1//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// @file
11/// This file contains the declarations for the subclasses of Constant,
12/// which represent the different flavors of constant values that live in LLVM.
13/// Note that Constants are immutable (once created they never change) and are
14/// fully shared by structural equivalence.  This means that two structurally
15/// equivalent constants will always have the same address.  Constants are
16/// created on demand as needed and never deleted: thus clients don't have to
17/// worry about the lifetime of the objects.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_IR_CONSTANTS_H
22#define LLVM_IR_CONSTANTS_H
23
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/IR/Constant.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/OperandTraits.h"
30
31namespace llvm {
32
33class ArrayType;
34class IntegerType;
35class StructType;
36class PointerType;
37class VectorType;
38class SequentialType;
39
40struct ConstantExprKeyType;
41template <class ConstantClass> struct ConstantAggrKeyType;
42
43//===----------------------------------------------------------------------===//
44/// This is the shared class of boolean and integer constants. This class
45/// represents both boolean and integral constants.
46/// @brief Class for constant integers.
47class ConstantInt : public Constant {
48  void anchor() override;
49  void *operator new(size_t, unsigned) = delete;
50  ConstantInt(const ConstantInt &) = delete;
51  ConstantInt(IntegerType *Ty, const APInt& V);
52  APInt Val;
53
54  friend class Constant;
55  void destroyConstantImpl();
56  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
57
58protected:
59  // allocate space for exactly zero operands
60  void *operator new(size_t s) {
61    return User::operator new(s, 0);
62  }
63public:
64  static ConstantInt *getTrue(LLVMContext &Context);
65  static ConstantInt *getFalse(LLVMContext &Context);
66  static Constant *getTrue(Type *Ty);
67  static Constant *getFalse(Type *Ty);
68
69  /// If Ty is a vector type, return a Constant with a splat of the given
70  /// value. Otherwise return a ConstantInt for the given value.
71  static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
72
73  /// Return a ConstantInt with the specified integer value for the specified
74  /// type. If the type is wider than 64 bits, the value will be zero-extended
75  /// to fit the type, unless isSigned is true, in which case the value will
76  /// be interpreted as a 64-bit signed integer and sign-extended to fit
77  /// the type.
78  /// @brief Get a ConstantInt for a specific value.
79  static ConstantInt *get(IntegerType *Ty, uint64_t V,
80                          bool isSigned = false);
81
82  /// Return a ConstantInt with the specified value for the specified type. The
83  /// value V will be canonicalized to a an unsigned APInt. Accessing it with
84  /// either getSExtValue() or getZExtValue() will yield a correctly sized and
85  /// signed value for the type Ty.
86  /// @brief Get a ConstantInt for a specific signed value.
87  static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
88  static Constant *getSigned(Type *Ty, int64_t V);
89
90  /// Return a ConstantInt with the specified value and an implied Type. The
91  /// type is the integer type that corresponds to the bit width of the value.
92  static ConstantInt *get(LLVMContext &Context, const APInt &V);
93
94  /// Return a ConstantInt constructed from the string strStart with the given
95  /// radix.
96  static ConstantInt *get(IntegerType *Ty, StringRef Str,
97                          uint8_t radix);
98
99  /// If Ty is a vector type, return a Constant with a splat of the given
100  /// value. Otherwise return a ConstantInt for the given value.
101  static Constant *get(Type* Ty, const APInt& V);
102
103  /// Return the constant as an APInt value reference. This allows clients to
104  /// obtain a copy of the value, with all its precision in tact.
105  /// @brief Return the constant's value.
106  inline const APInt &getValue() const {
107    return Val;
108  }
109
110  /// getBitWidth - Return the bitwidth of this constant.
111  unsigned getBitWidth() const { return Val.getBitWidth(); }
112
113  /// Return the constant as a 64-bit unsigned integer value after it
114  /// has been zero extended as appropriate for the type of this constant. Note
115  /// that this method can assert if the value does not fit in 64 bits.
116  /// @brief Return the zero extended value.
117  inline uint64_t getZExtValue() const {
118    return Val.getZExtValue();
119  }
120
121  /// Return the constant as a 64-bit integer value after it has been sign
122  /// extended as appropriate for the type of this constant. Note that
123  /// this method can assert if the value does not fit in 64 bits.
124  /// @brief Return the sign extended value.
125  inline int64_t getSExtValue() const {
126    return Val.getSExtValue();
127  }
128
129  /// A helper method that can be used to determine if the constant contained
130  /// within is equal to a constant.  This only works for very small values,
131  /// because this is all that can be represented with all types.
132  /// @brief Determine if this constant's value is same as an unsigned char.
133  bool equalsInt(uint64_t V) const {
134    return Val == V;
135  }
136
137  /// getType - Specialize the getType() method to always return an IntegerType,
138  /// which reduces the amount of casting needed in parts of the compiler.
139  ///
140  inline IntegerType *getType() const {
141    return cast<IntegerType>(Value::getType());
142  }
143
144  /// This static method returns true if the type Ty is big enough to
145  /// represent the value V. This can be used to avoid having the get method
146  /// assert when V is larger than Ty can represent. Note that there are two
147  /// versions of this method, one for unsigned and one for signed integers.
148  /// Although ConstantInt canonicalizes everything to an unsigned integer,
149  /// the signed version avoids callers having to convert a signed quantity
150  /// to the appropriate unsigned type before calling the method.
151  /// @returns true if V is a valid value for type Ty
152  /// @brief Determine if the value is in range for the given type.
153  static bool isValueValidForType(Type *Ty, uint64_t V);
154  static bool isValueValidForType(Type *Ty, int64_t V);
155
156  bool isNegative() const { return Val.isNegative(); }
157
158  /// This is just a convenience method to make client code smaller for a
159  /// common code. It also correctly performs the comparison without the
160  /// potential for an assertion from getZExtValue().
