1//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The implementation for the loop memory dependence that was originally
11// developed for the loop vectorizer.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/LoopAccessAnalysis.h"
16#include "llvm/Analysis/LoopInfo.h"
17#include "llvm/Analysis/ScalarEvolutionExpander.h"
18#include "llvm/Analysis/TargetLibraryInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/IR/DiagnosticInfo.h"
21#include "llvm/IR/Dominators.h"
22#include "llvm/IR/IRBuilder.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Analysis/VectorUtils.h"
26using namespace llvm;
27
28#define DEBUG_TYPE "loop-accesses"
29
30static cl::opt<unsigned, true>
31VectorizationFactor("force-vector-width", cl::Hidden,
32                    cl::desc("Sets the SIMD width. Zero is autoselect."),
33                    cl::location(VectorizerParams::VectorizationFactor));
34unsigned VectorizerParams::VectorizationFactor;
35
36static cl::opt<unsigned, true>
37VectorizationInterleave("force-vector-interleave", cl::Hidden,
38                        cl::desc("Sets the vectorization interleave count. "
39                                 "Zero is autoselect."),
40                        cl::location(
41                            VectorizerParams::VectorizationInterleave));
42unsigned VectorizerParams::VectorizationInterleave;
43
44static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
45    "runtime-memory-check-threshold", cl::Hidden,
46    cl::desc("When performing memory disambiguation checks at runtime do not "
47             "generate more than this number of comparisons (default = 8)."),
48    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
49unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
50
51/// \brief The maximum iterations used to merge memory checks
52static cl::opt<unsigned> MemoryCheckMergeThreshold(
53    "memory-check-merge-threshold", cl::Hidden,
54    cl::desc("Maximum number of comparisons done when trying to merge "
55             "runtime memory checks. (default = 100)"),
56    cl::init(100));
57
58/// Maximum SIMD width.
59const unsigned VectorizerParams::MaxVectorWidth = 64;
60
61/// \brief We collect dependences up to this threshold.
62static cl::opt<unsigned>
63    MaxDependences("max-dependences", cl::Hidden,
64                   cl::desc("Maximum number of dependences collected by "
65                            "loop-access analysis (default = 100)"),
66                   cl::init(100));
67
68bool VectorizerParams::isInterleaveForced() {
69  return ::VectorizationInterleave.getNumOccurrences() > 0;
70}
71
72void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
73                                    const Function *TheFunction,
74                                    const Loop *TheLoop,
75                                    const char *PassName) {
76  DebugLoc DL = TheLoop->getStartLoc();
77  if (const Instruction *I = Message.getInstr())
78    DL = I->getDebugLoc();
79  emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
80                                 *TheFunction, DL, Message.str());
81}
82
83Value *llvm::stripIntegerCast(Value *V) {
84  if (CastInst *CI = dyn_cast<CastInst>(V))
85    if (CI->getOperand(0)->getType()->isIntegerTy())
86      return CI->getOperand(0);
87  return V;
88}
89
90const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
91                                            const ValueToValueMap &PtrToStride,
92                                            Value *Ptr, Value *OrigPtr) {
93  const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
94
95  // If there is an entry in the map return the SCEV of the pointer with the
96  // symbolic stride replaced by one.
97  ValueToValueMap::const_iterator SI =
98      PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
99  if (SI != PtrToStride.end()) {
100    Value *StrideVal = SI->second;
101
102    // Strip casts.
103    StrideVal = stripIntegerCast(StrideVal);
104
105    // Replace symbolic stride by one.
106    Value *One = ConstantInt::get(StrideVal->getType(), 1);
107    ValueToValueMap RewriteMap;
108    RewriteMap[StrideVal] = One;
109
110    ScalarEvolution *SE = PSE.getSE();
111    const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
112    const auto *CT =
113        static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
114
115    PSE.addPredicate(*SE->getEqualPredicate(U, CT));
116    auto *Expr = PSE.getSCEV(Ptr);
117
118    DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
119                 << "\n");
120    return Expr;
121  }
122
123  // Otherwise, just return the SCEV of the original pointer.
124  return OrigSCEV;
125}
126
127void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
128                                    unsigned DepSetId, unsigned ASId,
129                                    const ValueToValueMap &Strides,
130                                    PredicatedScalarEvolution &PSE) {
131  // Get the stride replaced scev.
132  const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
133  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
134  assert(AR && "Invalid addrec expression");
135  ScalarEvolution *SE = PSE.getSE();
136  const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
137
138  const SCEV *ScStart = AR->getStart();
139  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
140  const SCEV *Step = AR->getStepRecurrence(*SE);
141
142  // For expressions with negative step, the upper bound is ScStart and the
143  // lower bound is ScEnd.
144  if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
145    if (CStep->getValue()->isNegative())
146      std::swap(ScStart, ScEnd);
147  } else {
148    // Fallback case: the step is not constant, but the we can still
149    // get the upper and lower bounds of the interval by using min/max
150    // expressions.
151    ScStart = SE->getUMinExpr(ScStart, ScEnd);
152    ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
153  }
154
155  Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
156}
157
158SmallVector<RuntimePointerChecking::PointerCheck, 4>
159RuntimePointerChecking::generateChecks() const {
160  SmallVector<PointerCheck, 4> Checks;
161
162  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
163    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
164      const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
165      const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
166
167      if (needsChecking(CGI, CGJ))
168        Checks.push_back(std::make_pair(&CGI, &CGJ));
169    }
170  }
171  return Checks;
172}
173
174void RuntimePointerChecking::generateChecks(
175    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
176  assert(Checks.empty() && "Checks is not empty");
177  groupChecks(DepCands, UseDependencies);
178  Checks = generateChecks();
179}
180
181bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
182                                           const CheckingPtrGroup &N) const {
183  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
184    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
185      if (needsChecking(M.Members[I], N.Members[J]))
186        return true;
187  return false;
188}
189
190/// Compare \p I and \p J and return the minimum.
191/// Return nullptr in case we couldn't find an answer.
192static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
193                                   ScalarEvolution *SE) {
194  const SCEV *Diff = SE->getMinusSCEV(J, I);
195  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
196
197  if (!C)
198    return nullptr;
199  if (C->getValue()->isNegative())
200    return J;
201  return I;
202}
203
204bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
205  const SCEV *Start = RtCheck.Pointers[Index].Start;
206  const SCEV *End = RtCheck.Pointers[Index].End;
207
208  // Compare the starts and ends with the known minimum and maximum
209  // of this set. We need to know how we compare against the min/max
210  // of the set in order to be able to emit memchecks.
211  const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
212  if (!Min0)
213    return false;
214
215  const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
216  if (!Min1)
217    return false;
218
219  // Update the low bound  expression if we've found a new min value.
220  if (Min0 == Start)
221    Low = Start;
222
223  // Update the high bound expression if we've found a new max value.
224  if (Min1 != End)
225    High = End;
226
227  Members.push_back(Index);
228  return true;
229}
230
231void RuntimePointerChecking::groupChecks(
232    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
233  // We build the groups from dependency candidates equivalence classes
234  // because:
235  //    - We know that pointers in the same equivalence class share
236  //      the same underlying object and therefore there is a chance
237  //      that we can compare pointers
238  //    - We wouldn't be able to merge two pointers for which we need
239  //      to emit a memcheck. The classes in DepCands are already
240  //      conveniently built such that no two pointers in the same
241  //      class need checking against each other.
242
243  // We use the following (greedy) algorithm to construct the groups
244  // For every pointer in the equivalence class:
245  //   For each existing group:
246  //   - if the difference between this pointer and the min/max bounds
247  //     of the group is a constant, then make the pointer part of the
248  //     group and update the min/max bounds of that group as required.
