1//===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the PHITransAddr class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "llvm/Analysis/PHITransAddr.h" 15#include "llvm/Analysis/InstructionSimplify.h" 16#include "llvm/Analysis/ValueTracking.h" 17#include "llvm/IR/Constants.h" 18#include "llvm/IR/Dominators.h" 19#include "llvm/IR/Instructions.h" 20#include "llvm/Support/Debug.h" 21#include "llvm/Support/ErrorHandling.h" 22#include "llvm/Support/raw_ostream.h" 23using namespace llvm; 24 25static bool CanPHITrans(Instruction *Inst) { 26 if (isa<PHINode>(Inst) || 27 isa<GetElementPtrInst>(Inst)) 28 return true; 29 30 if (isa<CastInst>(Inst) && 31 isSafeToSpeculativelyExecute(Inst)) 32 return true; 33 34 if (Inst->getOpcode() == Instruction::Add && 35 isa<ConstantInt>(Inst->getOperand(1))) 36 return true; 37 38 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer; 39 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) 40 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); 41 return false; 42} 43 44#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 45void PHITransAddr::dump() const { 46 if (!Addr) { 47 dbgs() << "PHITransAddr: null\n"; 48 return; 49 } 50 dbgs() << "PHITransAddr: " << *Addr << "\n"; 51 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 52 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n"; 53} 54#endif 55 56 57static bool VerifySubExpr(Value *Expr, 58 SmallVectorImpl<Instruction*> &InstInputs) { 59 // If this is a non-instruction value, there is nothing to do. 60 Instruction *I = dyn_cast<Instruction>(Expr); 61 if (!I) return true; 62 63 // If it's an instruction, it is either in Tmp or its operands recursively 64 // are. 65 SmallVectorImpl<Instruction*>::iterator Entry = 66 std::find(InstInputs.begin(), InstInputs.end(), I); 67 if (Entry != InstInputs.end()) { 68 InstInputs.erase(Entry); 69 return true; 70 } 71 72 // If it isn't in the InstInputs list it is a subexpr incorporated into the 73 // address. Sanity check that it is phi translatable. 74 if (!CanPHITrans(I)) { 75 errs() << "Instruction in PHITransAddr is not phi-translatable:\n"; 76 errs() << *I << '\n'; 77 llvm_unreachable("Either something is missing from InstInputs or " 78 "CanPHITrans is wrong."); 79 } 80 81 // Validate the operands of the instruction. 82 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 83 if (!VerifySubExpr(I->getOperand(i), InstInputs)) 84 return false; 85 86 return true; 87} 88 89/// Verify - Check internal consistency of this data structure. If the 90/// structure is valid, it returns true. If invalid, it prints errors and 91/// returns false. 92bool PHITransAddr::Verify() const { 93 if (!Addr) return true; 94 95 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); 96 97 if (!VerifySubExpr(Addr, Tmp)) 98 return false; 99 100 if (!Tmp.empty()) { 101 errs() << "PHITransAddr contains extra instructions:\n"; 102 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) 103 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n"; 104 llvm_unreachable("This is unexpected."); 105 } 106 107 // a-ok. 108 return true; 109} 110 111 112/// IsPotentiallyPHITranslatable - If this needs PHI translation, return true 113/// if we have some hope of doing it. This should be used as a filter to 114/// avoid calling PHITranslateValue in hopeless situations. 115bool PHITransAddr::IsPotentiallyPHITranslatable() const { 116 // If the input value is not an instruction, or if it is not defined in CurBB, 117 // then we don't need to phi translate it. 118 Instruction *Inst = dyn_cast<Instruction>(Addr); 119 return !Inst || CanPHITrans(Inst); 120} 121 122 123static void RemoveInstInputs(Value *V, 124 SmallVectorImpl<Instruction*> &InstInputs) { 125 Instruction *I = dyn_cast<Instruction>(V); 126 if (!I) return; 127 128 // If the instruction is in the InstInputs list, remove it. 129 SmallVectorImpl<Instruction*>::iterator Entry = 130 std::find(InstInputs.begin(), InstInputs.end(), I); 131 if (Entry != InstInputs.end()) { 132 InstInputs.erase(Entry); 133 return; 134 } 135 136 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); 137 138 // Otherwise, it must have instruction inputs itself. Zap them recursively. 139 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 140 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) 141 RemoveInstInputs(Op, InstInputs); 142 } 143} 144 145Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, 146 BasicBlock *PredBB, 147 const DominatorTree *DT) { 148 // If this is a non-instruction value, it can't require PHI translation. 149 Instruction *Inst = dyn_cast<Instruction>(V); 150 if (!Inst) return V; 151 152 // Determine whether 'Inst' is an input to our PHI translatable expression. 153 bool isInput = 154 std::find(InstInputs.begin(), InstInputs.end(), Inst) != InstInputs.end(); 155 156 // Handle inputs instructions if needed. 157 if (isInput) { 158 if (Inst->getParent() != CurBB) { 159 // If it is an input defined in a different block, then it remains an 160 // input. 