1/* 2 * lib/attr.c Netlink Attributes 3 * 4 * This library is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU Lesser General Public 6 * License as published by the Free Software Foundation version 2.1 7 * of the License. 8 * 9 * Copyright (c) 2003-2008 Thomas Graf <tgraf@suug.ch> 10 */ 11 12#include <netlink-local.h> 13#include <netlink/netlink.h> 14#include <netlink/utils.h> 15#include <netlink/addr.h> 16#include <netlink/attr.h> 17#include <netlink/msg.h> 18#include <linux/socket.h> 19 20/** 21 * @ingroup msg 22 * @defgroup attr Attributes 23 * Netlink Attributes Construction/Parsing Interface 24 * 25 * \section attr_sec Netlink Attributes 26 * Netlink attributes allow for data chunks of arbitary length to be 27 * attached to a netlink message. Each attribute is encoded with a 28 * type and length field, both 16 bits, stored in the attribute header 29 * preceding the attribute data. The main advantage of using attributes 30 * over packing everything into the family header is that the interface 31 * stays extendable as new attributes can supersede old attributes while 32 * remaining backwards compatible. Also attributes can be defined optional 33 * thus avoiding the transmission of unnecessary empty data blocks. 34 * Special nested attributes allow for more complex data structures to 35 * be transmitted, e.g. trees, lists, etc. 36 * 37 * While not required, netlink attributes typically follow the family 38 * header of a netlink message and must be properly aligned to NLA_ALIGNTO: 39 * @code 40 * +----------------+- - -+---------------+- - -+------------+- - -+ 41 * | Netlink Header | Pad | Family Header | Pad | Attributes | Pad | 42 * +----------------+- - -+---------------+- - -+------------+- - -+ 43 * @endcode 44 * 45 * The actual attributes are chained together each separately aligned to 46 * NLA_ALIGNTO. The position of an attribute is defined based on the 47 * length field of the preceding attributes: 48 * @code 49 * +-------------+- - -+-------------+- - -+------ 50 * | Attribute 1 | Pad | Attribute 2 | Pad | ... 51 * +-------------+- - -+-------------+- - -+------ 52 * nla_next(attr1)------^ 53 * @endcode 54 * 55 * The attribute itself consists of the attribute header followed by 56 * the actual payload also aligned to NLA_ALIGNTO. The function nla_data() 57 * returns a pointer to the start of the payload while nla_len() returns 58 * the length of the payload in bytes. 59 * 60 * \b Note: Be aware, NLA_ALIGNTO equals to 4 bytes, therefore it is not 61 * safe to dereference any 64 bit data types directly. 62 * 63 * @code 64 * <----------- nla_total_size(payload) -----------> 65 * <-------- nla_attr_size(payload) ---------> 66 * +------------------+- - -+- - - - - - - - - +- - -+ 67 * | Attribute Header | Pad | Payload | Pad | 68 * +------------------+- - -+- - - - - - - - - +- - -+ 69 * nla_data(nla)-------------^ 70 * <- nla_len(nla) -> 71 * @endcode 72 * 73 * @subsection attr_datatypes Attribute Data Types 74 * A number of basic data types are supported to simplify access and 75 * validation of netlink attributes. This data type information is 76 * not encoded in the attribute, both the kernel and userspace part 77 * are required to share this information on their own. 78 * 79 * One of the major advantages of these basic types is the automatic 80 * validation of each attribute based on an attribute policy. The 81 * validation covers most of the checks required to safely use 82 * attributes and thus keeps the individual sanity check to a minimum. 83 * 84 * Never access attribute payload without ensuring basic validation 85 * first, attributes may: 86 * - not be present even though required 87 * - contain less actual payload than expected 88 * - fake a attribute length which exceeds the end of the message 89 * - contain unterminated character strings 90 * 91 * Policies are defined as array of the struct nla_policy. The array is 92 * indexed with the attribute type, therefore the array must be sized 93 * accordingly. 94 * @code 95 * static struct nla_policy my_policy[ATTR_MAX+1] = { 96 * [ATTR_FOO] = { .type = ..., .minlen = ..., .maxlen = ... }, 97 * }; 98 * 99 * err = nla_validate(attrs, attrlen, ATTR_MAX, &my_policy); 100 * @endcode 101 * 102 * Some basic validations are performed on every attribute, regardless of type. 103 * - If the attribute type exceeds the maximum attribute type specified or 104 * the attribute type is lesser-or-equal than zero, the attribute will 105 * be silently ignored. 