161  bool isZero() const {
162    return Val == 0;
163  }
164
165  /// This is just a convenience method to make client code smaller for a
166  /// common case. It also correctly performs the comparison without the
167  /// potential for an assertion from getZExtValue().
168  /// @brief Determine if the value is one.
169  bool isOne() const {
170    return Val == 1;
171  }
172
173  /// This function will return true iff every bit in this constant is set
174  /// to true.
175  /// @returns true iff this constant's bits are all set to true.
176  /// @brief Determine if the value is all ones.
177  bool isMinusOne() const {
178    return Val.isAllOnesValue();
179  }
180
181  /// This function will return true iff this constant represents the largest
182  /// value that may be represented by the constant's type.
183  /// @returns true iff this is the largest value that may be represented
184  /// by this type.
185  /// @brief Determine if the value is maximal.
186  bool isMaxValue(bool isSigned) const {
187    if (isSigned)
188      return Val.isMaxSignedValue();
189    else
190      return Val.isMaxValue();
191  }
192
193  /// This function will return true iff this constant represents the smallest
194  /// value that may be represented by this constant's type.
195  /// @returns true if this is the smallest value that may be represented by
196  /// this type.
197  /// @brief Determine if the value is minimal.
198  bool isMinValue(bool isSigned) const {
199    if (isSigned)
200      return Val.isMinSignedValue();
201    else
202      return Val.isMinValue();
203  }
204
205  /// This function will return true iff this constant represents a value with
206  /// active bits bigger than 64 bits or a value greater than the given uint64_t
207  /// value.
208  /// @returns true iff this constant is greater or equal to the given number.
209  /// @brief Determine if the value is greater or equal to the given number.
210  bool uge(uint64_t Num) const {
211    return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
212  }
213
214  /// getLimitedValue - If the value is smaller than the specified limit,
215  /// return it, otherwise return the limit value.  This causes the value
216  /// to saturate to the limit.
217  /// @returns the min of the value of the constant and the specified value
218  /// @brief Get the constant's value with a saturation limit
219  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
220    return Val.getLimitedValue(Limit);
221  }
222
223  /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
224  static bool classof(const Value *V) {
225    return V->getValueID() == ConstantIntVal;
226  }
227};
228
229
230//===----------------------------------------------------------------------===//
231/// ConstantFP - Floating Point Values [float, double]
232///
233class ConstantFP : public Constant {
234  APFloat Val;
235  void anchor() override;
236  void *operator new(size_t, unsigned) = delete;
237  ConstantFP(const ConstantFP &) = delete;
238  friend class LLVMContextImpl;
239
240  friend class Constant;
241  void destroyConstantImpl();
242  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
243
244protected:
245  ConstantFP(Type *Ty, const APFloat& V);
246protected:
247  // allocate space for exactly zero operands
248  void *operator new(size_t s) {
249    return User::operator new(s, 0);
250  }
251public:
252  /// Floating point negation must be implemented with f(x) = -0.0 - x. This
253  /// method returns the negative zero constant for floating point or vector
254  /// floating point types; for all other types, it returns the null value.
255  static Constant *getZeroValueForNegation(Type *Ty);
256
257  /// get() - This returns a ConstantFP, or a vector containing a splat of a
258  /// ConstantFP, for the specified value in the specified type.  This should
259  /// only be used for simple constant values like 2.0/1.0 etc, that are
260  /// known-valid both as host double and as the target format.
261  static Constant *get(Type* Ty, double V);
262  static Constant *get(Type* Ty, StringRef Str);
263  static ConstantFP *get(LLVMContext &Context, const APFloat &V);
264  static Constant *getNaN(Type *Ty, bool Negative = false, unsigned type = 0);
265  static Constant *getNegativeZero(Type *Ty);
266  static Constant *getInfinity(Type *Ty, bool Negative = false);
267
268  /// isValueValidForType - return true if Ty is big enough to represent V.
269  static bool isValueValidForType(Type *Ty, const APFloat &V);
270  inline const APFloat &getValueAPF() const { return Val; }
271
272  /// isZero - Return true if the value is positive or negative zero.
273  bool isZero() const { return Val.isZero(); }
274
275  /// isNegative - Return true if the sign bit is set.
276  bool isNegative() const { return Val.isNegative(); }
277
278  /// isInfinity - Return true if the value is infinity
279  bool isInfinity() const { return Val.isInfinity(); }
280
281  /// isNaN - Return true if the value is a NaN.
282  bool isNaN() const { return Val.isNaN(); }
283
284  /// isExactlyValue - We don't rely on operator== working on double values, as
285  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
286  /// As such, this method can be used to do an exact bit-for-bit comparison of
287  /// two floating point values.  The version with a double operand is retained
288  /// because it's so convenient to write isExactlyValue(2.0), but please use
289  /// it only for simple constants.
290  bool isExactlyValue(const APFloat &V) const;
291
292  bool isExactlyValue(double V) const {
293    bool ignored;
294    APFloat FV(V);
295    FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
296    return isExactlyValue(FV);
297  }
298  /// Methods for support type inquiry through isa, cast, and dyn_cast:
299  static bool classof(const Value *V) {
300    return V->getValueID() == ConstantFPVal;
301  }
302};
303
304//===----------------------------------------------------------------------===//
305/// ConstantAggregateZero - All zero aggregate value
306///
307class ConstantAggregateZero : public Constant {
308  void *operator new(size_t, unsigned) = delete;
309  ConstantAggregateZero(const ConstantAggregateZero &) = delete;
310
311  friend class Constant;
312  void destroyConstantImpl();
313  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
314
315protected:
316  explicit ConstantAggregateZero(Type *ty)
317    : Constant(ty, ConstantAggregateZeroVal, nullptr, 0) {}
318protected:
319  // allocate space for exactly zero operands
320  void *operator new(size_t s) {
321    return User::operator new(s, 0);
322  }
323public:
324  static ConstantAggregateZero *get(Type *Ty);
325
326  /// getSequentialElement - If this CAZ has array or vector type, return a zero
327  /// with the right element type.