161 return Inst; 162 } 163 164 // If 'Inst' is defined in this block and is an input that needs to be phi 165 // translated, we need to incorporate the value into the expression or fail. 166 167 // In either case, the instruction itself isn't an input any longer. 168 InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst)); 169 170 // If this is a PHI, go ahead and translate it. 171 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 172 return AddAsInput(PN->getIncomingValueForBlock(PredBB)); 173 174 // If this is a non-phi value, and it is analyzable, we can incorporate it 175 // into the expression by making all instruction operands be inputs. 176 if (!CanPHITrans(Inst)) 177 return nullptr; 178 179 // All instruction operands are now inputs (and of course, they may also be 180 // defined in this block, so they may need to be phi translated themselves. 181 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 182 if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) 183 InstInputs.push_back(Op); 184 } 185 186 // Ok, it must be an intermediate result (either because it started that way 187 // or because we just incorporated it into the expression). See if its 188 // operands need to be phi translated, and if so, reconstruct it. 189 190 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 191 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 192 Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT); 193 if (!PHIIn) return nullptr; 194 if (PHIIn == Cast->getOperand(0)) 195 return Cast; 196 197 // Find an available version of this cast. 198 199 // Constants are trivial to find. 200 if (Constant *C = dyn_cast<Constant>(PHIIn)) 201 return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(), 202 C, Cast->getType())); 203 204 // Otherwise we have to see if a casted version of the incoming pointer 205 // is available. If so, we can use it, otherwise we have to fail. 206 for (User *U : PHIIn->users()) { 207 if (CastInst *CastI = dyn_cast<CastInst>(U)) 208 if (CastI->getOpcode() == Cast->getOpcode() && 209 CastI->getType() == Cast->getType() && 210 (!DT || DT->dominates(CastI->getParent(), PredBB))) 211 return CastI; 212 } 213 return nullptr; 214 } 215 216 // Handle getelementptr with at least one PHI translatable operand. 217 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 218 SmallVector<Value*, 8> GEPOps; 219 bool AnyChanged = false; 220 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 221 Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); 222 if (!GEPOp) return nullptr; 223 224 AnyChanged |= GEPOp != GEP->getOperand(i); 225 GEPOps.push_back(GEPOp); 226 } 227 228 if (!AnyChanged) 229 return GEP; 230 231 // Simplify the GEP to handle 'gep x, 0' -> x etc. 232 if (Value *V = SimplifyGEPInst(GEPOps, DL, TLI, DT, AC)) { 233 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) 234 RemoveInstInputs(GEPOps[i], InstInputs); 235 236 return AddAsInput(V); 237 } 238 239 // Scan to see if we have this GEP available. 240 Value *APHIOp = GEPOps[0]; 241 for (User *U : APHIOp->users()) { 242 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) 243 if (GEPI->getType() == GEP->getType() && 244 GEPI->getNumOperands() == GEPOps.size() && 245 GEPI->getParent()->getParent() == CurBB->getParent() && 246 (!DT || DT->dominates(GEPI->getParent(), PredBB))) { 247 if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin())) 248 return GEPI; 249 } 250 } 251 return nullptr; 252 } 253 254 // Handle add with a constant RHS. 255 if (Inst->getOpcode() == Instruction::Add && 256 isa<ConstantInt>(Inst->getOperand(1))) { 257 // PHI translate the LHS. 258 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); 259 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); 260 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); 261 262 Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); 263 if (!LHS) return nullptr; 264 265 // If the PHI translated LHS is an add of a constant, fold the immediates. 266 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) 267 if (BOp->getOpcode() == Instruction::Add) 268 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 269 LHS = BOp->getOperand(0); 270 RHS = ConstantExpr::getAdd(RHS, CI); 271 isNSW = isNUW = false; 272 273 // If the old 'LHS' was an input, add the new 'LHS' as an input. 274 if (std::find(InstInputs.begin(), InstInputs.end(), BOp) != 275 InstInputs.end()) { 276 RemoveInstInputs(BOp, InstInputs); 277 AddAsInput(LHS); 278 } 279 } 280 281 // See if the add simplifies away. 282 if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, DL, TLI, DT, AC)) { 283 // If we simplified the operands, the LHS is no longer an input, but Res 284 // is. 285 RemoveInstInputs(LHS, InstInputs); 286 return AddAsInput(Res); 287 } 288 289 // If we didn't modify the add, just return it. 290 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) 291 return Inst; 292 293 // Otherwise, see if we have this add available somewhere. 294 for (User *U : LHS->users()) { 295 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) 296 if (BO->getOpcode() == Instruction::Add && 297 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && 298 BO->getParent()->getParent() == CurBB->getParent() && 299 (!DT || DT->dominates(BO->getParent(), PredBB))) 300 return BO; 301 } 302 303 return nullptr; 304 } 305 306 // Otherwise, we failed. 