1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The ScalarEvolution class is an LLVM pass which can be used to analyze and
11// categorize scalar expressions in loops.  It specializes in recognizing
12// general induction variables, representing them with the abstract and opaque
13// SCEV class.  Given this analysis, trip counts of loops and other important
14// properties can be obtained.
15//
16// This analysis is primarily useful for induction variable substitution and
17// strength reduction.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
22#define LLVM_ANALYSIS_SCALAREVOLUTION_H
23
24#include "llvm/ADT/DenseSet.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/IR/ConstantRange.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/IR/PassManager.h"
31#include "llvm/IR/ValueHandle.h"
32#include "llvm/Pass.h"
33#include "llvm/Support/Allocator.h"
34#include "llvm/Support/DataTypes.h"
35#include <map>
36
37namespace llvm {
38  class APInt;
39  class AssumptionCache;
40  class Constant;
41  class ConstantInt;
42  class DominatorTree;
43  class Type;
44  class ScalarEvolution;
45  class DataLayout;
46  class TargetLibraryInfo;
47  class LLVMContext;
48  class Loop;
49  class LoopInfo;
50  class Operator;
51  class SCEV;
52  class SCEVAddRecExpr;
53  class SCEVConstant;
54  class SCEVExpander;
55  class SCEVPredicate;
56  class SCEVUnknown;
57
58  template <> struct FoldingSetTrait<SCEV>;
59  template <> struct FoldingSetTrait<SCEVPredicate>;
60
61  /// This class represents an analyzed expression in the program.  These are
62  /// opaque objects that the client is not allowed to do much with directly.
63  ///
64  class SCEV : public FoldingSetNode {
65    friend struct FoldingSetTrait<SCEV>;
66
67    /// A reference to an Interned FoldingSetNodeID for this node.  The
68    /// ScalarEvolution's BumpPtrAllocator holds the data.
69    FoldingSetNodeIDRef FastID;
70
71    // The SCEV baseclass this node corresponds to
72    const unsigned short SCEVType;
73
74  protected:
75    /// This field is initialized to zero and may be used in subclasses to store
76    /// miscellaneous information.
77    unsigned short SubclassData;
78
79  private:
80    SCEV(const SCEV &) = delete;
81    void operator=(const SCEV &) = delete;
82
83  public:
84    /// NoWrapFlags are bitfield indices into SubclassData.
85    ///
86    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
87    /// no-signed-wrap <NSW> properties, which are derived from the IR
88    /// operator. NSW is a misnomer that we use to mean no signed overflow or
89    /// underflow.
90    ///
91    /// AddRec expressions may have a no-self-wraparound <NW> property if, in
92    /// the integer domain, abs(step) * max-iteration(loop) <=
93    /// unsigned-max(bitwidth).  This means that the recurrence will never reach
94    /// its start value if the step is non-zero.  Computing the same value on
95    /// each iteration is not considered wrapping, and recurrences with step = 0
96    /// are trivially <NW>.  <NW> is independent of the sign of step and the
97    /// value the add recurrence starts with.
98    ///
99    /// Note that NUW and NSW are also valid properties of a recurrence, and
100    /// either implies NW. For convenience, NW will be set for a recurrence
101    /// whenever either NUW or NSW are set.
102    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
103                       FlagNW      = (1 << 0),   // No self-wrap.
104                       FlagNUW     = (1 << 1),   // No unsigned wrap.
105                       FlagNSW     = (1 << 2),   // No signed wrap.
106                       NoWrapMask  = (1 << 3) -1 };
107
108    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
109      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
110
111    unsigned getSCEVType() const { return SCEVType; }
112
113    /// Return the LLVM type of this SCEV expression.
114    ///
115    Type *getType() const;
116
117    /// Return true if the expression is a constant zero.
118    ///
119    bool isZero() const;
120
121    /// Return true if the expression is a constant one.
122    ///
123    bool isOne() const;
124
125    /// Return true if the expression is a constant all-ones value.
126    ///
127    bool isAllOnesValue() const;
128
129    /// Return true if the specified scev is negated, but not a constant.
130    bool isNonConstantNegative() const;
131
132    /// Print out the internal representation of this scalar to the specified
133    /// stream.  This should really only be used for debugging purposes.
134    void print(raw_ostream &OS) const;
135
136    /// This method is used for debugging.
137    ///
138    void dump() const;
139  };
140
141  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
142  // temporary FoldingSetNodeID values.
143  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
144    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
145      ID = X.FastID;
146    }
147    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
148                       unsigned IDHash, FoldingSetNodeID &TempID) {
149      return ID == X.FastID;
150    }
151    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
152      return X.FastID.ComputeHash();
153    }
154  };
155
156  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
157    S.print(OS);
158    return OS;
159  }
160
161  /// An object of this class is returned by queries that could not be answered.
162  /// For example, if you ask for the number of iterations of a linked-list
163  /// traversal loop, you will get one of these.  None of the standard SCEV
164  /// operations are valid on this class, it is just a marker.
165  struct SCEVCouldNotCompute : public SCEV {
166    SCEVCouldNotCompute();
167
168    /// Methods for support type inquiry through isa, cast, and dyn_cast:
169    static bool classof(const SCEV *S);
170  };
171
172  /// SCEVPredicate - This class represents an assumption made using SCEV
173  /// expressions which can be checked at run-time.
174  class SCEVPredicate : public FoldingSetNode {
175    friend struct FoldingSetTrait<SCEVPredicate>;
176
177    /// A reference to an Interned FoldingSetNodeID for this node.  The
178    /// ScalarEvolution's BumpPtrAllocator holds the data.
179    FoldingSetNodeIDRef FastID;
180
181  public:
182    enum SCEVPredicateKind { P_Union, P_Equal };
183
184  protected:
185    SCEVPredicateKind Kind;
186    ~SCEVPredicate() = default;
187    SCEVPredicate(const SCEVPredicate&) = default;
188    SCEVPredicate &operator=(const SCEVPredicate&) = default;
189
190  public:
191    SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
192
193    SCEVPredicateKind getKind() const { return Kind; }
194
195    /// \brief Returns the estimated complexity of this predicate.