328  Constant *getSequentialElement() const;
329
330  /// getStructElement - If this CAZ has struct type, return a zero with the
331  /// right element type for the specified element.
332  Constant *getStructElement(unsigned Elt) const;
333
334  /// getElementValue - Return a zero of the right value for the specified GEP
335  /// index.
336  Constant *getElementValue(Constant *C) const;
337
338  /// getElementValue - Return a zero of the right value for the specified GEP
339  /// index.
340  Constant *getElementValue(unsigned Idx) const;
341
342  /// \brief Return the number of elements in the array, vector, or struct.
343  unsigned getNumElements() const;
344
345  /// Methods for support type inquiry through isa, cast, and dyn_cast:
346  ///
347  static bool classof(const Value *V) {
348    return V->getValueID() == ConstantAggregateZeroVal;
349  }
350};
351
352
353//===----------------------------------------------------------------------===//
354/// ConstantArray - Constant Array Declarations
355///
356class ConstantArray : public Constant {
357  friend struct ConstantAggrKeyType<ConstantArray>;
358  ConstantArray(const ConstantArray &) = delete;
359
360  friend class Constant;
361  void destroyConstantImpl();
362  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
363
364protected:
365  ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
366public:
367  // ConstantArray accessors
368  static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
369
370private:
371  static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
372
373public:
374  /// Transparently provide more efficient getOperand methods.
375  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
376
377  /// getType - Specialize the getType() method to always return an ArrayType,
378  /// which reduces the amount of casting needed in parts of the compiler.
379  ///
380  inline ArrayType *getType() const {
381    return cast<ArrayType>(Value::getType());
382  }
383
384  /// Methods for support type inquiry through isa, cast, and dyn_cast:
385  static bool classof(const Value *V) {
386    return V->getValueID() == ConstantArrayVal;
387  }
388};
389
390template <>
391struct OperandTraits<ConstantArray> :
392  public VariadicOperandTraits<ConstantArray> {
393};
394
395DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
396
397//===----------------------------------------------------------------------===//
398// ConstantStruct - Constant Struct Declarations
399//
400class ConstantStruct : public Constant {
401  friend struct ConstantAggrKeyType<ConstantStruct>;
402  ConstantStruct(const ConstantStruct &) = delete;
403
404  friend class Constant;
405  void destroyConstantImpl();
406  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
407
408protected:
409  ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
410public:
411  // ConstantStruct accessors
412  static Constant *get(StructType *T, ArrayRef<Constant*> V);
413  static Constant *get(StructType *T, ...) LLVM_END_WITH_NULL;
414
415  /// getAnon - Return an anonymous struct that has the specified
416  /// elements.  If the struct is possibly empty, then you must specify a
417  /// context.
418  static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
419    return get(getTypeForElements(V, Packed), V);
420  }
421  static Constant *getAnon(LLVMContext &Ctx,
422                           ArrayRef<Constant*> V, bool Packed = false) {
423    return get(getTypeForElements(Ctx, V, Packed), V);
424  }
425
426  /// getTypeForElements - Return an anonymous struct type to use for a constant
427  /// with the specified set of elements.  The list must not be empty.
428  static StructType *getTypeForElements(ArrayRef<Constant*> V,
429                                        bool Packed = false);
430  /// getTypeForElements - This version of the method allows an empty list.
431  static StructType *getTypeForElements(LLVMContext &Ctx,
432                                        ArrayRef<Constant*> V,
433                                        bool Packed = false);
434
435  /// Transparently provide more efficient getOperand methods.
436  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
437
438  /// getType() specialization - Reduce amount of casting...
439  ///
440  inline StructType *getType() const {
441    return cast<StructType>(Value::getType());
442  }
443
444  /// Methods for support type inquiry through isa, cast, and dyn_cast:
445  static bool classof(const Value *V) {
446    return V->getValueID() == ConstantStructVal;
447  }
448};
449
450template <>
451struct OperandTraits<ConstantStruct> :
452  public VariadicOperandTraits<ConstantStruct> {
453};
454
455DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
456
457
458//===----------------------------------------------------------------------===//
459/// ConstantVector - Constant Vector Declarations
460///
461class ConstantVector : public Constant {
462  friend struct ConstantAggrKeyType<ConstantVector>;
463  ConstantVector(const ConstantVector &) = delete;
464
465  friend class Constant;
466  void destroyConstantImpl();
467  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
468
469protected:
470  ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
471public:
472  // ConstantVector accessors
473  static Constant *get(ArrayRef<Constant*> V);
474
475private:
476  static Constant *getImpl(ArrayRef<Constant *> V);
477
478public:
479  /// getSplat - Return a ConstantVector with the specified constant in each
480  /// element.
481  static Constant *getSplat(unsigned NumElts, Constant *Elt);
482
483  /// Transparently provide more efficient getOperand methods.
484  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
485
486  /// getType - Specialize the getType() method to always return a VectorType,
487  /// which reduces the amount of casting needed in parts of the compiler.
488  ///
489  inline VectorType *getType() const {
490    return cast<VectorType>(Value::getType());
491  }
492
493  /// getSplatValue - If this is a splat constant, meaning that all of the
494  /// elements have the same value, return that value. Otherwise return NULL.
