1// Copyright 2013 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
6#define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
7
8#include <queue>
9#include <string>
10
11#include "base/base_export.h"
12#include "base/callback_forward.h"
13#include "base/debug/task_annotator.h"
14#include "base/gtest_prod_util.h"
15#include "base/location.h"
16#include "base/macros.h"
17#include "base/memory/ref_counted.h"
18#include "base/memory/scoped_ptr.h"
19#include "base/message_loop/incoming_task_queue.h"
20#include "base/message_loop/message_loop_task_runner.h"
21#include "base/message_loop/message_pump.h"
22#include "base/message_loop/timer_slack.h"
23#include "base/observer_list.h"
24#include "base/pending_task.h"
25#include "base/sequenced_task_runner_helpers.h"
26#include "base/synchronization/lock.h"
27#include "base/time/time.h"
28#include "base/tracking_info.h"
29#include "build/build_config.h"
30
31// TODO(sky): these includes should not be necessary. Nuke them.
32#if defined(OS_WIN)
33#include "base/message_loop/message_pump_win.h"
34#elif defined(OS_IOS)
35#include "base/message_loop/message_pump_io_ios.h"
36#elif defined(OS_POSIX)
37#include "base/message_loop/message_pump_libevent.h"
38#endif
39
40namespace base {
41
42class HistogramBase;
43class RunLoop;
44class ThreadTaskRunnerHandle;
45class WaitableEvent;
46
47// A MessageLoop is used to process events for a particular thread.  There is
48// at most one MessageLoop instance per thread.
49//
50// Events include at a minimum Task instances submitted to PostTask and its
51// variants.  Depending on the type of message pump used by the MessageLoop
52// other events such as UI messages may be processed.  On Windows APC calls (as
53// time permits) and signals sent to a registered set of HANDLEs may also be
54// processed.
55//
56// NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
57// on the thread where the MessageLoop's Run method executes.
58//
59// NOTE: MessageLoop has task reentrancy protection.  This means that if a
60// task is being processed, a second task cannot start until the first task is
61// finished.  Reentrancy can happen when processing a task, and an inner
62// message pump is created.  That inner pump then processes native messages
63// which could implicitly start an inner task.  Inner message pumps are created
64// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
65// (DoDragDrop), printer functions (StartDoc) and *many* others.
66//
67// Sample workaround when inner task processing is needed:
68//   HRESULT hr;
69//   {
70//     MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
71//     hr = DoDragDrop(...); // Implicitly runs a modal message loop.
72//   }
73//   // Process |hr| (the result returned by DoDragDrop()).
74//
75// Please be SURE your task is reentrant (nestable) and all global variables
76// are stable and accessible before calling SetNestableTasksAllowed(true).
77//
78class BASE_EXPORT MessageLoop : public MessagePump::Delegate {
79 public:
80  // A MessageLoop has a particular type, which indicates the set of
81  // asynchronous events it may process in addition to tasks and timers.
82  //
83  // TYPE_DEFAULT
84  //   This type of ML only supports tasks and timers.
85  //
86  // TYPE_UI
87  //   This type of ML also supports native UI events (e.g., Windows messages).
88  //   See also MessageLoopForUI.
89  //
90  // TYPE_IO
91  //   This type of ML also supports asynchronous IO.  See also
92  //   MessageLoopForIO.
93  //
94  // TYPE_JAVA
95  //   This type of ML is backed by a Java message handler which is responsible
96  //   for running the tasks added to the ML. This is only for use on Android.
97  //   TYPE_JAVA behaves in essence like TYPE_UI, except during construction
98  //   where it does not use the main thread specific pump factory.
99  //
100  // TYPE_CUSTOM
101  //   MessagePump was supplied to constructor.
102  //
103  enum Type {
104    TYPE_DEFAULT,
105    TYPE_UI,
106    TYPE_CUSTOM,
107    TYPE_IO,
108#if defined(OS_ANDROID)
109    TYPE_JAVA,
110#endif  // defined(OS_ANDROID)
111  };
112
113  // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
114  // is typical to make use of the current thread's MessageLoop instance.
115  explicit MessageLoop(Type type = TYPE_DEFAULT);
116  // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
117  // be non-NULL.
118  explicit MessageLoop(scoped_ptr<MessagePump> pump);
119
120  ~MessageLoop() override;
121
122  // Returns the MessageLoop object for the current thread, or null if none.