106 * - If the payload length falls below the \a minlen value the attribute 107 * will be rejected. 108 * - If \a maxlen is non-zero and the payload length exceeds the \a maxlen 109 * value the attribute will be rejected. 110 * 111 * 112 * @par Unspecific Attribute (NLA_UNSPEC) 113 * This is the standard type if no type is specified. It is used for 114 * binary data of arbitary length. Typically this attribute carries 115 * a binary structure or a stream of bytes. 116 * @par 117 * @code 118 * // In this example, we will assume a binary structure requires to 119 * // be transmitted. The definition of the structure will typically 120 * // go into a header file available to both the kernel and userspace 121 * // side. 122 * // 123 * // Note: Be careful when putting 64 bit data types into a structure. 124 * // The attribute payload is only aligned to 4 bytes, dereferencing 125 * // the member may fail. 126 * struct my_struct { 127 * int a; 128 * int b; 129 * }; 130 * 131 * // The validation function will not enforce an exact length match to 132 * // allow structures to grow as required. Note: While it is allowed 133 * // to add members to the end of the structure, changing the order or 134 * // inserting members in the middle of the structure will break your 135 * // binary interface. 136 * static struct nla_policy my_policy[ATTR_MAX+1] = { 137 * [ATTR_MY_STRICT] = { .type = NLA_UNSPEC, 138 * .minlen = sizeof(struct my_struct) }, 139 * 140 * // The binary structure is appened to the message using nla_put() 141 * struct my_struct foo = { .a = 1, .b = 2 }; 142 * nla_put(msg, ATTR_MY_STRUCT, sizeof(foo), &foo); 143 * 144 * // On the receiving side, a pointer to the structure pointing inside 145 * // the message payload is returned by nla_get(). 146 * if (attrs[ATTR_MY_STRUCT]) 147 * struct my_struct *foo = nla_get(attrs[ATTR_MY_STRUCT]); 148 * @endcode 149 * 150 * @par Integers (NLA_U8, NLA_U16, NLA_U32, NLA_U64) 151 * Integers come in different sizes from 8 bit to 64 bit. However, since the 152 * payload length is aligned to 4 bytes, integers smaller than 32 bit are 153 * only useful to enforce the maximum range of values. 154 * @par 155 * \b Note: There is no difference made between signed and unsigned integers. 156 * The validation only enforces the minimal payload length required to store 157 * an integer of specified type. 158 * @par 159 * @code 160 * // Even though possible, it does not make sense to specify .minlen or 161 * // .maxlen for integer types. The data types implies the corresponding 162 * // minimal payload length. 163 * static struct nla_policy my_policy[ATTR_MAX+1] = { 164 * [ATTR_FOO] = { .type = NLA_U32 }, 165 * 166 * // Numeric values can be appended directly using the respective 167 * // nla_put_uxxx() function 168 * nla_put_u32(msg, ATTR_FOO, 123); 169 * 170 * // Same for the receiving side. 171 * if (attrs[ATTR_FOO]) 172 * uint32_t foo = nla_get_u32(attrs[ATTR_FOO]); 173 * @endcode 174 * 175 * @par Character string (NLA_STRING) 176 * This data type represents a NUL terminated character string of variable 177 * length. For binary data streams the type NLA_UNSPEC is recommended. 178 * @par 179 * @code 180 * // Enforce a NUL terminated character string of at most 4 characters 181 * // including the NUL termination. 182 * static struct nla_policy my_policy[ATTR_MAX+1] = { 183 * [ATTR_BAR] = { .type = NLA_STRING, maxlen = 4 }, 184 * 185 * // nla_put_string() creates a string attribute of the necessary length 186 * // and appends it to the message including the NUL termination. 187 * nla_put_string(msg, ATTR_BAR, "some text"); 188 * 189 * // It is safe to use the returned character string directly if the 190 * // attribute has been validated as the validation enforces the proper 191 * // termination of the string. 192 * if (attrs[ATTR_BAR]) 193 * char *text = nla_get_string(attrs[ATTR_BAR]); 194 * @endcode 195 * 196 * @par Flag (NLA_FLAG) 197 * This attribute type may be used to indicate the presence of a flag. The 198 * attribute is only valid if the payload length is zero. The presence of 199 * the attribute header indicates the presence of the flag. 200 * @par 201 * @code 202 * // This attribute type is special as .minlen and .maxlen have no effect. 203 * static struct nla_policy my_policy[ATTR_MAX+1] = { 204 * [ATTR_FLAG] = { .type = NLA_FLAG }, 205 * 206 * // nla_put_flag() appends a zero sized attribute to the message. 207 * nla_put_flag(msg, ATTR_FLAG); 208 * 209 * // There is no need for a receival function, the presence is the value. 