495  Constant *getSplatValue() const;
496
497  /// Methods for support type inquiry through isa, cast, and dyn_cast:
498  static bool classof(const Value *V) {
499    return V->getValueID() == ConstantVectorVal;
500  }
501};
502
503template <>
504struct OperandTraits<ConstantVector> :
505  public VariadicOperandTraits<ConstantVector> {
506};
507
508DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
509
510//===----------------------------------------------------------------------===//
511/// ConstantPointerNull - a constant pointer value that points to null
512///
513class ConstantPointerNull : public Constant {
514  void *operator new(size_t, unsigned) = delete;
515  ConstantPointerNull(const ConstantPointerNull &) = delete;
516
517  friend class Constant;
518  void destroyConstantImpl();
519  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
520
521protected:
522  explicit ConstantPointerNull(PointerType *T)
523    : Constant(T,
524               Value::ConstantPointerNullVal, nullptr, 0) {}
525
526protected:
527  // allocate space for exactly zero operands
528  void *operator new(size_t s) {
529    return User::operator new(s, 0);
530  }
531public:
532  /// get() - Static factory methods - Return objects of the specified value
533  static ConstantPointerNull *get(PointerType *T);
534
535  /// getType - Specialize the getType() method to always return an PointerType,
536  /// which reduces the amount of casting needed in parts of the compiler.
537  ///
538  inline PointerType *getType() const {
539    return cast<PointerType>(Value::getType());
540  }
541
542  /// Methods for support type inquiry through isa, cast, and dyn_cast:
543  static bool classof(const Value *V) {
544    return V->getValueID() == ConstantPointerNullVal;
545  }
546};
547
548//===----------------------------------------------------------------------===//
549/// ConstantDataSequential - A vector or array constant whose element type is a
550/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
551/// simple data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
552/// operands because it stores all of the elements of the constant as densely
553/// packed data, instead of as Value*'s.
554///
555/// This is the common base class of ConstantDataArray and ConstantDataVector.
556///
557class ConstantDataSequential : public Constant {
558  friend class LLVMContextImpl;
559  /// DataElements - A pointer to the bytes underlying this constant (which is
560  /// owned by the uniquing StringMap).
561  const char *DataElements;
562
563  /// Next - This forms a link list of ConstantDataSequential nodes that have
564  /// the same value but different type.  For example, 0,0,0,1 could be a 4
565  /// element array of i8, or a 1-element array of i32.  They'll both end up in
566  /// the same StringMap bucket, linked up.
567  ConstantDataSequential *Next;
568  void *operator new(size_t, unsigned) = delete;
569  ConstantDataSequential(const ConstantDataSequential &) = delete;
570
571  friend class Constant;
572  void destroyConstantImpl();
573  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
574
575protected:
576  explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
577    : Constant(ty, VT, nullptr, 0), DataElements(Data), Next(nullptr) {}
578  ~ConstantDataSequential() override { delete Next; }
579
580  static Constant *getImpl(StringRef Bytes, Type *Ty);
581
582protected:
583  // allocate space for exactly zero operands.
584  void *operator new(size_t s) {
585    return User::operator new(s, 0);
586  }
587public:
588
589  /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
590  /// formed with a vector or array of the specified element type.
591  /// ConstantDataArray only works with normal float and int types that are
592  /// stored densely in memory, not with things like i42 or x86_f80.
593  static bool isElementTypeCompatible(Type *Ty);
594
595  /// getElementAsInteger - If this is a sequential container of integers (of
596  /// any size), return the specified element in the low bits of a uint64_t.
597  uint64_t getElementAsInteger(unsigned i) const;
598
599  /// getElementAsAPFloat - If this is a sequential container of floating point
600  /// type, return the specified element as an APFloat.
601  APFloat getElementAsAPFloat(unsigned i) const;
602
603  /// getElementAsFloat - If this is an sequential container of floats, return
604  /// the specified element as a float.
605  float getElementAsFloat(unsigned i) const;
606
607  /// getElementAsDouble - If this is an sequential container of doubles, return
608  /// the specified element as a double.
609  double getElementAsDouble(unsigned i) const;
610
611  /// getElementAsConstant - Return a Constant for a specified index's element.
612  /// Note that this has to compute a new constant to return, so it isn't as
613  /// efficient as getElementAsInteger/Float/Double.
614  Constant *getElementAsConstant(unsigned i) const;
615
616  /// getType - Specialize the getType() method to always return a
617  /// SequentialType, which reduces the amount of casting needed in parts of the
618  /// compiler.
619  inline SequentialType *getType() const {
620    return cast<SequentialType>(Value::getType());
621  }
622
623  /// getElementType - Return the element type of the array/vector.
624  Type *getElementType() const;
625
626  /// getNumElements - Return the number of elements in the array or vector.
627  unsigned getNumElements() const;
628
629  /// getElementByteSize - Return the size (in bytes) of each element in the
630  /// array/vector.  The size of the elements is known to be a multiple of one
631  /// byte.
632  uint64_t getElementByteSize() const;
633
634
635  /// isString - This method returns true if this is an array of i8.
636  bool isString() const;
637
638  /// isCString - This method returns true if the array "isString", ends with a
639  /// nul byte, and does not contains any other nul bytes.
640  bool isCString() const;
641
642  /// getAsString - If this array is isString(), then this method returns the
643  /// array as a StringRef.  Otherwise, it asserts out.
644  ///
645  StringRef getAsString() const {
646    assert(isString() && "Not a string");
647    return getRawDataValues();
648  }
649
650  /// getAsCString - If this array is isCString(), then this method returns the
651  /// array (without the trailing null byte) as a StringRef. Otherwise, it
652  /// asserts out.
653  ///
654  StringRef getAsCString() const {
655    assert(isCString() && "Isn't a C string");
656    StringRef Str = getAsString();
657    return Str.substr(0, Str.size()-1);
658  }
659
660  /// getRawDataValues - Return the raw, underlying, bytes of this data.  Note
661  /// that this is an extremely tricky thing to work with, as it exposes the
662  /// host endianness of the data elements.
