1//===- llvm/CodeGen/SlotIndexes.h - Slot indexes representation -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements SlotIndex and related classes. The purpose of SlotIndex
11// is to describe a position at which a register can become live, or cease to
12// be live.
13//
14// SlotIndex is mostly a proxy for entries of the SlotIndexList, a class which
15// is held is LiveIntervals and provides the real numbering. This allows
16// LiveIntervals to perform largely transparent renumbering.
17//===----------------------------------------------------------------------===//
18
19#ifndef LLVM_CODEGEN_SLOTINDEXES_H
20#define LLVM_CODEGEN_SLOTINDEXES_H
21
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/IntervalMap.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/ilist.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstrBundle.h"
30#include "llvm/Support/Allocator.h"
31
32namespace llvm {
33
34  /// This class represents an entry in the slot index list held in the
35  /// SlotIndexes pass. It should not be used directly. See the
36  /// SlotIndex & SlotIndexes classes for the public interface to this
37  /// information.
38  class IndexListEntry : public ilist_node<IndexListEntry> {
39    MachineInstr *mi;
40    unsigned index;
41
42  public:
43
44    IndexListEntry(MachineInstr *mi, unsigned index) : mi(mi), index(index) {}
45
46    MachineInstr* getInstr() const { return mi; }
47    void setInstr(MachineInstr *mi) {
48      this->mi = mi;
49    }
50
51    unsigned getIndex() const { return index; }
52    void setIndex(unsigned index) {
53      this->index = index;
54    }
55
56#ifdef EXPENSIVE_CHECKS
57    // When EXPENSIVE_CHECKS is defined, "erased" index list entries will
58    // actually be moved to a "graveyard" list, and have their pointers
59    // poisoned, so that dangling SlotIndex access can be reliably detected.
60    void setPoison() {
61      intptr_t tmp = reinterpret_cast<intptr_t>(mi);
62      assert(((tmp & 0x1) == 0x0) && "Pointer already poisoned?");
63      tmp |= 0x1;
64      mi = reinterpret_cast<MachineInstr*>(tmp);
65    }
66
67    bool isPoisoned() const { return (reinterpret_cast<intptr_t>(mi) & 0x1) == 0x1; }
68#endif // EXPENSIVE_CHECKS
69
70  };
71
72  template <>
73  struct ilist_traits<IndexListEntry> : public ilist_default_traits<IndexListEntry> {
74  private:
75    mutable ilist_half_node<IndexListEntry> Sentinel;
76  public:
77    IndexListEntry *createSentinel() const {
78      return static_cast<IndexListEntry*>(&Sentinel);
79    }
80    void destroySentinel(IndexListEntry *) const {}
81
82    IndexListEntry *provideInitialHead() const { return createSentinel(); }
83    IndexListEntry *ensureHead(IndexListEntry*) const { return createSentinel(); }
84    static void noteHead(IndexListEntry*, IndexListEntry*) {}
85    void deleteNode(IndexListEntry *N) {}
86
87  private:
88    void createNode(const IndexListEntry &);
89  };
90
91  /// SlotIndex - An opaque wrapper around machine indexes.
92  class SlotIndex {
93    friend class SlotIndexes;
94
95    enum Slot {
96      /// Basic block boundary.  Used for live ranges entering and leaving a
97      /// block without being live in the layout neighbor.  Also used as the
98      /// def slot of PHI-defs.
99      Slot_Block,
100
101      /// Early-clobber register use/def slot.  A live range defined at
102      /// Slot_EarlyCLobber interferes with normal live ranges killed at
103      /// Slot_Register.  Also used as the kill slot for live ranges tied to an
104      /// early-clobber def.
105      Slot_EarlyClobber,
106
107      /// Normal register use/def slot.  Normal instructions kill and define
108      /// register live ranges at this slot.
109      Slot_Register,
110
111      /// Dead def kill point.  Kill slot for a live range that is defined by
112      /// the same instruction (Slot_Register or Slot_EarlyClobber), but isn't
113      /// used anywhere.