210 * if (attrs[ATTR_FLAG]) 211 * // flag is present 212 * @endcode 213 * 214 * @par Micro Seconds (NLA_MSECS) 215 * 216 * @par Nested Attribute (NLA_NESTED) 217 * Attributes can be nested and put into a container to create groups, lists 218 * or to construct trees of attributes. Nested attributes are often used to 219 * pass attributes to a subsystem where the top layer has no knowledge of the 220 * configuration possibilities of each subsystem. 221 * @par 222 * \b Note: When validating the attributes using nlmsg_validate() or 223 * nlmsg_parse() it will only affect the top level attributes. Each 224 * level of nested attributes must be validated seperately using 225 * nla_parse_nested() or nla_validate(). 226 * @par 227 * @code 228 * // The minimal length policy may be used to enforce the presence of at 229 * // least one attribute. 230 * static struct nla_policy my_policy[ATTR_MAX+1] = { 231 * [ATTR_OPTS] = { .type = NLA_NESTED, minlen = NLA_HDRLEN }, 232 * 233 * // Nested attributes are constructed by enclosing the attributes 234 * // to be nested with calls to nla_nest_start() respetively nla_nest_end(). 235 * struct nlattr *opts = nla_nest_start(msg, ATTR_OPTS); 236 * nla_put_u32(msg, ATTR_FOO, 123); 237 * nla_put_string(msg, ATTR_BAR, "some text"); 238 * nla_nest_end(msg, opts); 239 * 240 * // Various methods exist to parse nested attributes, the easiest being 241 * // nla_parse_nested() which also allows validation in the same step. 242 * if (attrs[ATTR_OPTS]) { 243 * struct nlattr *nested[ATTR_MAX+1]; 244 * 245 * nla_parse_nested(nested, ATTR_MAX, attrs[ATTR_OPTS], &policy); 246 * 247 * if (nested[ATTR_FOO]) 248 * uint32_t foo = nla_get_u32(nested[ATTR_FOO]); 249 * } 250 * @endcode 251 * 252 * @subsection attr_exceptions Exception Based Attribute Construction 253 * Often a large number of attributes are added to a message in a single 254 * function. In order to simplify error handling, a second set of 255 * construction functions exist which jump to a error label when they 256 * fail instead of returning an error code. This second set consists 257 * of macros which are named after their error code based counterpart 258 * except that the name is written all uppercase. 259 * 260 * All of the macros jump to the target \c nla_put_failure if they fail. 261 * @code 262 * void my_func(struct nl_msg *msg) 263 * { 264 * NLA_PUT_U32(msg, ATTR_FOO, 10); 265 * NLA_PUT_STRING(msg, ATTR_BAR, "bar"); 266 * 267 * return 0; 268 * 269 * nla_put_failure: 270 * return -NLE_NOMEM; 271 * } 272 * @endcode 273 * 274 * @subsection attr_examples Examples 275 * @par Example 1.1 Constructing a netlink message with attributes. 276 * @code 277 * struct nl_msg *build_msg(int ifindex, struct nl_addr *lladdr, int mtu) 278 * { 279 * struct nl_msg *msg; 280 * struct nlattr *info, *vlan; 281 * struct ifinfomsg ifi = { 282 * .ifi_family = AF_INET, 283 * .ifi_index = ifindex, 284 * }; 285 * 286 * // Allocate a new netlink message, type=RTM_SETLINK, flags=NLM_F_ECHO 287 * if (!(msg = nlmsg_alloc_simple(RTM_SETLINK, NLM_F_ECHO))) 288 * return NULL; 289 * 290 * // Append the family specific header (struct ifinfomsg) 291 * if (nlmsg_append(msg, &ifi, sizeof(ifi), NLMSG_ALIGNTO) < 0) 292 * goto nla_put_failure 293 * 294 * // Append a 32 bit integer attribute to carry the MTU 295 * NLA_PUT_U32(msg, IFLA_MTU, mtu); 296 * 297 * // Append a unspecific attribute to carry the link layer address 298 * NLA_PUT_ADDR(msg, IFLA_ADDRESS, lladdr); 299 * 300 * // Append a container for nested attributes to carry link information 301 * if (!(info = nla_nest_start(msg, IFLA_LINKINFO))) 302 * goto nla_put_failure; 303 * 304 * // Put a string attribute into the container 305 * NLA_PUT_STRING(msg, IFLA_INFO_KIND, "vlan"); 306 * 307 * // Append another container inside the open container to carry 308 * // vlan specific attributes 309 * if (!(vlan = nla_nest_start(msg, IFLA_INFO_DATA))) 310 * goto nla_put_failure; 311 * 312 * // add vlan specific info attributes here... 313 * 314 * // Finish nesting the vlan attributes and close the second container. 315 * nla_nest_end(msg, vlan); 316 * 317 * // Finish nesting the link info attribute and close the first container. 318 * nla_nest_end(msg, info); 319 * 320 * return msg; 321 * 322 * // If any of the construction macros fails, we end up here. 323 * nla_put_failure: 324 * nlmsg_free(msg); 325 * return NULL; 326 * } 327 * @endcode 328 * 329 * @par Example 2.1 Parsing a netlink message with attributes. 