196    /// This is roughly measured in the number of run-time checks required.
197    virtual unsigned getComplexity() const { return 1; }
198
199    /// \brief Returns true if the predicate is always true. This means that no
200    /// assumptions were made and nothing needs to be checked at run-time.
201    virtual bool isAlwaysTrue() const = 0;
202
203    /// \brief Returns true if this predicate implies \p N.
204    virtual bool implies(const SCEVPredicate *N) const = 0;
205
206    /// \brief Prints a textual representation of this predicate with an
207    /// indentation of \p Depth.
208    virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
209
210    /// \brief Returns the SCEV to which this predicate applies, or nullptr
211    /// if this is a SCEVUnionPredicate.
212    virtual const SCEV *getExpr() const = 0;
213  };
214
215  inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
216    P.print(OS);
217    return OS;
218  }
219
220  // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
221  // temporary FoldingSetNodeID values.
222  template <>
223  struct FoldingSetTrait<SCEVPredicate>
224      : DefaultFoldingSetTrait<SCEVPredicate> {
225
226    static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
227      ID = X.FastID;
228    }
229
230    static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
231                       unsigned IDHash, FoldingSetNodeID &TempID) {
232      return ID == X.FastID;
233    }
234    static unsigned ComputeHash(const SCEVPredicate &X,
235                                FoldingSetNodeID &TempID) {
236      return X.FastID.ComputeHash();
237    }
238  };
239
240  /// SCEVEqualPredicate - This class represents an assumption that two SCEV
241  /// expressions are equal, and this can be checked at run-time. We assume
242  /// that the left hand side is a SCEVUnknown and the right hand side a
243  /// constant.
244  class SCEVEqualPredicate final : public SCEVPredicate {
245    /// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
246    /// constant.
247    const SCEVUnknown *LHS;
248    const SCEVConstant *RHS;
249
250  public:
251    SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
252                       const SCEVConstant *RHS);
253
254    /// Implementation of the SCEVPredicate interface
255    bool implies(const SCEVPredicate *N) const override;
256    void print(raw_ostream &OS, unsigned Depth = 0) const override;
257    bool isAlwaysTrue() const override;
258    const SCEV *getExpr() const override;
259
260    /// \brief Returns the left hand side of the equality.
261    const SCEVUnknown *getLHS() const { return LHS; }
262
263    /// \brief Returns the right hand side of the equality.
264    const SCEVConstant *getRHS() const { return RHS; }
265
266    /// Methods for support type inquiry through isa, cast, and dyn_cast:
267    static inline bool classof(const SCEVPredicate *P) {
268      return P->getKind() == P_Equal;
269    }
270  };
271
272  /// SCEVUnionPredicate - This class represents a composition of other
273  /// SCEV predicates, and is the class that most clients will interact with.
274  /// This is equivalent to a logical "AND" of all the predicates in the union.
275  class SCEVUnionPredicate final : public SCEVPredicate {
276  private:
277    typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
278        PredicateMap;
279
280    /// Vector with references to all predicates in this union.
281    SmallVector<const SCEVPredicate *, 16> Preds;
282    /// Maps SCEVs to predicates for quick look-ups.
283    PredicateMap SCEVToPreds;
284
285  public:
286    SCEVUnionPredicate();
287
288    const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
289      return Preds;
290    }
291
292    /// \brief Adds a predicate to this union.
293    void add(const SCEVPredicate *N);
294
295    /// \brief Returns a reference to a vector containing all predicates
296    /// which apply to \p Expr.
297    ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
298
299    /// Implementation of the SCEVPredicate interface
300    bool isAlwaysTrue() const override;
301    bool implies(const SCEVPredicate *N) const override;
302    void print(raw_ostream &OS, unsigned Depth) const override;
303    const SCEV *getExpr() const override;
304
305    /// \brief We estimate the complexity of a union predicate as the size
306    /// number of predicates in the union.
307    unsigned getComplexity() const override { return Preds.size(); }
308
309    /// Methods for support type inquiry through isa, cast, and dyn_cast:
310    static inline bool classof(const SCEVPredicate *P) {
311      return P->getKind() == P_Union;
312    }
313  };
314
315  /// The main scalar evolution driver. Because client code (intentionally)
316  /// can't do much with the SCEV objects directly, they must ask this class
317  /// for services.
318  class ScalarEvolution {
319  public:
320    /// An enum describing the relationship between a SCEV and a loop.
321    enum LoopDisposition {
322      LoopVariant,    ///< The SCEV is loop-variant (unknown).
323      LoopInvariant,  ///< The SCEV is loop-invariant.
324      LoopComputable  ///< The SCEV varies predictably with the loop.
325    };
326
327    /// An enum describing the relationship between a SCEV and a basic block.
328    enum BlockDisposition {
329      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
330      DominatesBlock,        ///< The SCEV dominates the block.
331      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
332    };
333
334    /// Convenient NoWrapFlags manipulation that hides enum casts and is
335    /// visible in the ScalarEvolution name space.
336    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
337    maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
338      return (SCEV::NoWrapFlags)(Flags & Mask);
339    }
340    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
341    setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
342      return (SCEV::NoWrapFlags)(Flags | OnFlags);
343    }
344    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
345    clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
346      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
347    }
348
349  private:
350    /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
351    /// Value is deleted.
352    class SCEVCallbackVH final : public CallbackVH {
353      ScalarEvolution *SE;
354      void deleted() override;
355      void allUsesReplacedWith(Value *New) override;
356    public:
357      SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
358    };
359
360    friend class SCEVCallbackVH;
361    friend class SCEVExpander;
362    friend class SCEVUnknown;
363
364    /// The function we are analyzing.
365    ///
366    Function &F;
367
368    /// The target library information for the target we are targeting.
369    ///
370    TargetLibraryInfo &TLI;
371
372    /// The tracker for @llvm.assume intrinsics in this function.
373    AssumptionCache &AC;
374
375    /// The dominator tree.
376    ///
377    DominatorTree &DT;
378
379    /// The loop information for the function we are currently analyzing.
