1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11#include <Eigen/LU>
12#include <algorithm>
13
14template<typename T> std::string type_name() { return "other"; }
15template<> std::string type_name<float>() { return "float"; }
16template<> std::string type_name<double>() { return "double"; }
17template<> std::string type_name<int>() { return "int"; }
18template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
19template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
20template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
21
22#define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl;
23
24template<typename T> inline typename NumTraits<T>::Real epsilon()
25{
26 return std::numeric_limits<typename NumTraits<T>::Real>::epsilon();
27}
28
29template<typename MatrixType> void inverse_permutation_4x4()
30{
31  typedef typename MatrixType::Scalar Scalar;
32  typedef typename MatrixType::RealScalar RealScalar;
33  Vector4i indices(0,1,2,3);
34  for(int i = 0; i < 24; ++i)
35  {
36    MatrixType m = MatrixType::Zero();
37    m(indices(0),0) = 1;
38    m(indices(1),1) = 1;
39    m(indices(2),2) = 1;
40    m(indices(3),3) = 1;
41    MatrixType inv = m.inverse();
42    double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon<Scalar>() );
43    VERIFY(error == 0.0);
44    std::next_permutation(indices.data(),indices.data()+4);
45  }
46}
47
48template<typename MatrixType> void inverse_general_4x4(int repeat)
49{
50  typedef typename MatrixType::Scalar Scalar;
51  typedef typename MatrixType::RealScalar RealScalar;
52  double error_sum = 0., error_max = 0.;
53  for(int i = 0; i < repeat; ++i)
54  {
55    MatrixType m;
56    RealScalar absdet;
57    do {
58      m = MatrixType::Random();
59      absdet = ei_abs(m.determinant());
60    } while(absdet < 10 * epsilon<Scalar>());
61    MatrixType inv = m.inverse();
62    double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon<Scalar>() );
63    error_sum += error;
64    error_max = std::max(error_max, error);
65  }
66  std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl;
67  double error_avg = error_sum / repeat;
68  EIGEN_DEBUG_VAR(error_avg);
69  EIGEN_DEBUG_VAR(error_max);
70  VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25));
71  VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0));
72}
73
74void test_eigen2_prec_inverse_4x4()
75{
76  CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>()));
77  CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) ));
78
79  CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >()));
80  CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) ));
81
82  CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>()));
83  CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat)));
84}
85