDefaulted()) { 3405 if (DefinitionRequired) { 3406 if (Function->getPrimaryTemplate()) 3407 Diag(PointOfInstantiation, 3408 diag::err_explicit_instantiation_undefined_func_template) 3409 << Function->getPrimaryTemplate(); 3410 else 3411 Diag(PointOfInstantiation, 3412 diag::err_explicit_instantiation_undefined_member) 3413 << 1 << Function->getDeclName() << Function->getDeclContext(); 3414 3415 if (PatternDecl) 3416 Diag(PatternDecl->getLocation(), 3417 diag::note_explicit_instantiation_here); 3418 Function->setInvalidDecl(); 3419 } else if (Function->getTemplateSpecializationKind() 3420 == TSK_ExplicitInstantiationDefinition) { 3421 assert(!Recursive); 3422 PendingInstantiations.push_back( 3423 std::make_pair(Function, PointOfInstantiation)); 3424 } 3425 3426 return; 3427 } 3428 3429 // C++1y [temp.explicit]p10: 3430 // Except for inline functions, declarations with types deduced from their 3431 // initializer or return value, and class template specializations, other 3432 // explicit instantiation declarations have the effect of suppressing the 3433 // implicit instantiation of the entity to which they refer. 3434 if (Function->getTemplateSpecializationKind() == 3435 TSK_ExplicitInstantiationDeclaration && 3436 !PatternDecl->isInlined() && 3437 !PatternDecl->getReturnType()->getContainedAutoType()) 3438 return; 3439 3440 if (PatternDecl->isInlined()) { 3441 // Function, and all later redeclarations of it (from imported modules, 3442 // for instance), are now implicitly inline. 3443 for (auto *D = Function->getMostRecentDecl(); /**/; 3444 D = D->getPreviousDecl()) { 3445 D->setImplicitlyInline(); 3446 if (D == Function) 3447 break; 3448 } 3449 } 3450 3451 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); 3452 if (Inst.isInvalid()) 3453 return; 3454 3455 // Copy the inner loc start from the pattern. 3456 Function->setInnerLocStart(PatternDecl->getInnerLocStart()); 3457 3458 EnterExpressionEvaluationContext EvalContext(*this, 3459 Sema::PotentiallyEvaluated); 3460 3461 // Introduce a new scope where local variable instantiations will be 3462 // recorded, unless we're actually a member function within a local 3463 // class, in which case we need to merge our results with the parent 3464 // scope (of the enclosing function). 3465 bool MergeWithParentScope = false; 3466 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) 3467 MergeWithParentScope = Rec->isLocalClass(); 3468 3469 LocalInstantiationScope Scope(*this, MergeWithParentScope); 3470 3471 if (PatternDecl->isDefaulted()) 3472 SetDeclDefaulted(Function, PatternDecl->getLocation()); 3473 else { 3474 MultiLevelTemplateArgumentList TemplateArgs = 3475 getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl); 3476 3477 // Substitute into the qualifier; we can get a substitution failure here 3478 // through evil use of alias templates. 3479 // FIXME: Is CurContext correct for this? Should we go to the (instantiation 3480 // of the) lexical context of the pattern? 3481 SubstQualifier(*this, PatternDecl, Function, TemplateArgs); 3482 3483 ActOnStartOfFunctionDef(nullptr, Function); 3484 3485 // Enter the scope of this instantiation. We don't use 3486 // PushDeclContext because we don't have a scope. 3487 Sema::ContextRAII savedContext(*this, Function); 3488 3489 if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope, 3490 TemplateArgs)) 3491 return; 3492 3493 // If this is a constructor, instantiate the member initializers. 3494 if (const CXXConstructorDecl *Ctor = 3495 dyn_cast<CXXConstructorDecl>(PatternDecl)) { 3496 InstantiateMemInitializers(cast<CXXConstructorDecl>(Function), Ctor, 3497 TemplateArgs); 3498 } 3499 3500 // Instantiate the function body. 3501 StmtResult Body = SubstStmt(Pattern, TemplateArgs); 3502 3503 if (Body.isInvalid()) 3504 Function->setInvalidDecl(); 3505 3506 ActOnFinishFunctionBody(Function, Body.get(), 3507 /*IsInstantiation=*/true); 3508 3509 PerformDependentDiagnostics(PatternDecl, TemplateArgs); 3510 3511 if (auto *Listener = getASTMutationListener()) 3512 Listener->FunctionDefinitionInstantiated(Function); 3513 3514 savedContext.pop(); 3515 } 3516 3517 DeclGroupRef DG(Function); 3518 Consumer.HandleTopLevelDecl(DG); 3519 3520 // This class may have local implicit instantiations that need to be 3521 // instantiation within this scope. 3522 PerformPendingInstantiations(/*LocalOnly=*/true); 3523 Scope.Exit(); 3524 3525 if (Recursive) { 3526 // Define any pending vtables. 3527 DefineUsedVTables(); 3528 3529 // Instantiate any pending implicit instantiations found during the 3530 // instantiation of this template. 3531 PerformPendingInstantiations(); 3532 3533 // PendingInstantiations and VTableUses are restored through 3534 // SavePendingInstantiationsAndVTableUses's destructor. 3535 } 3536} 3537 3538VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( 3539 VarTemplateDecl *VarTemplate, VarDecl *FromVar, 3540 const TemplateArgumentList &TemplateArgList, 3541 const TemplateArgumentListInfo &TemplateArgsInfo, 3542 SmallVectorImpl<TemplateArgument> &Converted, 3543 SourceLocation PointOfInstantiation, void *InsertPos, 3544 LateInstantiatedAttrVec *LateAttrs, 3545 LocalInstantiationScope *StartingScope) { 3546 if (FromVar->isInvalidDecl()) 3547 return nullptr; 3548 3549 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); 3550 if (Inst.isInvalid()) 3551 return nullptr; 3552 3553 MultiLevelTemplateArgumentList TemplateArgLists; 3554 TemplateArgLists.addOuterTemplateArguments(&TemplateArgList); 3555 3556 // Instantiate the first declaration of the variable template: for a partial 3557 // specialization of a static data member template, the first declaration may 3558 // or may not be the declaration in the class; if it's in the class, we want 3559 // to instantiate a member in the class (a declaration), and if it's outside, 3560 // we want to instantiate a definition. 