330 * @code 331 * int parse_message(struct nl_msg *msg) 332 * { 333 * // The policy defines two attributes: a 32 bit integer and a container 334 * // for nested attributes. 335 * struct nla_policy attr_policy[ATTR_MAX+1] = { 336 * [ATTR_FOO] = { .type = NLA_U32 }, 337 * [ATTR_BAR] = { .type = NLA_NESTED }, 338 * }; 339 * struct nlattr *attrs[ATTR_MAX+1]; 340 * int err; 341 * 342 * // The nlmsg_parse() function will make sure that the message contains 343 * // enough payload to hold the header (struct my_hdr), validates any 344 * // attributes attached to the messages and stores a pointer to each 345 * // attribute in the attrs[] array accessable by attribute type. 346 * if ((err = nlmsg_parse(nlmsg_hdr(msg), sizeof(struct my_hdr), attrs, 347 * ATTR_MAX, attr_policy)) < 0) 348 * goto errout; 349 * 350 * if (attrs[ATTR_FOO]) { 351 * // It is safe to directly access the attribute payload without 352 * // any further checks since nlmsg_parse() enforced the policy. 353 * uint32_t foo = nla_get_u32(attrs[ATTR_FOO]); 354 * } 355 * 356 * if (attrs[ATTR_BAR]) { 357 * struct nlattr *nested[NESTED_MAX+1]; 358 * 359 * // Attributes nested in a container can be parsed the same way 360 * // as top level attributes. 361 * if ((err = nla_parse_nested(nested, NESTED_MAX, attrs[ATTR_BAR], 362 * nested_policy)) < 0) 363 * goto errout; 364 * 365 * // Process nested attributes here. 366 * } 367 * 368 * err = 0; 369 * errout: 370 * return err; 371 * } 372 * @endcode 373 * 374 * @{ 375 */ 376 377/** 378 * @name Attribute Size Calculation 379 * @{ 380 */ 381 382/** 383 * Return size of attribute whithout padding. 384 * @arg payload Payload length of attribute. 385 * 386 * @code 387 * <-------- nla_attr_size(payload) ---------> 388 * +------------------+- - -+- - - - - - - - - +- - -+ 389 * | Attribute Header | Pad | Payload | Pad | 390 * +------------------+- - -+- - - - - - - - - +- - -+ 391 * @endcode 392 * 393 * @return Size of attribute in bytes without padding. 394 */ 395int nla_attr_size(int payload) 396{ 397 return NLA_HDRLEN + payload; 398} 399 400/** 401 * Return size of attribute including padding. 402 * @arg payload Payload length of attribute. 403 * 404 * @code 405 * <----------- nla_total_size(payload) -----------> 406 * +------------------+- - -+- - - - - - - - - +- - -+ 407 * | Attribute Header | Pad | Payload | Pad | 408 * +------------------+- - -+- - - - - - - - - +- - -+ 409 * @endcode 410 * 411 * @return Size of attribute in bytes. 412 */ 413int nla_total_size(int payload) 414{ 415 return NLA_ALIGN(nla_attr_size(payload)); 416} 417 418/** 419 * Return length of padding at the tail of the attribute. 420 * @arg payload Payload length of attribute. 421 * 422 * @code 423 * +------------------+- - -+- - - - - - - - - +- - -+ 424 * | Attribute Header | Pad | Payload | Pad | 425 * +------------------+- - -+- - - - - - - - - +- - -+ 426 * <---> 427 * @endcode 428 * 429 * @return Length of padding in bytes. 430 */ 431int nla_padlen(int payload) 432{ 433 return nla_total_size(payload) - nla_attr_size(payload); 434} 435 436/** @} */ 437 438/** 439 * @name Parsing Attributes 440 * @{ 441 */ 442 443/** 444 * Return type of the attribute. 445 * @arg nla Attribute. 446 * 447 * @return Type of attribute. 448 */ 449int nla_type(const struct nlattr *nla) 450{ 451 return nla->nla_type & NLA_TYPE_MASK; 452} 453 454/** 455 * Return pointer to the payload section. 456 * @arg nla Attribute. 457 * 458 * @return Pointer to start of payload section. 459 */ 460void *nla_data(const struct nlattr *nla) 461{ 462 return (char *) nla + NLA_HDRLEN; 463} 464 465/** 466 * Return length of the payload . 467 * @arg nla Attribute 468 * 469 * @return Length of payload in bytes. 470 */ 471int nla_len(const struct nlattr *nla) 472{ 473 return nla->nla_len - NLA_HDRLEN; 474} 475 476/** 477 * Check if the attribute header and payload can be accessed safely. 478 * @arg nla Attribute of any kind. 479 * @arg remaining Number of bytes remaining in attribute stream. 480 * 481 * Verifies that the header and payload do not exceed the number of 482 * bytes left in the attribute stream. This function must be called 483 * before access the attribute header or payload when iterating over 484 * the attribute stream using nla_next(). 485 * 486 * @return True if the attribute can be accessed safely, false otherwise. 487 */ 488int nla_ok(const struct nlattr *nla, int remaining) 489{ 490 return remaining >= sizeof(*nla) && 491 nla->nla_len >= sizeof(*nla) && 492 nla->nla_len <= remaining; 493} 494 495/** 496 * Return next attribute in a stream of attributes. 