1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/Support/Compiler.h"
21#include "llvm/Support/MathExtras.h"
22#include <cassert>
23#include <climits>
24#include <cstring>
25#include <string>
26
27namespace llvm {
28class FoldingSetNodeID;
29class StringRef;
30class hash_code;
31class raw_ostream;
32
33template <typename T> class SmallVectorImpl;
34
35// An unsigned host type used as a single part of a multi-part
36// bignum.
37typedef uint64_t integerPart;
38
39const unsigned int host_char_bit = 8;
40const unsigned int integerPartWidth =
41    host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
42
43//===----------------------------------------------------------------------===//
44//                              APInt Class
45//===----------------------------------------------------------------------===//
46
47/// \brief Class for arbitrary precision integers.
48///
49/// APInt is a functional replacement for common case unsigned integer type like
50/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
51/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
52/// than 64-bits of precision. APInt provides a variety of arithmetic operators
53/// and methods to manipulate integer values of any bit-width. It supports both
54/// the typical integer arithmetic and comparison operations as well as bitwise
55/// manipulation.
56///
57/// The class has several invariants worth noting:
58///   * All bit, byte, and word positions are zero-based.
59///   * Once the bit width is set, it doesn't change except by the Truncate,
60///     SignExtend, or ZeroExtend operations.
61///   * All binary operators must be on APInt instances of the same bit width.
62///     Attempting to use these operators on instances with different bit
63///     widths will yield an assertion.
64///   * The value is stored canonically as an unsigned value. For operations
65///     where it makes a difference, there are both signed and unsigned variants
66///     of the operation. For example, sdiv and udiv. However, because the bit
67///     widths must be the same, operations such as Mul and Add produce the same
68///     results regardless of whether the values are interpreted as signed or
69///     not.
70///   * In general, the class tries to follow the style of computation that LLVM
71///     uses in its IR. This simplifies its use for LLVM.
72///
73class APInt {
74  unsigned BitWidth; ///< The number of bits in this APInt.
75
76  /// This union is used to store the integer value. When the
77  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
78  union {
79    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
80    uint64_t *pVal; ///< Used to store the >64 bits integer value.
81  };
82
83  /// This enum is used to hold the constants we needed for APInt.
84  enum {
85    /// Bits in a word
86    APINT_BITS_PER_WORD =
87        static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
88    /// Byte size of a word
89    APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
90  };
91
92  friend struct DenseMapAPIntKeyInfo;
93
94  /// \brief Fast internal constructor
95  ///
96  /// This constructor is used only internally for speed of construction of
97  /// temporaries. It is unsafe for general use so it is not public.
98  APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
99
100  /// \brief Determine if this APInt just has one word to store value.
101  ///
102  /// \returns true if the number of bits <= 64, false otherwise.
103  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
104
105  /// \brief Determine which word a bit is in.
106  ///
107  /// \returns the word position for the specified bit position.
108  static unsigned whichWord(unsigned bitPosition) {
109    return bitPosition / APINT_BITS_PER_WORD;
110  }
111
112  /// \brief Determine which bit in a word a bit is in.
113  ///
114  /// \returns the bit position in a word for the specified bit position
115  /// in the APInt.
116  static unsigned whichBit(unsigned bitPosition) {
117    return bitPosition % APINT_BITS_PER_WORD;
118  }
119
120  /// \brief Get a single bit mask.
121  ///
122  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
123  /// This method generates and returns a uint64_t (word) mask for a single
124  /// bit at a specific bit position. This is used to mask the bit in the
125  /// corresponding word.
126  static uint64_t maskBit(unsigned bitPosition) {
127    return 1ULL << whichBit(bitPosition);
128  }
129
130  /// \brief Clear unused high order bits
131  ///
132  /// This method is used internally to clear the top "N" bits in the high order
133  /// word that are not used by the APInt. This is needed after the most
134  /// significant word is assigned a value to ensure that those bits are
135  /// zero'd out.
136  APInt &clearUnusedBits() {
137    // Compute how many bits are used in the final word
138    unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
139    if (wordBits == 0)
140      // If all bits are used, we want to leave the value alone. This also
141      // avoids the undefined behavior of >> when the shift is the same size as
142      // the word size (64).
143      return *this;
144
145    // Mask out the high bits.
146    uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
147    if (isSingleWord())
148      VAL &= mask;
149    else
150      pVal[getNumWords() - 1] &= mask;
151    return *this;
152  }
153
154  /// \brief Get the word corresponding to a bit position
155  /// \returns the corresponding word for the specified bit position.
156  uint64_t getWord(unsigned bitPosition) const {
157    return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
158  }
159
160  /// \brief Convert a char array into an APInt
161  ///
162  /// \param radix 2, 8, 10, 16, or 36
163  /// Converts a string into a number.  The string must be non-empty
164  /// and well-formed as a number of the given base. The bit-width
165  /// must be sufficient to hold the result.
166  ///
167  /// This is used by the constructors that take string arguments.
168  ///
169  /// StringRef::getAsInteger is superficially similar but (1) does
170  /// not assume that the string is well-formed and (2) grows the
171  /// result to hold the input.
172  void fromString(unsigned numBits, StringRef str, uint8_t radix);
173
174  /// \brief An internal division function for dividing APInts.
175  ///
176  /// This is used by the toString method to divide by the radix. It simply
177  /// provides a more convenient form of divide for internal use since KnuthDiv
178  /// has specific constraints on its inputs. If those constraints are not met
179  /// then it provides a simpler form of divide.
180  static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
181                     unsigned rhsWords, APInt *Quotient, APInt *Remainder);
182
183  /// out-of-line slow case for inline constructor
184  void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
185
186  /// shared code between two array constructors
187  void initFromArray(ArrayRef<uint64_t> array);
188
189  /// out-of-line slow case for inline copy constructor
190  void initSlowCase(const APInt &that);
191
192  /// out-of-line slow case for shl
193  APInt shlSlowCase(unsigned shiftAmt) const;
194
195  /// out-of-line slow case for operator&
196  APInt AndSlowCase(const APInt &RHS) const;
197
198  /// out-of-line slow case for operator|
199  APInt OrSlowCase(const APInt &RHS) const;
200
201  /// out-of-line slow case for operator^
202  APInt XorSlowCase(const APInt &RHS) const;
203
204  /// out-of-line slow case for operator=
205  APInt &AssignSlowCase(const APInt &RHS);
206
207  /// out-of-line slow case for operator==
208  bool EqualSlowCase(const APInt &RHS) const;
209
210  /// out-of-line slow case for operator==
211  bool EqualSlowCase(uint64_t Val) const;
212
213  /// out-of-line slow case for countLeadingZeros
214  unsigned countLeadingZerosSlowCase() const;
215
216  /// out-of-line slow case for countTrailingOnes
217  unsigned countTrailingOnesSlowCase() const;
218
219  /// out-of-line slow case for countPopulation
220  unsigned countPopulationSlowCase() const;
221
222public:
223  /// \name Constructors
224  /// @{
225
226  /// \brief Create a new APInt of numBits width, initialized as val.
227  ///
228  /// If isSigned is true then val is treated as if it were a signed value
229  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
230  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
231  /// the range of val are zero filled).
232  ///
233  /// \param numBits the bit width of the constructed APInt
234  /// \param val the initial value of the APInt
235  /// \param isSigned how to treat signedness of val
236  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
237      : BitWidth(numBits), VAL(0) {
238    assert(BitWidth && "bitwidth too small");
239    if (isSingleWord())
240      VAL = val;
241    else
242      initSlowCase(numBits, val, isSigned);
243    clearUnusedBits();
244  }
245
246  /// \brief Construct an APInt of numBits width, initialized as bigVal[].
247  ///
248  /// Note that bigVal.size() can be smaller or larger than the corresponding
249  /// bit width but any extraneous bits will be dropped.