663  StringRef getRawDataValues() const;
664
665  /// Methods for support type inquiry through isa, cast, and dyn_cast:
666  ///
667  static bool classof(const Value *V) {
668    return V->getValueID() == ConstantDataArrayVal ||
669           V->getValueID() == ConstantDataVectorVal;
670  }
671private:
672  const char *getElementPointer(unsigned Elt) const;
673};
674
675//===----------------------------------------------------------------------===//
676/// ConstantDataArray - An array constant whose element type is a simple
677/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
678/// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
679/// operands because it stores all of the elements of the constant as densely
680/// packed data, instead of as Value*'s.
681class ConstantDataArray : public ConstantDataSequential {
682  void *operator new(size_t, unsigned) = delete;
683  ConstantDataArray(const ConstantDataArray &) = delete;
684  void anchor() override;
685  friend class ConstantDataSequential;
686  explicit ConstantDataArray(Type *ty, const char *Data)
687    : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
688protected:
689  // allocate space for exactly zero operands.
690  void *operator new(size_t s) {
691    return User::operator new(s, 0);
692  }
693public:
694
695  /// get() constructors - Return a constant with array type with an element
696  /// count and element type matching the ArrayRef passed in.  Note that this
697  /// can return a ConstantAggregateZero object.
698  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
699  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
700  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
701  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
702  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
703  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
704
705  /// getFP() constructors - Return a constant with array type with an element
706  /// count and element type of float with precision matching the number of
707  /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
708  /// double for 64bits) Note that this can return a ConstantAggregateZero
709  /// object.
710  static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
711  static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
712  static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
713
714  /// getString - This method constructs a CDS and initializes it with a text
715  /// string. The default behavior (AddNull==true) causes a null terminator to
716  /// be placed at the end of the array (increasing the length of the string by
717  /// one more than the StringRef would normally indicate.  Pass AddNull=false
718  /// to disable this behavior.
719  static Constant *getString(LLVMContext &Context, StringRef Initializer,
720                             bool AddNull = true);
721
722  /// getType - Specialize the getType() method to always return an ArrayType,
723  /// which reduces the amount of casting needed in parts of the compiler.
724  ///
725  inline ArrayType *getType() const {
726    return cast<ArrayType>(Value::getType());
727  }
728
729  /// Methods for support type inquiry through isa, cast, and dyn_cast:
730  ///
731  static bool classof(const Value *V) {
732    return V->getValueID() == ConstantDataArrayVal;
733  }
734};
735
736//===----------------------------------------------------------------------===//
737/// ConstantDataVector - A vector constant whose element type is a simple
738/// 1/2/4/8-byte integer or float/double, and whose elements are just simple
739/// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
740/// operands because it stores all of the elements of the constant as densely
741/// packed data, instead of as Value*'s.
742class ConstantDataVector : public ConstantDataSequential {
743  void *operator new(size_t, unsigned) = delete;
744  ConstantDataVector(const ConstantDataVector &) = delete;
745  void anchor() override;
746  friend class ConstantDataSequential;
747  explicit ConstantDataVector(Type *ty, const char *Data)
748  : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
749protected:
750  // allocate space for exactly zero operands.
751  void *operator new(size_t s) {
752    return User::operator new(s, 0);
753  }
754public:
755
756  /// get() constructors - Return a constant with vector type with an element
757  /// count and element type matching the ArrayRef passed in.  Note that this
758  /// can return a ConstantAggregateZero object.
759  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
760  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
761  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
762  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
763  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
764  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
765
766  /// getFP() constructors - Return a constant with vector type with an element
767  /// count and element type of float with the precision matching the number of
768  /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
769  /// double for 64bits) Note that this can return a ConstantAggregateZero
770  /// object.
771  static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
772  static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
773  static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
774
775  /// getSplat - Return a ConstantVector with the specified constant in each
776  /// element.  The specified constant has to be a of a compatible type (i8/i16/
777  /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
778  static Constant *getSplat(unsigned NumElts, Constant *Elt);
779
780  /// getSplatValue - If this is a splat constant, meaning that all of the
781  /// elements have the same value, return that value. Otherwise return NULL.
782  Constant *getSplatValue() const;
783
784  /// getType - Specialize the getType() method to always return a VectorType,
785  /// which reduces the amount of casting needed in parts of the compiler.
786  ///
787  inline VectorType *getType() const {
788    return cast<VectorType>(Value::getType());
789  }
790
791  /// Methods for support type inquiry through isa, cast, and dyn_cast:
792  ///
793  static bool classof(const Value *V) {
794    return V->getValueID() == ConstantDataVectorVal;
795  }
796};
797
798//===----------------------------------------------------------------------===//
799/// ConstantTokenNone - a constant token which is empty
800///
801class ConstantTokenNone : public Constant {
802  void *operator new(size_t, unsigned) = delete;
803  ConstantTokenNone(const ConstantTokenNone &) = delete;
804
805  friend class Constant;
806  void destroyConstantImpl();
807  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
808
809protected:
810  explicit ConstantTokenNone(LLVMContext &Context)
811      : Constant(Type::getTokenTy(Context), ConstantTokenNoneVal, nullptr, 0) {}
812  // allocate space for exactly zero operands
813  void *operator new(size_t s) { return User::operator new(s, 0); }
814
815public:
816  /// Return the ConstantTokenNone.
817  static ConstantTokenNone *get(LLVMContext &Context);
818
819  /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
820  static bool classof(const Value *V) {
821    return V->getValueID() == ConstantTokenNoneVal;
822  }
823};
824
825/// BlockAddress - The address of a basic block.
826///
827class BlockAddress : public Constant {
828  void *operator new(size_t, unsigned) = delete;
829  void *operator new(size_t s) { return User::operator new(s, 2); }
830  BlockAddress(Function *F, BasicBlock *BB);
831
832  friend class Constant;
833  void destroyConstantImpl();
834  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
835
836public:
837  /// get - Return a BlockAddress for the specified function and basic block.
