1/***********************************************************************
2Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3Redistribution and use in source and binary forms, with or without
4modification, are permitted provided that the following conditions
5are met:
6- Redistributions of source code must retain the above copyright notice,
7this list of conditions and the following disclaimer.
8- Redistributions in binary form must reproduce the above copyright
9notice, this list of conditions and the following disclaimer in the
10documentation and/or other materials provided with the distribution.
11- Neither the name of Internet Society, IETF or IETF Trust, nor the
12names of specific contributors, may be used to endorse or promote
13products derived from this software without specific prior written
14permission.
15THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25POSSIBILITY OF SUCH DAMAGE.
26***********************************************************************/
27
28#ifdef HAVE_CONFIG_H
29#include "config.h"
30#endif
31
32#include "main.h"
33
34/* Delayed-decision quantizer for NLSF residuals */
35opus_int32 silk_NLSF_del_dec_quant(                             /* O    Returns RD value in Q25                     */
36    opus_int8                   indices[],                      /* O    Quantization indices [ order ]              */
37    const opus_int16            x_Q10[],                        /* I    Input [ order ]                             */
38    const opus_int16            w_Q5[],                         /* I    Weights [ order ]                           */
39    const opus_uint8            pred_coef_Q8[],                 /* I    Backward predictor coefs [ order ]          */
40    const opus_int16            ec_ix[],                        /* I    Indices to entropy coding tables [ order ]  */
41    const opus_uint8            ec_rates_Q5[],                  /* I    Rates []                                    */
42    const opus_int              quant_step_size_Q16,            /* I    Quantization step size                      */
43    const opus_int16            inv_quant_step_size_Q6,         /* I    Inverse quantization step size              */
44    const opus_int32            mu_Q20,                         /* I    R/D tradeoff                                */
45    const opus_int16            order                           /* I    Number of input values                      */
46)
47{
48    opus_int         i, j, nStates, ind_tmp, ind_min_max, ind_max_min, in_Q10, res_Q10;
49    opus_int         pred_Q10, diff_Q10, out0_Q10, out1_Q10, rate0_Q5, rate1_Q5;
50    opus_int32       RD_tmp_Q25, min_Q25, min_max_Q25, max_min_Q25, pred_coef_Q16;
51    opus_int         ind_sort[         NLSF_QUANT_DEL_DEC_STATES ];
52    opus_int8        ind[              NLSF_QUANT_DEL_DEC_STATES ][ MAX_LPC_ORDER ];
53    opus_int16       prev_out_Q10[ 2 * NLSF_QUANT_DEL_DEC_STATES ];
54    opus_int32       RD_Q25[       2 * NLSF_QUANT_DEL_DEC_STATES ];
55    opus_int32       RD_min_Q25[       NLSF_QUANT_DEL_DEC_STATES ];
56    opus_int32       RD_max_Q25[       NLSF_QUANT_DEL_DEC_STATES ];
57    const opus_uint8 *rates_Q5;
58
59    silk_assert( (NLSF_QUANT_DEL_DEC_STATES & (NLSF_QUANT_DEL_DEC_STATES-1)) == 0 );     /* must be power of two */
60
61    nStates = 1;
62    RD_Q25[ 0 ] = 0;
63    prev_out_Q10[ 0 ] = 0;
64    for( i = order - 1; ; i-- ) {
65        rates_Q5 = &ec_rates_Q5[ ec_ix[ i ] ];
66        pred_coef_Q16 = silk_LSHIFT( (opus_int32)pred_coef_Q8[ i ], 8 );
67        in_Q10 = x_Q10[ i ];
68        for( j = 0; j < nStates; j++ ) {
69            pred_Q10 = silk_SMULWB( pred_coef_Q16, prev_out_Q10[ j ] );
70            res_Q10  = silk_SUB16( in_Q10, pred_Q10 );
71            ind_tmp  = silk_SMULWB( (opus_int32)inv_quant_step_size_Q6, res_Q10 );
72            ind_tmp  = silk_LIMIT( ind_tmp, -NLSF_QUANT_MAX_AMPLITUDE_EXT, NLSF_QUANT_MAX_AMPLITUDE_EXT-1 );
73            ind[ j ][ i ] = (opus_int8)ind_tmp;
74
75            /* compute outputs for ind_tmp and ind_tmp + 1 */
76            out0_Q10 = silk_LSHIFT( ind_tmp, 10 );
77            out1_Q10 = silk_ADD16( out0_Q10, 1024 );
78            if( ind_tmp > 0 ) {
79                out0_Q10 = silk_SUB16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
80                out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
81            } else if( ind_tmp == 0 ) {
82                out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
83            } else if( ind_tmp == -1 ) {
84                out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
85            } else {
86                out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
87                out1_Q10 = silk_ADD16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
88            }
89            out0_Q10  = silk_SMULWB( (opus_int32)out0_Q10, quant_step_size_Q16 );
90            out1_Q10  = silk_SMULWB( (opus_int32)out1_Q10, quant_step_size_Q16 );
91            out0_Q10  = silk_ADD16( out0_Q10, pred_Q10 );
92            out1_Q10  = silk_ADD16( out1_Q10, pred_Q10 );
93            prev_out_Q10[ j           ] = out0_Q10;
94            prev_out_Q10[ j + nStates ] = out1_Q10;
95
96            /* compute RD for ind_tmp and ind_tmp + 1 */
97            if( ind_tmp + 1 >= NLSF_QUANT_MAX_AMPLITUDE ) {
98                if( ind_tmp + 1 == NLSF_QUANT_MAX_AMPLITUDE ) {
99                    rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ];
100                    rate1_Q5 = 280;
101                } else {
102                    rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, 43, ind_tmp );