250  ///
251  /// \param numBits the bit width of the constructed APInt
252  /// \param bigVal a sequence of words to form the initial value of the APInt
253  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
254
255  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
256  /// deprecated because this constructor is prone to ambiguity with the
257  /// APInt(unsigned, uint64_t, bool) constructor.
258  ///
259  /// If this overload is ever deleted, care should be taken to prevent calls
260  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
261  /// constructor.
262  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
263
264  /// \brief Construct an APInt from a string representation.
265  ///
266  /// This constructor interprets the string \p str in the given radix. The
267  /// interpretation stops when the first character that is not suitable for the
268  /// radix is encountered, or the end of the string. Acceptable radix values
269  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
270  /// string to require more bits than numBits.
271  ///
272  /// \param numBits the bit width of the constructed APInt
273  /// \param str the string to be interpreted
274  /// \param radix the radix to use for the conversion
275  APInt(unsigned numBits, StringRef str, uint8_t radix);
276
277  /// Simply makes *this a copy of that.
278  /// @brief Copy Constructor.
279  APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
280    if (isSingleWord())
281      VAL = that.VAL;
282    else
283      initSlowCase(that);
284  }
285
286  /// \brief Move Constructor.
287  APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
288    that.BitWidth = 0;
289  }
290
291  /// \brief Destructor.
292  ~APInt() {
293    if (needsCleanup())
294      delete[] pVal;
295  }
296
297  /// \brief Default constructor that creates an uninteresting APInt
298  /// representing a 1-bit zero value.
299  ///
300  /// This is useful for object deserialization (pair this with the static
301  ///  method Read).
302  explicit APInt() : BitWidth(1), VAL(0) {}
303
304  /// \brief Returns whether this instance allocated memory.
305  bool needsCleanup() const { return !isSingleWord(); }
306
307  /// Used to insert APInt objects, or objects that contain APInt objects, into
308  ///  FoldingSets.
309  void Profile(FoldingSetNodeID &id) const;
310
311  /// @}
312  /// \name Value Tests
313  /// @{
314
315  /// \brief Determine sign of this APInt.
316  ///
317  /// This tests the high bit of this APInt to determine if it is set.
318  ///
319  /// \returns true if this APInt is negative, false otherwise
320  bool isNegative() const { return (*this)[BitWidth - 1]; }
321
322  /// \brief Determine if this APInt Value is non-negative (>= 0)
323  ///
324  /// This tests the high bit of the APInt to determine if it is unset.
325  bool isNonNegative() const { return !isNegative(); }
326
327  /// \brief Determine if this APInt Value is positive.
328  ///
329  /// This tests if the value of this APInt is positive (> 0). Note
330  /// that 0 is not a positive value.
331  ///
332  /// \returns true if this APInt is positive.
333  bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
334
335  /// \brief Determine if all bits are set
336  ///
337  /// This checks to see if the value has all bits of the APInt are set or not.
338  bool isAllOnesValue() const {
339    if (isSingleWord())
340      return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
341    return countPopulationSlowCase() == BitWidth;
342  }
343
344  /// \brief Determine if this is the largest unsigned value.
345  ///
346  /// This checks to see if the value of this APInt is the maximum unsigned
347  /// value for the APInt's bit width.
348  bool isMaxValue() const { return isAllOnesValue(); }
349
350  /// \brief Determine if this is the largest signed value.
351  ///
352  /// This checks to see if the value of this APInt is the maximum signed
353  /// value for the APInt's bit width.
354  bool isMaxSignedValue() const {
355    return !isNegative() && countPopulation() == BitWidth - 1;
356  }
357
358  /// \brief Determine if this is the smallest unsigned value.
359  ///
360  /// This checks to see if the value of this APInt is the minimum unsigned
361  /// value for the APInt's bit width.
362  bool isMinValue() const { return !*this; }
363
364  /// \brief Determine if this is the smallest signed value.
365  ///
366  /// This checks to see if the value of this APInt is the minimum signed
367  /// value for the APInt's bit width.
368  bool isMinSignedValue() const {
369    return isNegative() && isPowerOf2();
370  }
371
372  /// \brief Check if this APInt has an N-bits unsigned integer value.
373  bool isIntN(unsigned N) const {
374    assert(N && "N == 0 ???");
375    return getActiveBits() <= N;
376  }
377
378  /// \brief Check if this APInt has an N-bits signed integer value.
379  bool isSignedIntN(unsigned N) const {
380    assert(N && "N == 0 ???");
381    return getMinSignedBits() <= N;
382  }
383
384  /// \brief Check if this APInt's value is a power of two greater than zero.
385  ///
386  /// \returns true if the argument APInt value is a power of two > 0.
387  bool isPowerOf2() const {
388    if (isSingleWord())
389      return isPowerOf2_64(VAL);
390    return countPopulationSlowCase() == 1;
391  }
392
393  /// \brief Check if the APInt's value is returned by getSignBit.
394  ///
395  /// \returns true if this is the value returned by getSignBit.
396  bool isSignBit() const { return isMinSignedValue(); }
397
398  /// \brief Convert APInt to a boolean value.
399  ///
400  /// This converts the APInt to a boolean value as a test against zero.
401  bool getBoolValue() const { return !!*this; }
402
403  /// If this value is smaller than the specified limit, return it, otherwise
404  /// return the limit value.  This causes the value to saturate to the limit.
405  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
406    return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
407                                                            : getZExtValue();
408  }
409
410  /// \brief Check if the APInt consists of a repeated bit pattern.
411  ///
412  /// e.g. 0x01010101 satisfies isSplat(8).
413  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
414  /// width without remainder.
415  bool isSplat(unsigned SplatSizeInBits) const;
416
417  /// @}
418  /// \name Value Generators
419  /// @{
420
421  /// \brief Gets maximum unsigned value of APInt for specific bit width.
422  static APInt getMaxValue(unsigned numBits) {
423    return getAllOnesValue(numBits);
424  }
425
426  /// \brief Gets maximum signed value of APInt for a specific bit width.
427  static APInt getSignedMaxValue(unsigned numBits) {
428    APInt API = getAllOnesValue(numBits);
429    API.clearBit(numBits - 1);
430    return API;
431  }
432
433  /// \brief Gets minimum unsigned value of APInt for a specific bit width.
434  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
435
436  /// \brief Gets minimum signed value of APInt for a specific bit width.
437  static APInt getSignedMinValue(unsigned numBits) {
438    APInt API(numBits, 0);
439    API.setBit(numBits - 1);
440    return API;
441  }
442
443  /// \brief Get the SignBit for a specific bit width.
444  ///
445  /// This is just a wrapper function of getSignedMinValue(), and it helps code
446  /// readability when we want to get a SignBit.
447  static APInt getSignBit(unsigned BitWidth) {
448    return getSignedMinValue(BitWidth);
449  }
450
451  /// \brief Get the all-ones value.
452  ///
453  /// \returns the all-ones value for an APInt of the specified bit-width.
454  static APInt getAllOnesValue(unsigned numBits) {
455    return APInt(numBits, UINT64_MAX, true);
456  }
457
458  /// \brief Get the '0' value.
459  ///
460  /// \returns the '0' value for an APInt of the specified bit-width.
461  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
462
463  /// \brief Compute an APInt containing numBits highbits from this APInt.
464  ///
465  /// Get an APInt with the same BitWidth as this APInt, just zero mask
466  /// the low bits and right shift to the least significant bit.
467  ///
468  /// \returns the high "numBits" bits of this APInt.
469  APInt getHiBits(unsigned numBits) const;
470
471  /// \brief Compute an APInt containing numBits lowbits from this APInt.
472  ///
473  /// Get an APInt with the same BitWidth as this APInt, just zero mask
474  /// the high bits.
475  ///
476  /// \returns the low "numBits" bits of this APInt.