3561 // 3562 // If we're instantiating an explicitly-specialized member template or member 3563 // partial specialization, don't do this. The member specialization completely 3564 // replaces the original declaration in this case. 3565 bool IsMemberSpec = false; 3566 if (VarTemplatePartialSpecializationDecl *PartialSpec = 3567 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar)) 3568 IsMemberSpec = PartialSpec->isMemberSpecialization(); 3569 else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate()) 3570 IsMemberSpec = FromTemplate->isMemberSpecialization(); 3571 if (!IsMemberSpec) 3572 FromVar = FromVar->getFirstDecl(); 3573 3574 MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList); 3575 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), 3576 MultiLevelList); 3577 3578 // TODO: Set LateAttrs and StartingScope ... 3579 3580 return cast_or_null<VarTemplateSpecializationDecl>( 3581 Instantiator.VisitVarTemplateSpecializationDecl( 3582 VarTemplate, FromVar, InsertPos, TemplateArgsInfo, Converted)); 3583} 3584 3585/// \brief Instantiates a variable template specialization by completing it 3586/// with appropriate type information and initializer. 3587VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( 3588 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, 3589 const MultiLevelTemplateArgumentList &TemplateArgs) { 3590 3591 // Do substitution on the type of the declaration 3592 TypeSourceInfo *DI = 3593 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, 3594 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); 3595 if (!DI) 3596 return nullptr; 3597 3598 // Update the type of this variable template specialization. 3599 VarSpec->setType(DI->getType()); 3600 3601 // Instantiate the initializer. 3602 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); 3603 3604 return VarSpec; 3605} 3606 3607/// BuildVariableInstantiation - Used after a new variable has been created. 3608/// Sets basic variable data and decides whether to postpone the 3609/// variable instantiation. 3610void Sema::BuildVariableInstantiation( 3611 VarDecl *NewVar, VarDecl *OldVar, 3612 const MultiLevelTemplateArgumentList &TemplateArgs, 3613 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, 3614 LocalInstantiationScope *StartingScope, 3615 bool InstantiatingVarTemplate) { 3616 3617 // If we are instantiating a local extern declaration, the 3618 // instantiation belongs lexically to the containing function. 3619 // If we are instantiating a static data member defined 3620 // out-of-line, the instantiation will have the same lexical 3621 // context (which will be a namespace scope) as the template. 3622 if (OldVar->isLocalExternDecl()) { 3623 NewVar->setLocalExternDecl(); 3624 NewVar->setLexicalDeclContext(Owner); 3625 } else if (OldVar->isOutOfLine()) 3626 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); 3627 NewVar->setTSCSpec(OldVar->getTSCSpec()); 3628 NewVar->setInitStyle(OldVar->getInitStyle()); 3629 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); 3630 NewVar->setConstexpr(OldVar->isConstexpr()); 3631 NewVar->setInitCapture(OldVar->isInitCapture()); 3632 NewVar->setPreviousDeclInSameBlockScope( 3633 OldVar->isPreviousDeclInSameBlockScope()); 3634 NewVar->setAccess(OldVar->getAccess()); 3635 3636 if (!OldVar->isStaticDataMember()) { 3637 if (OldVar->isUsed(false)) 3638 NewVar->setIsUsed(); 3639 NewVar->setReferenced(OldVar->isReferenced()); 3640 } 3641 3642 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); 3643 3644 LookupResult Previous( 3645 *this, NewVar->getDeclName(), NewVar->getLocation(), 3646 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage 3647 : Sema::LookupOrdinaryName, 3648 Sema::ForRedeclaration); 3649 3650 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && 3651 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || 3652 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { 3653 // We have a previous declaration. Use that one, so we merge with the 3654 // right type. 3655 if (NamedDecl *NewPrev = FindInstantiatedDecl( 3656 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) 3657 Previous.addDecl(NewPrev); 3658 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) && 3659 OldVar->hasLinkage()) 3660 LookupQualifiedName(Previous, NewVar->getDeclContext(), false); 3661 CheckVariableDeclaration(NewVar, Previous); 3662 3663 if (!InstantiatingVarTemplate) { 3664 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); 3665 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) 3666 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); 3667 } 3668 3669 if (!OldVar->isOutOfLine()) { 3670 if (NewVar->getDeclContext()->isFunctionOrMethod()) 3671 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); 3672 } 3673 3674 // Link instantiations of static data members back to the template from 3675 // which they were instantiated. 3676 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate) 3677 NewVar->setInstantiationOfStaticDataMember(OldVar, 3678 TSK_ImplicitInstantiation); 3679 3680 // Forward the mangling number from the template to the instantiated decl. 3681 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); 3682 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); 3683 3684 // Delay instantiation of the initializer for variable templates until a 3685 // definition of the variable is needed. We need it right away if the type 3686 // contains 'auto'. 3687 if ((!isa<VarTemplateSpecializationDecl>(NewVar) && 3688 !InstantiatingVarTemplate) || 3689 NewVar->getType()->isUndeducedType()) 3690 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); 3691 3692 // Diagnose unused local variables with dependent types, where the diagnostic 3693 // will have been deferred. 3694 if (!NewVar->isInvalidDecl() && 3695 NewVar->getDeclContext()->isFunctionOrMethod() && 3696 OldVar->getType()->isDependentType()) 3697 DiagnoseUnusedDecl(NewVar); 3698} 3699 3700/// \brief Instantiate the initializer of a variable. 3701void Sema::InstantiateVariableInitializer( 3702 VarDecl *Var, VarDecl *OldVar, 3703 const MultiLevelTemplateArgumentList &TemplateArgs) { 3704 3705 if (Var->getAnyInitializer()) 3706 // We already have an initializer in the class. 3707 return; 3708 3709 if (OldVar->getInit()) { 3710 if (Var->isStaticDataMember() && !OldVar->isOutOfLine()) 3711 PushExpressionEvaluationContext(Sema::ConstantEvaluated, OldVar); 3712 else 3713 PushExpressionEvaluationContext(Sema::PotentiallyEvaluated, OldVar); 3714 3715 // Instantiate the initializer. 