249
250  CheckingGroups.clear();
251
252  // If we need to check two pointers to the same underlying object
253  // with a non-constant difference, we shouldn't perform any pointer
254  // grouping with those pointers. This is because we can easily get
255  // into cases where the resulting check would return false, even when
256  // the accesses are safe.
257  //
258  // The following example shows this:
259  // for (i = 0; i < 1000; ++i)
260  //   a[5000 + i * m] = a[i] + a[i + 9000]
261  //
262  // Here grouping gives a check of (5000, 5000 + 1000 * m) against
263  // (0, 10000) which is always false. However, if m is 1, there is no
264  // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
265  // us to perform an accurate check in this case.
266  //
267  // The above case requires that we have an UnknownDependence between
268  // accesses to the same underlying object. This cannot happen unless
269  // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
270  // is also false. In this case we will use the fallback path and create
271  // separate checking groups for all pointers.
272
273  // If we don't have the dependency partitions, construct a new
274  // checking pointer group for each pointer. This is also required
275  // for correctness, because in this case we can have checking between
276  // pointers to the same underlying object.
277  if (!UseDependencies) {
278    for (unsigned I = 0; I < Pointers.size(); ++I)
279      CheckingGroups.push_back(CheckingPtrGroup(I, *this));
280    return;
281  }
282
283  unsigned TotalComparisons = 0;
284
285  DenseMap<Value *, unsigned> PositionMap;
286  for (unsigned Index = 0; Index < Pointers.size(); ++Index)
287    PositionMap[Pointers[Index].PointerValue] = Index;
288
289  // We need to keep track of what pointers we've already seen so we
290  // don't process them twice.
291  SmallSet<unsigned, 2> Seen;
292
293  // Go through all equivalence classes, get the "pointer check groups"
294  // and add them to the overall solution. We use the order in which accesses
295  // appear in 'Pointers' to enforce determinism.
296  for (unsigned I = 0; I < Pointers.size(); ++I) {
297    // We've seen this pointer before, and therefore already processed
298    // its equivalence class.
299    if (Seen.count(I))
300      continue;
301
302    MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
303                                           Pointers[I].IsWritePtr);
304
305    SmallVector<CheckingPtrGroup, 2> Groups;
306    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
307
308    // Because DepCands is constructed by visiting accesses in the order in
309    // which they appear in alias sets (which is deterministic) and the
310    // iteration order within an equivalence class member is only dependent on
311    // the order in which unions and insertions are performed on the
312    // equivalence class, the iteration order is deterministic.
313    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
314         MI != ME; ++MI) {
315      unsigned Pointer = PositionMap[MI->getPointer()];
316      bool Merged = false;
317      // Mark this pointer as seen.
318      Seen.insert(Pointer);
319
320      // Go through all the existing sets and see if we can find one
321      // which can include this pointer.
322      for (CheckingPtrGroup &Group : Groups) {
323        // Don't perform more than a certain amount of comparisons.
324        // This should limit the cost of grouping the pointers to something
325        // reasonable.  If we do end up hitting this threshold, the algorithm
326        // will create separate groups for all remaining pointers.
327        if (TotalComparisons > MemoryCheckMergeThreshold)
328          break;
329
330        TotalComparisons++;
331
332        if (Group.addPointer(Pointer)) {
333          Merged = true;
334          break;
335        }
336      }
337
338      if (!Merged)
339        // We couldn't add this pointer to any existing set or the threshold
340        // for the number of comparisons has been reached. Create a new group
341        // to hold the current pointer.
342        Groups.push_back(CheckingPtrGroup(Pointer, *this));
343    }
344
345    // We've computed the grouped checks for this partition.
346    // Save the results and continue with the next one.
347    std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
348  }
349}
350
351bool RuntimePointerChecking::arePointersInSamePartition(
352    const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
353    unsigned PtrIdx2) {
354  return (PtrToPartition[PtrIdx1] != -1 &&
355          PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
356}
357
358bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
359  const PointerInfo &PointerI = Pointers[I];
360  const PointerInfo &PointerJ = Pointers[J];
361
362  // No need to check if two readonly pointers intersect.
363  if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
364    return false;
365
366  // Only need to check pointers between two different dependency sets.
367  if (PointerI.DependencySetId == PointerJ.DependencySetId)
368    return false;
369
370  // Only need to check pointers in the same alias set.
371  if (PointerI.AliasSetId != PointerJ.AliasSetId)
372    return false;
373
374  return true;
375}
376
377void RuntimePointerChecking::printChecks(
378    raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
379    unsigned Depth) const {
380  unsigned N = 0;
381  for (const auto &Check : Checks) {
382    const auto &First = Check.first->Members, &Second = Check.second->Members;
383
384    OS.indent(Depth) << "Check " << N++ << ":\n";
385
386    OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
387    for (unsigned K = 0; K < First.size(); ++K)
388      OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
389
390    OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
391    for (unsigned K = 0; K < Second.size(); ++K)
392      OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
393  }
394}
395
396void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
397
398  OS.indent(Depth) << "Run-time memory checks:\n";
399  printChecks(OS, Checks, Depth);
400
401  OS.indent(Depth) << "Grouped accesses:\n";
402  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
403    const auto &CG = CheckingGroups[I];
404
405    OS.indent(Depth + 2) << "Group " << &CG << ":\n";
406    OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
407                         << ")\n";
408    for (unsigned J = 0; J < CG.Members.size(); ++J) {
409      OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
410                           << "\n";
411    }
412  }
413}
414
415namespace {
416/// \brief Analyses memory accesses in a loop.
417///
418/// Checks whether run time pointer checks are needed and builds sets for data
419/// dependence checking.
420class AccessAnalysis {
421public:
422  /// \brief Read or write access location.
423  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
424  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
425
426  AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
427                 MemoryDepChecker::DepCandidates &DA,
428                 PredicatedScalarEvolution &PSE)
429      : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
430        PSE(PSE) {}
431
432  /// \brief Register a load  and whether it is only read from.
433  void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
434    Value *Ptr = const_cast<Value*>(Loc.Ptr);
435    AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
436    Accesses.insert(MemAccessInfo(Ptr, false));
437    if (IsReadOnly)
438      ReadOnlyPtr.insert(Ptr);
439  }
440
441  /// \brief Register a store.
442  void addStore(MemoryLocation &Loc) {
443    Value *Ptr = const_cast<Value*>(Loc.Ptr);
444    AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
445    Accesses.insert(MemAccessInfo(Ptr, true));
446  }
447
448  /// \brief Check whether we can check the pointers at runtime for
449  /// non-intersection.
450  ///
451  /// Returns true if we need no check or if we do and we can generate them
452  /// (i.e. the pointers have computable bounds).
453  bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
454                       Loop *TheLoop, const ValueToValueMap &Strides,
455                       bool ShouldCheckStride = false);
456
457  /// \brief Goes over all memory accesses, checks whether a RT check is needed
458  /// and builds sets of dependent accesses.
459  void buildDependenceSets() {
460    processMemAccesses();
461  }
462
463  /// \brief Initial processing of memory accesses determined that we need to
464  /// perform dependency checking.
465  ///
466  /// Note that this can later be cleared if we retry memcheck analysis without
467  /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
468  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
469
470  /// We decided that no dependence analysis would be used.  Reset the state.
471  void resetDepChecks(MemoryDepChecker &DepChecker) {
472    CheckDeps.clear();
473    DepChecker.clearDependences();
474  }
475
476  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
477
478private:
479  typedef SetVector<MemAccessInfo> PtrAccessSet;
480
481  /// \brief Go over all memory access and check whether runtime pointer checks
482  /// are needed and build sets of dependency check candidates.