477  APInt getLoBits(unsigned numBits) const;
478
479  /// \brief Return an APInt with exactly one bit set in the result.
480  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
481    APInt Res(numBits, 0);
482    Res.setBit(BitNo);
483    return Res;
484  }
485
486  /// \brief Get a value with a block of bits set.
487  ///
488  /// Constructs an APInt value that has a contiguous range of bits set. The
489  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
490  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
491  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
492  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
493  ///
494  /// \param numBits the intended bit width of the result
495  /// \param loBit the index of the lowest bit set.
496  /// \param hiBit the index of the highest bit set.
497  ///
498  /// \returns An APInt value with the requested bits set.
499  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
500    assert(hiBit <= numBits && "hiBit out of range");
501    assert(loBit < numBits && "loBit out of range");
502    if (hiBit < loBit)
503      return getLowBitsSet(numBits, hiBit) |
504             getHighBitsSet(numBits, numBits - loBit);
505    return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
506  }
507
508  /// \brief Get a value with high bits set
509  ///
510  /// Constructs an APInt value that has the top hiBitsSet bits set.
511  ///
512  /// \param numBits the bitwidth of the result
513  /// \param hiBitsSet the number of high-order bits set in the result.
514  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
515    assert(hiBitsSet <= numBits && "Too many bits to set!");
516    // Handle a degenerate case, to avoid shifting by word size
517    if (hiBitsSet == 0)
518      return APInt(numBits, 0);
519    unsigned shiftAmt = numBits - hiBitsSet;
520    // For small values, return quickly
521    if (numBits <= APINT_BITS_PER_WORD)
522      return APInt(numBits, ~0ULL << shiftAmt);
523    return getAllOnesValue(numBits).shl(shiftAmt);
524  }
525
526  /// \brief Get a value with low bits set
527  ///
528  /// Constructs an APInt value that has the bottom loBitsSet bits set.
529  ///
530  /// \param numBits the bitwidth of the result
531  /// \param loBitsSet the number of low-order bits set in the result.
532  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
533    assert(loBitsSet <= numBits && "Too many bits to set!");
534    // Handle a degenerate case, to avoid shifting by word size
535    if (loBitsSet == 0)
536      return APInt(numBits, 0);
537    if (loBitsSet == APINT_BITS_PER_WORD)
538      return APInt(numBits, UINT64_MAX);
539    // For small values, return quickly.
540    if (loBitsSet <= APINT_BITS_PER_WORD)
541      return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
542    return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
543  }
544
545  /// \brief Return a value containing V broadcasted over NewLen bits.
546  static APInt getSplat(unsigned NewLen, const APInt &V) {
547    assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
548
549    APInt Val = V.zextOrSelf(NewLen);
550    for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
551      Val |= Val << I;
552
553    return Val;
554  }
555
556  /// \brief Determine if two APInts have the same value, after zero-extending
557  /// one of them (if needed!) to ensure that the bit-widths match.
558  static bool isSameValue(const APInt &I1, const APInt &I2) {
559    if (I1.getBitWidth() == I2.getBitWidth())
560      return I1 == I2;
561
562    if (I1.getBitWidth() > I2.getBitWidth())
563      return I1 == I2.zext(I1.getBitWidth());
564
565    return I1.zext(I2.getBitWidth()) == I2;
566  }
567
568  /// \brief Overload to compute a hash_code for an APInt value.
569  friend hash_code hash_value(const APInt &Arg);
570
571  /// This function returns a pointer to the internal storage of the APInt.
572  /// This is useful for writing out the APInt in binary form without any
573  /// conversions.
574  const uint64_t *getRawData() const {
575    if (isSingleWord())
576      return &VAL;
577    return &pVal[0];
578  }
579
580  /// @}
581  /// \name Unary Operators
582  /// @{
583
584  /// \brief Postfix increment operator.
585  ///
586  /// \returns a new APInt value representing *this incremented by one
587  const APInt operator++(int) {
588    APInt API(*this);
589    ++(*this);
590    return API;
591  }
592
593  /// \brief Prefix increment operator.
594  ///
595  /// \returns *this incremented by one
596  APInt &operator++();
597
598  /// \brief Postfix decrement operator.
599  ///
600  /// \returns a new APInt representing *this decremented by one.
601  const APInt operator--(int) {
602    APInt API(*this);
603    --(*this);
604    return API;
605  }
606
607  /// \brief Prefix decrement operator.
608  ///
609  /// \returns *this decremented by one.
610  APInt &operator--();
611
612  /// \brief Unary bitwise complement operator.
613  ///
614  /// Performs a bitwise complement operation on this APInt.
615  ///
616  /// \returns an APInt that is the bitwise complement of *this
617  APInt operator~() const {
618    APInt Result(*this);
619    Result.flipAllBits();
620    return Result;
621  }
622
623  /// \brief Unary negation operator
624  ///
625  /// Negates *this using two's complement logic.
626  ///
627  /// \returns An APInt value representing the negation of *this.
628  APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
629
630  /// \brief Logical negation operator.
631  ///
632  /// Performs logical negation operation on this APInt.
633  ///
634  /// \returns true if *this is zero, false otherwise.
635  bool operator!() const {
636    if (isSingleWord())
637      return !VAL;
638
639    for (unsigned i = 0; i != getNumWords(); ++i)
640      if (pVal[i])
641        return false;
642    return true;
643  }
644
645  /// @}
646  /// \name Assignment Operators
647  /// @{
648
649  /// \brief Copy assignment operator.
650  ///
651  /// \returns *this after assignment of RHS.
652  APInt &operator=(const APInt &RHS) {
653    // If the bitwidths are the same, we can avoid mucking with memory
654    if (isSingleWord() && RHS.isSingleWord()) {
655      VAL = RHS.VAL;
656      BitWidth = RHS.BitWidth;
657      return clearUnusedBits();
658    }
659
660    return AssignSlowCase(RHS);
661  }
662
663  /// @brief Move assignment operator.
664  APInt &operator=(APInt &&that) {
665    if (!isSingleWord()) {
666      // The MSVC STL shipped in 2013 requires that self move assignment be a
667      // no-op.  Otherwise algorithms like stable_sort will produce answers
668      // where half of the output is left in a moved-from state.
669      if (this == &that)
670        return *this;
671      delete[] pVal;
672    }
673
674    // Use memcpy so that type based alias analysis sees both VAL and pVal
675    // as modified.
676    memcpy(&VAL, &that.VAL, sizeof(uint64_t));
677
678    // If 'this == &that', avoid zeroing our own bitwidth by storing to 'that'
679    // first.
680    unsigned ThatBitWidth = that.BitWidth;
681    that.BitWidth = 0;
682    BitWidth = ThatBitWidth;
683
684    return *this;
685  }
686
687  /// \brief Assignment operator.
688  ///
689  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
690  /// the bit width, the excess bits are truncated. If the bit width is larger
691  /// than 64, the value is zero filled in the unspecified high order bits.
692  ///
693  /// \returns *this after assignment of RHS value.
694  APInt &operator=(uint64_t RHS);
695
696  /// \brief Bitwise AND assignment operator.
697  ///
698  /// Performs a bitwise AND operation on this APInt and RHS. The result is
699  /// assigned to *this.
700  ///
701  /// \returns *this after ANDing with RHS.
702  APInt &operator&=(const APInt &RHS);
703
704  /// \brief Bitwise OR assignment operator.
705  ///
706  /// Performs a bitwise OR operation on this APInt and RHS. The result is
707  /// assigned *this;
708  ///
709  /// \returns *this after ORing with RHS.
710  APInt &operator|=(const APInt &RHS);
711
712  /// \brief Bitwise OR assignment operator.
713  ///
714  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
715  /// logically zero-extended or truncated to match the bit-width of
716  /// the LHS.