3716 ExprResult Init = 3717 SubstInitializer(OldVar->getInit(), TemplateArgs, 3718 OldVar->getInitStyle() == VarDecl::CallInit); 3719 if (!Init.isInvalid()) { 3720 bool TypeMayContainAuto = true; 3721 Expr *InitExpr = Init.get(); 3722 3723 if (Var->hasAttr<DLLImportAttr>() && 3724 (!InitExpr || 3725 !InitExpr->isConstantInitializer(getASTContext(), false))) { 3726 // Do not dynamically initialize dllimport variables. 3727 } else if (InitExpr) { 3728 bool DirectInit = OldVar->isDirectInit(); 3729 AddInitializerToDecl(Var, InitExpr, DirectInit, TypeMayContainAuto); 3730 } else 3731 ActOnUninitializedDecl(Var, TypeMayContainAuto); 3732 } else { 3733 // FIXME: Not too happy about invalidating the declaration 3734 // because of a bogus initializer. 3735 Var->setInvalidDecl(); 3736 } 3737 3738 PopExpressionEvaluationContext(); 3739 } else if ((!Var->isStaticDataMember() || Var->isOutOfLine()) && 3740 !Var->isCXXForRangeDecl()) 3741 ActOnUninitializedDecl(Var, false); 3742} 3743 3744/// \brief Instantiate the definition of the given variable from its 3745/// template. 3746/// 3747/// \param PointOfInstantiation the point at which the instantiation was 3748/// required. Note that this is not precisely a "point of instantiation" 3749/// for the function, but it's close. 3750/// 3751/// \param Var the already-instantiated declaration of a static member 3752/// variable of a class template specialization. 3753/// 3754/// \param Recursive if true, recursively instantiates any functions that 3755/// are required by this instantiation. 3756/// 3757/// \param DefinitionRequired if true, then we are performing an explicit 3758/// instantiation where an out-of-line definition of the member variable 3759/// is required. Complain if there is no such definition. 3760void Sema::InstantiateStaticDataMemberDefinition( 3761 SourceLocation PointOfInstantiation, 3762 VarDecl *Var, 3763 bool Recursive, 3764 bool DefinitionRequired) { 3765 InstantiateVariableDefinition(PointOfInstantiation, Var, Recursive, 3766 DefinitionRequired); 3767} 3768 3769void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, 3770 VarDecl *Var, bool Recursive, 3771 bool DefinitionRequired) { 3772 if (Var->isInvalidDecl()) 3773 return; 3774 3775 VarTemplateSpecializationDecl *VarSpec = 3776 dyn_cast<VarTemplateSpecializationDecl>(Var); 3777 VarDecl *PatternDecl = nullptr, *Def = nullptr; 3778 MultiLevelTemplateArgumentList TemplateArgs = 3779 getTemplateInstantiationArgs(Var); 3780 3781 if (VarSpec) { 3782 // If this is a variable template specialization, make sure that it is 3783 // non-dependent, then find its instantiation pattern. 3784 bool InstantiationDependent = false; 3785 assert(!TemplateSpecializationType::anyDependentTemplateArguments( 3786 VarSpec->getTemplateArgsInfo(), InstantiationDependent) && 3787 "Only instantiate variable template specializations that are " 3788 "not type-dependent"); 3789 (void)InstantiationDependent; 3790 3791 // Find the variable initialization that we'll be substituting. If the 3792 // pattern was instantiated from a member template, look back further to 3793 // find the real pattern. 3794 assert(VarSpec->getSpecializedTemplate() && 3795 "Specialization without specialized template?"); 3796 llvm::PointerUnion<VarTemplateDecl *, 3797 VarTemplatePartialSpecializationDecl *> PatternPtr = 3798 VarSpec->getSpecializedTemplateOrPartial(); 3799 if (PatternPtr.is<VarTemplatePartialSpecializationDecl *>()) { 3800 VarTemplatePartialSpecializationDecl *Tmpl = 3801 PatternPtr.get<VarTemplatePartialSpecializationDecl *>(); 3802 while (VarTemplatePartialSpecializationDecl *From = 3803 Tmpl->getInstantiatedFromMember()) { 3804 if (Tmpl->isMemberSpecialization()) 3805 break; 3806 3807 Tmpl = From; 3808 } 3809 PatternDecl = Tmpl; 3810 } else { 3811 VarTemplateDecl *Tmpl = PatternPtr.get<VarTemplateDecl *>(); 3812 while (VarTemplateDecl *From = 3813 Tmpl->getInstantiatedFromMemberTemplate()) { 3814 if (Tmpl->isMemberSpecialization()) 3815 break; 3816 3817 Tmpl = From; 3818 } 3819 PatternDecl = Tmpl->getTemplatedDecl(); 3820 } 3821 3822 // If this is a static data member template, there might be an 3823 // uninstantiated initializer on the declaration. If so, instantiate 3824 // it now. 3825 if (PatternDecl->isStaticDataMember() && 3826 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && 3827 !Var->hasInit()) { 3828 // FIXME: Factor out the duplicated instantiation context setup/tear down 3829 // code here. 3830 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 3831 if (Inst.isInvalid()) 3832 return; 3833 3834 // If we're performing recursive template instantiation, create our own 3835 // queue of pending implicit instantiations that we will instantiate 3836 // later, while we're still within our own instantiation context. 3837 SavePendingInstantiationsAndVTableUsesRAII 3838 SavePendingInstantiationsAndVTableUses(*this, /*Enabled=*/Recursive); 3839 3840 LocalInstantiationScope Local(*this); 3841 3842 // Enter the scope of this instantiation. We don't use 3843 // PushDeclContext because we don't have a scope. 3844 ContextRAII PreviousContext(*this, Var->getDeclContext()); 3845 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); 3846 PreviousContext.pop(); 3847 3848 // FIXME: Need to inform the ASTConsumer that we instantiated the 3849 // initializer? 3850 3851 // This variable may have local implicit instantiations that need to be 3852 // instantiated within this scope. 3853 PerformPendingInstantiations(/*LocalOnly=*/true); 3854 3855 Local.Exit(); 3856 3857 if (Recursive) { 3858 // Define any newly required vtables. 3859 DefineUsedVTables(); 3860 3861 // Instantiate any pending implicit instantiations found during the 3862 // instantiation of this template. 3863 PerformPendingInstantiations(); 3864 3865 // PendingInstantiations and VTableUses are restored through 3866 // SavePendingInstantiationsAndVTableUses's destructor. 3867 } 3868 } 3869 3870 // Find actual definition 3871 Def = PatternDecl->getDefinition(getASTContext()); 3872 } else { 3873 // If this is a static data member, find its out-of-line definition. 