483  void processMemAccesses();
484
485  /// Set of all accesses.
486  PtrAccessSet Accesses;
487
488  const DataLayout &DL;
489
490  /// Set of accesses that need a further dependence check.
491  MemAccessInfoSet CheckDeps;
492
493  /// Set of pointers that are read only.
494  SmallPtrSet<Value*, 16> ReadOnlyPtr;
495
496  /// An alias set tracker to partition the access set by underlying object and
497  //intrinsic property (such as TBAA metadata).
498  AliasSetTracker AST;
499
500  LoopInfo *LI;
501
502  /// Sets of potentially dependent accesses - members of one set share an
503  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
504  /// dependence check.
505  MemoryDepChecker::DepCandidates &DepCands;
506
507  /// \brief Initial processing of memory accesses determined that we may need
508  /// to add memchecks.  Perform the analysis to determine the necessary checks.
509  ///
510  /// Note that, this is different from isDependencyCheckNeeded.  When we retry
511  /// memcheck analysis without dependency checking
512  /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
513  /// while this remains set if we have potentially dependent accesses.
514  bool IsRTCheckAnalysisNeeded;
515
516  /// The SCEV predicate containing all the SCEV-related assumptions.
517  PredicatedScalarEvolution &PSE;
518};
519
520} // end anonymous namespace
521
522/// \brief Check whether a pointer can participate in a runtime bounds check.
523static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
524                                const ValueToValueMap &Strides, Value *Ptr,
525                                Loop *L) {
526  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
527  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
528  if (!AR)
529    return false;
530
531  return AR->isAffine();
532}
533
534bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
535                                     ScalarEvolution *SE, Loop *TheLoop,
536                                     const ValueToValueMap &StridesMap,
537                                     bool ShouldCheckStride) {
538  // Find pointers with computable bounds. We are going to use this information
539  // to place a runtime bound check.
540  bool CanDoRT = true;
541
542  bool NeedRTCheck = false;
543  if (!IsRTCheckAnalysisNeeded) return true;
544
545  bool IsDepCheckNeeded = isDependencyCheckNeeded();
546
547  // We assign a consecutive id to access from different alias sets.
548  // Accesses between different groups doesn't need to be checked.
549  unsigned ASId = 1;
550  for (auto &AS : AST) {
551    int NumReadPtrChecks = 0;
552    int NumWritePtrChecks = 0;
553
554    // We assign consecutive id to access from different dependence sets.
555    // Accesses within the same set don't need a runtime check.
556    unsigned RunningDepId = 1;
557    DenseMap<Value *, unsigned> DepSetId;
558
559    for (auto A : AS) {
560      Value *Ptr = A.getValue();
561      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
562      MemAccessInfo Access(Ptr, IsWrite);
563
564      if (IsWrite)
565        ++NumWritePtrChecks;
566      else
567        ++NumReadPtrChecks;
568
569      if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
570          // When we run after a failing dependency check we have to make sure
571          // we don't have wrapping pointers.
572          (!ShouldCheckStride ||
573           isStridedPtr(PSE, Ptr, TheLoop, StridesMap) == 1)) {
574        // The id of the dependence set.
575        unsigned DepId;
576
577        if (IsDepCheckNeeded) {
578          Value *Leader = DepCands.getLeaderValue(Access).getPointer();
579          unsigned &LeaderId = DepSetId[Leader];
580          if (!LeaderId)
581            LeaderId = RunningDepId++;
582          DepId = LeaderId;
583        } else
584          // Each access has its own dependence set.
585          DepId = RunningDepId++;
586
587        RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
588
589        DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
590      } else {
591        DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
592        CanDoRT = false;
593      }
594    }
595
596    // If we have at least two writes or one write and a read then we need to
597    // check them.  But there is no need to checks if there is only one
598    // dependence set for this alias set.
599    //
600    // Note that this function computes CanDoRT and NeedRTCheck independently.
601    // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
602    // for which we couldn't find the bounds but we don't actually need to emit
603    // any checks so it does not matter.
604    if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
605      NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
606                                                 NumWritePtrChecks >= 1));
607
608    ++ASId;
609  }
610
611  // If the pointers that we would use for the bounds comparison have different
612  // address spaces, assume the values aren't directly comparable, so we can't
613  // use them for the runtime check. We also have to assume they could
614  // overlap. In the future there should be metadata for whether address spaces
615  // are disjoint.
616  unsigned NumPointers = RtCheck.Pointers.size();
617  for (unsigned i = 0; i < NumPointers; ++i) {
618    for (unsigned j = i + 1; j < NumPointers; ++j) {
619      // Only need to check pointers between two different dependency sets.
620      if (RtCheck.Pointers[i].DependencySetId ==
621          RtCheck.Pointers[j].DependencySetId)
622       continue;
623      // Only need to check pointers in the same alias set.
624      if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
625        continue;
626
627      Value *PtrI = RtCheck.Pointers[i].PointerValue;
628      Value *PtrJ = RtCheck.Pointers[j].PointerValue;
629
630      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
631      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
632      if (ASi != ASj) {
633        DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
634                       " different address spaces\n");
635        return false;
636      }
637    }
638  }
639
640  if (NeedRTCheck && CanDoRT)
641    RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
642
643  DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
644               << " pointer comparisons.\n");
645
646  RtCheck.Need = NeedRTCheck;
647
648  bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
649  if (!CanDoRTIfNeeded)
650    RtCheck.reset();
651  return CanDoRTIfNeeded;
652}
653
654void AccessAnalysis::processMemAccesses() {
655  // We process the set twice: first we process read-write pointers, last we
656  // process read-only pointers. This allows us to skip dependence tests for
657  // read-only pointers.
658
659  DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
660  DEBUG(dbgs() << "  AST: "; AST.dump());
661  DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
662  DEBUG({
663    for (auto A : Accesses)
664      dbgs() << "\t" << *A.getPointer() << " (" <<
665                (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
666                                         "read-only" : "read")) << ")\n";
667  });
668
669  // The AliasSetTracker has nicely partitioned our pointers by metadata
670  // compatibility and potential for underlying-object overlap. As a result, we
671  // only need to check for potential pointer dependencies within each alias
672  // set.
673  for (auto &AS : AST) {
674    // Note that both the alias-set tracker and the alias sets themselves used
675    // linked lists internally and so the iteration order here is deterministic
676    // (matching the original instruction order within each set).
677
678    bool SetHasWrite = false;
679
680    // Map of pointers to last access encountered.
681    typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
682    UnderlyingObjToAccessMap ObjToLastAccess;
683
684    // Set of access to check after all writes have been processed.
685    PtrAccessSet DeferredAccesses;
686
687    // Iterate over each alias set twice, once to process read/write pointers,
688    // and then to process read-only pointers.
689    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
690      bool UseDeferred = SetIteration > 0;
691      PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
692
693      for (auto AV : AS) {
694        Value *Ptr = AV.getValue();
695
696        // For a single memory access in AliasSetTracker, Accesses may contain
697        // both read and write, and they both need to be handled for CheckDeps.
698        for (auto AC : S) {
699          if (AC.getPointer() != Ptr)
700            continue;
701
702          bool IsWrite = AC.getInt();
703
704          // If we're using the deferred access set, then it contains only
705          // reads.
706          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
707          if (UseDeferred && !IsReadOnlyPtr)
708            continue;
709          // Otherwise, the pointer must be in the PtrAccessSet, either as a
710          // read or a write.