123  static MessageLoop* current();
124
125  static void EnableHistogrammer(bool enable_histogrammer);
126
127  typedef scoped_ptr<MessagePump> (MessagePumpFactory)();
128  // Uses the given base::MessagePumpForUIFactory to override the default
129  // MessagePump implementation for 'TYPE_UI'. Returns true if the factory
130  // was successfully registered.
131  static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory);
132
133  // Creates the default MessagePump based on |type|. Caller owns return
134  // value.
135  static scoped_ptr<MessagePump> CreateMessagePumpForType(Type type);
136  // A DestructionObserver is notified when the current MessageLoop is being
137  // destroyed.  These observers are notified prior to MessageLoop::current()
138  // being changed to return NULL.  This gives interested parties the chance to
139  // do final cleanup that depends on the MessageLoop.
140  //
141  // NOTE: Any tasks posted to the MessageLoop during this notification will
142  // not be run.  Instead, they will be deleted.
143  //
144  class BASE_EXPORT DestructionObserver {
145   public:
146    virtual void WillDestroyCurrentMessageLoop() = 0;
147
148   protected:
149    virtual ~DestructionObserver();
150  };
151
152  // Add a DestructionObserver, which will start receiving notifications
153  // immediately.
154  void AddDestructionObserver(DestructionObserver* destruction_observer);
155
156  // Remove a DestructionObserver.  It is safe to call this method while a
157  // DestructionObserver is receiving a notification callback.
158  void RemoveDestructionObserver(DestructionObserver* destruction_observer);
159
160  // NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces.
161  // TODO(skyostil): Remove these functions (crbug.com/465354).
162  //
163  // The "PostTask" family of methods call the task's Run method asynchronously
164  // from within a message loop at some point in the future.
165  //
166  // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
167  // with normal UI or IO event processing.  With the PostDelayedTask variant,
168  // tasks are called after at least approximately 'delay_ms' have elapsed.
169  //
170  // The NonNestable variants work similarly except that they promise never to
171  // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
172  // such tasks get deferred until the top-most MessageLoop::Run is executing.
173  //
174  // The MessageLoop takes ownership of the Task, and deletes it after it has
175  // been Run().
176  //
177  // PostTask(from_here, task) is equivalent to
178  // PostDelayedTask(from_here, task, 0).
179  //
180  // NOTE: These methods may be called on any thread.  The Task will be invoked
181  // on the thread that executes MessageLoop::Run().
182  void PostTask(const tracked_objects::Location& from_here,
183                const Closure& task);
184
185  void PostDelayedTask(const tracked_objects::Location& from_here,
186                       const Closure& task,
187                       TimeDelta delay);
188
189  void PostNonNestableTask(const tracked_objects::Location& from_here,
190                           const Closure& task);
191
192  void PostNonNestableDelayedTask(const tracked_objects::Location& from_here,
193                                  const Closure& task,
194                                  TimeDelta delay);
195
196  // A variant on PostTask that deletes the given object.  This is useful
197  // if the object needs to live until the next run of the MessageLoop (for
198  // example, deleting a RenderProcessHost from within an IPC callback is not
199  // good).
200  //
201  // NOTE: This method may be called on any thread.  The object will be deleted
202  // on the thread that executes MessageLoop::Run().
203  template <class T>
204  void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
205    base::subtle::DeleteHelperInternal<T, void>::DeleteViaSequencedTaskRunner(
206        this, from_here, object);
207  }
208
209  // A variant on PostTask that releases the given reference counted object
210  // (by calling its Release method).  This is useful if the object needs to
211  // live until the next run of the MessageLoop, or if the object needs to be
212  // released on a particular thread.
213  //
214  // A common pattern is to manually increment the object's reference count
215  // (AddRef), clear the pointer, then issue a ReleaseSoon.  The reference count
216  // is incremented manually to ensure clearing the pointer does not trigger a
217  // delete and to account for the upcoming decrement (ReleaseSoon).  For
218  // example:
219  //
220  // scoped_refptr<Foo> foo = ...
221  // foo->AddRef();
222  // Foo* raw_foo = foo.get();
223  // foo = NULL;
224  // message_loop->ReleaseSoon(raw_foo);
225  //
226  // NOTE: This method may be called on any thread.  The object will be
227  // released (and thus possibly deleted) on the thread that executes
228  // MessageLoop::Run().  If this is not the same as the thread that calls
229  // ReleaseSoon(FROM_HERE, ), then T MUST inherit from
230  // RefCountedThreadSafe<T>!