380    ///
381    LoopInfo &LI;
382
383    /// This SCEV is used to represent unknown trip counts and things.
384    std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
385
386    /// The typedef for ValueExprMap.
387    ///
388    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
389      ValueExprMapType;
390
391    /// This is a cache of the values we have analyzed so far.
392    ///
393    ValueExprMapType ValueExprMap;
394
395    /// Mark predicate values currently being processed by isImpliedCond.
396    DenseSet<Value*> PendingLoopPredicates;
397
398    /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
399    /// conditions dominating the backedge of a loop.
400    bool WalkingBEDominatingConds;
401
402    /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
403    /// predicate by splitting it into a set of independent predicates.
404    bool ProvingSplitPredicate;
405
406    /// Information about the number of loop iterations for which a loop exit's
407    /// branch condition evaluates to the not-taken path.  This is a temporary
408    /// pair of exact and max expressions that are eventually summarized in
409    /// ExitNotTakenInfo and BackedgeTakenInfo.
410    struct ExitLimit {
411      const SCEV *Exact;
412      const SCEV *Max;
413
414      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
415
416      ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
417
418      /// Test whether this ExitLimit contains any computed information, or
419      /// whether it's all SCEVCouldNotCompute values.
420      bool hasAnyInfo() const {
421        return !isa<SCEVCouldNotCompute>(Exact) ||
422          !isa<SCEVCouldNotCompute>(Max);
423      }
424    };
425
426    /// Information about the number of times a particular loop exit may be
427    /// reached before exiting the loop.
428    struct ExitNotTakenInfo {
429      AssertingVH<BasicBlock> ExitingBlock;
430      const SCEV *ExactNotTaken;
431      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
432
433      ExitNotTakenInfo() : ExitingBlock(nullptr), ExactNotTaken(nullptr) {}
434
435      /// Return true if all loop exits are computable.
436      bool isCompleteList() const {
437        return NextExit.getInt() == 0;
438      }
439
440      void setIncomplete() { NextExit.setInt(1); }
441
442      /// Return a pointer to the next exit's not-taken info.
443      ExitNotTakenInfo *getNextExit() const {
444        return NextExit.getPointer();
445      }
446
447      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
448    };
449
450    /// Information about the backedge-taken count of a loop. This currently
451    /// includes an exact count and a maximum count.
452    ///
453    class BackedgeTakenInfo {
454      /// A list of computable exits and their not-taken counts.  Loops almost
455      /// never have more than one computable exit.
456      ExitNotTakenInfo ExitNotTaken;
457
458      /// An expression indicating the least maximum backedge-taken count of the
459      /// loop that is known, or a SCEVCouldNotCompute.
460      const SCEV *Max;
461
462    public:
463      BackedgeTakenInfo() : Max(nullptr) {}
464
465      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
466      BackedgeTakenInfo(
467        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
468        bool Complete, const SCEV *MaxCount);
469
470      /// Test whether this BackedgeTakenInfo contains any computed information,
471      /// or whether it's all SCEVCouldNotCompute values.
472      bool hasAnyInfo() const {
473        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
474      }
475
476      /// Return an expression indicating the exact backedge-taken count of the
477      /// loop if it is known, or SCEVCouldNotCompute otherwise. This is the
478      /// number of times the loop header can be guaranteed to execute, minus
479      /// one.
480      const SCEV *getExact(ScalarEvolution *SE) const;
481
482      /// Return the number of times this loop exit may fall through to the back
483      /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
484      /// this block before this number of iterations, but may exit via another
485      /// block.
486      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
487
488      /// Get the max backedge taken count for the loop.
489      const SCEV *getMax(ScalarEvolution *SE) const;
490
491      /// Return true if any backedge taken count expressions refer to the given
492      /// subexpression.
493      bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
494
495      /// Invalidate this result and free associated memory.
496      void clear();
497    };
498
499    /// Cache the backedge-taken count of the loops for this function as they
500    /// are computed.
501    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
502
503    /// This map contains entries for all of the PHI instructions that we
504    /// attempt to compute constant evolutions for.  This allows us to avoid
505    /// potentially expensive recomputation of these properties.  An instruction
506    /// maps to null if we are unable to compute its exit value.
507    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
508
509    /// This map contains entries for all the expressions that we attempt to
510    /// compute getSCEVAtScope information for, which can be expensive in
511    /// extreme cases.
512    DenseMap<const SCEV *,
513             SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
514
515    /// Memoized computeLoopDisposition results.
516    DenseMap<const SCEV *,
517             SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
518        LoopDispositions;
519
520    /// Compute a LoopDisposition value.
521    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
522
523    /// Memoized computeBlockDisposition results.
524    DenseMap<
525        const SCEV *,
526        SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
527        BlockDispositions;
528
529    /// Compute a BlockDisposition value.
530    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
531
532    /// Memoized results from getRange
533    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
534
535    /// Memoized results from getRange
536    DenseMap<const SCEV *, ConstantRange> SignedRanges;
537
538    /// Used to parameterize getRange
539    enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
540
541    /// Set the memoized range for the given SCEV.
542    const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
543                                  const ConstantRange &CR) {
544      DenseMap<const SCEV *, ConstantRange> &Cache =
545          Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
546
547      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
548          Cache.insert(std::make_pair(S, CR));
549      if (!Pair.second)
550        Pair.first->second = CR;
551      return Pair.first->second;
552    }
553
554    /// Determine the range for a particular SCEV.
555    ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
556
557    /// We know that there is no SCEV for the specified value.  Analyze the
558    /// expression.
559    const SCEV *createSCEV(Value *V);
560
561    /// Provide the special handling we need to analyze PHI SCEVs.
562    const SCEV *createNodeForPHI(PHINode *PN);
563
564    /// Helper function called from createNodeForPHI.
565    const SCEV *createAddRecFromPHI(PHINode *PN);
566
567    /// Helper function called from createNodeForPHI.
568    const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
569
570    /// Provide special handling for a select-like instruction (currently this
571    /// is either a select instruction or a phi node).  \p I is the instruction
572    /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
573    /// FalseVal".
574    const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
575                                         Value *TrueVal, Value *FalseVal);
576
577    /// Provide the special handling we need to analyze GEP SCEVs.
