1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/MachineScheduler.h"
16#include "llvm/ADT/PriorityQueue.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/CodeGen/LiveIntervalAnalysis.h"
19#include "llvm/CodeGen/MachineDominators.h"
20#include "llvm/CodeGen/MachineLoopInfo.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/RegisterClassInfo.h"
24#include "llvm/CodeGen/ScheduleDFS.h"
25#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/GraphWriter.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include <queue>
33
34using namespace llvm;
35
36#define DEBUG_TYPE "misched"
37
38namespace llvm {
39cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                           cl::desc("Force top-down list scheduling"));
41cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                            cl::desc("Force bottom-up list scheduling"));
43cl::opt<bool>
44DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45                       cl::desc("Print critical path length to stdout"));
46}
47
48#ifndef NDEBUG
49static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50  cl::desc("Pop up a window to show MISched dags after they are processed"));
51
52/// In some situations a few uninteresting nodes depend on nearly all other
53/// nodes in the graph, provide a cutoff to hide them.
54static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55  cl::desc("Hide nodes with more predecessor/successor than cutoff"));
56
57static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
59
60static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61  cl::desc("Only schedule this function"));
62static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63  cl::desc("Only schedule this MBB#"));
64#else
65static bool ViewMISchedDAGs = false;
66#endif // NDEBUG
67
68static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
69  cl::desc("Enable register pressure scheduling."), cl::init(true));
70
71static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
72  cl::desc("Enable cyclic critical path analysis."), cl::init(true));
73
74static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
75  cl::desc("Enable load clustering."), cl::init(true));
76
77// Experimental heuristics
78static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
79  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
80
81static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
82  cl::desc("Verify machine instrs before and after machine scheduling"));
83
84// DAG subtrees must have at least this many nodes.
85static const unsigned MinSubtreeSize = 8;
86
87// Pin the vtables to this file.
88void MachineSchedStrategy::anchor() {}
89void ScheduleDAGMutation::anchor() {}
90
91//===----------------------------------------------------------------------===//
92// Machine Instruction Scheduling Pass and Registry
93//===----------------------------------------------------------------------===//
94
95MachineSchedContext::MachineSchedContext():
96    MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
97  RegClassInfo = new RegisterClassInfo();
98}
99
100MachineSchedContext::~MachineSchedContext() {
101  delete RegClassInfo;
102}
103
104namespace {
105/// Base class for a machine scheduler class that can run at any point.
106class MachineSchedulerBase : public MachineSchedContext,
107                             public MachineFunctionPass {
108public:
109  MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
110
111  void print(raw_ostream &O, const Module* = nullptr) const override;
112
113protected:
114  void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
115};
116
117/// MachineScheduler runs after coalescing and before register allocation.
118class MachineScheduler : public MachineSchedulerBase {
119public:
120  MachineScheduler();
121
122  void getAnalysisUsage(AnalysisUsage &AU) const override;
123
124  bool runOnMachineFunction(MachineFunction&) override;
125
126  static char ID; // Class identification, replacement for typeinfo
127
128protected:
129  ScheduleDAGInstrs *createMachineScheduler();
130};
131
132/// PostMachineScheduler runs after shortly before code emission.