717  APInt &operator|=(uint64_t RHS) {
718    if (isSingleWord()) {
719      VAL |= RHS;
720      clearUnusedBits();
721    } else {
722      pVal[0] |= RHS;
723    }
724    return *this;
725  }
726
727  /// \brief Bitwise XOR assignment operator.
728  ///
729  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
730  /// assigned to *this.
731  ///
732  /// \returns *this after XORing with RHS.
733  APInt &operator^=(const APInt &RHS);
734
735  /// \brief Multiplication assignment operator.
736  ///
737  /// Multiplies this APInt by RHS and assigns the result to *this.
738  ///
739  /// \returns *this
740  APInt &operator*=(const APInt &RHS);
741
742  /// \brief Addition assignment operator.
743  ///
744  /// Adds RHS to *this and assigns the result to *this.
745  ///
746  /// \returns *this
747  APInt &operator+=(const APInt &RHS);
748
749  /// \brief Subtraction assignment operator.
750  ///
751  /// Subtracts RHS from *this and assigns the result to *this.
752  ///
753  /// \returns *this
754  APInt &operator-=(const APInt &RHS);
755
756  /// \brief Left-shift assignment function.
757  ///
758  /// Shifts *this left by shiftAmt and assigns the result to *this.
759  ///
760  /// \returns *this after shifting left by shiftAmt
761  APInt &operator<<=(unsigned shiftAmt) {
762    *this = shl(shiftAmt);
763    return *this;
764  }
765
766  /// @}
767  /// \name Binary Operators
768  /// @{
769
770  /// \brief Bitwise AND operator.
771  ///
772  /// Performs a bitwise AND operation on *this and RHS.
773  ///
774  /// \returns An APInt value representing the bitwise AND of *this and RHS.
775  APInt operator&(const APInt &RHS) const {
776    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
777    if (isSingleWord())
778      return APInt(getBitWidth(), VAL & RHS.VAL);
779    return AndSlowCase(RHS);
780  }
781  APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
782    return this->operator&(RHS);
783  }
784
785  /// \brief Bitwise OR operator.
786  ///
787  /// Performs a bitwise OR operation on *this and RHS.
788  ///
789  /// \returns An APInt value representing the bitwise OR of *this and RHS.
790  APInt operator|(const APInt &RHS) const {
791    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
792    if (isSingleWord())
793      return APInt(getBitWidth(), VAL | RHS.VAL);
794    return OrSlowCase(RHS);
795  }
796
797  /// \brief Bitwise OR function.
798  ///
799  /// Performs a bitwise or on *this and RHS. This is implemented by simply
800  /// calling operator|.
801  ///
802  /// \returns An APInt value representing the bitwise OR of *this and RHS.
803  APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
804    return this->operator|(RHS);
805  }
806
807  /// \brief Bitwise XOR operator.
808  ///
809  /// Performs a bitwise XOR operation on *this and RHS.
810  ///
811  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
812  APInt operator^(const APInt &RHS) const {
813    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
814    if (isSingleWord())
815      return APInt(BitWidth, VAL ^ RHS.VAL);
816    return XorSlowCase(RHS);
817  }
818
819  /// \brief Bitwise XOR function.
820  ///
821  /// Performs a bitwise XOR operation on *this and RHS. This is implemented
822  /// through the usage of operator^.
823  ///
824  /// \returns An APInt value representing the bitwise XOR of *this and RHS.
825  APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
826    return this->operator^(RHS);
827  }
828
829  /// \brief Multiplication operator.
830  ///
831  /// Multiplies this APInt by RHS and returns the result.
832  APInt operator*(const APInt &RHS) const;
833
834  /// \brief Addition operator.
835  ///
836  /// Adds RHS to this APInt and returns the result.
837  APInt operator+(const APInt &RHS) const;
838  APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
839
840  /// \brief Subtraction operator.
841  ///
842  /// Subtracts RHS from this APInt and returns the result.
843  APInt operator-(const APInt &RHS) const;
844  APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
845
846  /// \brief Left logical shift operator.
847  ///
848  /// Shifts this APInt left by \p Bits and returns the result.
849  APInt operator<<(unsigned Bits) const { return shl(Bits); }
850
851  /// \brief Left logical shift operator.
852  ///
853  /// Shifts this APInt left by \p Bits and returns the result.
854  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
855
856  /// \brief Arithmetic right-shift function.
857  ///
858  /// Arithmetic right-shift this APInt by shiftAmt.
859  APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
860
861  /// \brief Logical right-shift function.
862  ///
863  /// Logical right-shift this APInt by shiftAmt.
864  APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
865
866  /// \brief Left-shift function.
867  ///
868  /// Left-shift this APInt by shiftAmt.
869  APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
870    assert(shiftAmt <= BitWidth && "Invalid shift amount");
871    if (isSingleWord()) {
872      if (shiftAmt >= BitWidth)
873        return APInt(BitWidth, 0); // avoid undefined shift results
874      return APInt(BitWidth, VAL << shiftAmt);
875    }
876    return shlSlowCase(shiftAmt);
877  }
878
879  /// \brief Rotate left by rotateAmt.
880  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
881
882  /// \brief Rotate right by rotateAmt.
883  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
884
885  /// \brief Arithmetic right-shift function.
886  ///
887  /// Arithmetic right-shift this APInt by shiftAmt.
888  APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
889
890  /// \brief Logical right-shift function.
891  ///
892  /// Logical right-shift this APInt by shiftAmt.
893  APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
894
895  /// \brief Left-shift function.
896  ///
897  /// Left-shift this APInt by shiftAmt.
898  APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
899
900  /// \brief Rotate left by rotateAmt.
901  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
902
903  /// \brief Rotate right by rotateAmt.
904  APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
905
906  /// \brief Unsigned division operation.
907  ///
908  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
909  /// RHS are treated as unsigned quantities for purposes of this division.
910  ///
911  /// \returns a new APInt value containing the division result
912  APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
913
914  /// \brief Signed division function for APInt.
915  ///
916  /// Signed divide this APInt by APInt RHS.
917  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
918
919  /// \brief Unsigned remainder operation.
920  ///
921  /// Perform an unsigned remainder operation on this APInt with RHS being the
922  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
923  /// of this operation. Note that this is a true remainder operation and not a
924  /// modulo operation because the sign follows the sign of the dividend which
925  /// is *this.
926  ///
927  /// \returns a new APInt value containing the remainder result
928  APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
929
930  /// \brief Function for signed remainder operation.
931  ///
932  /// Signed remainder operation on APInt.
933  APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
934
935  /// \brief Dual division/remainder interface.
936  ///
937  /// Sometimes it is convenient to divide two APInt values and obtain both the
938  /// quotient and remainder. This function does both operations in the same
939  /// computation making it a little more efficient. The pair of input arguments
940  /// may overlap with the pair of output arguments. It is safe to call
941  /// udivrem(X, Y, X, Y), for example.
942  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
943                      APInt &Remainder);
944
945  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
946                      APInt &Remainder);
947
948  // Operations that return overflow indicators.
949  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
950  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
951  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
952  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
953  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
954  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
955  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
956  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
957  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
958
959  /// \brief Array-indexing support.
960  ///
961  /// \returns the bit value at bitPosition
962  bool operator[](unsigned bitPosition) const {
963    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
964    return (maskBit(bitPosition) &
965            (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
966           0;
967  }
968
969  /// @}
970  /// \name Comparison Operators
971  /// @{
972
973  /// \brief Equality operator.
974  ///
975  /// Compares this APInt with RHS for the validity of the equality
976  /// relationship.
977  bool operator==(const APInt &RHS) const {
978    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
979    if (isSingleWord())
980      return VAL == RHS.VAL;
981    return EqualSlowCase(RHS);
982  }
983
984  /// \brief Equality operator.
985  ///
986  /// Compares this APInt with a uint64_t for the validity of the equality
987  /// relationship.
