1//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass.  Given some numbering of
11// each the machine instructions (in this implemention depth-first order) an
12// interval [i, j) is said to be a live interval for register v if there is no
13// instruction with number j' > j such that v is live at j' and there is no
14// instruction with number i' < i such that v is live at i'. In this
15// implementation intervals can have holes, i.e. an interval might look like
16// [1,20), [50,65), [1000,1001).
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
21#define LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
22
23#include "llvm/ADT/IndexedMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/CodeGen/LiveInterval.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/SlotIndexes.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include <cmath>
34#include <iterator>
35
36namespace llvm {
37
38extern cl::opt<bool> UseSegmentSetForPhysRegs;
39
40  class BitVector;
41  class BlockFrequency;
42  class LiveRangeCalc;
43  class LiveVariables;
44  class MachineDominatorTree;
45  class MachineLoopInfo;
46  class TargetRegisterInfo;
47  class MachineRegisterInfo;
48  class TargetInstrInfo;
49  class TargetRegisterClass;
50  class VirtRegMap;
51  class MachineBlockFrequencyInfo;
52
53  class LiveIntervals : public MachineFunctionPass {
54    MachineFunction* MF;
55    MachineRegisterInfo* MRI;
56    const TargetRegisterInfo* TRI;
57    const TargetInstrInfo* TII;
58    AliasAnalysis *AA;
59    SlotIndexes* Indexes;
60    MachineDominatorTree *DomTree;
61    LiveRangeCalc *LRCalc;
62
63    /// Special pool allocator for VNInfo's (LiveInterval val#).
64    ///
65    VNInfo::Allocator VNInfoAllocator;
66
67    /// Live interval pointers for all the virtual registers.
68    IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
69
70    /// RegMaskSlots - Sorted list of instructions with register mask operands.
71    /// Always use the 'r' slot, RegMasks are normal clobbers, not early
72    /// clobbers.
73    SmallVector<SlotIndex, 8> RegMaskSlots;
74
75    /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
76    /// pointer to the corresponding register mask.  This pointer can be
77    /// recomputed as:
78    ///
79    ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
80    ///   unsigned OpNum = findRegMaskOperand(MI);
81    ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
82    ///
83    /// This is kept in a separate vector partly because some standard
84    /// libraries don't support lower_bound() with mixed objects, partly to
85    /// improve locality when searching in RegMaskSlots.
86    /// Also see the comment in LiveInterval::find().
87    SmallVector<const uint32_t*, 8> RegMaskBits;
88
89    /// For each basic block number, keep (begin, size) pairs indexing into the
90    /// RegMaskSlots and RegMaskBits arrays.
91    /// Note that basic block numbers may not be layout contiguous, that's why
92    /// we can't just keep track of the first register mask in each basic
93    /// block.
94    SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
95
96    /// Keeps a live range set for each register unit to track fixed physreg
97    /// interference.
98    SmallVector<LiveRange*, 0> RegUnitRanges;
99
100  public:
101    static char ID; // Pass identification, replacement for typeid
102    LiveIntervals();
103    ~LiveIntervals() override;
104
105    // Calculate the spill weight to assign to a single instruction.
106    static float getSpillWeight(bool isDef, bool isUse,
107                                const MachineBlockFrequencyInfo *MBFI,
108                                const MachineInstr *Instr);
109
110    LiveInterval &getInterval(unsigned Reg) {
111      if (hasInterval(Reg))
112        return *VirtRegIntervals[Reg];
113      else
114        return createAndComputeVirtRegInterval(Reg);
115    }
116
117    const LiveInterval &getInterval(unsigned Reg) const {
118      return const_cast<LiveIntervals*>(this)->getInterval(Reg);
119    }
120
121    bool hasInterval(unsigned Reg) const {
122      return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
123    }
124
125    // Interval creation.