133class PostMachineScheduler : public MachineSchedulerBase {
134public:
135  PostMachineScheduler();
136
137  void getAnalysisUsage(AnalysisUsage &AU) const override;
138
139  bool runOnMachineFunction(MachineFunction&) override;
140
141  static char ID; // Class identification, replacement for typeinfo
142
143protected:
144  ScheduleDAGInstrs *createPostMachineScheduler();
145};
146} // namespace
147
148char MachineScheduler::ID = 0;
149
150char &llvm::MachineSchedulerID = MachineScheduler::ID;
151
152INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
153                      "Machine Instruction Scheduler", false, false)
154INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
155INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
156INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
157INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
158                    "Machine Instruction Scheduler", false, false)
159
160MachineScheduler::MachineScheduler()
161: MachineSchedulerBase(ID) {
162  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
163}
164
165void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
166  AU.setPreservesCFG();
167  AU.addRequiredID(MachineDominatorsID);
168  AU.addRequired<MachineLoopInfo>();
169  AU.addRequired<AAResultsWrapperPass>();
170  AU.addRequired<TargetPassConfig>();
171  AU.addRequired<SlotIndexes>();
172  AU.addPreserved<SlotIndexes>();
173  AU.addRequired<LiveIntervals>();
174  AU.addPreserved<LiveIntervals>();
175  MachineFunctionPass::getAnalysisUsage(AU);
176}
177
178char PostMachineScheduler::ID = 0;
179
180char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
181
182INITIALIZE_PASS(PostMachineScheduler, "postmisched",
183                "PostRA Machine Instruction Scheduler", false, false)
184
185PostMachineScheduler::PostMachineScheduler()
186: MachineSchedulerBase(ID) {
187  initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
188}
189
190void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
191  AU.setPreservesCFG();
192  AU.addRequiredID(MachineDominatorsID);
193  AU.addRequired<MachineLoopInfo>();
194  AU.addRequired<TargetPassConfig>();
195  MachineFunctionPass::getAnalysisUsage(AU);
196}
197
198MachinePassRegistry MachineSchedRegistry::Registry;
199
200/// A dummy default scheduler factory indicates whether the scheduler
201/// is overridden on the command line.
202static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
203  return nullptr;
204}
205
206/// MachineSchedOpt allows command line selection of the scheduler.
207static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
208               RegisterPassParser<MachineSchedRegistry> >
209MachineSchedOpt("misched",
210                cl::init(&useDefaultMachineSched), cl::Hidden,
211                cl::desc("Machine instruction scheduler to use"));
212
213static MachineSchedRegistry
214DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
215                     useDefaultMachineSched);
216
217static cl::opt<bool> EnableMachineSched(
218    "enable-misched",
219    cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
220    cl::Hidden);
221
222/// Forward declare the standard machine scheduler. This will be used as the
223/// default scheduler if the target does not set a default.
224static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
225static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
226
227/// Decrement this iterator until reaching the top or a non-debug instr.
228static MachineBasicBlock::const_iterator
229priorNonDebug(MachineBasicBlock::const_iterator I,
230              MachineBasicBlock::const_iterator Beg) {
231  assert(I != Beg && "reached the top of the region, cannot decrement");
232  while (--I != Beg) {
233    if (!I->isDebugValue())
234      break;
235  }
236  return I;
237}
238
239/// Non-const version.
240static MachineBasicBlock::iterator
241priorNonDebug(MachineBasicBlock::iterator I,
242              MachineBasicBlock::const_iterator Beg) {
243  return const_cast<MachineInstr*>(
244    &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
245}
246
247/// If this iterator is a debug value, increment until reaching the End or a
248/// non-debug instruction.
249static MachineBasicBlock::const_iterator
250nextIfDebug(MachineBasicBlock::const_iterator I,
251            MachineBasicBlock::const_iterator End) {
252  for(; I != End; ++I) {
253    if (!I->isDebugValue())
254      break;
255  }
256  return I;
257}
258
259/// Non-const version.
260static MachineBasicBlock::iterator
261nextIfDebug(MachineBasicBlock::iterator I,
262            MachineBasicBlock::const_iterator End) {
263  // Cast the return value to nonconst MachineInstr, then cast to an
264  // instr_iterator, which does not check for null, finally return a
265  // bundle_iterator.
266  return MachineBasicBlock::instr_iterator(
267    const_cast<MachineInstr*>(
268      &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
269}
270
271/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
272ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
273  // Select the scheduler, or set the default.
274  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
275  if (Ctor != useDefaultMachineSched)
276    return Ctor(this);
277
278  // Get the default scheduler set by the target for this function.
279  ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
280  if (Scheduler)
281    return Scheduler;
282
283  // Default to GenericScheduler.
284  return createGenericSchedLive(this);
285}
286
287/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
288/// the caller. We don't have a command line option to override the postRA
289/// scheduler. The Target must configure it.
290ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
291  // Get the postRA scheduler set by the target for this function.
292  ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
293  if (Scheduler)
294    return Scheduler;
295
296  // Default to GenericScheduler.
297  return createGenericSchedPostRA(this);
298}
299
300/// Top-level MachineScheduler pass driver.
301///
302/// Visit blocks in function order. Divide each block into scheduling regions
303/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
304/// consistent with the DAG builder, which traverses the interior of the
305/// scheduling regions bottom-up.
306///
307/// This design avoids exposing scheduling boundaries to the DAG builder,
308/// simplifying the DAG builder's support for "special" target instructions.
309/// At the same time the design allows target schedulers to operate across
310/// scheduling boundaries, for example to bundle the boudary instructions
311/// without reordering them. This creates complexity, because the target
312/// scheduler must update the RegionBegin and RegionEnd positions cached by
313/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
314/// design would be to split blocks at scheduling boundaries, but LLVM has a
315/// general bias against block splitting purely for implementation simplicity.
316bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
317  if (EnableMachineSched.getNumOccurrences()) {
318    if (!EnableMachineSched)
319      return false;
320  } else if (!mf.getSubtarget().enableMachineScheduler())
321    return false;
322
323  DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
324
325  // Initialize the context of the pass.
326  MF = &mf;
327  MLI = &getAnalysis<MachineLoopInfo>();
328  MDT = &getAnalysis<MachineDominatorTree>();
329  PassConfig = &getAnalysis<TargetPassConfig>();
330  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
331
332  LIS = &getAnalysis<LiveIntervals>();
333
334  if (VerifyScheduling) {
335    DEBUG(LIS->dump());
336    MF->verify(this, "Before machine scheduling.");
337  }
338  RegClassInfo->runOnMachineFunction(*MF);
339
340  // Instantiate the selected scheduler for this target, function, and
341  // optimization level.
342  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
343  scheduleRegions(*Scheduler, false);
344
345  DEBUG(LIS->dump());
346  if (VerifyScheduling)
347    MF->verify(this, "After machine scheduling.");
348  return true;
349}
350
351bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
352  if (skipOptnoneFunction(*mf.getFunction()))
353    return false;
354
355  if (!mf.getSubtarget().enablePostRAScheduler()) {
356    DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
357    return false;
358  }
359  DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
360
361  // Initialize the context of the pass.
362  MF = &mf;
363  PassConfig = &getAnalysis<TargetPassConfig>();
364
365  if (VerifyScheduling)
366    MF->verify(this, "Before post machine scheduling.");
367
368  // Instantiate the selected scheduler for this target, function, and
369  // optimization level.
370  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
371  scheduleRegions(*Scheduler, true);
372
373  if (VerifyScheduling)
374    MF->verify(this, "After post machine scheduling.");
375  return true;
376}
377
378/// Return true of the given instruction should not be included in a scheduling
379/// region.
380///
381/// MachineScheduler does not currently support scheduling across calls. To
382/// handle calls, the DAG builder needs to be modified to create register
383/// anti/output dependencies on the registers clobbered by the call's regmask
384/// operand. In PreRA scheduling, the stack pointer adjustment already prevents
385/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
386/// the boundary, but there would be no benefit to postRA scheduling across
387/// calls this late anyway.
388static bool isSchedBoundary(MachineBasicBlock::iterator MI,
389                            MachineBasicBlock *MBB,
390                            MachineFunction *MF,
391                            const TargetInstrInfo *TII) {
392  return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
393}
394
395/// Main driver for both MachineScheduler and PostMachineScheduler.
396void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
397                                           bool FixKillFlags) {
398  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
399
400  // Visit all machine basic blocks.
401  //
402  // TODO: Visit blocks in global postorder or postorder within the bottom-up
403  // loop tree. Then we can optionally compute global RegPressure.