578    const SCEV *createNodeForGEP(GEPOperator *GEP);
579
580    /// Implementation code for getSCEVAtScope; called at most once for each
581    /// SCEV+Loop pair.
582    ///
583    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
584
585    /// This looks up computed SCEV values for all instructions that depend on
586    /// the given instruction and removes them from the ValueExprMap map if they
587    /// reference SymName. This is used during PHI resolution.
588    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
589
590    /// Return the BackedgeTakenInfo for the given loop, lazily computing new
591    /// values if the loop hasn't been analyzed yet.
592    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
593
594    /// Compute the number of times the specified loop will iterate.
595    BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L);
596
597    /// Compute the number of times the backedge of the specified loop will
598    /// execute if it exits via the specified block.
599    ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
600
601    /// Compute the number of times the backedge of the specified loop will
602    /// execute if its exit condition were a conditional branch of ExitCond,
603    /// TBB, and FBB.
604    ExitLimit computeExitLimitFromCond(const Loop *L,
605                                       Value *ExitCond,
606                                       BasicBlock *TBB,
607                                       BasicBlock *FBB,
608                                       bool IsSubExpr);
609
610    /// Compute the number of times the backedge of the specified loop will
611    /// execute if its exit condition were a conditional branch of the ICmpInst
612    /// ExitCond, TBB, and FBB.
613    ExitLimit computeExitLimitFromICmp(const Loop *L,
614                                       ICmpInst *ExitCond,
615                                       BasicBlock *TBB,
616                                       BasicBlock *FBB,
617                                       bool IsSubExpr);
618
619    /// Compute the number of times the backedge of the specified loop will
620    /// execute if its exit condition were a switch with a single exiting case
621    /// to ExitingBB.
622    ExitLimit
623    computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
624                               BasicBlock *ExitingBB, bool IsSubExpr);
625
626    /// Given an exit condition of 'icmp op load X, cst', try to see if we can
627    /// compute the backedge-taken count.
628    ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI,
629                                                  Constant *RHS,
630                                                  const Loop *L,
631                                                  ICmpInst::Predicate p);
632
633    /// Compute the exit limit of a loop that is controlled by a
634    /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
635    /// count in these cases (since SCEV has no way of expressing them), but we
636    /// can still sometimes compute an upper bound.
637    ///
638    /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
639    /// RHS`.
640    ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS,
641                                           const Loop *L,
642                                           ICmpInst::Predicate Pred);
643
644    /// If the loop is known to execute a constant number of times (the
645    /// condition evolves only from constants), try to evaluate a few iterations
646    /// of the loop until we get the exit condition gets a value of ExitWhen
647    /// (true or false).  If we cannot evaluate the exit count of the loop,
648    /// return CouldNotCompute.
649    const SCEV *computeExitCountExhaustively(const Loop *L,
650                                             Value *Cond,
651                                             bool ExitWhen);
652
653    /// Return the number of times an exit condition comparing the specified
654    /// value to zero will execute.  If not computable, return CouldNotCompute.
655    ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
656
657    /// Return the number of times an exit condition checking the specified
658    /// value for nonzero will execute.  If not computable, return
659    /// CouldNotCompute.
660    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
661
662    /// Return the number of times an exit condition containing the specified
663    /// less-than comparison will execute.  If not computable, return
664    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
665    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
666                               const Loop *L, bool isSigned, bool IsSubExpr);
667    ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
668                                  const Loop *L, bool isSigned, bool IsSubExpr);
669
670    /// Return a predecessor of BB (which may not be an immediate predecessor)
671    /// which has exactly one successor from which BB is reachable, or null if
672    /// no such block is found.
673    std::pair<BasicBlock *, BasicBlock *>
674    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
675
676    /// Test whether the condition described by Pred, LHS, and RHS is true
677    /// whenever the given FoundCondValue value evaluates to true.
678    bool isImpliedCond(ICmpInst::Predicate Pred,
679                       const SCEV *LHS, const SCEV *RHS,
680                       Value *FoundCondValue,
681                       bool Inverse);
682
683    /// Test whether the condition described by Pred, LHS, and RHS is true
684    /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
685    /// true.
686    bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
687                       const SCEV *RHS, ICmpInst::Predicate FoundPred,
688                       const SCEV *FoundLHS, const SCEV *FoundRHS);
689
690    /// Test whether the condition described by Pred, LHS, and RHS is true
691    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
692    /// true.
693    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
694                               const SCEV *LHS, const SCEV *RHS,
695                               const SCEV *FoundLHS, const SCEV *FoundRHS);
696
697    /// Test whether the condition described by Pred, LHS, and RHS is true
698    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
699    /// true.
700    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
701                                     const SCEV *LHS, const SCEV *RHS,
702                                     const SCEV *FoundLHS,
703                                     const SCEV *FoundRHS);
704
705    /// Test whether the condition described by Pred, LHS, and RHS is true
706    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
707    /// true.  Utility function used by isImpliedCondOperands.
708    bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
709                                        const SCEV *LHS, const SCEV *RHS,
710                                        const SCEV *FoundLHS,
711                                        const SCEV *FoundRHS);
712
713    /// Test whether the condition described by Pred, LHS, and RHS is true
714    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
715    /// true.
716    ///
717    /// This routine tries to rule out certain kinds of integer overflow, and
718    /// then tries to reason about arithmetic properties of the predicates.
719    bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
720                                            const SCEV *LHS, const SCEV *RHS,
721                                            const SCEV *FoundLHS,
722                                            const SCEV *FoundRHS);
723
724    /// If we know that the specified Phi is in the header of its containing
725    /// loop, we know the loop executes a constant number of times, and the PHI
726    /// node is just a recurrence involving constants, fold it.
727    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
728                                                const Loop *L);
729
730    /// Test if the given expression is known to satisfy the condition described
731    /// by Pred and the known constant ranges of LHS and RHS.
732    ///
733    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
734                                    const SCEV *LHS, const SCEV *RHS);
735
736    /// Try to prove the condition described by "LHS Pred RHS" by ruling out
737    /// integer overflow.