231  template <class T>
232  void ReleaseSoon(const tracked_objects::Location& from_here,
233                   const T* object) {
234    base::subtle::ReleaseHelperInternal<T, void>::ReleaseViaSequencedTaskRunner(
235        this, from_here, object);
236  }
237
238  // Deprecated: use RunLoop instead.
239  // Run the message loop.
240  void Run();
241
242  // Deprecated: use RunLoop instead.
243  // Process all pending tasks, windows messages, etc., but don't wait/sleep.
244  // Return as soon as all items that can be run are taken care of.
245  void RunUntilIdle();
246
247  // Deprecated: use RunLoop instead.
248  //
249  // Signals the Run method to return when it becomes idle. It will continue to
250  // process pending messages and future messages as long as they are enqueued.
251  // Warning: if the MessageLoop remains busy, it may never quit. Only use this
252  // Quit method when looping procedures (such as web pages) have been shut
253  // down.
254  //
255  // This method may only be called on the same thread that called Run, and Run
256  // must still be on the call stack.
257  //
258  // Use QuitClosure variants if you need to Quit another thread's MessageLoop,
259  // but note that doing so is fairly dangerous if the target thread makes
260  // nested calls to MessageLoop::Run.  The problem being that you won't know
261  // which nested run loop you are quitting, so be careful!
262  void QuitWhenIdle();
263
264  // Deprecated: use RunLoop instead.
265  //
266  // This method is a variant of Quit, that does not wait for pending messages
267  // to be processed before returning from Run.
268  void QuitNow();
269
270  // Deprecated: use RunLoop instead.
271  // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
272  // arbitrary MessageLoop to QuitWhenIdle.
273  static Closure QuitWhenIdleClosure();
274
275  // Set the timer slack for this message loop.
276  void SetTimerSlack(TimerSlack timer_slack) {
277    pump_->SetTimerSlack(timer_slack);
278  }
279
280  // Returns true if this loop is |type|. This allows subclasses (especially
281  // those in tests) to specialize how they are identified.
282  virtual bool IsType(Type type) const;
283
284  // Returns the type passed to the constructor.
285  Type type() const { return type_; }
286
287  // Optional call to connect the thread name with this loop.
288  void set_thread_name(const std::string& thread_name) {
289    DCHECK(thread_name_.empty()) << "Should not rename this thread!";
290    thread_name_ = thread_name;
291  }
292  const std::string& thread_name() const { return thread_name_; }
293
294  // Gets the TaskRunner associated with this message loop.
295  const scoped_refptr<SingleThreadTaskRunner>& task_runner() {
296    return task_runner_;
297  }
298
299  // Sets a new TaskRunner for this message loop. The message loop must already
300  // have been bound to a thread prior to this call, and the task runner must
301  // belong to that thread. Note that changing the task runner will also affect
302  // the ThreadTaskRunnerHandle for the target thread. Must be called on the
303  // thread to which the message loop is bound.
304  void SetTaskRunner(scoped_refptr<SingleThreadTaskRunner> task_runner);
305
306  // Enables or disables the recursive task processing. This happens in the case
307  // of recursive message loops. Some unwanted message loops may occur when
308  // using common controls or printer functions. By default, recursive task
309  // processing is disabled.
310  //
311  // Please use |ScopedNestableTaskAllower| instead of calling these methods
312  // directly.  In general, nestable message loops are to be avoided.  They are
313  // dangerous and difficult to get right, so please use with extreme caution.
314  //
315  // The specific case where tasks get queued is:
316  // - The thread is running a message loop.
317  // - It receives a task #1 and executes it.
318  // - The task #1 implicitly starts a message loop, like a MessageBox in the
319  //   unit test. This can also be StartDoc or GetSaveFileName.
320  // - The thread receives a task #2 before or while in this second message
321  //   loop.
322  // - With NestableTasksAllowed set to true, the task #2 will run right away.
323  //   Otherwise, it will get executed right after task #1 completes at "thread
324  //   message loop level".
325  void SetNestableTasksAllowed(bool allowed);
326  bool NestableTasksAllowed() const;
327
328  // Enables nestable tasks on |loop| while in scope.
329  class ScopedNestableTaskAllower {
330   public:
331    explicit ScopedNestableTaskAllower(MessageLoop* loop)
332        : loop_(loop),
333          old_state_(loop_->NestableTasksAllowed()) {
334      loop_->SetNestableTasksAllowed(true);
335    }
336    ~ScopedNestableTaskAllower() {
337      loop_->SetNestableTasksAllowed(old_state_);
338    }
339
340   private:
341    MessageLoop* loop_;
342    bool old_state_;
343  };
344
345  // Returns true if we are currently running a nested message loop.