988  ///
989  /// \returns true if *this == Val
990  bool operator==(uint64_t Val) const {
991    if (isSingleWord())
992      return VAL == Val;
993    return EqualSlowCase(Val);
994  }
995
996  /// \brief Equality comparison.
997  ///
998  /// Compares this APInt with RHS for the validity of the equality
999  /// relationship.
1000  ///
1001  /// \returns true if *this == Val
1002  bool eq(const APInt &RHS) const { return (*this) == RHS; }
1003
1004  /// \brief Inequality operator.
1005  ///
1006  /// Compares this APInt with RHS for the validity of the inequality
1007  /// relationship.
1008  ///
1009  /// \returns true if *this != Val
1010  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1011
1012  /// \brief Inequality operator.
1013  ///
1014  /// Compares this APInt with a uint64_t for the validity of the inequality
1015  /// relationship.
1016  ///
1017  /// \returns true if *this != Val
1018  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1019
1020  /// \brief Inequality comparison
1021  ///
1022  /// Compares this APInt with RHS for the validity of the inequality
1023  /// relationship.
1024  ///
1025  /// \returns true if *this != Val
1026  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1027
1028  /// \brief Unsigned less than comparison
1029  ///
1030  /// Regards both *this and RHS as unsigned quantities and compares them for
1031  /// the validity of the less-than relationship.
1032  ///
1033  /// \returns true if *this < RHS when both are considered unsigned.
1034  bool ult(const APInt &RHS) const;
1035
1036  /// \brief Unsigned less than comparison
1037  ///
1038  /// Regards both *this as an unsigned quantity and compares it with RHS for
1039  /// the validity of the less-than relationship.
1040  ///
1041  /// \returns true if *this < RHS when considered unsigned.
1042  bool ult(uint64_t RHS) const {
1043    return getActiveBits() > 64 ? false : getZExtValue() < RHS;
1044  }
1045
1046  /// \brief Signed less than comparison
1047  ///
1048  /// Regards both *this and RHS as signed quantities and compares them for
1049  /// validity of the less-than relationship.
1050  ///
1051  /// \returns true if *this < RHS when both are considered signed.
1052  bool slt(const APInt &RHS) const;
1053
1054  /// \brief Signed less than comparison
1055  ///
1056  /// Regards both *this as a signed quantity and compares it with RHS for
1057  /// the validity of the less-than relationship.
1058  ///
1059  /// \returns true if *this < RHS when considered signed.
1060  bool slt(int64_t RHS) const {
1061    return getMinSignedBits() > 64 ? isNegative() : getSExtValue() < RHS;
1062  }
1063
1064  /// \brief Unsigned less or equal comparison
1065  ///
1066  /// Regards both *this and RHS as unsigned quantities and compares them for
1067  /// validity of the less-or-equal relationship.
1068  ///
1069  /// \returns true if *this <= RHS when both are considered unsigned.
1070  bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
1071
1072  /// \brief Unsigned less or equal comparison
1073  ///
1074  /// Regards both *this as an unsigned quantity and compares it with RHS for
1075  /// the validity of the less-or-equal relationship.
1076  ///
1077  /// \returns true if *this <= RHS when considered unsigned.
1078  bool ule(uint64_t RHS) const { return !ugt(RHS); }
1079
1080  /// \brief Signed less or equal comparison
1081  ///
1082  /// Regards both *this and RHS as signed quantities and compares them for
1083  /// validity of the less-or-equal relationship.
1084  ///
1085  /// \returns true if *this <= RHS when both are considered signed.
1086  bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
1087
1088  /// \brief Signed less or equal comparison
1089  ///
1090  /// Regards both *this as a signed quantity and compares it with RHS for the
1091  /// validity of the less-or-equal relationship.
1092  ///
1093  /// \returns true if *this <= RHS when considered signed.
1094  bool sle(uint64_t RHS) const { return !sgt(RHS); }
1095
1096  /// \brief Unsigned greather than comparison
1097  ///
1098  /// Regards both *this and RHS as unsigned quantities and compares them for
1099  /// the validity of the greater-than relationship.
1100  ///
1101  /// \returns true if *this > RHS when both are considered unsigned.
1102  bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
1103
1104  /// \brief Unsigned greater than comparison
1105  ///
1106  /// Regards both *this as an unsigned quantity and compares it with RHS for
1107  /// the validity of the greater-than relationship.
1108  ///
1109  /// \returns true if *this > RHS when considered unsigned.
1110  bool ugt(uint64_t RHS) const {
1111    return getActiveBits() > 64 ? true : getZExtValue() > RHS;
1112  }
1113
1114  /// \brief Signed greather than comparison
1115  ///
1116  /// Regards both *this and RHS as signed quantities and compares them for the
1117  /// validity of the greater-than relationship.
1118  ///
1119  /// \returns true if *this > RHS when both are considered signed.
1120  bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
1121
1122  /// \brief Signed greater than comparison
1123  ///
1124  /// Regards both *this as a signed quantity and compares it with RHS for
1125  /// the validity of the greater-than relationship.
1126  ///
1127  /// \returns true if *this > RHS when considered signed.
1128  bool sgt(int64_t RHS) const {
1129    return getMinSignedBits() > 64 ? !isNegative() : getSExtValue() > RHS;
1130  }
1131
1132  /// \brief Unsigned greater or equal comparison
1133  ///
1134  /// Regards both *this and RHS as unsigned quantities and compares them for
1135  /// validity of the greater-or-equal relationship.
1136  ///
1137  /// \returns true if *this >= RHS when both are considered unsigned.
1138  bool uge(const APInt &RHS) const { return !ult(RHS); }
1139
1140  /// \brief Unsigned greater or equal comparison
1141  ///
1142  /// Regards both *this as an unsigned quantity and compares it with RHS for
1143  /// the validity of the greater-or-equal relationship.
1144  ///
1145  /// \returns true if *this >= RHS when considered unsigned.
1146  bool uge(uint64_t RHS) const { return !ult(RHS); }
1147
1148  /// \brief Signed greather or equal comparison
1149  ///
1150  /// Regards both *this and RHS as signed quantities and compares them for
1151  /// validity of the greater-or-equal relationship.
1152  ///
1153  /// \returns true if *this >= RHS when both are considered signed.
1154  bool sge(const APInt &RHS) const { return !slt(RHS); }
1155
1156  /// \brief Signed greater or equal comparison
1157  ///
1158  /// Regards both *this as a signed quantity and compares it with RHS for
1159  /// the validity of the greater-or-equal relationship.
1160  ///
1161  /// \returns true if *this >= RHS when considered signed.
1162  bool sge(int64_t RHS) const { return !slt(RHS); }
1163
1164  /// This operation tests if there are any pairs of corresponding bits
1165  /// between this APInt and RHS that are both set.
1166  bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
1167
1168  /// @}
1169  /// \name Resizing Operators
1170  /// @{
1171
1172  /// \brief Truncate to new width.
1173  ///
1174  /// Truncate the APInt to a specified width. It is an error to specify a width
1175  /// that is greater than or equal to the current width.
1176  APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
1177
1178  /// \brief Sign extend to a new width.
1179  ///
1180  /// This operation sign extends the APInt to a new width. If the high order
1181  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1182  /// It is an error to specify a width that is less than or equal to the
1183  /// current width.
1184  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
1185
1186  /// \brief Zero extend to a new width.
1187  ///
1188  /// This operation zero extends the APInt to a new width. The high order bits
1189  /// are filled with 0 bits.  It is an error to specify a width that is less
1190  /// than or equal to the current width.
1191  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
1192
1193  /// \brief Sign extend or truncate to width
1194  ///
1195  /// Make this APInt have the bit width given by \p width. The value is sign
1196  /// extended, truncated, or left alone to make it that width.
1197  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
1198
1199  /// \brief Zero extend or truncate to width
1200  ///
1201  /// Make this APInt have the bit width given by \p width. The value is zero
1202  /// extended, truncated, or left alone to make it that width.