114      Slot_Dead,
115
116      Slot_Count
117    };
118
119    PointerIntPair<IndexListEntry*, 2, unsigned> lie;
120
121    SlotIndex(IndexListEntry *entry, unsigned slot)
122      : lie(entry, slot) {}
123
124    IndexListEntry* listEntry() const {
125      assert(isValid() && "Attempt to compare reserved index.");
126#ifdef EXPENSIVE_CHECKS
127      assert(!lie.getPointer()->isPoisoned() &&
128             "Attempt to access deleted list-entry.");
129#endif // EXPENSIVE_CHECKS
130      return lie.getPointer();
131    }
132
133    unsigned getIndex() const {
134      return listEntry()->getIndex() | getSlot();
135    }
136
137    /// Returns the slot for this SlotIndex.
138    Slot getSlot() const {
139      return static_cast<Slot>(lie.getInt());
140    }
141
142  public:
143    enum {
144      /// The default distance between instructions as returned by distance().
145      /// This may vary as instructions are inserted and removed.
146      InstrDist = 4 * Slot_Count
147    };
148
149    /// Construct an invalid index.
150    SlotIndex() : lie(nullptr, 0) {}
151
152    // Construct a new slot index from the given one, and set the slot.
153    SlotIndex(const SlotIndex &li, Slot s) : lie(li.listEntry(), unsigned(s)) {
154      assert(lie.getPointer() != nullptr &&
155             "Attempt to construct index with 0 pointer.");
156    }
157
158    /// Returns true if this is a valid index. Invalid indices do
159    /// not point into an index table, and cannot be compared.
160    bool isValid() const {
161      return lie.getPointer();
162    }
163
164    /// Return true for a valid index.
165    explicit operator bool() const { return isValid(); }
166
167    /// Print this index to the given raw_ostream.
168    void print(raw_ostream &os) const;
169
170    /// Dump this index to stderr.
171    void dump() const;
172
173    /// Compare two SlotIndex objects for equality.
174    bool operator==(SlotIndex other) const {
175      return lie == other.lie;
176    }
177    /// Compare two SlotIndex objects for inequality.
178    bool operator!=(SlotIndex other) const {
179      return lie != other.lie;
180    }
181
182    /// Compare two SlotIndex objects. Return true if the first index
183    /// is strictly lower than the second.
184    bool operator<(SlotIndex other) const {
185      return getIndex() < other.getIndex();
186    }
187    /// Compare two SlotIndex objects. Return true if the first index
188    /// is lower than, or equal to, the second.
189    bool operator<=(SlotIndex other) const {
190      return getIndex() <= other.getIndex();
191    }
192
193    /// Compare two SlotIndex objects. Return true if the first index
194    /// is greater than the second.
195    bool operator>(SlotIndex other) const {
196      return getIndex() > other.getIndex();
197    }
198
199    /// Compare two SlotIndex objects. Return true if the first index
200    /// is greater than, or equal to, the second.
201    bool operator>=(SlotIndex other) const {
202      return getIndex() >= other.getIndex();
203    }
204
205    /// isSameInstr - Return true if A and B refer to the same instruction.
206    static bool isSameInstr(SlotIndex A, SlotIndex B) {
207      return A.lie.getPointer() == B.lie.getPointer();
208    }
209
210    /// isEarlierInstr - Return true if A refers to an instruction earlier than
211    /// B. This is equivalent to A < B && !isSameInstr(A, B).
212    static bool isEarlierInstr(SlotIndex A, SlotIndex B) {
213      return A.listEntry()->getIndex() < B.listEntry()->getIndex();
214    }
215
216    /// Return the distance from this index to the given one.
217    int distance(SlotIndex other) const {
218      return other.getIndex() - getIndex();
219    }
220
221    /// Return the scaled distance from this index to the given one, where all
222    /// slots on the same instruction have zero distance.
223    int getInstrDistance(SlotIndex other) const {
224      return (other.listEntry()->getIndex() - listEntry()->getIndex())
225        / Slot_Count;
226    }
227
228    /// isBlock - Returns true if this is a block boundary slot.