711          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
712                  S.count(MemAccessInfo(Ptr, false))) &&
713                 "Alias-set pointer not in the access set?");
714
715          MemAccessInfo Access(Ptr, IsWrite);
716          DepCands.insert(Access);
717
718          // Memorize read-only pointers for later processing and skip them in
719          // the first round (they need to be checked after we have seen all
720          // write pointers). Note: we also mark pointer that are not
721          // consecutive as "read-only" pointers (so that we check
722          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
723          if (!UseDeferred && IsReadOnlyPtr) {
724            DeferredAccesses.insert(Access);
725            continue;
726          }
727
728          // If this is a write - check other reads and writes for conflicts. If
729          // this is a read only check other writes for conflicts (but only if
730          // there is no other write to the ptr - this is an optimization to
731          // catch "a[i] = a[i] + " without having to do a dependence check).
732          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
733            CheckDeps.insert(Access);
734            IsRTCheckAnalysisNeeded = true;
735          }
736
737          if (IsWrite)
738            SetHasWrite = true;
739
740          // Create sets of pointers connected by a shared alias set and
741          // underlying object.
742          typedef SmallVector<Value *, 16> ValueVector;
743          ValueVector TempObjects;
744
745          GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
746          DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
747          for (Value *UnderlyingObj : TempObjects) {
748            // nullptr never alias, don't join sets for pointer that have "null"
749            // in their UnderlyingObjects list.
750            if (isa<ConstantPointerNull>(UnderlyingObj))
751              continue;
752
753            UnderlyingObjToAccessMap::iterator Prev =
754                ObjToLastAccess.find(UnderlyingObj);
755            if (Prev != ObjToLastAccess.end())
756              DepCands.unionSets(Access, Prev->second);
757
758            ObjToLastAccess[UnderlyingObj] = Access;
759            DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
760          }
761        }
762      }
763    }
764  }
765}
766
767static bool isInBoundsGep(Value *Ptr) {
768  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
769    return GEP->isInBounds();
770  return false;
771}
772
773/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
774/// i.e. monotonically increasing/decreasing.
775static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
776                           ScalarEvolution *SE, const Loop *L) {
777  // FIXME: This should probably only return true for NUW.
778  if (AR->getNoWrapFlags(SCEV::NoWrapMask))
779    return true;
780
781  // Scalar evolution does not propagate the non-wrapping flags to values that
782  // are derived from a non-wrapping induction variable because non-wrapping
783  // could be flow-sensitive.
784  //
785  // Look through the potentially overflowing instruction to try to prove
786  // non-wrapping for the *specific* value of Ptr.
787
788  // The arithmetic implied by an inbounds GEP can't overflow.
789  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
790  if (!GEP || !GEP->isInBounds())
791    return false;
792
793  // Make sure there is only one non-const index and analyze that.
794  Value *NonConstIndex = nullptr;
795  for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
796    if (!isa<ConstantInt>(*Index)) {
797      if (NonConstIndex)
798        return false;
799      NonConstIndex = *Index;
800    }
801  if (!NonConstIndex)
802    // The recurrence is on the pointer, ignore for now.
803    return false;
804
805  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
806  // AddRec using a NSW operation.
807  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
808    if (OBO->hasNoSignedWrap() &&
809        // Assume constant for other the operand so that the AddRec can be
810        // easily found.
811        isa<ConstantInt>(OBO->getOperand(1))) {
812      auto *OpScev = SE->getSCEV(OBO->getOperand(0));
813
814      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
815        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
816    }
817
818  return false;
819}
820
821/// \brief Check whether the access through \p Ptr has a constant stride.
822int llvm::isStridedPtr(PredicatedScalarEvolution &PSE, Value *Ptr,
823                       const Loop *Lp, const ValueToValueMap &StridesMap) {
824  Type *Ty = Ptr->getType();
825  assert(Ty->isPointerTy() && "Unexpected non-ptr");
826
827  // Make sure that the pointer does not point to aggregate types.
828  auto *PtrTy = cast<PointerType>(Ty);
829  if (PtrTy->getElementType()->isAggregateType()) {
830    DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
831          << *Ptr << "\n");
832    return 0;
833  }
834
835  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
836
837  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
838  if (!AR) {
839    DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
840          << *Ptr << " SCEV: " << *PtrScev << "\n");
841    return 0;
842  }
843
844  // The accesss function must stride over the innermost loop.
845  if (Lp != AR->getLoop()) {
846    DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
847          *Ptr << " SCEV: " << *PtrScev << "\n");
848  }
849
850  // The address calculation must not wrap. Otherwise, a dependence could be
851  // inverted.
852  // An inbounds getelementptr that is a AddRec with a unit stride
853  // cannot wrap per definition. The unit stride requirement is checked later.
854  // An getelementptr without an inbounds attribute and unit stride would have
855  // to access the pointer value "0" which is undefined behavior in address
856  // space 0, therefore we can also vectorize this case.
857  bool IsInBoundsGEP = isInBoundsGep(Ptr);
858  bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, PSE.getSE(), Lp);
859  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
860  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
861    DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
862                 << *Ptr << " SCEV: " << *PtrScev << "\n");
863    return 0;
864  }
865
866  // Check the step is constant.
867  const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
868
869  // Calculate the pointer stride and check if it is constant.
870  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
871  if (!C) {
872    DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
873          " SCEV: " << *PtrScev << "\n");
874    return 0;
875  }
876
877  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
878  int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
879  const APInt &APStepVal = C->getAPInt();
880
881  // Huge step value - give up.
882  if (APStepVal.getBitWidth() > 64)
883    return 0;
884
885  int64_t StepVal = APStepVal.getSExtValue();
886
887  // Strided access.
888  int64_t Stride = StepVal / Size;
889  int64_t Rem = StepVal % Size;
890  if (Rem)
891    return 0;
892
893  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
894  // know we can't "wrap around the address space". In case of address space
895  // zero we know that this won't happen without triggering undefined behavior.
896  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
897      Stride != 1 && Stride != -1)
898    return 0;
899
900  return Stride;
901}
902
903bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
904  switch (Type) {
905  case NoDep:
906  case Forward:
907  case BackwardVectorizable:
908    return true;
909
910  case Unknown:
911  case ForwardButPreventsForwarding:
912  case Backward:
913  case BackwardVectorizableButPreventsForwarding:
914    return false;
915  }
916  llvm_unreachable("unexpected DepType!");
917}
918
919bool MemoryDepChecker::Dependence::isBackward() const {
920  switch (Type) {
921  case NoDep:
922  case Forward:
923  case ForwardButPreventsForwarding:
924  case Unknown:
925    return false;
926
927  case BackwardVectorizable:
928  case Backward:
929  case BackwardVectorizableButPreventsForwarding:
930    return true;
931  }
932  llvm_unreachable("unexpected DepType!");
933}
934
935bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
936  return isBackward() || Type == Unknown;
937}
938
939bool MemoryDepChecker::Dependence::isForward() const {
940  switch (Type) {
941  case Forward:
942  case ForwardButPreventsForwarding:
943    return true;
944
945  case NoDep:
946  case Unknown:
947  case BackwardVectorizable:
948  case Backward:
949  case BackwardVectorizableButPreventsForwarding:
950    return false;
951  }
952  llvm_unreachable("unexpected DepType!");
953}
954
955bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
956                                                    unsigned TypeByteSize) {
957  // If loads occur at a distance that is not a multiple of a feasible vector
958  // factor store-load forwarding does not take place.
959  // Positive dependences might cause troubles because vectorizing them might
960  // prevent store-load forwarding making vectorized code run a lot slower.
961  //   a[i] = a[i-3] ^ a[i-8];
962  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
963  //   hence on your typical architecture store-load forwarding does not take
964  //   place. Vectorizing in such cases does not make sense.
965  // Store-load forwarding distance.
966  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
967  // Maximum vector factor.