838  static BlockAddress *get(Function *F, BasicBlock *BB);
839
840  /// get - Return a BlockAddress for the specified basic block.  The basic
841  /// block must be embedded into a function.
842  static BlockAddress *get(BasicBlock *BB);
843
844  /// \brief Lookup an existing \c BlockAddress constant for the given
845  /// BasicBlock.
846  ///
847  /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
848  static BlockAddress *lookup(const BasicBlock *BB);
849
850  /// Transparently provide more efficient getOperand methods.
851  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
852
853  Function *getFunction() const { return (Function*)Op<0>().get(); }
854  BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
855
856  /// Methods for support type inquiry through isa, cast, and dyn_cast:
857  static inline bool classof(const Value *V) {
858    return V->getValueID() == BlockAddressVal;
859  }
860};
861
862template <>
863struct OperandTraits<BlockAddress> :
864  public FixedNumOperandTraits<BlockAddress, 2> {
865};
866
867DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
868
869
870//===----------------------------------------------------------------------===//
871/// ConstantExpr - a constant value that is initialized with an expression using
872/// other constant values.
873///
874/// This class uses the standard Instruction opcodes to define the various
875/// constant expressions.  The Opcode field for the ConstantExpr class is
876/// maintained in the Value::SubclassData field.
877class ConstantExpr : public Constant {
878  friend struct ConstantExprKeyType;
879
880  friend class Constant;
881  void destroyConstantImpl();
882  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
883
884protected:
885  ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
886    : Constant(ty, ConstantExprVal, Ops, NumOps) {
887    // Operation type (an Instruction opcode) is stored as the SubclassData.
888    setValueSubclassData(Opcode);
889  }
890
891public:
892  // Static methods to construct a ConstantExpr of different kinds.  Note that
893  // these methods may return a object that is not an instance of the
894  // ConstantExpr class, because they will attempt to fold the constant
895  // expression into something simpler if possible.
896
897  /// getAlignOf constant expr - computes the alignment of a type in a target
898  /// independent way (Note: the return type is an i64).
899  static Constant *getAlignOf(Type *Ty);
900
901  /// getSizeOf constant expr - computes the (alloc) size of a type (in
902  /// address-units, not bits) in a target independent way (Note: the return
903  /// type is an i64).
904  ///
905  static Constant *getSizeOf(Type *Ty);
906
907  /// getOffsetOf constant expr - computes the offset of a struct field in a
908  /// target independent way (Note: the return type is an i64).
909  ///
910  static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
911
912  /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
913  /// which supports any aggregate type, and any Constant index.
914  ///
915  static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
916
917  static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
918  static Constant *getFNeg(Constant *C);
919  static Constant *getNot(Constant *C);
920  static Constant *getAdd(Constant *C1, Constant *C2,
921                          bool HasNUW = false, bool HasNSW = false);
922  static Constant *getFAdd(Constant *C1, Constant *C2);
923  static Constant *getSub(Constant *C1, Constant *C2,
924                          bool HasNUW = false, bool HasNSW = false);
925  static Constant *getFSub(Constant *C1, Constant *C2);
926  static Constant *getMul(Constant *C1, Constant *C2,
927                          bool HasNUW = false, bool HasNSW = false);
928  static Constant *getFMul(Constant *C1, Constant *C2);
929  static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
930  static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
931  static Constant *getFDiv(Constant *C1, Constant *C2);
932  static Constant *getURem(Constant *C1, Constant *C2);
933  static Constant *getSRem(Constant *C1, Constant *C2);
934  static Constant *getFRem(Constant *C1, Constant *C2);
935  static Constant *getAnd(Constant *C1, Constant *C2);
936  static Constant *getOr(Constant *C1, Constant *C2);
937  static Constant *getXor(Constant *C1, Constant *C2);
938  static Constant *getShl(Constant *C1, Constant *C2,
939                          bool HasNUW = false, bool HasNSW = false);
940  static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
941  static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
942  static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
943  static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
944  static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
945  static Constant *getFPTrunc(Constant *C, Type *Ty,
946                              bool OnlyIfReduced = false);
947  static Constant *getFPExtend(Constant *C, Type *Ty,
948                               bool OnlyIfReduced = false);
949  static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
950  static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
951  static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
952  static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
953  static Constant *getPtrToInt(Constant *C, Type *Ty,
954                               bool OnlyIfReduced = false);
955  static Constant *getIntToPtr(Constant *C, Type *Ty,
956                               bool OnlyIfReduced = false);
957  static Constant *getBitCast(Constant *C, Type *Ty,
958                              bool OnlyIfReduced = false);
959  static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
960                                    bool OnlyIfReduced = false);
961
962  static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
963  static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
964  static Constant *getNSWAdd(Constant *C1, Constant *C2) {
965    return getAdd(C1, C2, false, true);
966  }
967  static Constant *getNUWAdd(Constant *C1, Constant *C2) {
968    return getAdd(C1, C2, true, false);
969  }
970  static Constant *getNSWSub(Constant *C1, Constant *C2) {
971    return getSub(C1, C2, false, true);
972  }
973  static Constant *getNUWSub(Constant *C1, Constant *C2) {
974    return getSub(C1, C2, true, false);
975  }
976  static Constant *getNSWMul(Constant *C1, Constant *C2) {
977    return getMul(C1, C2, false, true);
978  }
979  static Constant *getNUWMul(Constant *C1, Constant *C2) {
980    return getMul(C1, C2, true, false);
981  }
982  static Constant *getNSWShl(Constant *C1, Constant *C2) {
983    return getShl(C1, C2, false, true);
984  }
985  static Constant *getNUWShl(Constant *C1, Constant *C2) {
986    return getShl(C1, C2, true, false);
987  }
988  static Constant *getExactSDiv(Constant *C1, Constant *C2) {
989    return getSDiv(C1, C2, true);
990  }
991  static Constant *getExactUDiv(Constant *C1, Constant *C2) {
992    return getUDiv(C1, C2, true);
993  }
994  static Constant *getExactAShr(Constant *C1, Constant *C2) {
995    return getAShr(C1, C2, true);
996  }
997  static Constant *getExactLShr(Constant *C1, Constant *C2) {
998    return getLShr(C1, C2, true);
999  }
1000
1001  /// getBinOpIdentity - Return the identity for the given binary operation,
1002  /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
1003  /// returns null if the operator doesn't have an identity.