1203  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
1204
1205  /// \brief Sign extend or truncate to width
1206  ///
1207  /// Make this APInt have the bit width given by \p width. The value is sign
1208  /// extended, or left alone to make it that width.
1209  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
1210
1211  /// \brief Zero extend or truncate to width
1212  ///
1213  /// Make this APInt have the bit width given by \p width. The value is zero
1214  /// extended, or left alone to make it that width.
1215  APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
1216
1217  /// @}
1218  /// \name Bit Manipulation Operators
1219  /// @{
1220
1221  /// \brief Set every bit to 1.
1222  void setAllBits() {
1223    if (isSingleWord())
1224      VAL = UINT64_MAX;
1225    else {
1226      // Set all the bits in all the words.
1227      for (unsigned i = 0; i < getNumWords(); ++i)
1228        pVal[i] = UINT64_MAX;
1229    }
1230    // Clear the unused ones
1231    clearUnusedBits();
1232  }
1233
1234  /// \brief Set a given bit to 1.
1235  ///
1236  /// Set the given bit to 1 whose position is given as "bitPosition".
1237  void setBit(unsigned bitPosition);
1238
1239  /// \brief Set every bit to 0.
1240  void clearAllBits() {
1241    if (isSingleWord())
1242      VAL = 0;
1243    else
1244      memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1245  }
1246
1247  /// \brief Set a given bit to 0.
1248  ///
1249  /// Set the given bit to 0 whose position is given as "bitPosition".
1250  void clearBit(unsigned bitPosition);
1251
1252  /// \brief Toggle every bit to its opposite value.
1253  void flipAllBits() {
1254    if (isSingleWord())
1255      VAL ^= UINT64_MAX;
1256    else {
1257      for (unsigned i = 0; i < getNumWords(); ++i)
1258        pVal[i] ^= UINT64_MAX;
1259    }
1260    clearUnusedBits();
1261  }
1262
1263  /// \brief Toggles a given bit to its opposite value.
1264  ///
1265  /// Toggle a given bit to its opposite value whose position is given
1266  /// as "bitPosition".
1267  void flipBit(unsigned bitPosition);
1268
1269  /// @}
1270  /// \name Value Characterization Functions
1271  /// @{
1272
1273  /// \brief Return the number of bits in the APInt.
1274  unsigned getBitWidth() const { return BitWidth; }
1275
1276  /// \brief Get the number of words.
1277  ///
1278  /// Here one word's bitwidth equals to that of uint64_t.
1279  ///
1280  /// \returns the number of words to hold the integer value of this APInt.
1281  unsigned getNumWords() const { return getNumWords(BitWidth); }
1282
1283  /// \brief Get the number of words.
1284  ///
1285  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1286  ///
1287  /// \returns the number of words to hold the integer value with a given bit
1288  /// width.
1289  static unsigned getNumWords(unsigned BitWidth) {
1290    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1291  }
1292
1293  /// \brief Compute the number of active bits in the value
1294  ///
1295  /// This function returns the number of active bits which is defined as the
1296  /// bit width minus the number of leading zeros. This is used in several
1297  /// computations to see how "wide" the value is.
1298  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1299
1300  /// \brief Compute the number of active words in the value of this APInt.
1301  ///
1302  /// This is used in conjunction with getActiveData to extract the raw value of
1303  /// the APInt.
1304  unsigned getActiveWords() const {
1305    unsigned numActiveBits = getActiveBits();
1306    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1307  }
1308
1309  /// \brief Get the minimum bit size for this signed APInt
1310  ///
1311  /// Computes the minimum bit width for this APInt while considering it to be a
1312  /// signed (and probably negative) value. If the value is not negative, this
1313  /// function returns the same value as getActiveBits()+1. Otherwise, it
1314  /// returns the smallest bit width that will retain the negative value. For
1315  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1316  /// for -1, this function will always return 1.
1317  unsigned getMinSignedBits() const {
1318    if (isNegative())
1319      return BitWidth - countLeadingOnes() + 1;
1320    return getActiveBits() + 1;
1321  }
1322
1323  /// \brief Get zero extended value
1324  ///
1325  /// This method attempts to return the value of this APInt as a zero extended
1326  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1327  /// uint64_t. Otherwise an assertion will result.
1328  uint64_t getZExtValue() const {
1329    if (isSingleWord())
1330      return VAL;
1331    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1332    return pVal[0];
1333  }
1334
1335  /// \brief Get sign extended value
1336  ///
1337  /// This method attempts to return the value of this APInt as a sign extended
1338  /// int64_t. The bit width must be <= 64 or the value must fit within an
1339  /// int64_t. Otherwise an assertion will result.
1340  int64_t getSExtValue() const {
1341    if (isSingleWord())
1342      return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1343             (APINT_BITS_PER_WORD - BitWidth);
1344    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1345    return int64_t(pVal[0]);
1346  }
1347
1348  /// \brief Get bits required for string value.
1349  ///
1350  /// This method determines how many bits are required to hold the APInt
1351  /// equivalent of the string given by \p str.
1352  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1353
1354  /// \brief The APInt version of the countLeadingZeros functions in
1355  ///   MathExtras.h.
1356  ///
1357  /// It counts the number of zeros from the most significant bit to the first
1358  /// one bit.
1359  ///
1360  /// \returns BitWidth if the value is zero, otherwise returns the number of
1361  ///   zeros from the most significant bit to the first one bits.
1362  unsigned countLeadingZeros() const {
1363    if (isSingleWord()) {
1364      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1365      return llvm::countLeadingZeros(VAL) - unusedBits;
1366    }
1367    return countLeadingZerosSlowCase();
1368  }
1369
1370  /// \brief Count the number of leading one bits.
1371  ///
1372  /// This function is an APInt version of the countLeadingOnes
1373  /// functions in MathExtras.h. It counts the number of ones from the most
1374  /// significant bit to the first zero bit.
1375  ///
1376  /// \returns 0 if the high order bit is not set, otherwise returns the number
1377  /// of 1 bits from the most significant to the least
1378  unsigned countLeadingOnes() const;
1379
1380  /// Computes the number of leading bits of this APInt that are equal to its
1381  /// sign bit.
1382  unsigned getNumSignBits() const {
1383    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1384  }
1385
1386  /// \brief Count the number of trailing zero bits.
1387  ///
1388  /// This function is an APInt version of the countTrailingZeros
1389  /// functions in MathExtras.h. It counts the number of zeros from the least
1390  /// significant bit to the first set bit.
1391  ///
1392  /// \returns BitWidth if the value is zero, otherwise returns the number of
1393  /// zeros from the least significant bit to the first one bit.
1394  unsigned countTrailingZeros() const;
1395
1396  /// \brief Count the number of trailing one bits.
1397  ///
1398  /// This function is an APInt version of the countTrailingOnes
1399  /// functions in MathExtras.h. It counts the number of ones from the least
1400  /// significant bit to the first zero bit.
1401  ///
1402  /// \returns BitWidth if the value is all ones, otherwise returns the number
1403  /// of ones from the least significant bit to the first zero bit.
1404  unsigned countTrailingOnes() const {
1405    if (isSingleWord())
1406      return llvm::countTrailingOnes(VAL);
1407    return countTrailingOnesSlowCase();
1408  }
1409
1410  /// \brief Count the number of bits set.
1411  ///
1412  /// This function is an APInt version of the countPopulation functions
1413  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1414  ///
1415  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1416  unsigned countPopulation() const {
1417    if (isSingleWord())
1418      return llvm::countPopulation(VAL);
1419    return countPopulationSlowCase();
1420  }
1421
1422  /// @}
1423  /// \name Conversion Functions
1424  /// @{
1425  void print(raw_ostream &OS, bool isSigned) const;
1426
1427  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1428  /// SmallString.