497 * @arg nla Attribute of any kind. 498 * @arg remaining Variable to count remaining bytes in stream. 499 * 500 * Calculates the offset to the next attribute based on the attribute 501 * given. The attribute provided is assumed to be accessible, the 502 * caller is responsible to use nla_ok() beforehand. The offset (length 503 * of specified attribute including padding) is then subtracted from 504 * the remaining bytes variable and a pointer to the next attribute is 505 * returned. 506 * 507 * nla_next() can be called as long as remainig is >0. 508 * 509 * @return Pointer to next attribute. 510 */ 511struct nlattr *nla_next(const struct nlattr *nla, int *remaining) 512{ 513 int totlen = NLA_ALIGN(nla->nla_len); 514 515 *remaining -= totlen; 516 return (struct nlattr *) ((char *) nla + totlen); 517} 518 519static uint16_t nla_attr_minlen[NLA_TYPE_MAX+1] = { 520 [NLA_U8] = sizeof(uint8_t), 521 [NLA_U16] = sizeof(uint16_t), 522 [NLA_U32] = sizeof(uint32_t), 523 [NLA_U64] = sizeof(uint64_t), 524 [NLA_STRING] = 1, 525}; 526 527static int validate_nla(struct nlattr *nla, int maxtype, 528 struct nla_policy *policy) 529{ 530 struct nla_policy *pt; 531 int minlen = 0, type = nla_type(nla); 532 533 if (type <= 0 || type > maxtype) 534 return 0; 535 536 pt = &policy[type]; 537 538 if (pt->type > NLA_TYPE_MAX) 539 BUG(); 540 541 if (pt->minlen) 542 minlen = pt->minlen; 543 else if (pt->type != NLA_UNSPEC) 544 minlen = nla_attr_minlen[pt->type]; 545 546 if (pt->type == NLA_FLAG && nla_len(nla) > 0) 547 return -NLE_RANGE; 548 549 if (nla_len(nla) < minlen) 550 return -NLE_RANGE; 551 552 if (pt->maxlen && nla_len(nla) > pt->maxlen) 553 return -NLE_RANGE; 554 555 if (pt->type == NLA_STRING) { 556 char *data = nla_data(nla); 557 if (data[nla_len(nla) - 1] != '\0') 558 return -NLE_INVAL; 559 } 560 561 return 0; 562} 563 564 565/** 566 * Create attribute index based on a stream of attributes. 567 * @arg tb Index array to be filled (maxtype+1 elements). 568 * @arg maxtype Maximum attribute type expected and accepted. 569 * @arg head Head of attribute stream. 570 * @arg len Length of attribute stream. 571 * @arg policy Attribute validation policy. 572 * 573 * Iterates over the stream of attributes and stores a pointer to each 574 * attribute in the index array using the attribute type as index to 575 * the array. Attribute with a type greater than the maximum type 576 * specified will be silently ignored in order to maintain backwards 577 * compatibility. If \a policy is not NULL, the attribute will be 578 * validated using the specified policy. 579 * 580 * @see nla_validate 581 * @return 0 on success or a negative error code. 582 */ 583int nla_parse(struct nlattr *tb[], int maxtype, struct nlattr *head, int len, 584 struct nla_policy *policy) 585{ 586 struct nlattr *nla; 587 int rem, err; 588 589 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); 590 591 nla_for_each_attr(nla, head, len, rem) { 592 int type = nla_type(nla); 593 594 if (type == 0) { 595 fprintf(stderr, "Illegal nla->nla_type == 0\n"); 596 continue; 597 } 598 599 if (type <= maxtype) { 600 if (policy) { 601 err = validate_nla(nla, maxtype, policy); 602 if (err < 0) 603 goto errout; 604 } 605 606 tb[type] = nla; 607 } 608 } 609 610 if (rem > 0) 611 fprintf(stderr, "netlink: %d bytes leftover after parsing " 612 "attributes.\n", rem); 613 614 err = 0; 615errout: 616 return err; 617} 618 619/** 620 * Validate a stream of attributes. 621 * @arg head Head of attributes stream. 622 * @arg len Length of attributes stream. 623 * @arg maxtype Maximum attribute type expected and accepted. 624 * @arg policy Validation policy. 625 * 626 * Iterates over the stream of attributes and validates each attribute 627 * one by one using the specified policy. Attributes with a type greater 628 * than the maximum type specified will be silently ignored in order to 629 * maintain backwards compatibility. 630 * 631 * See \ref attr_datatypes for more details on what kind of validation 632 * checks are performed on each attribute data type. 633 * 634 * @return 0 on success or a negative error code. 635 */ 636int nla_validate(struct nlattr *head, int len, int maxtype, 637 struct nla_policy *policy) 638{ 639 struct nlattr *nla; 640 int rem, err; 641 642 nla_for_each_attr(nla, head, len, rem) { 643 err = validate_nla(nla, maxtype, policy); 644 if (err < 0) 645 goto errout; 646 } 647 648 err = 0; 649errout: 650 return err; 651} 652 653/** 654 * Find a single attribute in a stream of attributes. 655 * @arg head Head of attributes stream. 