229    bool isBlock() const { return getSlot() == Slot_Block; }
230
231    /// isEarlyClobber - Returns true if this is an early-clobber slot.
232    bool isEarlyClobber() const { return getSlot() == Slot_EarlyClobber; }
233
234    /// isRegister - Returns true if this is a normal register use/def slot.
235    /// Note that early-clobber slots may also be used for uses and defs.
236    bool isRegister() const { return getSlot() == Slot_Register; }
237
238    /// isDead - Returns true if this is a dead def kill slot.
239    bool isDead() const { return getSlot() == Slot_Dead; }
240
241    /// Returns the base index for associated with this index. The base index
242    /// is the one associated with the Slot_Block slot for the instruction
243    /// pointed to by this index.
244    SlotIndex getBaseIndex() const {
245      return SlotIndex(listEntry(), Slot_Block);
246    }
247
248    /// Returns the boundary index for associated with this index. The boundary
249    /// index is the one associated with the Slot_Block slot for the instruction
250    /// pointed to by this index.
251    SlotIndex getBoundaryIndex() const {
252      return SlotIndex(listEntry(), Slot_Dead);
253    }
254
255    /// Returns the register use/def slot in the current instruction for a
256    /// normal or early-clobber def.
257    SlotIndex getRegSlot(bool EC = false) const {
258      return SlotIndex(listEntry(), EC ? Slot_EarlyClobber : Slot_Register);
259    }
260
261    /// Returns the dead def kill slot for the current instruction.
262    SlotIndex getDeadSlot() const {
263      return SlotIndex(listEntry(), Slot_Dead);
264    }
265
266    /// Returns the next slot in the index list. This could be either the
267    /// next slot for the instruction pointed to by this index or, if this
268    /// index is a STORE, the first slot for the next instruction.
269    /// WARNING: This method is considerably more expensive than the methods
270    /// that return specific slots (getUseIndex(), etc). If you can - please
271    /// use one of those methods.
272    SlotIndex getNextSlot() const {
273      Slot s = getSlot();
274      if (s == Slot_Dead) {
275        return SlotIndex(&*++listEntry()->getIterator(), Slot_Block);
276      }
277      return SlotIndex(listEntry(), s + 1);
278    }
279
280    /// Returns the next index. This is the index corresponding to the this
281    /// index's slot, but for the next instruction.
282    SlotIndex getNextIndex() const {
283      return SlotIndex(&*++listEntry()->getIterator(), getSlot());
284    }
285
286    /// Returns the previous slot in the index list. This could be either the
287    /// previous slot for the instruction pointed to by this index or, if this
288    /// index is a Slot_Block, the last slot for the previous instruction.
289    /// WARNING: This method is considerably more expensive than the methods
290    /// that return specific slots (getUseIndex(), etc). If you can - please
291    /// use one of those methods.
292    SlotIndex getPrevSlot() const {
293      Slot s = getSlot();
294      if (s == Slot_Block) {
295        return SlotIndex(&*--listEntry()->getIterator(), Slot_Dead);
296      }
297      return SlotIndex(listEntry(), s - 1);
298    }
299
300    /// Returns the previous index. This is the index corresponding to this
301    /// index's slot, but for the previous instruction.
302    SlotIndex getPrevIndex() const {
303      return SlotIndex(&*--listEntry()->getIterator(), getSlot());
304    }
305
306  };
307
308  template <> struct isPodLike<SlotIndex> { static const bool value = true; };
309
310  inline raw_ostream& operator<<(raw_ostream &os, SlotIndex li) {
311    li.print(os);
312    return os;
313  }
314
315  typedef std::pair<SlotIndex, MachineBasicBlock*> IdxMBBPair;
316
317  inline bool operator<(SlotIndex V, const IdxMBBPair &IM) {
318    return V < IM.first;
319  }
320
321  inline bool operator<(const IdxMBBPair &IM, SlotIndex V) {
322    return IM.first < V;
323  }
324
325  struct Idx2MBBCompare {
326    bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
327      return LHS.first < RHS.first;
328    }
329  };
330
331  /// SlotIndexes pass.