126    LiveInterval &createEmptyInterval(unsigned Reg) {
127      assert(!hasInterval(Reg) && "Interval already exists!");
128      VirtRegIntervals.grow(Reg);
129      VirtRegIntervals[Reg] = createInterval(Reg);
130      return *VirtRegIntervals[Reg];
131    }
132
133    LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
134      LiveInterval &LI = createEmptyInterval(Reg);
135      computeVirtRegInterval(LI);
136      return LI;
137    }
138
139    // Interval removal.
140    void removeInterval(unsigned Reg) {
141      delete VirtRegIntervals[Reg];
142      VirtRegIntervals[Reg] = nullptr;
143    }
144
145    /// Given a register and an instruction, adds a live segment from that
146    /// instruction to the end of its MBB.
147    LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
148                                                 MachineInstr* startInst);
149
150    /// After removing some uses of a register, shrink its live range to just
151    /// the remaining uses. This method does not compute reaching defs for new
152    /// uses, and it doesn't remove dead defs.
153    /// Dead PHIDef values are marked as unused. New dead machine instructions
154    /// are added to the dead vector. Returns true if the interval may have been
155    /// separated into multiple connected components.
156    bool shrinkToUses(LiveInterval *li,
157                      SmallVectorImpl<MachineInstr*> *dead = nullptr);
158
159    /// Specialized version of
160    /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
161    /// that works on a subregister live range and only looks at uses matching
162    /// the lane mask of the subregister range.
163    /// This may leave the subrange empty which needs to be cleaned up with
164    /// LiveInterval::removeEmptySubranges() afterwards.
165    void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);
166
167    /// extendToIndices - Extend the live range of LI to reach all points in
168    /// Indices. The points in the Indices array must be jointly dominated by
169    /// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
170    ///
171    /// If a SlotIndex in Indices is the end index of a basic block, LI will be
172    /// extended to be live out of the basic block.
173    ///
174    /// See also LiveRangeCalc::extend().
175    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices);
176
177
178    /// If @p LR has a live value at @p Kill, prune its live range by removing
179    /// any liveness reachable from Kill. Add live range end points to
180    /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
181    /// value's live range.
182    ///
183    /// Calling pruneValue() and extendToIndices() can be used to reconstruct
184    /// SSA form after adding defs to a virtual register.
185    void pruneValue(LiveRange &LR, SlotIndex Kill,
186                    SmallVectorImpl<SlotIndex> *EndPoints);
187
188    SlotIndexes *getSlotIndexes() const {
189      return Indexes;
190    }
191
192    AliasAnalysis *getAliasAnalysis() const {
193      return AA;
194    }
195
196    /// isNotInMIMap - returns true if the specified machine instr has been
197    /// removed or was never entered in the map.
198    bool isNotInMIMap(const MachineInstr* Instr) const {
199      return !Indexes->hasIndex(Instr);
200    }
201
202    /// Returns the base index of the given instruction.
203    SlotIndex getInstructionIndex(const MachineInstr *instr) const {
204      return Indexes->getInstructionIndex(instr);
205    }
206
207    /// Returns the instruction associated with the given index.
208    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
209      return Indexes->getInstructionFromIndex(index);
210    }
211
212    /// Return the first index in the given basic block.
213    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
214      return Indexes->getMBBStartIdx(mbb);
215    }
216
217    /// Return the last index in the given basic block.