3874 assert(Var->isStaticDataMember() && "not a static data member?"); 3875 PatternDecl = Var->getInstantiatedFromStaticDataMember(); 3876 3877 assert(PatternDecl && "data member was not instantiated from a template?"); 3878 assert(PatternDecl->isStaticDataMember() && "not a static data member?"); 3879 Def = PatternDecl->getOutOfLineDefinition(); 3880 } 3881 3882 // If we don't have a definition of the variable template, we won't perform 3883 // any instantiation. Rather, we rely on the user to instantiate this 3884 // definition (or provide a specialization for it) in another translation 3885 // unit. 3886 if (!Def) { 3887 if (DefinitionRequired) { 3888 if (VarSpec) 3889 Diag(PointOfInstantiation, 3890 diag::err_explicit_instantiation_undefined_var_template) << Var; 3891 else 3892 Diag(PointOfInstantiation, 3893 diag::err_explicit_instantiation_undefined_member) 3894 << 2 << Var->getDeclName() << Var->getDeclContext(); 3895 Diag(PatternDecl->getLocation(), 3896 diag::note_explicit_instantiation_here); 3897 if (VarSpec) 3898 Var->setInvalidDecl(); 3899 } else if (Var->getTemplateSpecializationKind() 3900 == TSK_ExplicitInstantiationDefinition) { 3901 PendingInstantiations.push_back( 3902 std::make_pair(Var, PointOfInstantiation)); 3903 } 3904 3905 return; 3906 } 3907 3908 TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind(); 3909 3910 // Never instantiate an explicit specialization. 3911 if (TSK == TSK_ExplicitSpecialization) 3912 return; 3913 3914 // C++11 [temp.explicit]p10: 3915 // Except for inline functions, [...] explicit instantiation declarations 3916 // have the effect of suppressing the implicit instantiation of the entity 3917 // to which they refer. 3918 if (TSK == TSK_ExplicitInstantiationDeclaration) 3919 return; 3920 3921 // Make sure to pass the instantiated variable to the consumer at the end. 3922 struct PassToConsumerRAII { 3923 ASTConsumer &Consumer; 3924 VarDecl *Var; 3925 3926 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) 3927 : Consumer(Consumer), Var(Var) { } 3928 3929 ~PassToConsumerRAII() { 3930 Consumer.HandleCXXStaticMemberVarInstantiation(Var); 3931 } 3932 } PassToConsumerRAII(Consumer, Var); 3933 3934 // If we already have a definition, we're done. 3935 if (VarDecl *Def = Var->getDefinition()) { 3936 // We may be explicitly instantiating something we've already implicitly 3937 // instantiated. 3938 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), 3939 PointOfInstantiation); 3940 return; 3941 } 3942 3943 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); 3944 if (Inst.isInvalid()) 3945 return; 3946 3947 // If we're performing recursive template instantiation, create our own 3948 // queue of pending implicit instantiations that we will instantiate later, 3949 // while we're still within our own instantiation context. 3950 SavePendingLocalImplicitInstantiationsRAII 3951 SavedPendingLocalImplicitInstantiations(*this); 3952 SavePendingInstantiationsAndVTableUsesRAII 3953 SavePendingInstantiationsAndVTableUses(*this, /*Enabled=*/Recursive); 3954 3955 // Enter the scope of this instantiation. We don't use 3956 // PushDeclContext because we don't have a scope. 3957 ContextRAII PreviousContext(*this, Var->getDeclContext()); 3958 LocalInstantiationScope Local(*this); 3959 3960 VarDecl *OldVar = Var; 3961 if (!VarSpec) 3962 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), 3963 TemplateArgs)); 3964 else if (Var->isStaticDataMember() && 3965 Var->getLexicalDeclContext()->isRecord()) { 3966 // We need to instantiate the definition of a static data member template, 3967 // and all we have is the in-class declaration of it. Instantiate a separate 3968 // declaration of the definition. 3969 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), 3970 TemplateArgs); 3971 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl( 3972 VarSpec->getSpecializedTemplate(), Def, nullptr, 3973 VarSpec->getTemplateArgsInfo(), VarSpec->getTemplateArgs().asArray())); 3974 if (Var) { 3975 llvm::PointerUnion<VarTemplateDecl *, 3976 VarTemplatePartialSpecializationDecl *> PatternPtr = 3977 VarSpec->getSpecializedTemplateOrPartial(); 3978 if (VarTemplatePartialSpecializationDecl *Partial = 3979 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>()) 3980 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf( 3981 Partial, &VarSpec->getTemplateInstantiationArgs()); 3982 3983 // Merge the definition with the declaration. 3984 LookupResult R(*this, Var->getDeclName(), Var->getLocation(), 3985 LookupOrdinaryName, ForRedeclaration); 3986 R.addDecl(OldVar); 3987 MergeVarDecl(Var, R); 3988 3989 // Attach the initializer. 3990 InstantiateVariableInitializer(Var, Def, TemplateArgs); 3991 } 3992 } else 3993 // Complete the existing variable's definition with an appropriately 3994 // substituted type and initializer. 3995 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); 3996 3997 PreviousContext.pop(); 3998 3999 if (Var) { 4000 PassToConsumerRAII.Var = Var; 4001 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), 4002 OldVar->getPointOfInstantiation()); 4003 } 4004 4005 // This variable may have local implicit instantiations that need to be 4006 // instantiated within this scope. 4007 PerformPendingInstantiations(/*LocalOnly=*/true); 4008 4009 Local.Exit(); 4010 4011 if (Recursive) { 4012 // Define any newly required vtables. 4013 DefineUsedVTables(); 4014 4015 // Instantiate any pending implicit instantiations found during the 4016 // instantiation of this template. 4017 PerformPendingInstantiations(); 4018 4019 // PendingInstantiations and VTableUses are restored through 4020 // SavePendingInstantiationsAndVTableUses's destructor. 4021 } 4022} 4023 4024void 4025Sema::InstantiateMemInitializers(CXXConstructorDecl *New, 4026 const CXXConstructorDecl *Tmpl, 4027 const MultiLevelTemplateArgumentList &TemplateArgs) { 4028 4029 SmallVector<CXXCtorInitializer*, 4> NewInits; 4030 bool AnyErrors = Tmpl->isInvalidDecl(); 4031 4032 // Instantiate all the initializers. 