656 * @arg len Length of attributes stream. 657 * @arg attrtype Attribute type to look for. 658 * 659 * Iterates over the stream of attributes and compares each type with 660 * the type specified. Returns the first attribute which matches the 661 * type. 662 * 663 * @return Pointer to attribute found or NULL. 664 */ 665struct nlattr *nla_find(struct nlattr *head, int len, int attrtype) 666{ 667 struct nlattr *nla; 668 int rem; 669 670 nla_for_each_attr(nla, head, len, rem) 671 if (nla_type(nla) == attrtype) 672 return nla; 673 674 return NULL; 675} 676 677/** @} */ 678 679/** 680 * @name Helper Functions 681 * @{ 682 */ 683 684/** 685 * Copy attribute payload to another memory area. 686 * @arg dest Pointer to destination memory area. 687 * @arg src Attribute 688 * @arg count Number of bytes to copy at most. 689 * 690 * Note: The number of bytes copied is limited by the length of 691 * the attribute payload. 692 * 693 * @return The number of bytes copied to dest. 694 */ 695int nla_memcpy(void *dest, struct nlattr *src, int count) 696{ 697 int minlen; 698 699 if (!src) 700 return 0; 701 702 minlen = min_t(int, count, nla_len(src)); 703 memcpy(dest, nla_data(src), minlen); 704 705 return minlen; 706} 707 708/** 709 * Copy string attribute payload to a buffer. 710 * @arg dst Pointer to destination buffer. 711 * @arg nla Attribute of type NLA_STRING. 712 * @arg dstsize Size of destination buffer in bytes. 713 * 714 * Copies at most dstsize - 1 bytes to the destination buffer. 715 * The result is always a valid NUL terminated string. Unlike 716 * strlcpy the destination buffer is always padded out. 717 * 718 * @return The length of string attribute without the terminating NUL. 719 */ 720size_t nla_strlcpy(char *dst, const struct nlattr *nla, size_t dstsize) 721{ 722 size_t srclen = nla_len(nla); 723 char *src = nla_data(nla); 724 725 if (srclen > 0 && src[srclen - 1] == '\0') 726 srclen--; 727 728 if (dstsize > 0) { 729 size_t len = (srclen >= dstsize) ? dstsize - 1 : srclen; 730 731 memset(dst, 0, dstsize); 732 memcpy(dst, src, len); 733 } 734 735 return srclen; 736} 737 738/** 739 * Compare attribute payload with memory area. 740 * @arg nla Attribute. 741 * @arg data Memory area to compare to. 742 * @arg size Number of bytes to compare. 743 * 744 * @see memcmp(3) 745 * @return An integer less than, equal to, or greater than zero. 746 */ 747int nla_memcmp(const struct nlattr *nla, const void *data, size_t size) 748{ 749 int d = nla_len(nla) - size; 750 751 if (d == 0) 752 d = memcmp(nla_data(nla), data, size); 753 754 return d; 755} 756 757/** 758 * Compare string attribute payload with string 759 * @arg nla Attribute of type NLA_STRING. 760 * @arg str NUL terminated string. 761 * 762 * @see strcmp(3) 763 * @return An integer less than, equal to, or greater than zero. 764 */ 765int nla_strcmp(const struct nlattr *nla, const char *str) 766{ 767 int len = strlen(str) + 1; 768 int d = nla_len(nla) - len; 769 770 if (d == 0) 771 d = memcmp(nla_data(nla), str, len); 772 773 return d; 774} 775 776/** @} */ 777 778/** 779 * @name Unspecific Attribute 780 * @{ 781 */ 782 783/** 784 * Reserve space for a attribute. 785 * @arg msg Netlink Message. 786 * @arg attrtype Attribute Type. 787 * @arg attrlen Length of payload. 788 * 789 * Reserves room for a attribute in the specified netlink message and 790 * fills in the attribute header (type, length). Returns NULL if there 791 * is unsuficient space for the attribute. 792 * 793 * Any padding between payload and the start of the next attribute is 794 * zeroed out. 795 * 796 * @return Pointer to start of attribute or NULL on failure. 797 */ 798struct nlattr *nla_reserve(struct nl_msg *msg, int attrtype, int attrlen) 799{ 800 struct nlattr *nla; 801 int tlen; 802 803 tlen = NLMSG_ALIGN(msg->nm_nlh->nlmsg_len) + nla_total_size(attrlen); 804 805 if ((tlen + msg->nm_nlh->nlmsg_len) > msg->nm_size) 806 return NULL; 807 808 nla = (struct nlattr *) nlmsg_tail(msg->nm_nlh); 809 nla->nla_type = attrtype; 810 nla->nla_len = nla_attr_size(attrlen); 811 812 memset((unsigned char *) nla + nla->nla_len, 0, nla_padlen(attrlen)); 813 msg->nm_nlh->nlmsg_len = tlen; 814 815 NL_DBG(2, "msg %p: Reserved %d bytes at offset +%td for attr %d " 816 "nlmsg_len=%d\n", msg, attrlen, 817 (void *) nla - nlmsg_data(msg->nm_nlh), 818 attrtype, msg->nm_nlh->nlmsg_len); 819 820 return nla; 821} 822 823/** 824 * Add a unspecific attribute to netlink message. 825 * @arg msg Netlink message. 