1429  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1430                bool formatAsCLiteral = false) const;
1431
1432  /// Considers the APInt to be unsigned and converts it into a string in the
1433  /// radix given. The radix can be 2, 8, 10 16, or 36.
1434  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1435    toString(Str, Radix, false, false);
1436  }
1437
1438  /// Considers the APInt to be signed and converts it into a string in the
1439  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1440  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1441    toString(Str, Radix, true, false);
1442  }
1443
1444  /// \brief Return the APInt as a std::string.
1445  ///
1446  /// Note that this is an inefficient method.  It is better to pass in a
1447  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1448  /// for the string.
1449  std::string toString(unsigned Radix, bool Signed) const;
1450
1451  /// \returns a byte-swapped representation of this APInt Value.
1452  APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
1453
1454  /// \brief Converts this APInt to a double value.
1455  double roundToDouble(bool isSigned) const;
1456
1457  /// \brief Converts this unsigned APInt to a double value.
1458  double roundToDouble() const { return roundToDouble(false); }
1459
1460  /// \brief Converts this signed APInt to a double value.
1461  double signedRoundToDouble() const { return roundToDouble(true); }
1462
1463  /// \brief Converts APInt bits to a double
1464  ///
1465  /// The conversion does not do a translation from integer to double, it just
1466  /// re-interprets the bits as a double. Note that it is valid to do this on
1467  /// any bit width. Exactly 64 bits will be translated.
1468  double bitsToDouble() const {
1469    union {
1470      uint64_t I;
1471      double D;
1472    } T;
1473    T.I = (isSingleWord() ? VAL : pVal[0]);
1474    return T.D;
1475  }
1476
1477  /// \brief Converts APInt bits to a double
1478  ///
1479  /// The conversion does not do a translation from integer to float, it just
1480  /// re-interprets the bits as a float. Note that it is valid to do this on
1481  /// any bit width. Exactly 32 bits will be translated.
1482  float bitsToFloat() const {
1483    union {
1484      unsigned I;
1485      float F;
1486    } T;
1487    T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1488    return T.F;
1489  }
1490
1491  /// \brief Converts a double to APInt bits.
1492  ///
1493  /// The conversion does not do a translation from double to integer, it just
1494  /// re-interprets the bits of the double.
1495  static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
1496    union {
1497      uint64_t I;
1498      double D;
1499    } T;
1500    T.D = V;
1501    return APInt(sizeof T * CHAR_BIT, T.I);
1502  }
1503
1504  /// \brief Converts a float to APInt bits.
1505  ///
1506  /// The conversion does not do a translation from float to integer, it just
1507  /// re-interprets the bits of the float.
1508  static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
1509    union {
1510      unsigned I;
1511      float F;
1512    } T;
1513    T.F = V;
1514    return APInt(sizeof T * CHAR_BIT, T.I);
1515  }
1516
1517  /// @}
1518  /// \name Mathematics Operations
1519  /// @{
1520
1521  /// \returns the floor log base 2 of this APInt.
1522  unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
1523
1524  /// \returns the ceil log base 2 of this APInt.
1525  unsigned ceilLogBase2() const {
1526    return BitWidth - (*this - 1).countLeadingZeros();
1527  }
1528
1529  /// \returns the nearest log base 2 of this APInt. Ties round up.
1530  ///
1531  /// NOTE: When we have a BitWidth of 1, we define:
1532  ///
1533  ///   log2(0) = UINT32_MAX
1534  ///   log2(1) = 0
1535  ///
1536  /// to get around any mathematical concerns resulting from
1537  /// referencing 2 in a space where 2 does no exist.
1538  unsigned nearestLogBase2() const {
1539    // Special case when we have a bitwidth of 1. If VAL is 1, then we
1540    // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
1541    // UINT32_MAX.
1542    if (BitWidth == 1)
1543      return VAL - 1;
1544
1545    // Handle the zero case.
1546    if (!getBoolValue())
1547      return UINT32_MAX;
1548
1549    // The non-zero case is handled by computing:
1550    //
1551    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1552    //
1553    // where x[i] is referring to the value of the ith bit of x.
1554    unsigned lg = logBase2();
1555    return lg + unsigned((*this)[lg - 1]);
1556  }
1557
1558  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1559  /// otherwise
1560  int32_t exactLogBase2() const {
1561    if (!isPowerOf2())
1562      return -1;
1563    return logBase2();
1564  }
1565
1566  /// \brief Compute the square root
1567  APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
1568
1569  /// \brief Get the absolute value;
1570  ///
1571  /// If *this is < 0 then return -(*this), otherwise *this;
1572  APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
1573    if (isNegative())
1574      return -(*this);
1575    return *this;
1576  }
1577
1578  /// \returns the multiplicative inverse for a given modulo.
1579  APInt multiplicativeInverse(const APInt &modulo) const;
1580
1581  /// @}
1582  /// \name Support for division by constant
1583  /// @{
1584
1585  /// Calculate the magic number for signed division by a constant.
1586  struct ms;
1587  ms magic() const;
1588
1589  /// Calculate the magic number for unsigned division by a constant.
1590  struct mu;
1591  mu magicu(unsigned LeadingZeros = 0) const;
1592
1593  /// @}
1594  /// \name Building-block Operations for APInt and APFloat
1595  /// @{
1596
1597  // These building block operations operate on a representation of arbitrary
1598  // precision, two's-complement, bignum integer values. They should be
1599  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1600  // generally a pointer to the base of an array of integer parts, representing
1601  // an unsigned bignum, and a count of how many parts there are.
1602
1603  /// Sets the least significant part of a bignum to the input value, and zeroes
1604  /// out higher parts.
1605  static void tcSet(integerPart *, integerPart, unsigned int);
1606
1607  /// Assign one bignum to another.
1608  static void tcAssign(integerPart *, const integerPart *, unsigned int);
1609
1610  /// Returns true if a bignum is zero, false otherwise.
1611  static bool tcIsZero(const integerPart *, unsigned int);
1612
1613  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1614  static int tcExtractBit(const integerPart *, unsigned int bit);
1615
1616  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1617  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1618  /// significant bit of DST.  All high bits above srcBITS in DST are
1619  /// zero-filled.
1620  static void tcExtract(integerPart *, unsigned int dstCount,
1621                        const integerPart *, unsigned int srcBits,
1622                        unsigned int srcLSB);
1623
1624  /// Set the given bit of a bignum.  Zero-based.
1625  static void tcSetBit(integerPart *, unsigned int bit);
1626
1627  /// Clear the given bit of a bignum.  Zero-based.
1628  static void tcClearBit(integerPart *, unsigned int bit);
1629
1630  /// Returns the bit number of the least or most significant set bit of a
1631  /// number.  If the input number has no bits set -1U is returned.
1632  static unsigned int tcLSB(const integerPart *, unsigned int);
1633  static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1634
1635  /// Negate a bignum in-place.
1636  static void tcNegate(integerPart *, unsigned int);
1637
1638  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1639  static integerPart tcAdd(integerPart *, const integerPart *,
1640                           integerPart carry, unsigned);
1641
1642  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1643  static integerPart tcSubtract(integerPart *, const integerPart *,
1644                                integerPart carry, unsigned);
1645
1646  /// DST += SRC * MULTIPLIER + PART   if add is true
1647  /// DST  = SRC * MULTIPLIER + PART   if add is false
1648  ///
1649  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1650  /// start at the same point, i.e. DST == SRC.
1651  ///
1652  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1653  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1654  /// result, and if all of the omitted higher parts were zero return zero,
1655  /// otherwise overflow occurred and return one.
1656  static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1657                            integerPart multiplier, integerPart carry,
1658                            unsigned int srcParts, unsigned int dstParts,
1659                            bool add);
1660
1661  /// DST = LHS * RHS, where DST has the same width as the operands and is
1662  /// filled with the least significant parts of the result.  Returns one if
1663  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1664  /// operands.