346  bool IsNested();
347
348  // A TaskObserver is an object that receives task notifications from the
349  // MessageLoop.
350  //
351  // NOTE: A TaskObserver implementation should be extremely fast!
352  class BASE_EXPORT TaskObserver {
353   public:
354    TaskObserver();
355
356    // This method is called before processing a task.
357    virtual void WillProcessTask(const PendingTask& pending_task) = 0;
358
359    // This method is called after processing a task.
360    virtual void DidProcessTask(const PendingTask& pending_task) = 0;
361
362   protected:
363    virtual ~TaskObserver();
364  };
365
366  // These functions can only be called on the same thread that |this| is
367  // running on.
368  void AddTaskObserver(TaskObserver* task_observer);
369  void RemoveTaskObserver(TaskObserver* task_observer);
370
371#if defined(OS_WIN)
372  void set_os_modal_loop(bool os_modal_loop) {
373    os_modal_loop_ = os_modal_loop;
374  }
375
376  bool os_modal_loop() const {
377    return os_modal_loop_;
378  }
379#endif  // OS_WIN
380
381  // Can only be called from the thread that owns the MessageLoop.
382  bool is_running() const;
383
384  // Returns true if the message loop has high resolution timers enabled.
385  // Provided for testing.
386  bool HasHighResolutionTasks();
387
388  // Returns true if the message loop is "idle". Provided for testing.
389  bool IsIdleForTesting();
390
391  // Returns the TaskAnnotator which is used to add debug information to posted
392  // tasks.
393  debug::TaskAnnotator* task_annotator() { return &task_annotator_; }
394
395  // Runs the specified PendingTask.
396  void RunTask(const PendingTask& pending_task);
397
398  //----------------------------------------------------------------------------
399 protected:
400  scoped_ptr<MessagePump> pump_;
401
402 private:
403  friend class RunLoop;
404  friend class internal::IncomingTaskQueue;
405  friend class ScheduleWorkTest;
406  friend class Thread;
407  FRIEND_TEST_ALL_PREFIXES(MessageLoopTest, DeleteUnboundLoop);
408
409  using MessagePumpFactoryCallback = Callback<scoped_ptr<MessagePump>()>;
410
411  // Creates a MessageLoop without binding to a thread.
412  // If |type| is TYPE_CUSTOM non-null |pump_factory| must be also given
413  // to create a message pump for this message loop.  Otherwise a default
414  // message pump for the |type| is created.
415  //
416  // It is valid to call this to create a new message loop on one thread,
417  // and then pass it to the thread where the message loop actually runs.
418  // The message loop's BindToCurrentThread() method must be called on the
419  // thread the message loop runs on, before calling Run().
420  // Before BindToCurrentThread() is called, only Post*Task() functions can
421  // be called on the message loop.
422  static scoped_ptr<MessageLoop> CreateUnbound(
423      Type type,
424      MessagePumpFactoryCallback pump_factory);
425
426  // Common private constructor. Other constructors delegate the initialization
427  // to this constructor.
428  MessageLoop(Type type, MessagePumpFactoryCallback pump_factory);
429
430  // Configure various members and bind this message loop to the current thread.
431  void BindToCurrentThread();
432
433  // Sets the ThreadTaskRunnerHandle for the current thread to point to the
434  // task runner for this message loop.
435  void SetThreadTaskRunnerHandle();
436
437  // Invokes the actual run loop using the message pump.
438  void RunHandler();
439
440  // Called to process any delayed non-nestable tasks.
441  bool ProcessNextDelayedNonNestableTask();
442
443  // Calls RunTask or queues the pending_task on the deferred task list if it
444  // cannot be run right now.  Returns true if the task was run.
445  bool DeferOrRunPendingTask(const PendingTask& pending_task);
446
447  // Adds the pending task to delayed_work_queue_.
448  void AddToDelayedWorkQueue(const PendingTask& pending_task);
449
450  // Delete tasks that haven't run yet without running them.  Used in the
451  // destructor to make sure all the task's destructors get called.  Returns
452  // true if some work was done.
453  bool DeletePendingTasks();
454
455  // Loads tasks from the incoming queue to |work_queue_| if the latter is
456  // empty.