332  ///
333  /// This pass assigns indexes to each instruction.
334  class SlotIndexes : public MachineFunctionPass {
335  private:
336    // IndexListEntry allocator.
337    BumpPtrAllocator ileAllocator;
338
339    typedef ilist<IndexListEntry> IndexList;
340    IndexList indexList;
341
342#ifdef EXPENSIVE_CHECKS
343    IndexList graveyardList;
344#endif // EXPENSIVE_CHECKS
345
346    MachineFunction *mf;
347
348    typedef DenseMap<const MachineInstr*, SlotIndex> Mi2IndexMap;
349    Mi2IndexMap mi2iMap;
350
351    /// MBBRanges - Map MBB number to (start, stop) indexes.
352    SmallVector<std::pair<SlotIndex, SlotIndex>, 8> MBBRanges;
353
354    /// Idx2MBBMap - Sorted list of pairs of index of first instruction
355    /// and MBB id.
356    SmallVector<IdxMBBPair, 8> idx2MBBMap;
357
358    IndexListEntry* createEntry(MachineInstr *mi, unsigned index) {
359      IndexListEntry *entry =
360        static_cast<IndexListEntry*>(
361          ileAllocator.Allocate(sizeof(IndexListEntry),
362          alignOf<IndexListEntry>()));
363
364      new (entry) IndexListEntry(mi, index);
365
366      return entry;
367    }
368
369    /// Renumber locally after inserting curItr.
370    void renumberIndexes(IndexList::iterator curItr);
371
372  public:
373    static char ID;
374
375    SlotIndexes() : MachineFunctionPass(ID) {
376      initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
377    }
378
379    ~SlotIndexes() {
380      // The indexList's nodes are all allocated in the BumpPtrAllocator.
381      indexList.clearAndLeakNodesUnsafely();
382    }
383
384    void getAnalysisUsage(AnalysisUsage &au) const override;
385    void releaseMemory() override;
386
387    bool runOnMachineFunction(MachineFunction &fn) override;
388
389    /// Dump the indexes.
390    void dump() const;
391
392    /// Renumber the index list, providing space for new instructions.
393    void renumberIndexes();
394
395    /// Repair indexes after adding and removing instructions.
396    void repairIndexesInRange(MachineBasicBlock *MBB,
397                              MachineBasicBlock::iterator Begin,
398                              MachineBasicBlock::iterator End);
399
400    /// Returns the zero index for this analysis.
401    SlotIndex getZeroIndex() {
402      assert(indexList.front().getIndex() == 0 && "First index is not 0?");
403      return SlotIndex(&indexList.front(), 0);
404    }
405
406    /// Returns the base index of the last slot in this analysis.
407    SlotIndex getLastIndex() {
408      return SlotIndex(&indexList.back(), 0);
409    }
410
411    /// Returns true if the given machine instr is mapped to an index,
412    /// otherwise returns false.
413    bool hasIndex(const MachineInstr *instr) const {
414      return mi2iMap.count(instr);
415    }
416
417    /// Returns the base index for the given instruction.
418    SlotIndex getInstructionIndex(const MachineInstr *MI) const {
419      // Instructions inside a bundle have the same number as the bundle itself.
420      Mi2IndexMap::const_iterator itr = mi2iMap.find(getBundleStart(MI));
421      assert(itr != mi2iMap.end() && "Instruction not found in maps.");
422      return itr->second;
423    }
424
425    /// Returns the instruction for the given index, or null if the given
426    /// index has no instruction associated with it.
427    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
428      return index.isValid() ? index.listEntry()->getInstr() : nullptr;
429    }
430
431    /// Returns the next non-null index, if one exists.
432    /// Otherwise returns getLastIndex().