968  unsigned MaxVFWithoutSLForwardIssues =
969    VectorizerParams::MaxVectorWidth * TypeByteSize;
970  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
971    MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
972
973  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
974       vf *= 2) {
975    if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
976      MaxVFWithoutSLForwardIssues = (vf >>=1);
977      break;
978    }
979  }
980
981  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
982    DEBUG(dbgs() << "LAA: Distance " << Distance <<
983          " that could cause a store-load forwarding conflict\n");
984    return true;
985  }
986
987  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
988      MaxVFWithoutSLForwardIssues !=
989      VectorizerParams::MaxVectorWidth * TypeByteSize)
990    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
991  return false;
992}
993
994/// \brief Check the dependence for two accesses with the same stride \p Stride.
995/// \p Distance is the positive distance and \p TypeByteSize is type size in
996/// bytes.
997///
998/// \returns true if they are independent.
999static bool areStridedAccessesIndependent(unsigned Distance, unsigned Stride,
1000                                          unsigned TypeByteSize) {
1001  assert(Stride > 1 && "The stride must be greater than 1");
1002  assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1003  assert(Distance > 0 && "The distance must be non-zero");
1004
1005  // Skip if the distance is not multiple of type byte size.
1006  if (Distance % TypeByteSize)
1007    return false;
1008
1009  unsigned ScaledDist = Distance / TypeByteSize;
1010
1011  // No dependence if the scaled distance is not multiple of the stride.
1012  // E.g.
1013  //      for (i = 0; i < 1024 ; i += 4)
1014  //        A[i+2] = A[i] + 1;
1015  //
1016  // Two accesses in memory (scaled distance is 2, stride is 4):
1017  //     | A[0] |      |      |      | A[4] |      |      |      |
1018  //     |      |      | A[2] |      |      |      | A[6] |      |
1019  //
1020  // E.g.
1021  //      for (i = 0; i < 1024 ; i += 3)
1022  //        A[i+4] = A[i] + 1;
1023  //
1024  // Two accesses in memory (scaled distance is 4, stride is 3):
1025  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1026  //     |      |      |      |      | A[4] |      |      | A[7] |      |
1027  return ScaledDist % Stride;
1028}
1029
1030MemoryDepChecker::Dependence::DepType
1031MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1032                              const MemAccessInfo &B, unsigned BIdx,
1033                              const ValueToValueMap &Strides) {
1034  assert (AIdx < BIdx && "Must pass arguments in program order");
1035
1036  Value *APtr = A.getPointer();
1037  Value *BPtr = B.getPointer();
1038  bool AIsWrite = A.getInt();
1039  bool BIsWrite = B.getInt();
1040
1041  // Two reads are independent.
1042  if (!AIsWrite && !BIsWrite)
1043    return Dependence::NoDep;
1044
1045  // We cannot check pointers in different address spaces.
1046  if (APtr->getType()->getPointerAddressSpace() !=
1047      BPtr->getType()->getPointerAddressSpace())
1048    return Dependence::Unknown;
1049
1050  const SCEV *AScev = replaceSymbolicStrideSCEV(PSE, Strides, APtr);
1051  const SCEV *BScev = replaceSymbolicStrideSCEV(PSE, Strides, BPtr);
1052
1053  int StrideAPtr = isStridedPtr(PSE, APtr, InnermostLoop, Strides);
1054  int StrideBPtr = isStridedPtr(PSE, BPtr, InnermostLoop, Strides);
1055
1056  const SCEV *Src = AScev;
1057  const SCEV *Sink = BScev;
1058
1059  // If the induction step is negative we have to invert source and sink of the
1060  // dependence.
1061  if (StrideAPtr < 0) {
1062    //Src = BScev;
1063    //Sink = AScev;
1064    std::swap(APtr, BPtr);
1065    std::swap(Src, Sink);
1066    std::swap(AIsWrite, BIsWrite);
1067    std::swap(AIdx, BIdx);
1068    std::swap(StrideAPtr, StrideBPtr);
1069  }
1070
1071  const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1072
1073  DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1074               << "(Induction step: " << StrideAPtr << ")\n");
1075  DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1076               << *InstMap[BIdx] << ": " << *Dist << "\n");
1077
1078  // Need accesses with constant stride. We don't want to vectorize
1079  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1080  // the address space.
1081  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1082    DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1083    return Dependence::Unknown;
1084  }
1085
1086  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1087  if (!C) {
1088    DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1089    ShouldRetryWithRuntimeCheck = true;
1090    return Dependence::Unknown;
1091  }
1092
1093  Type *ATy = APtr->getType()->getPointerElementType();
1094  Type *BTy = BPtr->getType()->getPointerElementType();
1095  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1096  unsigned TypeByteSize = DL.getTypeAllocSize(ATy);
1097
1098  // Negative distances are not plausible dependencies.
1099  const APInt &Val = C->getAPInt();
1100  if (Val.isNegative()) {
1101    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1102    if (IsTrueDataDependence &&
1103        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1104         ATy != BTy))
1105      return Dependence::ForwardButPreventsForwarding;
1106
1107    DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
1108    return Dependence::Forward;
1109  }
1110
1111  // Write to the same location with the same size.
1112  // Could be improved to assert type sizes are the same (i32 == float, etc).
1113  if (Val == 0) {
1114    if (ATy == BTy)
1115      return Dependence::Forward;
1116    DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
1117    return Dependence::Unknown;
1118  }
1119
1120  assert(Val.isStrictlyPositive() && "Expect a positive value");
1121
1122  if (ATy != BTy) {
1123    DEBUG(dbgs() <<
1124          "LAA: ReadWrite-Write positive dependency with different types\n");
1125    return Dependence::Unknown;
1126  }
1127
1128  unsigned Distance = (unsigned) Val.getZExtValue();
1129
1130  unsigned Stride = std::abs(StrideAPtr);
1131  if (Stride > 1 &&
1132      areStridedAccessesIndependent(Distance, Stride, TypeByteSize)) {
1133    DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1134    return Dependence::NoDep;
1135  }
1136
1137  // Bail out early if passed-in parameters make vectorization not feasible.
1138  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1139                           VectorizerParams::VectorizationFactor : 1);
1140  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1141                           VectorizerParams::VectorizationInterleave : 1);
1142  // The minimum number of iterations for a vectorized/unrolled version.
1143  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1144
1145  // It's not vectorizable if the distance is smaller than the minimum distance
1146  // needed for a vectroized/unrolled version. Vectorizing one iteration in
1147  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1148  // TypeByteSize (No need to plus the last gap distance).
1149  //
1150  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1151  //      foo(int *A) {
1152  //        int *B = (int *)((char *)A + 14);
1153  //        for (i = 0 ; i < 1024 ; i += 2)
1154  //          B[i] = A[i] + 1;
1155  //      }
1156  //
1157  // Two accesses in memory (stride is 2):
1158  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1159  //                              | B[0] |      | B[2] |      | B[4] |
1160  //
1161  // Distance needs for vectorizing iterations except the last iteration:
1162  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1163  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1164  //
1165  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1166  // 12, which is less than distance.
1167  //
1168  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1169  // the minimum distance needed is 28, which is greater than distance. It is
1170  // not safe to do vectorization.
1171  unsigned MinDistanceNeeded =
1172      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1173  if (MinDistanceNeeded > Distance) {
1174    DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
1175                 << '\n');
1176    return Dependence::Backward;
1177  }
1178
1179  // Unsafe if the minimum distance needed is greater than max safe distance.
1180  if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1181    DEBUG(dbgs() << "LAA: Failure because it needs at least "
1182                 << MinDistanceNeeded << " size in bytes");
1183    return Dependence::Backward;
1184  }
1185
1186  // Positive distance bigger than max vectorization factor.