103                    rate1_Q5 = silk_ADD16( rate0_Q5, 43 );
104                }
105            } else if( ind_tmp <= -NLSF_QUANT_MAX_AMPLITUDE ) {
106                if( ind_tmp == -NLSF_QUANT_MAX_AMPLITUDE ) {
107                    rate0_Q5 = 280;
108                    rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ];
109                } else {
110                    rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, -43, ind_tmp );
111                    rate1_Q5 = silk_SUB16( rate0_Q5, 43 );
112                }
113            } else {
114                rate0_Q5 = rates_Q5[ ind_tmp +     NLSF_QUANT_MAX_AMPLITUDE ];
115                rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ];
116            }
117            RD_tmp_Q25            = RD_Q25[ j ];
118            diff_Q10              = silk_SUB16( in_Q10, out0_Q10 );
119            RD_Q25[ j ]           = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate0_Q5 );
120            diff_Q10              = silk_SUB16( in_Q10, out1_Q10 );
121            RD_Q25[ j + nStates ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate1_Q5 );
122        }
123
124        if( nStates <= ( NLSF_QUANT_DEL_DEC_STATES >> 1 ) ) {
125            /* double number of states and copy */
126            for( j = 0; j < nStates; j++ ) {
127                ind[ j + nStates ][ i ] = ind[ j ][ i ] + 1;
128            }
129            nStates = silk_LSHIFT( nStates, 1 );
130            for( j = nStates; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
131                ind[ j ][ i ] = ind[ j - nStates ][ i ];
132            }
133        } else if( i > 0 ) {
134            /* sort lower and upper half of RD_Q25, pairwise */
135            for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
136                if( RD_Q25[ j ] > RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] ) {
137                    RD_max_Q25[ j ]                         = RD_Q25[ j ];
138                    RD_min_Q25[ j ]                         = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ];
139                    RD_Q25[ j ]                             = RD_min_Q25[ j ];
140                    RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] = RD_max_Q25[ j ];
141                    /* swap prev_out values */
142                    out0_Q10 = prev_out_Q10[ j ];
143                    prev_out_Q10[ j ] = prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ];
144                    prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ] = out0_Q10;
145                    ind_sort[ j ] = j + NLSF_QUANT_DEL_DEC_STATES;
146                } else {
147                    RD_min_Q25[ j ] = RD_Q25[ j ];
148                    RD_max_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ];
149                    ind_sort[ j ] = j;
150                }
151            }
152            /* compare the highest RD values of the winning half with the lowest one in the losing half, and copy if necessary */
153            /* afterwards ind_sort[] will contain the indices of the NLSF_QUANT_DEL_DEC_STATES winning RD values */
154            while( 1 ) {
155                min_max_Q25 = silk_int32_MAX;
156                max_min_Q25 = 0;
157                ind_min_max = 0;
158                ind_max_min = 0;
159                for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
160                    if( min_max_Q25 > RD_max_Q25[ j ] ) {
161                        min_max_Q25 = RD_max_Q25[ j ];
162                        ind_min_max = j;
163                    }
164                    if( max_min_Q25 < RD_min_Q25[ j ] ) {
165                        max_min_Q25 = RD_min_Q25[ j ];
166                        ind_max_min = j;
167                    }
168                }
169                if( min_max_Q25 >= max_min_Q25 ) {
170                    break;
171                }
172                /* copy ind_min_max to ind_max_min */
173                ind_sort[     ind_max_min ] = ind_sort[     ind_min_max ] ^ NLSF_QUANT_DEL_DEC_STATES;
174                RD_Q25[       ind_max_min ] = RD_Q25[       ind_min_max + NLSF_QUANT_DEL_DEC_STATES ];
175                prev_out_Q10[ ind_max_min ] = prev_out_Q10[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ];
176                RD_min_Q25[   ind_max_min ] = 0;
177                RD_max_Q25[   ind_min_max ] = silk_int32_MAX;
178                silk_memcpy( ind[ ind_max_min ], ind[ ind_min_max ], MAX_LPC_ORDER * sizeof( opus_int8 ) );
179            }
180            /* increment index if it comes from the upper half */
181            for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
182                ind[ j ][ i ] += silk_RSHIFT( ind_sort[ j ], NLSF_QUANT_DEL_DEC_STATES_LOG2 );
183            }
184        } else {  /* i == 0 */
185            break;
186        }
187    }
188
189    /* last sample: find winner, copy indices and return RD value */
190    ind_tmp = 0;
191    min_Q25 = silk_int32_MAX;
192    for( j = 0; j < 2 * NLSF_QUANT_DEL_DEC_STATES; j++ ) {
193        if( min_Q25 > RD_Q25[ j ] ) {
194            min_Q25 = RD_Q25[ j ];
195            ind_tmp = j;
196        }
197    }
198    for( j = 0; j < order; j++ ) {
199        indices[ j ] = ind[ ind_tmp & ( NLSF_QUANT_DEL_DEC_STATES - 1 ) ][ j ];
200        silk_assert( indices[ j ] >= -NLSF_QUANT_MAX_AMPLITUDE_EXT );
201        silk_assert( indices[ j ] <=  NLSF_QUANT_MAX_AMPLITUDE_EXT );
202    }
203    indices[ 0 ] += silk_RSHIFT( ind_tmp, NLSF_QUANT_DEL_DEC_STATES_LOG2 );
204    silk_assert( indices[ 0 ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT );
205    silk_assert( min_Q25 >= 0 );
206    return min_Q25;
207}
208