1004  static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
1005
1006  /// getBinOpAbsorber - Return the absorbing element for the given binary
1007  /// operation, i.e. a constant C such that X op C = C and C op X = C for
1008  /// every X.  For example, this returns zero for integer multiplication.
1009  /// It returns null if the operator doesn't have an absorbing element.
1010  static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1011
1012  /// Transparently provide more efficient getOperand methods.
1013  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1014
1015  /// \brief Convenience function for getting a Cast operation.
1016  ///
1017  /// \param ops The opcode for the conversion
1018  /// \param C  The constant to be converted
1019  /// \param Ty The type to which the constant is converted
1020  /// \param OnlyIfReduced see \a getWithOperands() docs.
1021  static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1022                           bool OnlyIfReduced = false);
1023
1024  // @brief Create a ZExt or BitCast cast constant expression
1025  static Constant *getZExtOrBitCast(
1026    Constant *C,   ///< The constant to zext or bitcast
1027    Type *Ty ///< The type to zext or bitcast C to
1028  );
1029
1030  // @brief Create a SExt or BitCast cast constant expression
1031  static Constant *getSExtOrBitCast(
1032    Constant *C,   ///< The constant to sext or bitcast
1033    Type *Ty ///< The type to sext or bitcast C to
1034  );
1035
1036  // @brief Create a Trunc or BitCast cast constant expression
1037  static Constant *getTruncOrBitCast(
1038    Constant *C,   ///< The constant to trunc or bitcast
1039    Type *Ty ///< The type to trunc or bitcast C to
1040  );
1041
1042  /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1043  /// expression.
1044  static Constant *getPointerCast(
1045    Constant *C,   ///< The pointer value to be casted (operand 0)
1046    Type *Ty ///< The type to which cast should be made
1047  );
1048
1049  /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on
1050  /// the address space.
1051  static Constant *getPointerBitCastOrAddrSpaceCast(
1052    Constant *C,   ///< The constant to addrspacecast or bitcast
1053    Type *Ty ///< The type to bitcast or addrspacecast C to
1054  );
1055
1056  /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
1057  static Constant *getIntegerCast(
1058    Constant *C,    ///< The integer constant to be casted
1059    Type *Ty, ///< The integer type to cast to
1060    bool isSigned   ///< Whether C should be treated as signed or not
1061  );
1062
1063  /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
1064  static Constant *getFPCast(
1065    Constant *C,    ///< The integer constant to be casted
1066    Type *Ty ///< The integer type to cast to
1067  );
1068
1069  /// @brief Return true if this is a convert constant expression
1070  bool isCast() const;
1071
1072  /// @brief Return true if this is a compare constant expression
1073  bool isCompare() const;
1074
1075  /// @brief Return true if this is an insertvalue or extractvalue expression,
1076  /// and the getIndices() method may be used.
1077  bool hasIndices() const;
1078
1079  /// @brief Return true if this is a getelementptr expression and all
1080  /// the index operands are compile-time known integers within the
1081  /// corresponding notional static array extents. Note that this is
1082  /// not equivalant to, a subset of, or a superset of the "inbounds"
1083  /// property.
1084  bool isGEPWithNoNotionalOverIndexing() const;
1085
1086  /// Select constant expr
1087  ///
1088  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1089  static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
1090                             Type *OnlyIfReducedTy = nullptr);
1091
1092  /// get - Return a binary or shift operator constant expression,
1093  /// folding if possible.
1094  ///
1095  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1096  static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1097                       unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1098
1099  /// \brief Return an ICmp or FCmp comparison operator constant expression.
1100  ///
1101  /// \param OnlyIfReduced see \a getWithOperands() docs.
1102  static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1103                              bool OnlyIfReduced = false);
1104
1105  /// get* - Return some common constants without having to
1106  /// specify the full Instruction::OPCODE identifier.
1107  ///
1108  static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1109                           bool OnlyIfReduced = false);
1110  static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1111                           bool OnlyIfReduced = false);
1112
1113  /// Getelementptr form.  Value* is only accepted for convenience;
1114  /// all elements must be Constants.
1115  ///
1116  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1117  static Constant *getGetElementPtr(Type *Ty, Constant *C,
1118                                    ArrayRef<Constant *> IdxList,
1119                                    bool InBounds = false,
1120                                    Type *OnlyIfReducedTy = nullptr) {
1121    return getGetElementPtr(
1122        Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
1123        InBounds, OnlyIfReducedTy);
1124  }
1125  static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1126                                    bool InBounds = false,
1127                                    Type *OnlyIfReducedTy = nullptr) {
1128    // This form of the function only exists to avoid ambiguous overload
1129    // warnings about whether to convert Idx to ArrayRef<Constant *> or
1130    // ArrayRef<Value *>.
1131    return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, OnlyIfReducedTy);
1132  }
1133  static Constant *getGetElementPtr(Type *Ty, Constant *C,
1134                                    ArrayRef<Value *> IdxList,
1135                                    bool InBounds = false,
1136                                    Type *OnlyIfReducedTy = nullptr);
1137
1138  /// Create an "inbounds" getelementptr. See the documentation for the
1139  /// "inbounds" flag in LangRef.html for details.