1187  // FIXME: Should use max factor instead of max distance in bytes, which could
1188  // not handle different types.
1189  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1190  //      void foo (int *A, char *B) {
1191  //        for (unsigned i = 0; i < 1024; i++) {
1192  //          A[i+2] = A[i] + 1;
1193  //          B[i+2] = B[i] + 1;
1194  //        }
1195  //      }
1196  //
1197  // This case is currently unsafe according to the max safe distance. If we
1198  // analyze the two accesses on array B, the max safe dependence distance
1199  // is 2. Then we analyze the accesses on array A, the minimum distance needed
1200  // is 8, which is less than 2 and forbidden vectorization, But actually
1201  // both A and B could be vectorized by 2 iterations.
1202  MaxSafeDepDistBytes =
1203      Distance < MaxSafeDepDistBytes ? Distance : MaxSafeDepDistBytes;
1204
1205  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1206  if (IsTrueDataDependence &&
1207      couldPreventStoreLoadForward(Distance, TypeByteSize))
1208    return Dependence::BackwardVectorizableButPreventsForwarding;
1209
1210  DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1211               << " with max VF = "
1212               << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
1213
1214  return Dependence::BackwardVectorizable;
1215}
1216
1217bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1218                                   MemAccessInfoSet &CheckDeps,
1219                                   const ValueToValueMap &Strides) {
1220
1221  MaxSafeDepDistBytes = -1U;
1222  while (!CheckDeps.empty()) {
1223    MemAccessInfo CurAccess = *CheckDeps.begin();
1224
1225    // Get the relevant memory access set.
1226    EquivalenceClasses<MemAccessInfo>::iterator I =
1227      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1228
1229    // Check accesses within this set.
1230    EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
1231    AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
1232
1233    // Check every access pair.
1234    while (AI != AE) {
1235      CheckDeps.erase(*AI);
1236      EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
1237      while (OI != AE) {
1238        // Check every accessing instruction pair in program order.
1239        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1240             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1241          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
1242               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
1243            auto A = std::make_pair(&*AI, *I1);
1244            auto B = std::make_pair(&*OI, *I2);
1245
1246            assert(*I1 != *I2);
1247            if (*I1 > *I2)
1248              std::swap(A, B);
1249
1250            Dependence::DepType Type =
1251                isDependent(*A.first, A.second, *B.first, B.second, Strides);
1252            SafeForVectorization &= Dependence::isSafeForVectorization(Type);
1253
1254            // Gather dependences unless we accumulated MaxDependences
1255            // dependences.  In that case return as soon as we find the first
1256            // unsafe dependence.  This puts a limit on this quadratic
1257            // algorithm.
1258            if (RecordDependences) {
1259              if (Type != Dependence::NoDep)
1260                Dependences.push_back(Dependence(A.second, B.second, Type));
1261
1262              if (Dependences.size() >= MaxDependences) {
1263                RecordDependences = false;
1264                Dependences.clear();
1265                DEBUG(dbgs() << "Too many dependences, stopped recording\n");
1266              }
1267            }
1268            if (!RecordDependences && !SafeForVectorization)
1269              return false;
1270          }
1271        ++OI;
1272      }
1273      AI++;
1274    }
1275  }
1276
1277  DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1278  return SafeForVectorization;
1279}
1280
1281SmallVector<Instruction *, 4>
1282MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1283  MemAccessInfo Access(Ptr, isWrite);
1284  auto &IndexVector = Accesses.find(Access)->second;
1285
1286  SmallVector<Instruction *, 4> Insts;
1287  std::transform(IndexVector.begin(), IndexVector.end(),
1288                 std::back_inserter(Insts),
1289                 [&](unsigned Idx) { return this->InstMap[Idx]; });
1290  return Insts;
1291}
1292
1293const char *MemoryDepChecker::Dependence::DepName[] = {
1294    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1295    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1296
1297void MemoryDepChecker::Dependence::print(
1298    raw_ostream &OS, unsigned Depth,
1299    const SmallVectorImpl<Instruction *> &Instrs) const {
1300  OS.indent(Depth) << DepName[Type] << ":\n";
1301  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1302  OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1303}
1304
1305bool LoopAccessInfo::canAnalyzeLoop() {
1306  // We need to have a loop header.
1307  DEBUG(dbgs() << "LAA: Found a loop: " <<
1308        TheLoop->getHeader()->getName() << '\n');
1309
1310    // We can only analyze innermost loops.
1311  if (!TheLoop->empty()) {
1312    DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1313    emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
1314    return false;
1315  }
1316
1317  // We must have a single backedge.
1318  if (TheLoop->getNumBackEdges() != 1) {
1319    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1320    emitAnalysis(
1321        LoopAccessReport() <<
1322        "loop control flow is not understood by analyzer");
1323    return false;
1324  }
1325
1326  // We must have a single exiting block.
1327  if (!TheLoop->getExitingBlock()) {
1328    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1329    emitAnalysis(
1330        LoopAccessReport() <<
1331        "loop control flow is not understood by analyzer");
1332    return false;
1333  }
1334
1335  // We only handle bottom-tested loops, i.e. loop in which the condition is
1336  // checked at the end of each iteration. With that we can assume that all
1337  // instructions in the loop are executed the same number of times.
1338  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
1339    DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1340    emitAnalysis(
1341        LoopAccessReport() <<
1342        "loop control flow is not understood by analyzer");
1343    return false;
1344  }
1345
1346  // ScalarEvolution needs to be able to find the exit count.
1347  const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop);
1348  if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
1349    emitAnalysis(LoopAccessReport()
1350                 << "could not determine number of loop iterations");
1351    DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1352    return false;
1353  }
1354
1355  return true;
1356}
1357
1358void LoopAccessInfo::analyzeLoop(const ValueToValueMap &Strides) {
1359
1360  typedef SmallVector<Value*, 16> ValueVector;
1361  typedef SmallPtrSet<Value*, 16> ValueSet;
1362
1363  // Holds the Load and Store *instructions*.
1364  ValueVector Loads;
1365  ValueVector Stores;
1366
1367  // Holds all the different accesses in the loop.
1368  unsigned NumReads = 0;
1369  unsigned NumReadWrites = 0;
1370
1371  PtrRtChecking.Pointers.clear();
1372  PtrRtChecking.Need = false;
1373
1374  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1375
1376  // For each block.
1377  for (Loop::block_iterator bb = TheLoop->block_begin(),
1378       be = TheLoop->block_end(); bb != be; ++bb) {
1379
1380    // Scan the BB and collect legal loads and stores.
1381    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1382         ++it) {
1383
1384      // If this is a load, save it. If this instruction can read from memory
1385      // but is not a load, then we quit. Notice that we don't handle function
1386      // calls that read or write.
1387      if (it->mayReadFromMemory()) {
1388        // Many math library functions read the rounding mode. We will only
1389        // vectorize a loop if it contains known function calls that don't set
1390        // the flag. Therefore, it is safe to ignore this read from memory.
1391        CallInst *Call = dyn_cast<CallInst>(it);
1392        if (Call && getIntrinsicIDForCall(Call, TLI))
1393          continue;
1394
1395        // If the function has an explicit vectorized counterpart, we can safely
1396        // assume that it can be vectorized.
1397        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1398            TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
1399          continue;
1400
1401        LoadInst *Ld = dyn_cast<LoadInst>(it);
1402        if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
1403          emitAnalysis(LoopAccessReport(Ld)
1404                       << "read with atomic ordering or volatile read");
1405          DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1406          CanVecMem = false;
1407          return;
1408        }
1409        NumLoads++;
1410        Loads.push_back(Ld);
1411        DepChecker.addAccess(Ld);
1412        continue;
1413      }
1414
1415      // Save 'store' instructions. Abort if other instructions write to memory.