457  void ReloadWorkQueue();
458
459  // Wakes up the message pump. Can be called on any thread. The caller is
460  // responsible for synchronizing ScheduleWork() calls.
461  void ScheduleWork();
462
463  // Start recording histogram info about events and action IF it was enabled
464  // and IF the statistics recorder can accept a registration of our histogram.
465  void StartHistogrammer();
466
467  // Add occurrence of event to our histogram, so that we can see what is being
468  // done in a specific MessageLoop instance (i.e., specific thread).
469  // If message_histogram_ is NULL, this is a no-op.
470  void HistogramEvent(int event);
471
472  // MessagePump::Delegate methods:
473  bool DoWork() override;
474  bool DoDelayedWork(TimeTicks* next_delayed_work_time) override;
475  bool DoIdleWork() override;
476
477  const Type type_;
478
479  // A list of tasks that need to be processed by this instance.  Note that
480  // this queue is only accessed (push/pop) by our current thread.
481  TaskQueue work_queue_;
482
483#if defined(OS_WIN)
484  // How many high resolution tasks are in the pending task queue. This value
485  // increases by N every time we call ReloadWorkQueue() and decreases by 1
486  // every time we call RunTask() if the task needs a high resolution timer.
487  int pending_high_res_tasks_;
488  // Tracks if we have requested high resolution timers. Its only use is to
489  // turn off the high resolution timer upon loop destruction.
490  bool in_high_res_mode_;
491#endif
492
493  // Contains delayed tasks, sorted by their 'delayed_run_time' property.
494  DelayedTaskQueue delayed_work_queue_;
495
496  // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
497  TimeTicks recent_time_;
498
499  // A queue of non-nestable tasks that we had to defer because when it came
500  // time to execute them we were in a nested message loop.  They will execute
501  // once we're out of nested message loops.
502  TaskQueue deferred_non_nestable_work_queue_;
503
504  ObserverList<DestructionObserver> destruction_observers_;
505
506  // A recursion block that prevents accidentally running additional tasks when
507  // insider a (accidentally induced?) nested message pump.
508  bool nestable_tasks_allowed_;
509
510#if defined(OS_WIN)
511  // Should be set to true before calling Windows APIs like TrackPopupMenu, etc.
512  // which enter a modal message loop.
513  bool os_modal_loop_;
514#endif
515
516  // pump_factory_.Run() is called to create a message pump for this loop
517  // if type_ is TYPE_CUSTOM and pump_ is null.
518  MessagePumpFactoryCallback pump_factory_;
519
520  std::string thread_name_;
521  // A profiling histogram showing the counts of various messages and events.
522  HistogramBase* message_histogram_;
523
524  RunLoop* run_loop_;
525
526  ObserverList<TaskObserver> task_observers_;
527
528  debug::TaskAnnotator task_annotator_;
529
530  scoped_refptr<internal::IncomingTaskQueue> incoming_task_queue_;
531
532  // A task runner which we haven't bound to a thread yet.
533  scoped_refptr<internal::MessageLoopTaskRunner> unbound_task_runner_;
534
535  // The task runner associated with this message loop.
536  scoped_refptr<SingleThreadTaskRunner> task_runner_;
537  scoped_ptr<ThreadTaskRunnerHandle> thread_task_runner_handle_;
538
539  template <class T, class R> friend class base::subtle::DeleteHelperInternal;
540  template <class T, class R> friend class base::subtle::ReleaseHelperInternal;
541
542  void DeleteSoonInternal(const tracked_objects::Location& from_here,
543                          void(*deleter)(const void*),
544                          const void* object);
545  void ReleaseSoonInternal(const tracked_objects::Location& from_here,
546                           void(*releaser)(const void*),
547                           const void* object);
548
549  DISALLOW_COPY_AND_ASSIGN(MessageLoop);
550};
551
552#if !defined(OS_NACL)
553
554//-----------------------------------------------------------------------------
555// MessageLoopForUI extends MessageLoop with methods that are particular to a
556// MessageLoop instantiated with TYPE_UI.
557//
558// This class is typically used like so:
559//   MessageLoopForUI::current()->...call some method...
560//
561class BASE_EXPORT MessageLoopForUI : public MessageLoop {
562 public:
563  MessageLoopForUI() : MessageLoop(TYPE_UI) {
564  }
565
566  // Returns the MessageLoopForUI of the current thread.