4033 for (const auto *Init : Tmpl->inits()) { 4034 // Only instantiate written initializers, let Sema re-construct implicit 4035 // ones. 4036 if (!Init->isWritten()) 4037 continue; 4038 4039 SourceLocation EllipsisLoc; 4040 4041 if (Init->isPackExpansion()) { 4042 // This is a pack expansion. We should expand it now. 4043 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); 4044 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 4045 collectUnexpandedParameterPacks(BaseTL, Unexpanded); 4046 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); 4047 bool ShouldExpand = false; 4048 bool RetainExpansion = false; 4049 Optional<unsigned> NumExpansions; 4050 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), 4051 BaseTL.getSourceRange(), 4052 Unexpanded, 4053 TemplateArgs, ShouldExpand, 4054 RetainExpansion, 4055 NumExpansions)) { 4056 AnyErrors = true; 4057 New->setInvalidDecl(); 4058 continue; 4059 } 4060 assert(ShouldExpand && "Partial instantiation of base initializer?"); 4061 4062 // Loop over all of the arguments in the argument pack(s), 4063 for (unsigned I = 0; I != *NumExpansions; ++I) { 4064 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); 4065 4066 // Instantiate the initializer. 4067 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 4068 /*CXXDirectInit=*/true); 4069 if (TempInit.isInvalid()) { 4070 AnyErrors = true; 4071 break; 4072 } 4073 4074 // Instantiate the base type. 4075 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), 4076 TemplateArgs, 4077 Init->getSourceLocation(), 4078 New->getDeclName()); 4079 if (!BaseTInfo) { 4080 AnyErrors = true; 4081 break; 4082 } 4083 4084 // Build the initializer. 4085 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), 4086 BaseTInfo, TempInit.get(), 4087 New->getParent(), 4088 SourceLocation()); 4089 if (NewInit.isInvalid()) { 4090 AnyErrors = true; 4091 break; 4092 } 4093 4094 NewInits.push_back(NewInit.get()); 4095 } 4096 4097 continue; 4098 } 4099 4100 // Instantiate the initializer. 4101 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, 4102 /*CXXDirectInit=*/true); 4103 if (TempInit.isInvalid()) { 4104 AnyErrors = true; 4105 continue; 4106 } 4107 4108 MemInitResult NewInit; 4109 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { 4110 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), 4111 TemplateArgs, 4112 Init->getSourceLocation(), 4113 New->getDeclName()); 4114 if (!TInfo) { 4115 AnyErrors = true; 4116 New->setInvalidDecl(); 4117 continue; 4118 } 4119 4120 if (Init->isBaseInitializer()) 4121 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), 4122 New->getParent(), EllipsisLoc); 4123 else 4124 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), 4125 cast<CXXRecordDecl>(CurContext->getParent())); 4126 } else if (Init->isMemberInitializer()) { 4127 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( 4128 Init->getMemberLocation(), 4129 Init->getMember(), 4130 TemplateArgs)); 4131 if (!Member) { 4132 AnyErrors = true; 4133 New->setInvalidDecl(); 4134 continue; 4135 } 4136 4137 NewInit = BuildMemberInitializer(Member, TempInit.get(), 4138 Init->getSourceLocation()); 4139 } else if (Init->isIndirectMemberInitializer()) { 4140 IndirectFieldDecl *IndirectMember = 4141 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( 4142 Init->getMemberLocation(), 4143 Init->getIndirectMember(), TemplateArgs)); 4144 4145 if (!IndirectMember) { 4146 AnyErrors = true; 4147 New->setInvalidDecl(); 4148 continue; 4149 } 4150 4151 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), 4152 Init->getSourceLocation()); 4153 } 4154 4155 if (NewInit.isInvalid()) { 4156 AnyErrors = true; 4157 New->setInvalidDecl(); 4158 } else { 4159 NewInits.push_back(NewInit.get()); 4160 } 4161 } 4162 4163 // Assign all the initializers to the new constructor. 4164 ActOnMemInitializers(New, 4165 /*FIXME: ColonLoc */ 4166 SourceLocation(), 4167 NewInits, 4168 AnyErrors); 4169} 4170 4171// TODO: this could be templated if the various decl types used the 4172// same method name. 4173static bool isInstantiationOf(ClassTemplateDecl *Pattern, 4174 ClassTemplateDecl *Instance) { 4175 Pattern = Pattern->getCanonicalDecl(); 4176 4177 do { 4178 Instance = Instance->getCanonicalDecl(); 4179 if (Pattern == Instance) return true; 4180 Instance = Instance->getInstantiatedFromMemberTemplate(); 4181 } while (Instance); 4182 4183 return false; 4184} 4185 4186static bool isInstantiationOf(FunctionTemplateDecl *Pattern, 4187 FunctionTemplateDecl *Instance) { 4188 Pattern = Pattern->getCanonicalDecl(); 4189 4190 do { 4191 Instance = Instance->getCanonicalDecl(); 4192 if (Pattern == Instance) return true; 4193 Instance = Instance->getInstantiatedFromMemberTemplate(); 4194 } while (Instance); 4195 4196 return false; 4197} 4198 4199static bool 4200isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, 4201 ClassTemplatePartialSpecializationDecl *Instance) { 4202 Pattern 4203 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); 4204 do { 4205 Instance = cast<ClassTemplatePartialSpecializationDecl>( 4206 Instance->getCanonicalDecl()); 4207 if (Pattern == Instance) 4208 return true; 4209 Instance = Instance->getInstantiatedFromMember(); 4210 } while (Instance); 4211 4212 return false; 4213} 4214 4215static bool isInstantiationOf(CXXRecordDecl *Pattern, 4216 CXXRecordDecl *Instance) { 4217 Pattern = Pattern->getCanonicalDecl(); 4218 4219 do { 4220 Instance = Instance->getCanonicalDecl(); 4221 if (Pattern == Instance) return true; 4222 Instance = Instance->getInstantiatedFromMemberClass(); 4223 } while (Instance); 4224 4225 return false; 4226} 4227 4228static bool isInstantiationOf(FunctionDecl *Pattern, 4229 FunctionDecl *Instance) { 4230 Pattern = Pattern->getCanonicalDecl(); 4231 4232 do { 4233 Instance = Instance->getCanonicalDecl(); 4234 if (Pattern == Instance) return true; 4235 Instance = Instance->getInstantiatedFromMemberFunction(); 4236 } while (Instance); 4237 4238 return false; 4239} 4240 4241static bool isInstantiationOf(EnumDecl *Pattern, 4242 EnumDecl *Instance) { 4243 Pattern = Pattern->getCanonicalDecl(); 4244 4245 do { 4246 Instance = Instance->getCanonicalDecl(); 4247 if (Pattern == Instance) return true; 4248 Instance = Instance->getInstantiatedFromMemberEnum(); 4249 } while (Instance); 4250 4251 return false; 4252} 4253 4254static bool isInstantiationOf(UsingShadowDecl *Pattern, 4255 UsingShadowDecl *Instance, 4256 ASTContext &C) { 4257 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), 4258 Pattern); 4259} 4260 4261static bool isInstantiationOf(UsingDecl *Pattern, 4262 UsingDecl *Instance, 4263 ASTContext &C) { 4264 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); 4265} 4266 4267static bool isInstantiationOf(UnresolvedUsingValueDecl *Pattern, 4268 UsingDecl *Instance, 4269 ASTContext &C) { 4270 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); 4271} 4272 4273static bool isInstantiationOf(UnresolvedUsingTypenameDecl *Pattern, 4274 UsingDecl *Instance, 4275 ASTContext &C) { 4276 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); 4277} 4278 4279static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, 4280 VarDecl *Instance) { 4281 assert(Instance->isStaticDataMember()); 4282 4283 Pattern = Pattern->getCanonicalDecl(); 4284 4285 do { 4286 Instance = Instance->getCanonicalDecl(); 4287 if (Pattern == Instance) return true; 4288 Instance = Instance->getInstantiatedFromStaticDataMember(); 4289 } while (Instance); 4290 4291 return false; 4292} 4293 4294// Other is the prospective instantiation 4295// D is the prospective pattern 4296static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { 4297 if (D->getKind() != Other->getKind()) { 4298 if (UnresolvedUsingTypenameDecl *UUD 4299 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { 4300 if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) { 4301 return isInstantiationOf(UUD, UD, Ctx); 4302 } 4303 } 4304 4305 if (UnresolvedUsingValueDecl *UUD 4306 = dyn_cast<UnresolvedUsingValueDecl>(D)) { 4307 if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) { 4308 return isInstantiationOf(UUD, UD, Ctx); 4309 } 4310 } 4311 4312 return false; 4313 } 4314 4315 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Other)) 4316 return isInstantiationOf(cast<CXXRecordDecl>(D), Record); 4317 4318 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Other)) 4319 return isInstantiationOf(cast<FunctionDecl>(D), Function); 4320 4321 if (EnumDecl *Enum = dyn_cast<EnumDecl>(Other)) 4322 return isInstantiationOf(cast<EnumDecl>(D), Enum); 4323 4324 if (VarDecl *Var = dyn_cast<VarDecl>(Other)) 4325 if (Var->isStaticDataMember()) 4326 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); 4327 4328 if (ClassTemplateDecl *Temp = dyn_cast<ClassTemplateDecl>(Other)) 4329 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); 4330 4331 if (FunctionTemplateDecl *Temp = dyn_cast<FunctionTemplateDecl>(Other)) 4332 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); 4333 4334 if (ClassTemplatePartialSpecializationDecl *PartialSpec 4335 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) 4336 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), 4337 PartialSpec); 4338 4339 if (FieldDecl *Field = dyn_cast<FieldDecl>(Other)) { 4340 if (!Field->getDeclName()) { 4341 // This is an unnamed field. 4342 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), 4343 cast<FieldDecl>(D)); 4344 } 4345 } 4346 4347 if (UsingDecl *Using = dyn_cast<UsingDecl>(Other)) 4348 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); 4349 4350 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(Other)) 4351 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); 4352 4353 return D->getDeclName() && isa<NamedDecl>(Other) && 4354 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); 4355} 4356 4357template<typename ForwardIterator> 4358static NamedDecl *findInstantiationOf(ASTContext &Ctx, 4359 NamedDecl *D, 4360 ForwardIterator first, 4361 ForwardIterator last) { 4362 for (; first != last; ++first) 4363 if (isInstantiationOf(Ctx, D, *first)) 4364 return cast<NamedDecl>(*first); 4365 4366 return nullptr; 4367} 4368 4369/// \brief Finds the instantiation of the given declaration context 4370/// within the current instantiation. 4371/// 4372/// \returns NULL if there was an error 4373DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, 4374 const MultiLevelTemplateArgumentList &TemplateArgs) { 4375 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { 4376 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs); 4377 return cast_or_null<DeclContext>(ID); 4378 } else return DC; 4379} 4380 4381/// \brief Find the instantiation of the given declaration within the 4382/// current instantiation. 4383/// 4384/// This routine is intended to be used when \p D is a declaration 4385/// referenced from within a template, that needs to mapped into the 4386/// corresponding declaration within an instantiation. For example, 4387/// given: 4388/// 4389/// \code 4390/// template<typename T> 4391/// struct X { 4392/// enum Kind { 4393/// KnownValue = sizeof(T) 4394/// }; 4395/// 4396/// bool getKind() const { return KnownValue; } 4397/// }; 4398/// 4399/// template struct X<int>; 4400/// \endcode 4401/// 4402/// In the instantiation of <tt>X<int>::getKind()</tt>, we need to map the 4403/// \p EnumConstantDecl for \p KnownValue (which refers to 4404/// <tt>X<T>::<Kind>::KnownValue</tt>) to its instantiation 4405/// (<tt>X<int>::<Kind>::KnownValue</tt>). \p FindInstantiatedDecl performs 4406/// this mapping from within the instantiation of <tt>X<int></tt>. 4407NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, 4408 const MultiLevelTemplateArgumentList &TemplateArgs) { 4409 DeclContext *ParentDC = D->getDeclContext(); 4410 // FIXME: Parmeters of pointer to functions (y below) that are themselves 4411 // parameters (p below) can have their ParentDC set to the translation-unit 4412 // - thus we can not consistently check if the ParentDC of such a parameter 4413 // is Dependent or/and a FunctionOrMethod. 4414 // For e.g. this code, during Template argument deduction tries to 4415 // find an instantiated decl for (T y) when the ParentDC for y is 4416 // the translation unit. 4417 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {} 4418 // float baz(float(*)()) { return 0.0; } 4419 // Foo(baz); 4420 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time 4421 // it gets here, always has a FunctionOrMethod as its ParentDC?? 