738    ///
739    /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
740    /// positive.
741    bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
742                                       const SCEV *LHS, const SCEV *RHS);
743
744    /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
745    /// prove them individually.
746    bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
747                                      const SCEV *RHS);
748
749    /// Try to match the Expr as "(L + R)<Flags>".
750    bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
751                        SCEV::NoWrapFlags &Flags);
752
753    /// Return true if More == (Less + C), where C is a constant.  This is
754    /// intended to be used as a cheaper substitute for full SCEV subtraction.
755    bool computeConstantDifference(const SCEV *Less, const SCEV *More,
756                                   APInt &C);
757
758    /// Drop memoized information computed for S.
759    void forgetMemoizedResults(const SCEV *S);
760
761    /// Return an existing SCEV for V if there is one, otherwise return nullptr.
762    const SCEV *getExistingSCEV(Value *V);
763
764    /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
765    /// pointer.
766    bool checkValidity(const SCEV *S) const;
767
768    /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
769    /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
770    /// equivalent to proving no signed (resp. unsigned) wrap in
771    /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
772    /// (resp. `SCEVZeroExtendExpr`).
773    ///
774    template<typename ExtendOpTy>
775    bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
776                                   const Loop *L);
777
778    bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
779                                  ICmpInst::Predicate Pred, bool &Increasing);
780
781    /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
782    /// is monotonically increasing or decreasing.  In the former case set
783    /// `Increasing` to true and in the latter case set `Increasing` to false.
784    ///
785    /// A predicate is said to be monotonically increasing if may go from being
786    /// false to being true as the loop iterates, but never the other way
787    /// around.  A predicate is said to be monotonically decreasing if may go
788    /// from being true to being false as the loop iterates, but never the other
789    /// way around.
790    bool isMonotonicPredicate(const SCEVAddRecExpr *LHS,
791                              ICmpInst::Predicate Pred, bool &Increasing);
792
793    // Return SCEV no-wrap flags that can be proven based on reasoning
794    // about how poison produced from no-wrap flags on this value
795    // (e.g. a nuw add) would trigger undefined behavior on overflow.
796    SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
797
798  public:
799    ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
800                    DominatorTree &DT, LoopInfo &LI);
801    ~ScalarEvolution();
802    ScalarEvolution(ScalarEvolution &&Arg);
803
804    LLVMContext &getContext() const { return F.getContext(); }
805
806    /// Test if values of the given type are analyzable within the SCEV
807    /// framework. This primarily includes integer types, and it can optionally
808    /// include pointer types if the ScalarEvolution class has access to
809    /// target-specific information.
810    bool isSCEVable(Type *Ty) const;
811
812    /// Return the size in bits of the specified type, for which isSCEVable must
813    /// return true.
814    uint64_t getTypeSizeInBits(Type *Ty) const;
815
816    /// Return a type with the same bitwidth as the given type and which
817    /// represents how SCEV will treat the given type, for which isSCEVable must
818    /// return true. For pointer types, this is the pointer-sized integer type.
819    Type *getEffectiveSCEVType(Type *Ty) const;
820
821    /// Return a SCEV expression for the full generality of the specified
822    /// expression.
823    const SCEV *getSCEV(Value *V);
824
825    const SCEV *getConstant(ConstantInt *V);
826    const SCEV *getConstant(const APInt& Val);
827    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
828    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
829    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
830    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
831    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
832    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
833                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
834    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
835                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
836      SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
837      return getAddExpr(Ops, Flags);
838    }
839    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
840                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
841      SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
842      return getAddExpr(Ops, Flags);
843    }
844    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
845                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
846    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
847                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
848      SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
849      return getMulExpr(Ops, Flags);
850    }
851    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
852                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
853      SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
854      return getMulExpr(Ops, Flags);
855    }
856    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
857    const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
858    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
859                              const Loop *L, SCEV::NoWrapFlags Flags);
860    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
861                              const Loop *L, SCEV::NoWrapFlags Flags);
862    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
863                              const Loop *L, SCEV::NoWrapFlags Flags) {
864      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
865      return getAddRecExpr(NewOp, L, Flags);
866    }
867    /// \brief Returns an expression for a GEP
868    ///
869    /// \p PointeeType The type used as the basis for the pointer arithmetics
870    /// \p BaseExpr The expression for the pointer operand.
871    /// \p IndexExprs The expressions for the indices.
872    /// \p InBounds Whether the GEP is in bounds.
873    const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
874                           const SmallVectorImpl<const SCEV *> &IndexExprs,
875                           bool InBounds = false);
876    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
877    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
878    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
879    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
880    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
881    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
882    const SCEV *getUnknown(Value *V);
883    const SCEV *getCouldNotCompute();
884
885    /// \brief Return a SCEV for the constant 0 of a specific type.
886    const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
887
888    /// \brief Return a SCEV for the constant 1 of a specific type.
889    const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
890
891    /// Return an expression for sizeof AllocTy that is type IntTy
892    ///
893    const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
894
895    /// Return an expression for offsetof on the given field with type IntTy
896    ///
897    const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
898
899    /// Return the SCEV object corresponding to -V.
900    ///
901    const SCEV *getNegativeSCEV(const SCEV *V,
902                                SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
903
904    /// Return the SCEV object corresponding to ~V.
905    ///
906    const SCEV *getNotSCEV(const SCEV *V);
907
908    /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
909    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
910                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
911
912    /// Return a SCEV corresponding to a conversion of the input value to the
913    /// specified type.  If the type must be extended, it is zero extended.
914    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
915
916    /// Return a SCEV corresponding to a conversion of the input value to the
917    /// specified type.  If the type must be extended, it is sign extended.
918    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
919
920    /// Return a SCEV corresponding to a conversion of the input value to the
921    /// specified type.  If the type must be extended, it is zero extended.  The
922    /// conversion must not be narrowing.
923    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
924
925    /// Return a SCEV corresponding to a conversion of the input value to the
926    /// specified type.  If the type must be extended, it is sign extended.  The
927    /// conversion must not be narrowing.