218    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
219      return Indexes->getMBBEndIdx(mbb);
220    }
221
222    bool isLiveInToMBB(const LiveRange &LR,
223                       const MachineBasicBlock *mbb) const {
224      return LR.liveAt(getMBBStartIdx(mbb));
225    }
226
227    bool isLiveOutOfMBB(const LiveRange &LR,
228                        const MachineBasicBlock *mbb) const {
229      return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
230    }
231
232    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
233      return Indexes->getMBBFromIndex(index);
234    }
235
236    void insertMBBInMaps(MachineBasicBlock *MBB) {
237      Indexes->insertMBBInMaps(MBB);
238      assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
239             "Blocks must be added in order.");
240      RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
241    }
242
243    SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
244      return Indexes->insertMachineInstrInMaps(MI);
245    }
246
247    void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
248                                       MachineBasicBlock::iterator E) {
249      for (MachineBasicBlock::iterator I = B; I != E; ++I)
250        Indexes->insertMachineInstrInMaps(I);
251    }
252
253    void RemoveMachineInstrFromMaps(MachineInstr *MI) {
254      Indexes->removeMachineInstrFromMaps(MI);
255    }
256
257    void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
258      Indexes->replaceMachineInstrInMaps(MI, NewMI);
259    }
260
261    VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
262
263    void getAnalysisUsage(AnalysisUsage &AU) const override;
264    void releaseMemory() override;
265
266    /// runOnMachineFunction - pass entry point
267    bool runOnMachineFunction(MachineFunction&) override;
268
269    /// print - Implement the dump method.
270    void print(raw_ostream &O, const Module* = nullptr) const override;
271
272    /// intervalIsInOneMBB - If LI is confined to a single basic block, return
273    /// a pointer to that block.  If LI is live in to or out of any block,
274    /// return NULL.
275    MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
276
277    /// Returns true if VNI is killed by any PHI-def values in LI.
278    /// This may conservatively return true to avoid expensive computations.
279    bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
280
281    /// addKillFlags - Add kill flags to any instruction that kills a virtual
282    /// register.
283    void addKillFlags(const VirtRegMap*);
284
285    /// handleMove - call this method to notify LiveIntervals that
286    /// instruction 'mi' has been moved within a basic block. This will update
287    /// the live intervals for all operands of mi. Moves between basic blocks
288    /// are not supported.
289    ///
290    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
291    void handleMove(MachineInstr* MI, bool UpdateFlags = false);
292
293    /// moveIntoBundle - Update intervals for operands of MI so that they
294    /// begin/end on the SlotIndex for BundleStart.
295    ///
296    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
297    ///
298    /// Requires MI and BundleStart to have SlotIndexes, and assumes
299    /// existing liveness is accurate. BundleStart should be the first
300    /// instruction in the Bundle.
301    void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart,
302                              bool UpdateFlags = false);
303
304    /// repairIntervalsInRange - Update live intervals for instructions in a
305    /// range of iterators. It is intended for use after target hooks that may
306    /// insert or remove instructions, and is only efficient for a small number
307    /// of instructions.
308    ///
309    /// OrigRegs is a vector of registers that were originally used by the
310    /// instructions in the range between the two iterators.
311    ///
312    /// Currently, the only only changes that are supported are simple removal
313    /// and addition of uses.
314    void repairIntervalsInRange(MachineBasicBlock *MBB,
315                                MachineBasicBlock::iterator Begin,
316                                MachineBasicBlock::iterator End,
317                                ArrayRef<unsigned> OrigRegs);
318
319    // Register mask functions.
320    //
321    // Machine instructions may use a register mask operand to indicate that a
322    // large number of registers are clobbered by the instruction.  This is
323    // typically used for calls.
324    //
325    // For compile time performance reasons, these clobbers are not recorded in
326    // the live intervals for individual physical registers.  Instead,
327    // LiveIntervalAnalysis maintains a sorted list of instructions with
328    // register mask operands.
329
330    /// getRegMaskSlots - Returns a sorted array of slot indices of all
331    /// instructions with register mask operands.
332    ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
333
334    /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
335    /// instructions with register mask operands in the basic block numbered
336    /// MBBNum.
337    ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
338      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
339      return getRegMaskSlots().slice(P.first, P.second);
340    }
341
342    /// getRegMaskBits() - Returns an array of register mask pointers
343    /// corresponding to getRegMaskSlots().
344    ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
345
346    /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
347    /// to getRegMaskSlotsInBlock(MBBNum).