826 * @arg attrtype Attribute type. 827 * @arg datalen Length of data to be used as payload. 828 * @arg data Pointer to data to be used as attribute payload. 829 * 830 * Reserves room for a unspecific attribute and copies the provided data 831 * into the message as payload of the attribute. Returns an error if there 832 * is insufficient space for the attribute. 833 * 834 * @see nla_reserve 835 * @return 0 on success or a negative error code. 836 */ 837int nla_put(struct nl_msg *msg, int attrtype, int datalen, const void *data) 838{ 839 struct nlattr *nla; 840 841 nla = nla_reserve(msg, attrtype, datalen); 842 if (!nla) 843 return -NLE_NOMEM; 844 845 memcpy(nla_data(nla), data, datalen); 846 NL_DBG(2, "msg %p: Wrote %d bytes at offset +%td for attr %d\n", 847 msg, datalen, (void *) nla - nlmsg_data(msg->nm_nlh), attrtype); 848 849 return 0; 850} 851 852/** 853 * Add abstract data as unspecific attribute to netlink message. 854 * @arg msg Netlink message. 855 * @arg attrtype Attribute type. 856 * @arg data Abstract data object. 857 * 858 * Equivalent to nla_put() except that the length of the payload is 859 * derived from the abstract data object. 860 * 861 * @see nla_put 862 * @return 0 on success or a negative error code. 863 */ 864int nla_put_data(struct nl_msg *msg, int attrtype, struct nl_data *data) 865{ 866 return nla_put(msg, attrtype, nl_data_get_size(data), 867 nl_data_get(data)); 868} 869 870/** 871 * Add abstract address as unspecific attribute to netlink message. 872 * @arg msg Netlink message. 873 * @arg attrtype Attribute type. 874 * @arg addr Abstract address object. 875 * 876 * @see nla_put 877 * @return 0 on success or a negative error code. 878 */ 879int nla_put_addr(struct nl_msg *msg, int attrtype, struct nl_addr *addr) 880{ 881 return nla_put(msg, attrtype, nl_addr_get_len(addr), 882 nl_addr_get_binary_addr(addr)); 883} 884 885/** @} */ 886 887/** 888 * @name Integer Attributes 889 */ 890 891/** 892 * Add 8 bit integer attribute to netlink message. 893 * @arg msg Netlink message. 894 * @arg attrtype Attribute type. 895 * @arg value Numeric value to store as payload. 896 * 897 * @see nla_put 898 * @return 0 on success or a negative error code. 899 */ 900int nla_put_u8(struct nl_msg *msg, int attrtype, uint8_t value) 901{ 902 return nla_put(msg, attrtype, sizeof(uint8_t), &value); 903} 904 905/** 906 * Return value of 8 bit integer attribute. 907 * @arg nla 8 bit integer attribute 908 * 909 * @return Payload as 8 bit integer. 910 */ 911uint8_t nla_get_u8(struct nlattr *nla) 912{ 913 return *(uint8_t *) nla_data(nla); 914} 915 916/** 917 * Add 16 bit integer attribute to netlink message. 918 * @arg msg Netlink message. 919 * @arg attrtype Attribute type. 920 * @arg value Numeric value to store as payload. 921 * 922 * @see nla_put 923 * @return 0 on success or a negative error code. 924 */ 925int nla_put_u16(struct nl_msg *msg, int attrtype, uint16_t value) 926{ 927 return nla_put(msg, attrtype, sizeof(uint16_t), &value); 928} 929 930/** 931 * Return payload of 16 bit integer attribute. 932 * @arg nla 16 bit integer attribute 933 * 934 * @return Payload as 16 bit integer. 935 */ 936uint16_t nla_get_u16(struct nlattr *nla) 937{ 938 return *(uint16_t *) nla_data(nla); 939} 940 941/** 942 * Add 32 bit integer attribute to netlink message. 943 * @arg msg Netlink message. 944 * @arg attrtype Attribute type. 945 * @arg value Numeric value to store as payload. 946 * 947 * @see nla_put 948 * @return 0 on success or a negative error code. 949 */ 950int nla_put_u32(struct nl_msg *msg, int attrtype, uint32_t value) 951{ 952 return nla_put(msg, attrtype, sizeof(uint32_t), &value); 953} 954 955/** 956 * Return payload of 32 bit integer attribute. 957 * @arg nla 32 bit integer attribute. 958 * 959 * @return Payload as 32 bit integer. 960 */ 961uint32_t nla_get_u32(struct nlattr *nla) 962{ 963 return *(uint32_t *) nla_data(nla); 964} 965 966/** 967 * Add 64 bit integer attribute to netlink message. 968 * @arg msg Netlink message. 969 * @arg attrtype Attribute type. 970 * @arg value Numeric value to store as payload. 971 * 972 * @see nla_put 973 * @return 0 on success or a negative error code. 974 */ 975int nla_put_u64(struct nl_msg *msg, int attrtype, uint64_t value) 976{ 977 return nla_put(msg, attrtype, sizeof(uint64_t), &value); 978} 979 980/** 981 * Return payload of u64 attribute 982 * @arg nla u64 netlink attribute 983 * 984 * @return Payload as 64 bit integer. 