928    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
929
930    /// Return a SCEV corresponding to a conversion of the input value to the
931    /// specified type. If the type must be extended, it is extended with
932    /// unspecified bits. The conversion must not be narrowing.
933    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
934
935    /// Return a SCEV corresponding to a conversion of the input value to the
936    /// specified type.  The conversion must not be widening.
937    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
938
939    /// Promote the operands to the wider of the types using zero-extension, and
940    /// then perform a umax operation with them.
941    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
942                                           const SCEV *RHS);
943
944    /// Promote the operands to the wider of the types using zero-extension, and
945    /// then perform a umin operation with them.
946    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
947                                           const SCEV *RHS);
948
949    /// Transitively follow the chain of pointer-type operands until reaching a
950    /// SCEV that does not have a single pointer operand. This returns a
951    /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
952    /// cases do exist.
953    const SCEV *getPointerBase(const SCEV *V);
954
955    /// Return a SCEV expression for the specified value at the specified scope
956    /// in the program.  The L value specifies a loop nest to evaluate the
957    /// expression at, where null is the top-level or a specified loop is
958    /// immediately inside of the loop.
959    ///
960    /// This method can be used to compute the exit value for a variable defined
961    /// in a loop by querying what the value will hold in the parent loop.
962    ///
963    /// In the case that a relevant loop exit value cannot be computed, the
964    /// original value V is returned.
965    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
966
967    /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
968    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
969
970    /// Test whether entry to the loop is protected by a conditional between LHS
971    /// and RHS.  This is used to help avoid max expressions in loop trip
972    /// counts, and to eliminate casts.
973    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
974                                  const SCEV *LHS, const SCEV *RHS);
975
976    /// Test whether the backedge of the loop is protected by a conditional
977    /// between LHS and RHS.  This is used to to eliminate casts.
978    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
979                                     const SCEV *LHS, const SCEV *RHS);
980
981    /// \brief Returns the maximum trip count of the loop if it is a single-exit
982    /// loop and we can compute a small maximum for that loop.
983    ///
984    /// Implemented in terms of the \c getSmallConstantTripCount overload with
985    /// the single exiting block passed to it. See that routine for details.
986    unsigned getSmallConstantTripCount(Loop *L);
987
988    /// Returns the maximum trip count of this loop as a normal unsigned
989    /// value. Returns 0 if the trip count is unknown or not constant. This
990    /// "trip count" assumes that control exits via ExitingBlock. More
991    /// precisely, it is the number of times that control may reach ExitingBlock
992    /// before taking the branch. For loops with multiple exits, it may not be
993    /// the number times that the loop header executes if the loop exits
994    /// prematurely via another branch.
995    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
996
997    /// \brief Returns the largest constant divisor of the trip count of the
998    /// loop if it is a single-exit loop and we can compute a small maximum for
999    /// that loop.
1000    ///
1001    /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
1002    /// the single exiting block passed to it. See that routine for details.
1003    unsigned getSmallConstantTripMultiple(Loop *L);
1004
1005    /// Returns the largest constant divisor of the trip count of this loop as a
1006    /// normal unsigned value, if possible. This means that the actual trip
1007    /// count is always a multiple of the returned value (don't forget the trip
1008    /// count could very well be zero as well!). As explained in the comments
1009    /// for getSmallConstantTripCount, this assumes that control exits the loop
1010    /// via ExitingBlock.
1011    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
1012
1013    /// Get the expression for the number of loop iterations for which this loop
1014    /// is guaranteed not to exit via ExitingBlock. Otherwise return
1015    /// SCEVCouldNotCompute.
1016    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
1017
1018    /// If the specified loop has a predictable backedge-taken count, return it,
1019    /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
1020    /// is the number of times the loop header will be branched to from within
1021    /// the loop. This is one less than the trip count of the loop, since it
1022    /// doesn't count the first iteration, when the header is branched to from
1023    /// outside the loop.
1024    ///
1025    /// Note that it is not valid to call this method on a loop without a
1026    /// loop-invariant backedge-taken count (see
1027    /// hasLoopInvariantBackedgeTakenCount).
1028    ///
1029    const SCEV *getBackedgeTakenCount(const Loop *L);
1030
1031    /// Similar to getBackedgeTakenCount, except return the least SCEV value
1032    /// that is known never to be less than the actual backedge taken count.
1033    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
1034
1035    /// Return true if the specified loop has an analyzable loop-invariant
1036    /// backedge-taken count.
1037    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
1038
1039    /// This method should be called by the client when it has changed a loop in
1040    /// a way that may effect ScalarEvolution's ability to compute a trip count,
1041    /// or if the loop is deleted.  This call is potentially expensive for large
1042    /// loop bodies.
1043    void forgetLoop(const Loop *L);
1044
1045    /// This method should be called by the client when it has changed a value
1046    /// in a way that may effect its value, or which may disconnect it from a
1047    /// def-use chain linking it to a loop.
1048    void forgetValue(Value *V);
1049
1050    /// \brief Called when the client has changed the disposition of values in
1051    /// this loop.
1052    ///
1053    /// We don't have a way to invalidate per-loop dispositions. Clear and
1054    /// recompute is simpler.
1055    void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
1056
1057    /// Determine the minimum number of zero bits that S is guaranteed to end in
1058    /// (at every loop iteration).  It is, at the same time, the minimum number
1059    /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
1060    /// If S is guaranteed to be 0, it returns the bitwidth of S.
1061    uint32_t GetMinTrailingZeros(const SCEV *S);
1062
1063    /// Determine the unsigned range for a particular SCEV.
1064    ///
1065    ConstantRange getUnsignedRange(const SCEV *S) {
1066      return getRange(S, HINT_RANGE_UNSIGNED);
1067    }
1068
1069    /// Determine the signed range for a particular SCEV.
1070    ///
1071    ConstantRange getSignedRange(const SCEV *S) {
1072      return getRange(S, HINT_RANGE_SIGNED);
1073    }
1074
1075    /// Test if the given expression is known to be negative.
1076    ///
1077    bool isKnownNegative(const SCEV *S);
1078
1079    /// Test if the given expression is known to be positive.