4422 // For now: 4423 // - as long as we have a ParmVarDecl whose parent is non-dependent and 4424 // whose type is not instantiation dependent, do nothing to the decl 4425 // - otherwise find its instantiated decl. 4426 if (isa<ParmVarDecl>(D) && !ParentDC->isDependentContext() && 4427 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType()) 4428 return D; 4429 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || 4430 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || 4431 (ParentDC->isFunctionOrMethod() && ParentDC->isDependentContext()) || 4432 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) { 4433 // D is a local of some kind. Look into the map of local 4434 // declarations to their instantiations. 4435 if (CurrentInstantiationScope) { 4436 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { 4437 if (Decl *FD = Found->dyn_cast<Decl *>()) 4438 return cast<NamedDecl>(FD); 4439 4440 int PackIdx = ArgumentPackSubstitutionIndex; 4441 assert(PackIdx != -1 && 4442 "found declaration pack but not pack expanding"); 4443 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; 4444 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); 4445 } 4446 } 4447 4448 // If we're performing a partial substitution during template argument 4449 // deduction, we may not have values for template parameters yet. They 4450 // just map to themselves. 4451 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || 4452 isa<TemplateTemplateParmDecl>(D)) 4453 return D; 4454 4455 if (D->isInvalidDecl()) 4456 return nullptr; 4457 4458 // Normally this function only searches for already instantiated declaration 4459 // however we have to make an exclusion for local types used before 4460 // definition as in the code: 4461 // 4462 // template<typename T> void f1() { 4463 // void g1(struct x1); 4464 // struct x1 {}; 4465 // } 4466 // 4467 // In this case instantiation of the type of 'g1' requires definition of 4468 // 'x1', which is defined later. Error recovery may produce an enum used 4469 // before definition. In these cases we need to instantiate relevant 4470 // declarations here. 4471 bool NeedInstantiate = false; 4472 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) 4473 NeedInstantiate = RD->isLocalClass(); 4474 else 4475 NeedInstantiate = isa<EnumDecl>(D); 4476 if (NeedInstantiate) { 4477 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 4478 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 4479 return cast<TypeDecl>(Inst); 4480 } 4481 4482 // If we didn't find the decl, then we must have a label decl that hasn't 4483 // been found yet. Lazily instantiate it and return it now. 4484 assert(isa<LabelDecl>(D)); 4485 4486 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); 4487 assert(Inst && "Failed to instantiate label??"); 4488 4489 CurrentInstantiationScope->InstantiatedLocal(D, Inst); 4490 return cast<LabelDecl>(Inst); 4491 } 4492 4493 // For variable template specializations, update those that are still 4494 // type-dependent. 4495 if (VarTemplateSpecializationDecl *VarSpec = 4496 dyn_cast<VarTemplateSpecializationDecl>(D)) { 4497 bool InstantiationDependent = false; 4498 const TemplateArgumentListInfo &VarTemplateArgs = 4499 VarSpec->getTemplateArgsInfo(); 4500 if (TemplateSpecializationType::anyDependentTemplateArguments( 4501 VarTemplateArgs, InstantiationDependent)) 4502 D = cast<NamedDecl>( 4503 SubstDecl(D, VarSpec->getDeclContext(), TemplateArgs)); 4504 return D; 4505 } 4506 4507 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 4508 if (!Record->isDependentContext()) 4509 return D; 4510 4511 // Determine whether this record is the "templated" declaration describing 4512 // a class template or class template partial specialization. 4513 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); 4514 if (ClassTemplate) 4515 ClassTemplate = ClassTemplate->getCanonicalDecl(); 4516 else if (ClassTemplatePartialSpecializationDecl *PartialSpec 4517 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) 4518 ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl(); 4519 4520 // Walk the current context to find either the record or an instantiation of 4521 // it. 4522 DeclContext *DC = CurContext; 4523 while (!DC->isFileContext()) { 4524 // If we're performing substitution while we're inside the template 4525 // definition, we'll find our own context. We're done. 4526 if (DC->Equals(Record)) 4527 return Record; 4528 4529 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) { 4530 // Check whether we're in the process of instantiating a class template 4531 // specialization of the template we're mapping. 4532 if (ClassTemplateSpecializationDecl *InstSpec 4533 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){ 4534 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate(); 4535 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate)) 4536 return InstRecord; 4537 } 4538 4539 // Check whether we're in the process of instantiating a member class. 4540 if (isInstantiationOf(Record, InstRecord)) 4541 return InstRecord; 4542 } 4543 4544 // Move to the outer template scope. 4545 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) { 4546 if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){ 4547 DC = FD->getLexicalDeclContext(); 4548 continue; 4549 } 4550 } 4551 4552 DC = DC->getParent(); 4553 } 4554 4555 // Fall through to deal with other dependent record types (e.g., 4556 // anonymous unions in class templates). 4557 } 4558 4559 if (!ParentDC->isDependentContext()) 4560 return D; 4561 4562 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); 4563 if (!ParentDC) 4564 return nullptr; 4565 4566 if (ParentDC != D->getDeclContext()) { 4567 // We performed some kind of instantiation in the parent context, 4568 // so now we need to look into the instantiated parent context to 4569 // find the instantiation of the declaration D. 4570 4571 // If our context used to be dependent, we may need to instantiate 4572 // it before performing lookup into that context. 