433    SlotIndex getNextNonNullIndex(SlotIndex Index) {
434      IndexList::iterator I = Index.listEntry()->getIterator();
435      IndexList::iterator E = indexList.end();
436      while (++I != E)
437        if (I->getInstr())
438          return SlotIndex(&*I, Index.getSlot());
439      // We reached the end of the function.
440      return getLastIndex();
441    }
442
443    /// getIndexBefore - Returns the index of the last indexed instruction
444    /// before MI, or the start index of its basic block.
445    /// MI is not required to have an index.
446    SlotIndex getIndexBefore(const MachineInstr *MI) const {
447      const MachineBasicBlock *MBB = MI->getParent();
448      assert(MBB && "MI must be inserted inna basic block");
449      MachineBasicBlock::const_iterator I = MI, B = MBB->begin();
450      for (;;) {
451        if (I == B)
452          return getMBBStartIdx(MBB);
453        --I;
454        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I);
455        if (MapItr != mi2iMap.end())
456          return MapItr->second;
457      }
458    }
459
460    /// getIndexAfter - Returns the index of the first indexed instruction
461    /// after MI, or the end index of its basic block.
462    /// MI is not required to have an index.
463    SlotIndex getIndexAfter(const MachineInstr *MI) const {
464      const MachineBasicBlock *MBB = MI->getParent();
465      assert(MBB && "MI must be inserted inna basic block");
466      MachineBasicBlock::const_iterator I = MI, E = MBB->end();
467      for (;;) {
468        ++I;
469        if (I == E)
470          return getMBBEndIdx(MBB);
471        Mi2IndexMap::const_iterator MapItr = mi2iMap.find(I);
472        if (MapItr != mi2iMap.end())
473          return MapItr->second;
474      }
475    }
476
477    /// Return the (start,end) range of the given basic block number.
478    const std::pair<SlotIndex, SlotIndex> &
479    getMBBRange(unsigned Num) const {
480      return MBBRanges[Num];
481    }
482
483    /// Return the (start,end) range of the given basic block.
484    const std::pair<SlotIndex, SlotIndex> &
485    getMBBRange(const MachineBasicBlock *MBB) const {
486      return getMBBRange(MBB->getNumber());
487    }
488
489    /// Returns the first index in the given basic block number.
490    SlotIndex getMBBStartIdx(unsigned Num) const {
491      return getMBBRange(Num).first;
492    }
493
494    /// Returns the first index in the given basic block.
495    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
496      return getMBBRange(mbb).first;
497    }
498
499    /// Returns the last index in the given basic block number.
500    SlotIndex getMBBEndIdx(unsigned Num) const {
501      return getMBBRange(Num).second;
502    }
503
504    /// Returns the last index in the given basic block.
505    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
506      return getMBBRange(mbb).second;
507    }
508
509    /// Iterator over the idx2MBBMap (sorted pairs of slot index of basic block
510    /// begin and basic block)
511    typedef SmallVectorImpl<IdxMBBPair>::const_iterator MBBIndexIterator;
512    /// Move iterator to the next IdxMBBPair where the SlotIndex is greater or
513    /// equal to \p To.
514    MBBIndexIterator advanceMBBIndex(MBBIndexIterator I, SlotIndex To) const {
515      return std::lower_bound(I, idx2MBBMap.end(), To);
516    }
517    /// Get an iterator pointing to the IdxMBBPair with the biggest SlotIndex
518    /// that is greater or equal to \p Idx.
519    MBBIndexIterator findMBBIndex(SlotIndex Idx) const {
520      return advanceMBBIndex(idx2MBBMap.begin(), Idx);
521    }
522    /// Returns an iterator for the begin of the idx2MBBMap.
523    MBBIndexIterator MBBIndexBegin() const {
524      return idx2MBBMap.begin();
525    }
526    /// Return an iterator for the end of the idx2MBBMap.
527    MBBIndexIterator MBBIndexEnd() const {
528      return idx2MBBMap.end();
529    }
530
531    /// Returns the basic block which the given index falls in.