1080    ///
1081    bool isKnownPositive(const SCEV *S);
1082
1083    /// Test if the given expression is known to be non-negative.
1084    ///
1085    bool isKnownNonNegative(const SCEV *S);
1086
1087    /// Test if the given expression is known to be non-positive.
1088    ///
1089    bool isKnownNonPositive(const SCEV *S);
1090
1091    /// Test if the given expression is known to be non-zero.
1092    ///
1093    bool isKnownNonZero(const SCEV *S);
1094
1095    /// Test if the given expression is known to satisfy the condition described
1096    /// by Pred, LHS, and RHS.
1097    ///
1098    bool isKnownPredicate(ICmpInst::Predicate Pred,
1099                          const SCEV *LHS, const SCEV *RHS);
1100
1101    /// Return true if the result of the predicate LHS `Pred` RHS is loop
1102    /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
1103    /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
1104    /// loop invariant form of LHS `Pred` RHS.
1105    bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1106                                  const SCEV *RHS, const Loop *L,
1107                                  ICmpInst::Predicate &InvariantPred,
1108                                  const SCEV *&InvariantLHS,
1109                                  const SCEV *&InvariantRHS);
1110
1111    /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1112    /// iff any changes were made. If the operands are provably equal or
1113    /// unequal, LHS and RHS are set to the same value and Pred is set to either
1114    /// ICMP_EQ or ICMP_NE.
1115    ///
1116    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
1117                              const SCEV *&LHS,
1118                              const SCEV *&RHS,
1119                              unsigned Depth = 0);
1120
1121    /// Return the "disposition" of the given SCEV with respect to the given
1122    /// loop.
1123    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1124
1125    /// Return true if the value of the given SCEV is unchanging in the
1126    /// specified loop.
1127    bool isLoopInvariant(const SCEV *S, const Loop *L);
1128
1129    /// Return true if the given SCEV changes value in a known way in the
1130    /// specified loop.  This property being true implies that the value is
1131    /// variant in the loop AND that we can emit an expression to compute the
1132    /// value of the expression at any particular loop iteration.
1133    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1134
1135    /// Return the "disposition" of the given SCEV with respect to the given
1136    /// block.
1137    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1138
1139    /// Return true if elements that makes up the given SCEV dominate the
1140    /// specified basic block.
1141    bool dominates(const SCEV *S, const BasicBlock *BB);
1142
1143    /// Return true if elements that makes up the given SCEV properly dominate
1144    /// the specified basic block.
1145    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1146
1147    /// Test whether the given SCEV has Op as a direct or indirect operand.
1148    bool hasOperand(const SCEV *S, const SCEV *Op) const;
1149
1150    /// Return the size of an element read or written by Inst.
1151    const SCEV *getElementSize(Instruction *Inst);
1152
1153    /// Compute the array dimensions Sizes from the set of Terms extracted from
1154    /// the memory access function of this SCEVAddRecExpr.
1155    void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
1156                             SmallVectorImpl<const SCEV *> &Sizes,
1157                             const SCEV *ElementSize) const;
1158
1159    void print(raw_ostream &OS) const;
1160    void verify() const;
1161
1162    /// Collect parametric terms occurring in step expressions.
1163    void collectParametricTerms(const SCEV *Expr,
1164                                SmallVectorImpl<const SCEV *> &Terms);
1165
1166
1167
1168    /// Return in Subscripts the access functions for each dimension in Sizes.
1169    void computeAccessFunctions(const SCEV *Expr,
1170                                SmallVectorImpl<const SCEV *> &Subscripts,
1171                                SmallVectorImpl<const SCEV *> &Sizes);
1172
1173    /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
1174    /// subscripts and sizes of an array access.
1175    ///
1176    /// The delinearization is a 3 step process: the first two steps compute the
1177    /// sizes of each subscript and the third step computes the access functions
1178    /// for the delinearized array:
1179    ///
1180    /// 1. Find the terms in the step functions
1181    /// 2. Compute the array size
1182    /// 3. Compute the access function: divide the SCEV by the array size
1183    ///    starting with the innermost dimensions found in step 2. The Quotient
1184    ///    is the SCEV to be divided in the next step of the recursion. The
1185    ///    Remainder is the subscript of the innermost dimension. Loop over all
1186    ///    array dimensions computed in step 2.
1187    ///
1188    /// To compute a uniform array size for several memory accesses to the same
1189    /// object, one can collect in step 1 all the step terms for all the memory
1190    /// accesses, and compute in step 2 a unique array shape. This guarantees
1191    /// that the array shape will be the same across all memory accesses.
1192    ///
1193    /// FIXME: We could derive the result of steps 1 and 2 from a description of
1194    /// the array shape given in metadata.
1195    ///
1196    /// Example:
1197    ///
1198    /// A[][n][m]
1199    ///
1200    /// for i
1201    ///   for j
1202    ///     for k
1203    ///       A[j+k][2i][5i] =
1204    ///
1205    /// The initial SCEV:
1206    ///
1207    /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
1208    ///
1209    /// 1. Find the different terms in the step functions:
1210    /// -> [2*m, 5, n*m, n*m]
1211    ///
1212    /// 2. Compute the array size: sort and unique them
1213    /// -> [n*m, 2*m, 5]
1214    /// find the GCD of all the terms = 1
1215    /// divide by the GCD and erase constant terms
1216    /// -> [n*m, 2*m]
1217    /// GCD = m
1218    /// divide by GCD -> [n, 2]
1219    /// remove constant terms
1220    /// -> [n]
1221    /// size of the array is A[unknown][n][m]
1222    ///
1223    /// 3. Compute the access function
1224    /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
1225    /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
1226    /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
1227    /// The remainder is the subscript of the innermost array dimension: [5i].
1228    ///
1229    /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
1230    /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
1231    /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
1232    /// The Remainder is the subscript of the next array dimension: [2i].
1233    ///
1234    /// The subscript of the outermost dimension is the Quotient: [j+k].
1235    ///
1236    /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
1237    void delinearize(const SCEV *Expr,
1238                     SmallVectorImpl<const SCEV *> &Subscripts,
1239                     SmallVectorImpl<const SCEV *> &Sizes,
1240                     const SCEV *ElementSize);
1241
1242    /// Return the DataLayout associated with the module this SCEV instance is
1243    /// operating on.