1665  static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
1666                        unsigned);
1667
1668  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1669  /// operands.  No overflow occurs.  DST must be disjoint from both
1670  /// operands. Returns the number of parts required to hold the result.
1671  static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1672                                     const integerPart *, unsigned, unsigned);
1673
1674  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1675  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1676  /// REMAINDER to the remainder, return zero.  i.e.
1677  ///
1678  ///  OLD_LHS = RHS * LHS + REMAINDER
1679  ///
1680  /// SCRATCH is a bignum of the same size as the operands and result for use by
1681  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1682  /// REMAINDER and SCRATCH must be distinct.
1683  static int tcDivide(integerPart *lhs, const integerPart *rhs,
1684                      integerPart *remainder, integerPart *scratch,
1685                      unsigned int parts);
1686
1687  /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
1688  /// restrictions on COUNT.
1689  static void tcShiftLeft(integerPart *, unsigned int parts,
1690                          unsigned int count);
1691
1692  /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
1693  /// restrictions on COUNT.
1694  static void tcShiftRight(integerPart *, unsigned int parts,
1695                           unsigned int count);
1696
1697  /// The obvious AND, OR and XOR and complement operations.
1698  static void tcAnd(integerPart *, const integerPart *, unsigned int);
1699  static void tcOr(integerPart *, const integerPart *, unsigned int);
1700  static void tcXor(integerPart *, const integerPart *, unsigned int);
1701  static void tcComplement(integerPart *, unsigned int);
1702
1703  /// Comparison (unsigned) of two bignums.
1704  static int tcCompare(const integerPart *, const integerPart *, unsigned int);
1705
1706  /// Increment a bignum in-place.  Return the carry flag.
1707  static integerPart tcIncrement(integerPart *, unsigned int);
1708
1709  /// Decrement a bignum in-place.  Return the borrow flag.
1710  static integerPart tcDecrement(integerPart *, unsigned int);
1711
1712  /// Set the least significant BITS and clear the rest.
1713  static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1714                                        unsigned int bits);
1715
1716  /// \brief debug method
1717  void dump() const;
1718
1719  /// @}
1720};
1721
1722/// Magic data for optimising signed division by a constant.
1723struct APInt::ms {
1724  APInt m;    ///< magic number
1725  unsigned s; ///< shift amount
1726};
1727
1728/// Magic data for optimising unsigned division by a constant.
1729struct APInt::mu {
1730  APInt m;    ///< magic number
1731  bool a;     ///< add indicator
1732  unsigned s; ///< shift amount
1733};
1734
1735inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1736
1737inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1738
1739inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1740  I.print(OS, true);
1741  return OS;
1742}
1743
1744namespace APIntOps {
1745
1746/// \brief Determine the smaller of two APInts considered to be signed.
1747inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
1748
1749/// \brief Determine the larger of two APInts considered to be signed.
1750inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
1751
1752/// \brief Determine the smaller of two APInts considered to be signed.
1753inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
1754
1755/// \brief Determine the larger of two APInts considered to be unsigned.
1756inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
1757
1758/// \brief Check if the specified APInt has a N-bits unsigned integer value.
1759inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
1760
1761/// \brief Check if the specified APInt has a N-bits signed integer value.
1762inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
1763  return APIVal.isSignedIntN(N);
1764}
1765
1766/// \returns true if the argument APInt value is a sequence of ones starting at
1767/// the least significant bit with the remainder zero.
1768inline bool isMask(unsigned numBits, const APInt &APIVal) {
1769  return numBits <= APIVal.getBitWidth() &&
1770         APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1771}
1772
1773/// \brief Return true if the argument APInt value contains a sequence of ones
1774/// with the remainder zero.
1775inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
1776  return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
1777}
1778
1779/// \brief Returns a byte-swapped representation of the specified APInt Value.
1780inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
1781
1782/// \brief Returns the floor log base 2 of the specified APInt value.
1783inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
1784
1785/// \brief Compute GCD of two APInt values.
1786///
1787/// This function returns the greatest common divisor of the two APInt values
1788/// using Euclid's algorithm.
1789///
1790/// \returns the greatest common divisor of Val1 and Val2
1791APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
1792
1793/// \brief Converts the given APInt to a double value.
1794///
1795/// Treats the APInt as an unsigned value for conversion purposes.
1796inline double RoundAPIntToDouble(const APInt &APIVal) {
1797  return APIVal.roundToDouble();
1798}
1799
1800/// \brief Converts the given APInt to a double value.
1801///
1802/// Treats the APInt as a signed value for conversion purposes.
1803inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
1804  return APIVal.signedRoundToDouble();
1805}
1806
1807/// \brief Converts the given APInt to a float vlalue.
1808inline float RoundAPIntToFloat(const APInt &APIVal) {
1809  return float(RoundAPIntToDouble(APIVal));
1810}
1811
1812/// \brief Converts the given APInt to a float value.
1813///
1814/// Treast the APInt as a signed value for conversion purposes.
1815inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
1816  return float(APIVal.signedRoundToDouble());
1817}
1818
1819/// \brief Converts the given double value into a APInt.
1820///
1821/// This function convert a double value to an APInt value.
1822APInt RoundDoubleToAPInt(double Double, unsigned width);
1823
1824/// \brief Converts a float value into a APInt.
1825///
1826/// Converts a float value into an APInt value.
1827inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1828  return RoundDoubleToAPInt(double(Float), width);
1829}
1830
1831/// \brief Arithmetic right-shift function.
1832///
1833/// Arithmetic right-shift the APInt by shiftAmt.
1834inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
1835  return LHS.ashr(shiftAmt);
1836}
1837
1838/// \brief Logical right-shift function.
1839///
1840/// Logical right-shift the APInt by shiftAmt.
1841inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
1842  return LHS.lshr(shiftAmt);
1843}
1844
1845/// \brief Left-shift function.
1846///
1847/// Left-shift the APInt by shiftAmt.
1848inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
1849  return LHS.shl(shiftAmt);
1850}
1851
1852/// \brief Signed division function for APInt.
1853///
1854/// Signed divide APInt LHS by APInt RHS.
1855inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
1856
1857/// \brief Unsigned division function for APInt.
1858///
1859/// Unsigned divide APInt LHS by APInt RHS.
1860inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
1861
1862/// \brief Function for signed remainder operation.
1863///
1864/// Signed remainder operation on APInt.
1865inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
1866
1867/// \brief Function for unsigned remainder operation.
1868///
1869/// Unsigned remainder operation on APInt.
1870inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
1871
1872/// \brief Function for multiplication operation.
1873///
1874/// Performs multiplication on APInt values.
1875inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
1876
1877/// \brief Function for addition operation.
1878///
1879/// Performs addition on APInt values.
1880inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
1881
1882/// \brief Function for subtraction operation.
1883///
1884/// Performs subtraction on APInt values.
1885inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
1886
1887/// \brief Bitwise AND function for APInt.
1888///
1889/// Performs bitwise AND operation on APInt LHS and
1890/// APInt RHS.
1891inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
1892
1893/// \brief Bitwise OR function for APInt.
1894///
1895/// Performs bitwise OR operation on APInt LHS and APInt RHS.
1896inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
1897
1898/// \brief Bitwise XOR function for APInt.
1899///
1900/// Performs bitwise XOR operation on APInt.
1901inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
1902
1903/// \brief Bitwise complement function.
1904///
1905/// Performs a bitwise complement operation on APInt.
1906inline APInt Not(const APInt &APIVal) { return ~APIVal; }
1907
1908} // End of APIntOps namespace
1909
1910// See friend declaration above. This additional declaration is required in
1911// order to compile LLVM with IBM xlC compiler.
1912hash_code hash_value(const APInt &Arg);
1913} // End of llvm namespace
1914
1915#endif
1916