348    ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
349      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
350      return getRegMaskBits().slice(P.first, P.second);
351    }
352
353    /// checkRegMaskInterference - Test if LI is live across any register mask
354    /// instructions, and compute a bit mask of physical registers that are not
355    /// clobbered by any of them.
356    ///
357    /// Returns false if LI doesn't cross any register mask instructions. In
358    /// that case, the bit vector is not filled in.
359    bool checkRegMaskInterference(LiveInterval &LI,
360                                  BitVector &UsableRegs);
361
362    // Register unit functions.
363    //
364    // Fixed interference occurs when MachineInstrs use physregs directly
365    // instead of virtual registers. This typically happens when passing
366    // arguments to a function call, or when instructions require operands in
367    // fixed registers.
368    //
369    // Each physreg has one or more register units, see MCRegisterInfo. We
370    // track liveness per register unit to handle aliasing registers more
371    // efficiently.
372
373    /// getRegUnit - Return the live range for Unit.
374    /// It will be computed if it doesn't exist.
375    LiveRange &getRegUnit(unsigned Unit) {
376      LiveRange *LR = RegUnitRanges[Unit];
377      if (!LR) {
378        // Compute missing ranges on demand.
379        // Use segment set to speed-up initial computation of the live range.
380        RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
381        computeRegUnitRange(*LR, Unit);
382      }
383      return *LR;
384    }
385
386    /// getCachedRegUnit - Return the live range for Unit if it has already
387    /// been computed, or NULL if it hasn't been computed yet.
388    LiveRange *getCachedRegUnit(unsigned Unit) {
389      return RegUnitRanges[Unit];
390    }
391
392    const LiveRange *getCachedRegUnit(unsigned Unit) const {
393      return RegUnitRanges[Unit];
394    }
395
396    /// Remove value numbers and related live segments starting at position
397    /// @p Pos that are part of any liverange of physical register @p Reg or one
398    /// of its subregisters.
399    void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);
400
401    /// Remove value number and related live segments of @p LI and its subranges
402    /// that start at position @p Pos.
403    void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
404
405    /// Split separate components in LiveInterval \p LI into separate intervals.
406    void splitSeparateComponents(LiveInterval &LI,
407                                 SmallVectorImpl<LiveInterval*> &SplitLIs);
408
409  private:
410    /// Compute live intervals for all virtual registers.
411    void computeVirtRegs();
412
413    /// Compute RegMaskSlots and RegMaskBits.
414    void computeRegMasks();
415
416    /// Walk the values in @p LI and check for dead values:
417    /// - Dead PHIDef values are marked as unused.
418    /// - Dead operands are marked as such.
419    /// - Completely dead machine instructions are added to the @p dead vector
420    ///   if it is not nullptr.
421    /// Returns true if any PHI value numbers have been removed which may
422    /// have separated the interval into multiple connected components.
423    bool computeDeadValues(LiveInterval &LI,
424                           SmallVectorImpl<MachineInstr*> *dead);
425
426    static LiveInterval* createInterval(unsigned Reg);
427
428    void printInstrs(raw_ostream &O) const;
429    void dumpInstrs() const;
430
431    void computeLiveInRegUnits();
432    void computeRegUnitRange(LiveRange&, unsigned Unit);
433    void computeVirtRegInterval(LiveInterval&);
434
435
436    /// Helper function for repairIntervalsInRange(), walks backwards and
437    /// creates/modifies live segments in @p LR to match the operands found.
438    /// Only full operands or operands with subregisters matching @p LaneMask
439    /// are considered.
440    void repairOldRegInRange(MachineBasicBlock::iterator Begin,
441                             MachineBasicBlock::iterator End,
442                             const SlotIndex endIdx, LiveRange &LR,
443                             unsigned Reg, LaneBitmask LaneMask = ~0u);
444
445    class HMEditor;
446  };
447} // End llvm namespace
448
449#endif
450