1244    const DataLayout &getDataLayout() const {
1245      return F.getParent()->getDataLayout();
1246    }
1247
1248    const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
1249                                           const SCEVConstant *RHS);
1250
1251    /// Re-writes the SCEV according to the Predicates in \p Preds.
1252    const SCEV *rewriteUsingPredicate(const SCEV *Scev, SCEVUnionPredicate &A);
1253
1254  private:
1255    /// Compute the backedge taken count knowing the interval difference, the
1256    /// stride and presence of the equality in the comparison.
1257    const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
1258                               bool Equality);
1259
1260    /// Verify if an linear IV with positive stride can overflow when in a
1261    /// less-than comparison, knowing the invariant term of the comparison,
1262    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
1263    bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
1264                            bool IsSigned, bool NoWrap);
1265
1266    /// Verify if an linear IV with negative stride can overflow when in a
1267    /// greater-than comparison, knowing the invariant term of the comparison,
1268    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
1269    bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
1270                            bool IsSigned, bool NoWrap);
1271
1272  private:
1273    FoldingSet<SCEV> UniqueSCEVs;
1274    FoldingSet<SCEVPredicate> UniquePreds;
1275    BumpPtrAllocator SCEVAllocator;
1276
1277    /// The head of a linked list of all SCEVUnknown values that have been
1278    /// allocated. This is used by releaseMemory to locate them all and call
1279    /// their destructors.
1280    SCEVUnknown *FirstUnknown;
1281  };
1282
1283  /// \brief Analysis pass that exposes the \c ScalarEvolution for a function.
1284  class ScalarEvolutionAnalysis {
1285    static char PassID;
1286
1287  public:
1288    typedef ScalarEvolution Result;
1289
1290    /// \brief Opaque, unique identifier for this analysis pass.
1291    static void *ID() { return (void *)&PassID; }
1292
1293    /// \brief Provide a name for the analysis for debugging and logging.
1294    static StringRef name() { return "ScalarEvolutionAnalysis"; }
1295
1296    ScalarEvolution run(Function &F, AnalysisManager<Function> *AM);
1297  };
1298
1299  /// \brief Printer pass for the \c ScalarEvolutionAnalysis results.
1300  class ScalarEvolutionPrinterPass {
1301    raw_ostream &OS;
1302
1303  public:
1304    explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
1305    PreservedAnalyses run(Function &F, AnalysisManager<Function> *AM);
1306
1307    static StringRef name() { return "ScalarEvolutionPrinterPass"; }
1308  };
1309
1310  class ScalarEvolutionWrapperPass : public FunctionPass {
1311    std::unique_ptr<ScalarEvolution> SE;
1312
1313  public:
1314    static char ID;
1315
1316    ScalarEvolutionWrapperPass();
1317
1318    ScalarEvolution &getSE() { return *SE; }
1319    const ScalarEvolution &getSE() const { return *SE; }
1320
1321    bool runOnFunction(Function &F) override;
1322    void releaseMemory() override;
1323    void getAnalysisUsage(AnalysisUsage &AU) const override;
1324    void print(raw_ostream &OS, const Module * = nullptr) const override;
1325    void verifyAnalysis() const override;
1326  };
1327
1328  /// An interface layer with SCEV used to manage how we see SCEV expressions
1329  /// for values in the context of existing predicates. We can add new
1330  /// predicates, but we cannot remove them.
1331  ///
1332  /// This layer has multiple purposes:
1333  ///   - provides a simple interface for SCEV versioning.
1334  ///   - guarantees that the order of transformations applied on a SCEV
1335  ///     expression for a single Value is consistent across two different
1336  ///     getSCEV calls. This means that, for example, once we've obtained
1337  ///     an AddRec expression for a certain value through expression
1338  ///     rewriting, we will continue to get an AddRec expression for that
1339  ///     Value.
1340  ///   - lowers the number of expression rewrites.
1341  class PredicatedScalarEvolution {
1342  public:
1343    PredicatedScalarEvolution(ScalarEvolution &SE);
1344    const SCEVUnionPredicate &getUnionPredicate() const;
1345    /// \brief Returns the SCEV expression of V, in the context of the current
1346    /// SCEV predicate.
1347    /// The order of transformations applied on the expression of V returned
1348    /// by ScalarEvolution is guaranteed to be preserved, even when adding new
1349    /// predicates.
1350    const SCEV *getSCEV(Value *V);
1351    /// \brief Adds a new predicate.
1352    void addPredicate(const SCEVPredicate &Pred);
1353    /// \brief Returns the ScalarEvolution analysis used.
1354    ScalarEvolution *getSE() const { return &SE; }
1355
1356  private:
1357    /// \brief Increments the version number of the predicate.
1358    /// This needs to be called every time the SCEV predicate changes.
1359    void updateGeneration();
1360    /// Holds a SCEV and the version number of the SCEV predicate used to
1361    /// perform the rewrite of the expression.
1362    typedef std::pair<unsigned, const SCEV *> RewriteEntry;
1363    /// Maps a SCEV to the rewrite result of that SCEV at a certain version
1364    /// number. If this number doesn't match the current Generation, we will
1365    /// need to do a rewrite. To preserve the transformation order of previous
1366    /// rewrites, we will rewrite the previous result instead of the original
1367    /// SCEV.
1368    DenseMap<const SCEV *, RewriteEntry> RewriteMap;
1369    /// The ScalarEvolution analysis.
1370    ScalarEvolution &SE;
1371    /// The SCEVPredicate that forms our context. We will rewrite all
1372    /// expressions assuming that this predicate true.
1373    SCEVUnionPredicate Preds;
1374    /// Marks the version of the SCEV predicate used. When rewriting a SCEV
1375    /// expression we mark it with the version of the predicate. We use this to
1376    /// figure out if the predicate has changed from the last rewrite of the
1377    /// SCEV. If so, we need to perform a new rewrite.
1378    unsigned Generation;
1379  };
1380}
1381
1382#endif
1383