4573 bool IsBeingInstantiated = false; 4574 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { 4575 if (!Spec->isDependentContext()) { 4576 QualType T = Context.getTypeDeclType(Spec); 4577 const RecordType *Tag = T->getAs<RecordType>(); 4578 assert(Tag && "type of non-dependent record is not a RecordType"); 4579 if (Tag->isBeingDefined()) 4580 IsBeingInstantiated = true; 4581 if (!Tag->isBeingDefined() && 4582 RequireCompleteType(Loc, T, diag::err_incomplete_type)) 4583 return nullptr; 4584 4585 ParentDC = Tag->getDecl(); 4586 } 4587 } 4588 4589 NamedDecl *Result = nullptr; 4590 if (D->getDeclName()) { 4591 DeclContext::lookup_result Found = ParentDC->lookup(D->getDeclName()); 4592 Result = findInstantiationOf(Context, D, Found.begin(), Found.end()); 4593 } else { 4594 // Since we don't have a name for the entity we're looking for, 4595 // our only option is to walk through all of the declarations to 4596 // find that name. This will occur in a few cases: 4597 // 4598 // - anonymous struct/union within a template 4599 // - unnamed class/struct/union/enum within a template 4600 // 4601 // FIXME: Find a better way to find these instantiations! 4602 Result = findInstantiationOf(Context, D, 4603 ParentDC->decls_begin(), 4604 ParentDC->decls_end()); 4605 } 4606 4607 if (!Result) { 4608 if (isa<UsingShadowDecl>(D)) { 4609 // UsingShadowDecls can instantiate to nothing because of using hiding. 4610 } else if (Diags.hasErrorOccurred()) { 4611 // We've already complained about something, so most likely this 4612 // declaration failed to instantiate. There's no point in complaining 4613 // further, since this is normal in invalid code. 4614 } else if (IsBeingInstantiated) { 4615 // The class in which this member exists is currently being 4616 // instantiated, and we haven't gotten around to instantiating this 4617 // member yet. This can happen when the code uses forward declarations 4618 // of member classes, and introduces ordering dependencies via 4619 // template instantiation. 4620 Diag(Loc, diag::err_member_not_yet_instantiated) 4621 << D->getDeclName() 4622 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); 4623 Diag(D->getLocation(), diag::note_non_instantiated_member_here); 4624 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { 4625 // This enumeration constant was found when the template was defined, 4626 // but can't be found in the instantiation. This can happen if an 4627 // unscoped enumeration member is explicitly specialized. 4628 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext()); 4629 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum, 4630 TemplateArgs)); 4631 assert(Spec->getTemplateSpecializationKind() == 4632 TSK_ExplicitSpecialization); 4633 Diag(Loc, diag::err_enumerator_does_not_exist) 4634 << D->getDeclName() 4635 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext())); 4636 Diag(Spec->getLocation(), diag::note_enum_specialized_here) 4637 << Context.getTypeDeclType(Spec); 4638 } else { 4639 // We should have found something, but didn't. 4640 llvm_unreachable("Unable to find instantiation of declaration!"); 4641 } 4642 } 4643 4644 D = Result; 4645 } 4646 4647 return D; 4648} 4649 4650/// \brief Performs template instantiation for all implicit template 4651/// instantiations we have seen until this point. 4652void Sema::PerformPendingInstantiations(bool LocalOnly) { 4653 while (!PendingLocalImplicitInstantiations.empty() || 4654 (!LocalOnly && !PendingInstantiations.empty())) { 4655 PendingImplicitInstantiation Inst; 4656 4657 if (PendingLocalImplicitInstantiations.empty()) { 4658 Inst = PendingInstantiations.front(); 4659 PendingInstantiations.pop_front(); 4660 } else { 4661 Inst = PendingLocalImplicitInstantiations.front(); 4662 PendingLocalImplicitInstantiations.pop_front(); 4663 } 4664 4665 // Instantiate function definitions 4666 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { 4667 PrettyDeclStackTraceEntry CrashInfo(*this, Function, SourceLocation(), 4668 "instantiating function definition"); 4669 bool DefinitionRequired = Function->getTemplateSpecializationKind() == 4670 TSK_ExplicitInstantiationDefinition; 4671 InstantiateFunctionDefinition(/*FIXME:*/Inst.second, Function, true, 4672 DefinitionRequired); 4673 continue; 4674 } 4675 4676 // Instantiate variable definitions 4677 VarDecl *Var = cast<VarDecl>(Inst.first); 4678 4679 assert((Var->isStaticDataMember() || 4680 isa<VarTemplateSpecializationDecl>(Var)) && 4681 "Not a static data member, nor a variable template" 4682 " specialization?"); 4683 4684 // Don't try to instantiate declarations if the most recent redeclaration 4685 // is invalid. 4686 if (Var->getMostRecentDecl()->isInvalidDecl()) 4687 continue; 4688 4689 // Check if the most recent declaration has changed the specialization kind 4690 // and removed the need for implicit instantiation. 4691 switch (Var->getMostRecentDecl()->getTemplateSpecializationKind()) { 4692 case TSK_Undeclared: 4693 llvm_unreachable("Cannot instantitiate an undeclared specialization."); 4694 case TSK_ExplicitInstantiationDeclaration: 4695 case TSK_ExplicitSpecialization: 4696 continue; // No longer need to instantiate this type. 4697 case TSK_ExplicitInstantiationDefinition: 4698 // We only need an instantiation if the pending instantiation *is* the 4699 // explicit instantiation. 4700 if (Var != Var->getMostRecentDecl()) continue; 4701 case TSK_ImplicitInstantiation: 4702 break; 4703 } 4704 4705 PrettyDeclStackTraceEntry CrashInfo(*this, Var, SourceLocation(), 4706 "instantiating variable definition"); 4707 bool DefinitionRequired = Var->getTemplateSpecializationKind() == 4708 TSK_ExplicitInstantiationDefinition; 4709 4710 // Instantiate static data member definitions or variable template 4711 // specializations. 4712 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true, 4713 DefinitionRequired); 4714 } 4715} 4716 4717void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, 4718 const MultiLevelTemplateArgumentList &TemplateArgs) { 4719 for (auto DD : Pattern->ddiags()) { 4720 switch (DD->getKind()) { 4721 case DependentDiagnostic::Access: 4722 HandleDependentAccessCheck(*DD, TemplateArgs); 4723 break; 4724 } 4725 } 4726} 4727