532    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
533      if (MachineInstr *MI = getInstructionFromIndex(index))
534        return MI->getParent();
535
536      MBBIndexIterator I = findMBBIndex(index);
537      // Take the pair containing the index
538      MBBIndexIterator J =
539        ((I != MBBIndexEnd() && I->first > index) ||
540         (I == MBBIndexEnd() && !idx2MBBMap.empty())) ? std::prev(I) : I;
541
542      assert(J != MBBIndexEnd() && J->first <= index &&
543             index < getMBBEndIdx(J->second) &&
544             "index does not correspond to an MBB");
545      return J->second;
546    }
547
548    /// Returns the MBB covering the given range, or null if the range covers
549    /// more than one basic block.
550    MachineBasicBlock* getMBBCoveringRange(SlotIndex start, SlotIndex end) const {
551
552      assert(start < end && "Backwards ranges not allowed.");
553      MBBIndexIterator itr = findMBBIndex(start);
554      if (itr == MBBIndexEnd()) {
555        itr = std::prev(itr);
556        return itr->second;
557      }
558
559      // Check that we don't cross the boundary into this block.
560      if (itr->first < end)
561        return nullptr;
562
563      itr = std::prev(itr);
564
565      if (itr->first <= start)
566        return itr->second;
567
568      return nullptr;
569    }
570
571    /// Insert the given machine instruction into the mapping. Returns the
572    /// assigned index.
573    /// If Late is set and there are null indexes between mi's neighboring
574    /// instructions, create the new index after the null indexes instead of
575    /// before them.
576    SlotIndex insertMachineInstrInMaps(MachineInstr *mi, bool Late = false) {
577      assert(!mi->isInsideBundle() &&
578             "Instructions inside bundles should use bundle start's slot.");
579      assert(mi2iMap.find(mi) == mi2iMap.end() && "Instr already indexed.");
580      // Numbering DBG_VALUE instructions could cause code generation to be
581      // affected by debug information.
582      assert(!mi->isDebugValue() && "Cannot number DBG_VALUE instructions.");
583
584      assert(mi->getParent() != nullptr && "Instr must be added to function.");
585
586      // Get the entries where mi should be inserted.
587      IndexList::iterator prevItr, nextItr;
588      if (Late) {
589        // Insert mi's index immediately before the following instruction.
590        nextItr = getIndexAfter(mi).listEntry()->getIterator();
591        prevItr = std::prev(nextItr);
592      } else {
593        // Insert mi's index immediately after the preceding instruction.
594        prevItr = getIndexBefore(mi).listEntry()->getIterator();
595        nextItr = std::next(prevItr);
596      }
597
598      // Get a number for the new instr, or 0 if there's no room currently.
599      // In the latter case we'll force a renumber later.
600      unsigned dist = ((nextItr->getIndex() - prevItr->getIndex())/2) & ~3u;
601      unsigned newNumber = prevItr->getIndex() + dist;
602
603      // Insert a new list entry for mi.
604      IndexList::iterator newItr =
605        indexList.insert(nextItr, createEntry(mi, newNumber));
606
607      // Renumber locally if we need to.
608      if (dist == 0)
609        renumberIndexes(newItr);
610
611      SlotIndex newIndex(&*newItr, SlotIndex::Slot_Block);
612      mi2iMap.insert(std::make_pair(mi, newIndex));
613      return newIndex;
614    }
615
616    /// Remove the given machine instruction from the mapping.
617    void removeMachineInstrFromMaps(MachineInstr *mi) {
618      // remove index -> MachineInstr and
619      // MachineInstr -> index mappings
620      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
621      if (mi2iItr != mi2iMap.end()) {
622        IndexListEntry *miEntry(mi2iItr->second.listEntry());
623        assert(miEntry->getInstr() == mi && "Instruction indexes broken.");
624        // FIXME: Eventually we want to actually delete these indexes.
625        miEntry->setInstr(nullptr);
626        mi2iMap.erase(mi2iItr);
627      }
628    }
629
630    /// ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in
631    /// maps used by register allocator.