404  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
405       MBB != MBBEnd; ++MBB) {
406
407    Scheduler.startBlock(&*MBB);
408
409#ifndef NDEBUG
410    if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
411      continue;
412    if (SchedOnlyBlock.getNumOccurrences()
413        && (int)SchedOnlyBlock != MBB->getNumber())
414      continue;
415#endif
416
417    // Break the block into scheduling regions [I, RegionEnd), and schedule each
418    // region as soon as it is discovered. RegionEnd points the scheduling
419    // boundary at the bottom of the region. The DAG does not include RegionEnd,
420    // but the region does (i.e. the next RegionEnd is above the previous
421    // RegionBegin). If the current block has no terminator then RegionEnd ==
422    // MBB->end() for the bottom region.
423    //
424    // The Scheduler may insert instructions during either schedule() or
425    // exitRegion(), even for empty regions. So the local iterators 'I' and
426    // 'RegionEnd' are invalid across these calls.
427    //
428    // MBB::size() uses instr_iterator to count. Here we need a bundle to count
429    // as a single instruction.
430    unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
431    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
432        RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
433
434      // Avoid decrementing RegionEnd for blocks with no terminator.
435      if (RegionEnd != MBB->end() ||
436          isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
437        --RegionEnd;
438        // Count the boundary instruction.
439        --RemainingInstrs;
440      }
441
442      // The next region starts above the previous region. Look backward in the
443      // instruction stream until we find the nearest boundary.
444      unsigned NumRegionInstrs = 0;
445      MachineBasicBlock::iterator I = RegionEnd;
446      for(;I != MBB->begin(); --I, --RemainingInstrs) {
447        if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
448          break;
449        if (!I->isDebugValue())
450          ++NumRegionInstrs;
451      }
452      // Notify the scheduler of the region, even if we may skip scheduling
453      // it. Perhaps it still needs to be bundled.
454      Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
455
456      // Skip empty scheduling regions (0 or 1 schedulable instructions).
457      if (I == RegionEnd || I == std::prev(RegionEnd)) {
458        // Close the current region. Bundle the terminator if needed.
459        // This invalidates 'RegionEnd' and 'I'.
460        Scheduler.exitRegion();
461        continue;
462      }
463      DEBUG(dbgs() << "********** MI Scheduling **********\n");
464      DEBUG(dbgs() << MF->getName()
465            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
466            << "\n  From: " << *I << "    To: ";
467            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
468            else dbgs() << "End";
469            dbgs() << " RegionInstrs: " << NumRegionInstrs
470            << " Remaining: " << RemainingInstrs << "\n");
471      if (DumpCriticalPathLength) {
472        errs() << MF->getName();
473        errs() << ":BB# " << MBB->getNumber();
474        errs() << " " << MBB->getName() << " \n";
475      }
476
477      // Schedule a region: possibly reorder instructions.
478      // This invalidates 'RegionEnd' and 'I'.
479      Scheduler.schedule();
480
481      // Close the current region.
482      Scheduler.exitRegion();
483
484      // Scheduling has invalidated the current iterator 'I'. Ask the
485      // scheduler for the top of it's scheduled region.
486      RegionEnd = Scheduler.begin();
487    }
488    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
489    Scheduler.finishBlock();
490    // FIXME: Ideally, no further passes should rely on kill flags. However,
491    // thumb2 size reduction is currently an exception, so the PostMIScheduler
492    // needs to do this.
493    if (FixKillFlags)
494        Scheduler.fixupKills(&*MBB);
495  }
496  Scheduler.finalizeSchedule();
497}
498
499void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
500  // unimplemented
501}
502
503LLVM_DUMP_METHOD
504void ReadyQueue::dump() {
505  dbgs() << "Queue " << Name << ": ";
506  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
507    dbgs() << Queue[i]->NodeNum << " ";
508  dbgs() << "\n";
509}
510
511//===----------------------------------------------------------------------===//
512// ScheduleDAGMI - Basic machine instruction scheduling. This is
513// independent of PreRA/PostRA scheduling and involves no extra book-keeping for
514// virtual registers.
515// ===----------------------------------------------------------------------===/
516
517// Provide a vtable anchor.
518ScheduleDAGMI::~ScheduleDAGMI() {
519}
520
521bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
522  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
523}
524
525bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
526  if (SuccSU != &ExitSU) {
527    // Do not use WillCreateCycle, it assumes SD scheduling.