985 */ 986uint64_t nla_get_u64(struct nlattr *nla) 987{ 988 uint64_t tmp; 989 990 nla_memcpy(&tmp, nla, sizeof(tmp)); 991 992 return tmp; 993} 994 995/** @} */ 996 997/** 998 * @name String Attribute 999 */ 1000 1001/** 1002 * Add string attribute to netlink message. 1003 * @arg msg Netlink message. 1004 * @arg attrtype Attribute type. 1005 * @arg str NUL terminated string. 1006 * 1007 * @see nla_put 1008 * @return 0 on success or a negative error code. 1009 */ 1010int nla_put_string(struct nl_msg *msg, int attrtype, const char *str) 1011{ 1012 return nla_put(msg, attrtype, strlen(str) + 1, str); 1013} 1014 1015/** 1016 * Return payload of string attribute. 1017 * @arg nla String attribute. 1018 * 1019 * @return Pointer to attribute payload. 1020 */ 1021char *nla_get_string(struct nlattr *nla) 1022{ 1023 return (char *) nla_data(nla); 1024} 1025 1026char *nla_strdup(struct nlattr *nla) 1027{ 1028 return strdup(nla_get_string(nla)); 1029} 1030 1031/** @} */ 1032 1033/** 1034 * @name Flag Attribute 1035 */ 1036 1037/** 1038 * Add flag netlink attribute to netlink message. 1039 * @arg msg Netlink message. 1040 * @arg attrtype Attribute type. 1041 * 1042 * @see nla_put 1043 * @return 0 on success or a negative error code. 1044 */ 1045int nla_put_flag(struct nl_msg *msg, int attrtype) 1046{ 1047 return nla_put(msg, attrtype, 0, NULL); 1048} 1049 1050/** 1051 * Return true if flag attribute is set. 1052 * @arg nla Flag netlink attribute. 1053 * 1054 * @return True if flag is set, otherwise false. 1055 */ 1056int nla_get_flag(struct nlattr *nla) 1057{ 1058 return !!nla; 1059} 1060 1061/** @} */ 1062 1063/** 1064 * @name Microseconds Attribute 1065 */ 1066 1067/** 1068 * Add a msecs netlink attribute to a netlink message 1069 * @arg n netlink message 1070 * @arg attrtype attribute type 1071 * @arg msecs number of msecs 1072 */ 1073int nla_put_msecs(struct nl_msg *n, int attrtype, unsigned long msecs) 1074{ 1075 return nla_put_u64(n, attrtype, msecs); 1076} 1077 1078/** 1079 * Return payload of msecs attribute 1080 * @arg nla msecs netlink attribute 1081 * 1082 * @return the number of milliseconds. 1083 */ 1084unsigned long nla_get_msecs(struct nlattr *nla) 1085{ 1086 return nla_get_u64(nla); 1087} 1088 1089/** @} */ 1090 1091/** 1092 * @name Nested Attribute 1093 */ 1094 1095/** 1096 * Add nested attributes to netlink message. 1097 * @arg msg Netlink message. 1098 * @arg attrtype Attribute type. 1099 * @arg nested Message containing attributes to be nested. 1100 * 1101 * Takes the attributes found in the \a nested message and appends them 1102 * to the message \a msg nested in a container of the type \a attrtype. 1103 * The \a nested message may not have a family specific header. 1104 * 1105 * @see nla_put 1106 * @return 0 on success or a negative error code. 1107 */ 1108int nla_put_nested(struct nl_msg *msg, int attrtype, struct nl_msg *nested) 1109{ 1110 return nla_put(msg, attrtype, nlmsg_len(nested->nm_nlh), 1111 nlmsg_data(nested->nm_nlh)); 1112} 1113 1114 1115/** 1116 * Start a new level of nested attributes. 1117 * @arg msg Netlink message. 1118 * @arg attrtype Attribute type of container. 1119 * 1120 * @return Pointer to container attribute. 1121 */ 1122struct nlattr *nla_nest_start(struct nl_msg *msg, int attrtype) 1123{ 1124 struct nlattr *start = (struct nlattr *) nlmsg_tail(msg->nm_nlh); 1125 1126 if (nla_put(msg, attrtype, 0, NULL) < 0) 1127 return NULL; 1128 1129 return start; 1130} 1131 1132/** 1133 * Finalize nesting of attributes. 1134 * @arg msg Netlink message. 1135 * @arg start Container attribute as returned from nla_nest_start(). 1136 * 1137 * Corrects the container attribute header to include the appeneded attributes. 1138 * 1139 * @return 0 1140 */ 1141int nla_nest_end(struct nl_msg *msg, struct nlattr *start) 1142{ 1143 start->nla_len = (unsigned char *) nlmsg_tail(msg->nm_nlh) - 1144 (unsigned char *) start; 1145 return 0; 1146} 1147 1148/** 1149 * Create attribute index based on nested attribute 1150 * @arg tb Index array to be filled (maxtype+1 elements). 1151 * @arg maxtype Maximum attribute type expected and accepted. 1152 * @arg nla Nested Attribute. 1153 * @arg policy Attribute validation policy. 1154 * 1155 * Feeds the stream of attributes nested into the specified attribute 1156 * to nla_parse(). 1157 * 1158 * @see nla_parse 1159 * @return 0 on success or a negative error code. 1160 */ 1161int nla_parse_nested(struct nlattr *tb[], int maxtype, struct nlattr *nla, 1162 struct nla_policy *policy) 1163{ 1164 return nla_parse(tb, maxtype, nla_data(nla), nla_len(nla), policy); 1165} 1166 1167/** @} */ 1168 1169/** @} */ 1170