307 return nullptr; 308} 309 310 311/// PHITranslateValue - PHI translate the current address up the CFG from 312/// CurBB to Pred, updating our state to reflect any needed changes. If 313/// 'MustDominate' is true, the translated value must dominate 314/// PredBB. This returns true on failure and sets Addr to null. 315bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, 316 const DominatorTree *DT, 317 bool MustDominate) { 318 assert(DT || !MustDominate); 319 assert(Verify() && "Invalid PHITransAddr!"); 320 if (DT && DT->isReachableFromEntry(PredBB)) 321 Addr = 322 PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr); 323 else 324 Addr = nullptr; 325 assert(Verify() && "Invalid PHITransAddr!"); 326 327 if (MustDominate) 328 // Make sure the value is live in the predecessor. 329 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) 330 if (!DT->dominates(Inst->getParent(), PredBB)) 331 Addr = nullptr; 332 333 return Addr == nullptr; 334} 335 336/// PHITranslateWithInsertion - PHI translate this value into the specified 337/// predecessor block, inserting a computation of the value if it is 338/// unavailable. 339/// 340/// All newly created instructions are added to the NewInsts list. This 341/// returns null on failure. 342/// 343Value *PHITransAddr:: 344PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, 345 const DominatorTree &DT, 346 SmallVectorImpl<Instruction*> &NewInsts) { 347 unsigned NISize = NewInsts.size(); 348 349 // Attempt to PHI translate with insertion. 350 Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); 351 352 // If successful, return the new value. 353 if (Addr) return Addr; 354 355 // If not, destroy any intermediate instructions inserted. 356 while (NewInsts.size() != NISize) 357 NewInsts.pop_back_val()->eraseFromParent(); 358 return nullptr; 359} 360 361 362/// InsertPHITranslatedPointer - Insert a computation of the PHI translated 363/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB 364/// block. All newly created instructions are added to the NewInsts list. 365/// This returns null on failure. 366/// 367Value *PHITransAddr:: 368InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, 369 BasicBlock *PredBB, const DominatorTree &DT, 370 SmallVectorImpl<Instruction*> &NewInsts) { 371 // See if we have a version of this value already available and dominating 372 // PredBB. If so, there is no need to insert a new instance of it. 373 PHITransAddr Tmp(InVal, DL, AC); 374 if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true)) 375 return Tmp.getAddr(); 376 377 // We don't need to PHI translate values which aren't instructions. 378 auto *Inst = dyn_cast<Instruction>(InVal); 379 if (!Inst) 380 return nullptr; 381 382 // Handle cast of PHI translatable value. 383 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) { 384 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr; 385 Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0), 386 CurBB, PredBB, DT, NewInsts); 387 if (!OpVal) return nullptr; 388 389 // Otherwise insert a cast at the end of PredBB. 390 CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(), 391 InVal->getName() + ".phi.trans.insert", 392 PredBB->getTerminator()); 393 New->setDebugLoc(Inst->getDebugLoc()); 394 NewInsts.push_back(New); 395 return New; 396 } 397 398 // Handle getelementptr with at least one PHI operand. 399 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 400 SmallVector<Value*, 8> GEPOps; 401 BasicBlock *CurBB = GEP->getParent(); 402 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { 403 Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), 404 CurBB, PredBB, DT, NewInsts); 405 if (!OpVal) return nullptr; 406 GEPOps.push_back(OpVal); 407 } 408 409 GetElementPtrInst *Result = GetElementPtrInst::Create( 410 GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1), 411 InVal->getName() + ".phi.trans.insert", PredBB->getTerminator()); 412 Result->setDebugLoc(Inst->getDebugLoc()); 413 Result->setIsInBounds(GEP->isInBounds()); 414 NewInsts.push_back(Result); 415 return Result; 416 } 417 418#if 0 419 // FIXME: This code works, but it is unclear that we actually want to insert 420 // a big chain of computation in order to make a value available in a block. 421 // This needs to be evaluated carefully to consider its cost trade offs. 422 423 // Handle add with a constant RHS. 424 if (Inst->getOpcode() == Instruction::Add && 425 isa<ConstantInt>(Inst->getOperand(1))) { 426 // PHI translate the LHS. 427 Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), 428 CurBB, PredBB, DT, NewInsts); 429 if (OpVal == 0) return 0; 430 431 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), 432 InVal->getName()+".phi.trans.insert", 433 PredBB->getTerminator()); 434 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); 435 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); 436 NewInsts.push_back(Res); 437 return Res; 438 } 439#endif 440 441 return nullptr; 442} 443