1416      if (it->mayWriteToMemory()) {
1417        StoreInst *St = dyn_cast<StoreInst>(it);
1418        if (!St) {
1419          emitAnalysis(LoopAccessReport(&*it) <<
1420                       "instruction cannot be vectorized");
1421          CanVecMem = false;
1422          return;
1423        }
1424        if (!St->isSimple() && !IsAnnotatedParallel) {
1425          emitAnalysis(LoopAccessReport(St)
1426                       << "write with atomic ordering or volatile write");
1427          DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1428          CanVecMem = false;
1429          return;
1430        }
1431        NumStores++;
1432        Stores.push_back(St);
1433        DepChecker.addAccess(St);
1434      }
1435    } // Next instr.
1436  } // Next block.
1437
1438  // Now we have two lists that hold the loads and the stores.
1439  // Next, we find the pointers that they use.
1440
1441  // Check if we see any stores. If there are no stores, then we don't
1442  // care if the pointers are *restrict*.
1443  if (!Stores.size()) {
1444    DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1445    CanVecMem = true;
1446    return;
1447  }
1448
1449  MemoryDepChecker::DepCandidates DependentAccesses;
1450  AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
1451                          AA, LI, DependentAccesses, PSE);
1452
1453  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1454  // multiple times on the same object. If the ptr is accessed twice, once
1455  // for read and once for write, it will only appear once (on the write
1456  // list). This is okay, since we are going to check for conflicts between
1457  // writes and between reads and writes, but not between reads and reads.
1458  ValueSet Seen;
1459
1460  ValueVector::iterator I, IE;
1461  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1462    StoreInst *ST = cast<StoreInst>(*I);
1463    Value* Ptr = ST->getPointerOperand();
1464    // Check for store to loop invariant address.
1465    StoreToLoopInvariantAddress |= isUniform(Ptr);
1466    // If we did *not* see this pointer before, insert it to  the read-write
1467    // list. At this phase it is only a 'write' list.
1468    if (Seen.insert(Ptr).second) {
1469      ++NumReadWrites;
1470
1471      MemoryLocation Loc = MemoryLocation::get(ST);
1472      // The TBAA metadata could have a control dependency on the predication
1473      // condition, so we cannot rely on it when determining whether or not we
1474      // need runtime pointer checks.
1475      if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1476        Loc.AATags.TBAA = nullptr;
1477
1478      Accesses.addStore(Loc);
1479    }
1480  }
1481
1482  if (IsAnnotatedParallel) {
1483    DEBUG(dbgs()
1484          << "LAA: A loop annotated parallel, ignore memory dependency "
1485          << "checks.\n");
1486    CanVecMem = true;
1487    return;
1488  }
1489
1490  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1491    LoadInst *LD = cast<LoadInst>(*I);
1492    Value* Ptr = LD->getPointerOperand();
1493    // If we did *not* see this pointer before, insert it to the
1494    // read list. If we *did* see it before, then it is already in
1495    // the read-write list. This allows us to vectorize expressions
1496    // such as A[i] += x;  Because the address of A[i] is a read-write
1497    // pointer. This only works if the index of A[i] is consecutive.
1498    // If the address of i is unknown (for example A[B[i]]) then we may
1499    // read a few words, modify, and write a few words, and some of the
1500    // words may be written to the same address.
1501    bool IsReadOnlyPtr = false;
1502    if (Seen.insert(Ptr).second || !isStridedPtr(PSE, Ptr, TheLoop, Strides)) {
1503      ++NumReads;
1504      IsReadOnlyPtr = true;
1505    }
1506
1507    MemoryLocation Loc = MemoryLocation::get(LD);
1508    // The TBAA metadata could have a control dependency on the predication
1509    // condition, so we cannot rely on it when determining whether or not we
1510    // need runtime pointer checks.
1511    if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1512      Loc.AATags.TBAA = nullptr;
1513
1514    Accesses.addLoad(Loc, IsReadOnlyPtr);
1515  }
1516
1517  // If we write (or read-write) to a single destination and there are no
1518  // other reads in this loop then is it safe to vectorize.
1519  if (NumReadWrites == 1 && NumReads == 0) {
1520    DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
1521    CanVecMem = true;
1522    return;
1523  }
1524
1525  // Build dependence sets and check whether we need a runtime pointer bounds
1526  // check.
1527  Accesses.buildDependenceSets();
1528
1529  // Find pointers with computable bounds. We are going to use this information
1530  // to place a runtime bound check.
1531  bool CanDoRTIfNeeded =
1532      Accesses.canCheckPtrAtRT(PtrRtChecking, PSE.getSE(), TheLoop, Strides);
1533  if (!CanDoRTIfNeeded) {
1534    emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
1535    DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
1536                 << "the array bounds.\n");
1537    CanVecMem = false;
1538    return;
1539  }
1540
1541  DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
1542
1543  CanVecMem = true;
1544  if (Accesses.isDependencyCheckNeeded()) {
1545    DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
1546    CanVecMem = DepChecker.areDepsSafe(
1547        DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
1548    MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
1549
1550    if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
1551      DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
1552
1553      // Clear the dependency checks. We assume they are not needed.
1554      Accesses.resetDepChecks(DepChecker);
1555
1556      PtrRtChecking.reset();
1557      PtrRtChecking.Need = true;
1558
1559      auto *SE = PSE.getSE();
1560      CanDoRTIfNeeded =
1561          Accesses.canCheckPtrAtRT(PtrRtChecking, SE, TheLoop, Strides, true);
1562
1563      // Check that we found the bounds for the pointer.
1564      if (!CanDoRTIfNeeded) {
1565        emitAnalysis(LoopAccessReport()
1566                     << "cannot check memory dependencies at runtime");
1567        DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
1568        CanVecMem = false;
1569        return;
1570      }
1571
1572      CanVecMem = true;
1573    }
1574  }
1575
1576  if (CanVecMem)
1577    DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
1578                 << (PtrRtChecking.Need ? "" : " don't")
1579                 << " need runtime memory checks.\n");
1580  else {
1581    emitAnalysis(LoopAccessReport() <<
1582                 "unsafe dependent memory operations in loop");
1583    DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
1584  }
1585}
1586
1587bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
1588                                           DominatorTree *DT)  {
1589  assert(TheLoop->contains(BB) && "Unknown block used");
1590
1591  // Blocks that do not dominate the latch need predication.
1592  BasicBlock* Latch = TheLoop->getLoopLatch();
1593  return !DT->dominates(BB, Latch);
1594}
1595
1596void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
1597  assert(!Report && "Multiple reports generated");
1598  Report = Message;
1599}
1600
1601bool LoopAccessInfo::isUniform(Value *V) const {
1602  return (PSE.getSE()->isLoopInvariant(PSE.getSE()->getSCEV(V), TheLoop));
1603}
1604
1605// FIXME: this function is currently a duplicate of the one in
1606// LoopVectorize.cpp.
1607static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1608                                 Instruction *Loc) {
1609  if (FirstInst)
1610    return FirstInst;
1611  if (Instruction *I = dyn_cast<Instruction>(V))
1612    return I->getParent() == Loc->getParent() ? I : nullptr;
1613  return nullptr;
1614}
1615
1616namespace {
1617/// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
1618/// need to use value-handles because SCEV expansion can invalidate previously
1619/// expanded values.  Thus expansion of a pointer can invalidate the bounds for
1620/// a previous one.