567  static MessageLoopForUI* current() {
568    MessageLoop* loop = MessageLoop::current();
569    DCHECK(loop);
570    DCHECK_EQ(MessageLoop::TYPE_UI, loop->type());
571    return static_cast<MessageLoopForUI*>(loop);
572  }
573
574  static bool IsCurrent() {
575    MessageLoop* loop = MessageLoop::current();
576    return loop && loop->type() == MessageLoop::TYPE_UI;
577  }
578
579#if defined(OS_IOS)
580  // On iOS, the main message loop cannot be Run().  Instead call Attach(),
581  // which connects this MessageLoop to the UI thread's CFRunLoop and allows
582  // PostTask() to work.
583  void Attach();
584#endif
585
586#if defined(OS_ANDROID)
587  // On Android, the UI message loop is handled by Java side. So Run() should
588  // never be called. Instead use Start(), which will forward all the native UI
589  // events to the Java message loop.
590  void Start();
591#endif
592
593#if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
594  // Please see MessagePumpLibevent for definition.
595  bool WatchFileDescriptor(
596      int fd,
597      bool persistent,
598      MessagePumpLibevent::Mode mode,
599      MessagePumpLibevent::FileDescriptorWatcher* controller,
600      MessagePumpLibevent::Watcher* delegate);
601#endif
602};
603
604// Do not add any member variables to MessageLoopForUI!  This is important b/c
605// MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
606// data that you need should be stored on the MessageLoop's pump_ instance.
607static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
608              "MessageLoopForUI should not have extra member variables");
609
610#endif  // !defined(OS_NACL)
611
612//-----------------------------------------------------------------------------
613// MessageLoopForIO extends MessageLoop with methods that are particular to a
614// MessageLoop instantiated with TYPE_IO.
615//
616// This class is typically used like so:
617//   MessageLoopForIO::current()->...call some method...
618//
619class BASE_EXPORT MessageLoopForIO : public MessageLoop {
620 public:
621  MessageLoopForIO();
622
623  // Returns the MessageLoopForIO of the current thread.
624  static MessageLoopForIO* current() {
625    MessageLoop* loop = MessageLoop::current();
626    DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
627    return static_cast<MessageLoopForIO*>(loop);
628  }
629
630  static bool IsCurrent() {
631    MessageLoop* loop = MessageLoop::current();
632    return loop && loop->type() == MessageLoop::TYPE_IO;
633  }
634
635#if !defined(OS_NACL_SFI)
636
637#if defined(OS_WIN)
638  typedef MessagePumpForIO::IOHandler IOHandler;
639  typedef MessagePumpForIO::IOContext IOContext;
640  typedef MessagePumpForIO::IOObserver IOObserver;
641#elif defined(OS_IOS)
642  typedef MessagePumpIOSForIO::Watcher Watcher;
643  typedef MessagePumpIOSForIO::FileDescriptorWatcher
644      FileDescriptorWatcher;
645  typedef MessagePumpIOSForIO::IOObserver IOObserver;
646
647  enum Mode {
648    WATCH_READ = MessagePumpIOSForIO::WATCH_READ,
649    WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE,
650    WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE
651  };
652#elif defined(OS_POSIX)
653  typedef MessagePumpLibevent::Watcher Watcher;
654  typedef MessagePumpLibevent::FileDescriptorWatcher
655      FileDescriptorWatcher;
656  typedef MessagePumpLibevent::IOObserver IOObserver;
657
658  enum Mode {
659    WATCH_READ = MessagePumpLibevent::WATCH_READ,
660    WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE,
661    WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE
662  };
663#endif
664
665  void AddIOObserver(IOObserver* io_observer);
666  void RemoveIOObserver(IOObserver* io_observer);
667
668#if defined(OS_WIN)
669  // Please see MessagePumpWin for definitions of these methods.
670  void RegisterIOHandler(HANDLE file, IOHandler* handler);
671  bool RegisterJobObject(HANDLE job, IOHandler* handler);
672  bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
673#elif defined(OS_POSIX)
674  // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
675  bool WatchFileDescriptor(int fd,
676                           bool persistent,
677                           Mode mode,
678                           FileDescriptorWatcher* controller,
679                           Watcher* delegate);
680#endif  // defined(OS_IOS) || defined(OS_POSIX)
681#endif  // !defined(OS_NACL_SFI)
682};
683
684// Do not add any member variables to MessageLoopForIO!  This is important b/c
685// MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
686// data that you need should be stored on the MessageLoop's pump_ instance.
687static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
688              "MessageLoopForIO should not have extra member variables");
689
690}  // namespace base
691
692#endif  // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
693