1140  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1141                                            ArrayRef<Constant *> IdxList) {
1142    return getGetElementPtr(Ty, C, IdxList, true);
1143  }
1144  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1145                                            Constant *Idx) {
1146    // This form of the function only exists to avoid ambiguous overload
1147    // warnings about whether to convert Idx to ArrayRef<Constant *> or
1148    // ArrayRef<Value *>.
1149    return getGetElementPtr(Ty, C, Idx, true);
1150  }
1151  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1152                                            ArrayRef<Value *> IdxList) {
1153    return getGetElementPtr(Ty, C, IdxList, true);
1154  }
1155
1156  static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1157                                     Type *OnlyIfReducedTy = nullptr);
1158  static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1159                                    Type *OnlyIfReducedTy = nullptr);
1160  static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
1161                                    Type *OnlyIfReducedTy = nullptr);
1162  static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
1163                                   Type *OnlyIfReducedTy = nullptr);
1164  static Constant *getInsertValue(Constant *Agg, Constant *Val,
1165                                  ArrayRef<unsigned> Idxs,
1166                                  Type *OnlyIfReducedTy = nullptr);
1167
1168  /// getOpcode - Return the opcode at the root of this constant expression
1169  unsigned getOpcode() const { return getSubclassDataFromValue(); }
1170
1171  /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
1172  /// not an ICMP or FCMP constant expression.
1173  unsigned getPredicate() const;
1174
1175  /// getIndices - Assert that this is an insertvalue or exactvalue
1176  /// expression and return the list of indices.
1177  ArrayRef<unsigned> getIndices() const;
1178
1179  /// getOpcodeName - Return a string representation for an opcode.
1180  const char *getOpcodeName() const;
1181
1182  /// getWithOperandReplaced - Return a constant expression identical to this
1183  /// one, but with the specified operand set to the specified value.
1184  Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
1185
1186  /// getWithOperands - This returns the current constant expression with the
1187  /// operands replaced with the specified values.  The specified array must
1188  /// have the same number of operands as our current one.
1189  Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
1190    return getWithOperands(Ops, getType());
1191  }
1192
1193  /// \brief Get the current expression with the operands replaced.
1194  ///
1195  /// Return the current constant expression with the operands replaced with \c
1196  /// Ops and the type with \c Ty.  The new operands must have the same number
1197  /// as the current ones.
1198  ///
1199  /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1200  /// gets constant-folded, the type changes, or the expression is otherwise
1201  /// canonicalized.  This parameter should almost always be \c false.
1202  Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1203                            bool OnlyIfReduced = false,
1204                            Type *SrcTy = nullptr) const;
1205
1206  /// getAsInstruction - Returns an Instruction which implements the same
1207  /// operation as this ConstantExpr. The instruction is not linked to any basic
1208  /// block.
1209  ///
1210  /// A better approach to this could be to have a constructor for Instruction
1211  /// which would take a ConstantExpr parameter, but that would have spread
1212  /// implementation details of ConstantExpr outside of Constants.cpp, which
1213  /// would make it harder to remove ConstantExprs altogether.
1214  Instruction *getAsInstruction();
1215
1216  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1217  static inline bool classof(const Value *V) {
1218    return V->getValueID() == ConstantExprVal;
1219  }
1220
1221private:
1222  // Shadow Value::setValueSubclassData with a private forwarding method so that
1223  // subclasses cannot accidentally use it.
1224  void setValueSubclassData(unsigned short D) {
1225    Value::setValueSubclassData(D);
1226  }
1227};
1228
1229template <>
1230struct OperandTraits<ConstantExpr> :
1231  public VariadicOperandTraits<ConstantExpr, 1> {
1232};
1233
1234DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1235
1236//===----------------------------------------------------------------------===//
1237/// UndefValue - 'undef' values are things that do not have specified contents.
1238/// These are used for a variety of purposes, including global variable
1239/// initializers and operands to instructions.  'undef' values can occur with
1240/// any first-class type.
1241///
1242/// Undef values aren't exactly constants; if they have multiple uses, they
1243/// can appear to have different bit patterns at each use. See
1244/// LangRef.html#undefvalues for details.
1245///
1246class UndefValue : public Constant {
1247  void *operator new(size_t, unsigned) = delete;
1248  UndefValue(const UndefValue &) = delete;
1249
1250  friend class Constant;
1251  void destroyConstantImpl();
1252  Value *handleOperandChangeImpl(Value *From, Value *To, Use *U);
1253
1254protected:
1255  explicit UndefValue(Type *T) : Constant(T, UndefValueVal, nullptr, 0) {}
1256protected:
1257  // allocate space for exactly zero operands
1258  void *operator new(size_t s) {
1259    return User::operator new(s, 0);
1260  }
1261public:
1262  /// get() - Static factory methods - Return an 'undef' object of the specified
1263  /// type.
1264  ///
1265  static UndefValue *get(Type *T);
1266
1267  /// getSequentialElement - If this Undef has array or vector type, return a
1268  /// undef with the right element type.
1269  UndefValue *getSequentialElement() const;
1270
1271  /// getStructElement - If this undef has struct type, return a undef with the
1272  /// right element type for the specified element.
1273  UndefValue *getStructElement(unsigned Elt) const;
1274
1275  /// getElementValue - Return an undef of the right value for the specified GEP
1276  /// index.
1277  UndefValue *getElementValue(Constant *C) const;
1278
1279  /// getElementValue - Return an undef of the right value for the specified GEP
1280  /// index.
1281  UndefValue *getElementValue(unsigned Idx) const;
1282
1283  /// \brief Return the number of elements in the array, vector, or struct.
1284  unsigned getNumElements() const;
1285
1286  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1287  static bool classof(const Value *V) {
1288    return V->getValueID() == UndefValueVal;
1289  }
1290};
1291
1292} // End llvm namespace
1293
1294#endif
1295