1/* 2* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org 3* 4* This software is provided 'as-is', without any express or implied 5* warranty. In no event will the authors be held liable for any damages 6* arising from the use of this software. 7* Permission is granted to anyone to use this software for any purpose, 8* including commercial applications, and to alter it and redistribute it 9* freely, subject to the following restrictions: 10* 1. The origin of this software must not be misrepresented; you must not 11* claim that you wrote the original software. If you use this software 12* in a product, an acknowledgment in the product documentation would be 13* appreciated but is not required. 14* 2. Altered source versions must be plainly marked as such, and must not be 15* misrepresented as being the original software. 16* 3. This notice may not be removed or altered from any source distribution. 17*/ 18 19#include <Box2D/Dynamics/Joints/b2WeldJoint.h> 20#include <Box2D/Dynamics/b2Body.h> 21#include <Box2D/Dynamics/b2TimeStep.h> 22 23// Point-to-point constraint 24// C = p2 - p1 25// Cdot = v2 - v1 26// = v2 + cross(w2, r2) - v1 - cross(w1, r1) 27// J = [-I -r1_skew I r2_skew ] 28// Identity used: 29// w k % (rx i + ry j) = w * (-ry i + rx j) 30 31// Angle constraint 32// C = angle2 - angle1 - referenceAngle 33// Cdot = w2 - w1 34// J = [0 0 -1 0 0 1] 35// K = invI1 + invI2 36 37void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) 38{ 39 bodyA = bA; 40 bodyB = bB; 41 localAnchorA = bodyA->GetLocalPoint(anchor); 42 localAnchorB = bodyB->GetLocalPoint(anchor); 43 referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); 44} 45 46b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def) 47: b2Joint(def) 48{ 49 m_localAnchorA = def->localAnchorA; 50 m_localAnchorB = def->localAnchorB; 51 m_referenceAngle = def->referenceAngle; 52 m_frequencyHz = def->frequencyHz; 53 m_dampingRatio = def->dampingRatio; 54 55 m_impulse.SetZero(); 56} 57 58void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data) 59{ 60 m_indexA = m_bodyA->m_islandIndex; 61 m_indexB = m_bodyB->m_islandIndex; 62 m_localCenterA = m_bodyA->m_sweep.localCenter; 63 m_localCenterB = m_bodyB->m_sweep.localCenter; 64 m_invMassA = m_bodyA->m_invMass; 65 m_invMassB = m_bodyB->m_invMass; 66 m_invIA = m_bodyA->m_invI; 67 m_invIB = m_bodyB->m_invI; 68 69 float32 aA = data.positions[m_indexA].a; 70 b2Vec2 vA = data.velocities[m_indexA].v; 71 float32 wA = data.velocities[m_indexA].w; 72 73 float32 aB = data.positions[m_indexB].a; 74 b2Vec2 vB = data.velocities[m_indexB].v; 75 float32 wB = data.velocities[m_indexB].w; 76 77 b2Rot qA(aA), qB(aB); 78 79 m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); 80 m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); 81 82 // J = [-I -r1_skew I r2_skew] 83 // [ 0 -1 0 1] 84 // r_skew = [-ry; rx] 85 86 // Matlab 87 // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] 88 // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] 89 // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] 90 91 float32 mA = m_invMassA, mB = m_invMassB; 92 float32 iA = m_invIA, iB = m_invIB; 93 94 b2Mat33 K; 95 K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; 96 K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; 97 K.ez.x = -m_rA.y * iA - m_rB.y * iB; 98 K.ex.y = K.ey.x; 99 K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; 100 K.ez.y = m_rA.x * iA + m_rB.x * iB; 101 K.ex.z = K.ez.x; 102 K.ey.z = K.ez.y; 103 K.ez.z = iA + iB; 104 105 if (m_frequencyHz > 0.0f) 106 { 107 K.GetInverse22(&m_mass); 108 109 float32 invM = iA + iB; 110 float32 m = invM > 0.0f ? 1.0f / invM : 0.0f; 111 112 float32 C = aB - aA - m_referenceAngle; 113 114 // Frequency 115 float32 omega = 2.0f * b2_pi * m_frequencyHz; 116 117 // Damping coefficient 118 float32 d = 2.0f * m * m_dampingRatio * omega; 119 120 // Spring stiffness 121 float32 k = m * omega * omega; 122 123 // magic formulas 124 float32 h = data.step.dt; 125 m_gamma = h * (d + h * k); 126 m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; 127 m_bias = C * h * k * m_gamma; 128 129 invM += m_gamma; 130 m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f; 131 } 132 else if (K.ez.z == 0.0f) 133 { 134 K.GetInverse22(&m_mass); 135 m_gamma = 0.0f; 136 m_bias = 0.0f; 137 } 138 else 139 { 140 K.GetSymInverse33(&m_mass); 141 m_gamma = 0.0f; 142 m_bias = 0.0f; 143 } 144 145 if (data.step.warmStarting) 146 { 147 // Scale impulses to support a variable time step. 148 m_impulse *= data.step.dtRatio; 149 150 b2Vec2 P(m_impulse.x, m_impulse.y); 151 152 vA -= mA * P; 153 wA -= iA * (b2Cross(m_rA, P) + m_impulse.z); 154 155 vB += mB * P; 156 wB += iB * (b2Cross(m_rB, P) + m_impulse.z); 157 } 158 else 159 { 160 m_impulse.SetZero(); 161 } 162 163 data.velocities[m_indexA].v = vA; 164 data.velocities[m_indexA].w = wA; 165 data.velocities[m_indexB].v = vB; 166 data.velocities[m_indexB].w = wB; 167} 168 169void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data) 170{ 171 b2Vec2 vA = data.velocities[m_indexA].v; 172 float32 wA = data.velocities[m_indexA].w; 173 b2Vec2 vB = data.velocities[m_indexB].v; 174 float32 wB = data.velocities[m_indexB].w; 175 176 float32 mA = m_invMassA, mB = m_invMassB; 177 float32 iA = m_invIA, iB = m_invIB; 178 179 if (m_frequencyHz > 0.0f) 180 { 181 float32 Cdot2 = wB - wA; 182 183 float32 impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z); 184 m_impulse.z += impulse2; 185 186 wA -= iA * impulse2; 187 wB += iB * impulse2; 188 189 b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); 190 191 b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1); 192 m_impulse.x += impulse1.x; 193 m_impulse.y += impulse1.y; 194 195 b2Vec2 P = impulse1; 196 197 vA -= mA * P; 198 wA -= iA * b2Cross(m_rA, P); 199 200 vB += mB * P; 201 wB += iB * b2Cross(m_rB, P); 202 } 203 else 204 { 205 b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); 206 float32 Cdot2 = wB - wA; 207 b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); 208 209 b2Vec3 impulse = -b2Mul(m_mass, Cdot); 210 m_impulse += impulse; 211 212 b2Vec2 P(impulse.x, impulse.y); 213 214 vA -= mA * P; 215 wA -= iA * (b2Cross(m_rA, P) + impulse.z); 216 217 vB += mB * P; 218 wB += iB * (b2Cross(m_rB, P) + impulse.z); 219 } 220 221 data.velocities[m_indexA].v = vA; 222 data.velocities[m_indexA].w = wA; 223 data.velocities[m_indexB].v = vB; 224 data.velocities[m_indexB].w = wB; 225} 226 227bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data) 228{ 229 b2Vec2 cA = data.positions[m_indexA].c; 230 float32 aA = data.positions[m_indexA].a; 231 b2Vec2 cB = data.positions[m_indexB].c; 232 float32 aB = data.positions[m_indexB].a; 233 234 b2Rot qA(aA), qB(aB); 235 236 float32 mA = m_invMassA, mB = m_invMassB; 237 float32 iA = m_invIA, iB = m_invIB; 238 239 b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); 240 b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); 241 242 float32 positionError, angularError; 243 244 b2Mat33 K; 245 K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB; 246 K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB; 247 K.ez.x = -rA.y * iA - rB.y * iB; 248 K.ex.y = K.ey.x; 249 K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB; 250 K.ez.y = rA.x * iA + rB.x * iB; 251 K.ex.z = K.ez.x; 252 K.ey.z = K.ez.y; 253 K.ez.z = iA + iB; 254 255 if (m_frequencyHz > 0.0f) 256 { 257 b2Vec2 C1 = cB + rB - cA - rA; 258 259 positionError = C1.Length(); 260 angularError = 0.0f; 261 262 b2Vec2 P = -K.Solve22(C1); 263 264 cA -= mA * P; 265 aA -= iA * b2Cross(rA, P); 266 267 cB += mB * P; 268 aB += iB * b2Cross(rB, P); 269 } 270 else 271 { 272 b2Vec2 C1 = cB + rB - cA - rA; 273 float32 C2 = aB - aA - m_referenceAngle; 274 275 positionError = C1.Length(); 276 angularError = b2Abs(C2); 277 278 b2Vec3 C(C1.x, C1.y, C2); 279 280 b2Vec3 impulse; 281 if (K.ez.z > 0.0f) 282 { 283 impulse = -K.Solve33(C); 284 } 285 else 286 { 287 b2Vec2 impulse2 = -K.Solve22(C1); 288 impulse.Set(impulse2.x, impulse2.y, 0.0f); 289 } 290 291 b2Vec2 P(impulse.x, impulse.y); 292 293 cA -= mA * P; 294 aA -= iA * (b2Cross(rA, P) + impulse.z); 295 296 cB += mB * P; 297 aB += iB * (b2Cross(rB, P) + impulse.z); 298 } 299 300 data.positions[m_indexA].c = cA; 301 data.positions[m_indexA].a = aA; 302 data.positions[m_indexB].c = cB; 303 data.positions[m_indexB].a = aB; 304 305 return positionError <= b2_linearSlop && angularError <= b2_angularSlop; 306} 307 308b2Vec2 b2WeldJoint::GetAnchorA() const 309{ 310 return m_bodyA->GetWorldPoint(m_localAnchorA); 311} 312 313b2Vec2 b2WeldJoint::GetAnchorB() const 314{ 315 return m_bodyB->GetWorldPoint(m_localAnchorB); 316} 317 318b2Vec2 b2WeldJoint::GetReactionForce(float32 inv_dt) const 319{ 320 b2Vec2 P(m_impulse.x, m_impulse.y); 321 return inv_dt * P; 322} 323 324float32 b2WeldJoint::GetReactionTorque(float32 inv_dt) const 325{ 326 return inv_dt * m_impulse.z; 327} 328 329void b2WeldJoint::Dump() 330{ 331 int32 indexA = m_bodyA->m_islandIndex; 332 int32 indexB = m_bodyB->m_islandIndex; 333 334 b2Log(" b2WeldJointDef jd;\n"); 335 b2Log(" jd.bodyA = bodies[%d];\n", indexA); 336 b2Log(" jd.bodyB = bodies[%d];\n", indexB); 337 b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); 338 b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); 339 b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); 340 b2Log(" jd.referenceAngle = %.15lef;\n", m_referenceAngle); 341 b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz); 342 b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio); 343 b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); 344} 345