1621struct PointerBounds {
1622  TrackingVH<Value> Start;
1623  TrackingVH<Value> End;
1624};
1625} // end anonymous namespace
1626
1627/// \brief Expand code for the lower and upper bound of the pointer group \p CG
1628/// in \p TheLoop.  \return the values for the bounds.
1629static PointerBounds
1630expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
1631             Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
1632             const RuntimePointerChecking &PtrRtChecking) {
1633  Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
1634  const SCEV *Sc = SE->getSCEV(Ptr);
1635
1636  if (SE->isLoopInvariant(Sc, TheLoop)) {
1637    DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
1638                 << "\n");
1639    return {Ptr, Ptr};
1640  } else {
1641    unsigned AS = Ptr->getType()->getPointerAddressSpace();
1642    LLVMContext &Ctx = Loc->getContext();
1643
1644    // Use this type for pointer arithmetic.
1645    Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1646    Value *Start = nullptr, *End = nullptr;
1647
1648    DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1649    Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1650    End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1651    DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
1652    return {Start, End};
1653  }
1654}
1655
1656/// \brief Turns a collection of checks into a collection of expanded upper and
1657/// lower bounds for both pointers in the check.
1658static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
1659    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
1660    Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
1661    const RuntimePointerChecking &PtrRtChecking) {
1662  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1663
1664  // Here we're relying on the SCEV Expander's cache to only emit code for the
1665  // same bounds once.
1666  std::transform(
1667      PointerChecks.begin(), PointerChecks.end(),
1668      std::back_inserter(ChecksWithBounds),
1669      [&](const RuntimePointerChecking::PointerCheck &Check) {
1670        PointerBounds
1671          First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
1672          Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
1673        return std::make_pair(First, Second);
1674      });
1675
1676  return ChecksWithBounds;
1677}
1678
1679std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
1680    Instruction *Loc,
1681    const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
1682    const {
1683  auto *SE = PSE.getSE();
1684  SCEVExpander Exp(*SE, DL, "induction");
1685  auto ExpandedChecks =
1686      expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, PtrRtChecking);
1687
1688  LLVMContext &Ctx = Loc->getContext();
1689  Instruction *FirstInst = nullptr;
1690  IRBuilder<> ChkBuilder(Loc);
1691  // Our instructions might fold to a constant.
1692  Value *MemoryRuntimeCheck = nullptr;
1693
1694  for (const auto &Check : ExpandedChecks) {
1695    const PointerBounds &A = Check.first, &B = Check.second;
1696    // Check if two pointers (A and B) conflict where conflict is computed as:
1697    // start(A) <= end(B) && start(B) <= end(A)
1698    unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1699    unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1700
1701    assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1702           (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1703           "Trying to bounds check pointers with different address spaces");
1704
1705    Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1706    Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1707
1708    Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1709    Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1710    Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
1711    Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
1712
1713    Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1714    FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1715    Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1716    FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1717    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1718    FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1719    if (MemoryRuntimeCheck) {
1720      IsConflict =
1721          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1722      FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1723    }
1724    MemoryRuntimeCheck = IsConflict;
1725  }
1726
1727  if (!MemoryRuntimeCheck)
1728    return std::make_pair(nullptr, nullptr);
1729
1730  // We have to do this trickery because the IRBuilder might fold the check to a
1731  // constant expression in which case there is no Instruction anchored in a
1732  // the block.
1733  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1734                                                 ConstantInt::getTrue(Ctx));
1735  ChkBuilder.Insert(Check, "memcheck.conflict");
1736  FirstInst = getFirstInst(FirstInst, Check, Loc);
1737  return std::make_pair(FirstInst, Check);
1738}
1739
1740std::pair<Instruction *, Instruction *>
1741LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
1742  if (!PtrRtChecking.Need)
1743    return std::make_pair(nullptr, nullptr);
1744
1745  return addRuntimeChecks(Loc, PtrRtChecking.getChecks());
1746}
1747
1748LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
1749                               const DataLayout &DL,
1750                               const TargetLibraryInfo *TLI, AliasAnalysis *AA,
1751                               DominatorTree *DT, LoopInfo *LI,
1752                               const ValueToValueMap &Strides)
1753    : PSE(*SE), PtrRtChecking(SE), DepChecker(PSE, L), TheLoop(L), DL(DL),
1754      TLI(TLI), AA(AA), DT(DT), LI(LI), NumLoads(0), NumStores(0),
1755      MaxSafeDepDistBytes(-1U), CanVecMem(false),
1756      StoreToLoopInvariantAddress(false) {
1757  if (canAnalyzeLoop())
1758    analyzeLoop(Strides);
1759}
1760
1761void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
1762  if (CanVecMem) {
1763    if (PtrRtChecking.Need)
1764      OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
1765    else
1766      OS.indent(Depth) << "Memory dependences are safe\n";
1767  }
1768
1769  if (Report)
1770    OS.indent(Depth) << "Report: " << Report->str() << "\n";
1771
1772  if (auto *Dependences = DepChecker.getDependences()) {
1773    OS.indent(Depth) << "Dependences:\n";
1774    for (auto &Dep : *Dependences) {
1775      Dep.print(OS, Depth + 2, DepChecker.getMemoryInstructions());
1776      OS << "\n";
1777    }
1778  } else
1779    OS.indent(Depth) << "Too many dependences, not recorded\n";
1780
1781  // List the pair of accesses need run-time checks to prove independence.
1782  PtrRtChecking.print(OS, Depth);
1783  OS << "\n";
1784
1785  OS.indent(Depth) << "Store to invariant address was "
1786                   << (StoreToLoopInvariantAddress ? "" : "not ")
1787                   << "found in loop.\n";
1788
1789  OS.indent(Depth) << "SCEV assumptions:\n";
1790  PSE.getUnionPredicate().print(OS, Depth);
1791}
1792
1793const LoopAccessInfo &
1794LoopAccessAnalysis::getInfo(Loop *L, const ValueToValueMap &Strides) {
1795  auto &LAI = LoopAccessInfoMap[L];
1796
1797#ifndef NDEBUG
1798  assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
1799         "Symbolic strides changed for loop");
1800#endif
1801
1802  if (!LAI) {
1803    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1804    LAI =
1805        llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, LI, Strides);
1806#ifndef NDEBUG
1807    LAI->NumSymbolicStrides = Strides.size();
1808#endif
1809  }
1810  return *LAI.get();
1811}
1812
1813void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
1814  LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
1815
1816  ValueToValueMap NoSymbolicStrides;
1817
1818  for (Loop *TopLevelLoop : *LI)
1819    for (Loop *L : depth_first(TopLevelLoop)) {
1820      OS.indent(2) << L->getHeader()->getName() << ":\n";
1821      auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
1822      LAI.print(OS, 4);
1823    }
1824}
1825
1826bool LoopAccessAnalysis::runOnFunction(Function &F) {
1827  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1828  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1829  TLI = TLIP ? &TLIP->getTLI() : nullptr;
1830  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1831  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1832  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1833
1834  return false;
1835}
1836
1837void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
1838    AU.addRequired<ScalarEvolutionWrapperPass>();
1839    AU.addRequired<AAResultsWrapperPass>();
1840    AU.addRequired<DominatorTreeWrapperPass>();
1841    AU.addRequired<LoopInfoWrapperPass>();
1842
1843    AU.setPreservesAll();
1844}
1845
1846char LoopAccessAnalysis::ID = 0;
1847static const char laa_name[] = "Loop Access Analysis";
1848#define LAA_NAME "loop-accesses"
1849
1850INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1851INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1852INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1853INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1854INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1855INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
1856
1857namespace llvm {
1858  Pass *createLAAPass() {
1859    return new LoopAccessAnalysis();
1860  }
1861}
1862