632    void replaceMachineInstrInMaps(MachineInstr *mi, MachineInstr *newMI) {
633      Mi2IndexMap::iterator mi2iItr = mi2iMap.find(mi);
634      if (mi2iItr == mi2iMap.end())
635        return;
636      SlotIndex replaceBaseIndex = mi2iItr->second;
637      IndexListEntry *miEntry(replaceBaseIndex.listEntry());
638      assert(miEntry->getInstr() == mi &&
639             "Mismatched instruction in index tables.");
640      miEntry->setInstr(newMI);
641      mi2iMap.erase(mi2iItr);
642      mi2iMap.insert(std::make_pair(newMI, replaceBaseIndex));
643    }
644
645    /// Add the given MachineBasicBlock into the maps.
646    void insertMBBInMaps(MachineBasicBlock *mbb) {
647      MachineFunction::iterator nextMBB =
648        std::next(MachineFunction::iterator(mbb));
649
650      IndexListEntry *startEntry = nullptr;
651      IndexListEntry *endEntry = nullptr;
652      IndexList::iterator newItr;
653      if (nextMBB == mbb->getParent()->end()) {
654        startEntry = &indexList.back();
655        endEntry = createEntry(nullptr, 0);
656        newItr = indexList.insertAfter(startEntry->getIterator(), endEntry);
657      } else {
658        startEntry = createEntry(nullptr, 0);
659        endEntry = getMBBStartIdx(&*nextMBB).listEntry();
660        newItr = indexList.insert(endEntry->getIterator(), startEntry);
661      }
662
663      SlotIndex startIdx(startEntry, SlotIndex::Slot_Block);
664      SlotIndex endIdx(endEntry, SlotIndex::Slot_Block);
665
666      MachineFunction::iterator prevMBB(mbb);
667      assert(prevMBB != mbb->getParent()->end() &&
668             "Can't insert a new block at the beginning of a function.");
669      --prevMBB;
670      MBBRanges[prevMBB->getNumber()].second = startIdx;
671
672      assert(unsigned(mbb->getNumber()) == MBBRanges.size() &&
673             "Blocks must be added in order");
674      MBBRanges.push_back(std::make_pair(startIdx, endIdx));
675      idx2MBBMap.push_back(IdxMBBPair(startIdx, mbb));
676
677      renumberIndexes(newItr);
678      std::sort(idx2MBBMap.begin(), idx2MBBMap.end(), Idx2MBBCompare());
679    }
680
681    /// \brief Free the resources that were required to maintain a SlotIndex.
682    ///
683    /// Once an index is no longer needed (for instance because the instruction
684    /// at that index has been moved), the resources required to maintain the
685    /// index can be relinquished to reduce memory use and improve renumbering
686    /// performance. Any remaining SlotIndex objects that point to the same
687    /// index are left 'dangling' (much the same as a dangling pointer to a
688    /// freed object) and should not be accessed, except to destruct them.
689    ///
690    /// Like dangling pointers, access to dangling SlotIndexes can cause
691    /// painful-to-track-down bugs, especially if the memory for the index
692    /// previously pointed to has been re-used. To detect dangling SlotIndex
693    /// bugs, build with EXPENSIVE_CHECKS=1. This will cause "erased" indexes to
694    /// be retained in a graveyard instead of being freed. Operations on indexes
695    /// in the graveyard will trigger an assertion.
696    void eraseIndex(SlotIndex index) {
697      IndexListEntry *entry = index.listEntry();
698#ifdef EXPENSIVE_CHECKS
699      indexList.remove(entry);
700      graveyardList.push_back(entry);
701      entry->setPoison();
702#else
703      indexList.erase(entry);
704#endif
705    }
706
707  };
708
709
710  // Specialize IntervalMapInfo for half-open slot index intervals.
711  template <>
712  struct IntervalMapInfo<SlotIndex> : IntervalMapHalfOpenInfo<SlotIndex> {
713  };
714
715}
716
717#endif // LLVM_CODEGEN_SLOTINDEXES_H
718