528    // If Pred is reachable from Succ, then the edge creates a cycle.
529    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
530      return false;
531    Topo.AddPred(SuccSU, PredDep.getSUnit());
532  }
533  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
534  // Return true regardless of whether a new edge needed to be inserted.
535  return true;
536}
537
538/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
539/// NumPredsLeft reaches zero, release the successor node.
540///
541/// FIXME: Adjust SuccSU height based on MinLatency.
542void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
543  SUnit *SuccSU = SuccEdge->getSUnit();
544
545  if (SuccEdge->isWeak()) {
546    --SuccSU->WeakPredsLeft;
547    if (SuccEdge->isCluster())
548      NextClusterSucc = SuccSU;
549    return;
550  }
551#ifndef NDEBUG
552  if (SuccSU->NumPredsLeft == 0) {
553    dbgs() << "*** Scheduling failed! ***\n";
554    SuccSU->dump(this);
555    dbgs() << " has been released too many times!\n";
556    llvm_unreachable(nullptr);
557  }
558#endif
559  // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
560  // CurrCycle may have advanced since then.
561  if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
562    SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
563
564  --SuccSU->NumPredsLeft;
565  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
566    SchedImpl->releaseTopNode(SuccSU);
567}
568
569/// releaseSuccessors - Call releaseSucc on each of SU's successors.
570void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
571  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
572       I != E; ++I) {
573    releaseSucc(SU, &*I);
574  }
575}
576
577/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
578/// NumSuccsLeft reaches zero, release the predecessor node.
579///
580/// FIXME: Adjust PredSU height based on MinLatency.
581void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
582  SUnit *PredSU = PredEdge->getSUnit();
583
584  if (PredEdge->isWeak()) {
585    --PredSU->WeakSuccsLeft;
586    if (PredEdge->isCluster())
587      NextClusterPred = PredSU;
588    return;
589  }
590#ifndef NDEBUG
591  if (PredSU->NumSuccsLeft == 0) {
592    dbgs() << "*** Scheduling failed! ***\n";
593    PredSU->dump(this);
594    dbgs() << " has been released too many times!\n";
595    llvm_unreachable(nullptr);
596  }
597#endif
598  // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
599  // CurrCycle may have advanced since then.
600  if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
601    PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
602
603  --PredSU->NumSuccsLeft;
604  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
605    SchedImpl->releaseBottomNode(PredSU);
606}
607
608/// releasePredecessors - Call releasePred on each of SU's predecessors.
609void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
610  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
611       I != E; ++I) {
612    releasePred(SU, &*I);
613  }
614}
615
616/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
617/// crossing a scheduling boundary. [begin, end) includes all instructions in
618/// the region, including the boundary itself and single-instruction regions
619/// that don't get scheduled.
620void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
621                                     MachineBasicBlock::iterator begin,
622                                     MachineBasicBlock::iterator end,
623                                     unsigned regioninstrs)
624{
625  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
626
627  SchedImpl->initPolicy(begin, end, regioninstrs);
628}
629
630/// This is normally called from the main scheduler loop but may also be invoked
631/// by the scheduling strategy to perform additional code motion.
632void ScheduleDAGMI::moveInstruction(
633  MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
634  // Advance RegionBegin if the first instruction moves down.
635  if (&*RegionBegin == MI)
636    ++RegionBegin;
637
638  // Update the instruction stream.
639  BB->splice(InsertPos, BB, MI);
640
641  // Update LiveIntervals
642  if (LIS)
643    LIS->handleMove(MI, /*UpdateFlags=*/true);
644
645  // Recede RegionBegin if an instruction moves above the first.
646  if (RegionBegin == InsertPos)
647    RegionBegin = MI;
648}
649
650bool ScheduleDAGMI::checkSchedLimit() {
651#ifndef NDEBUG
652  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
653    CurrentTop = CurrentBottom;
654    return false;
655  }
656  ++NumInstrsScheduled;
657#endif
658  return true;
659}
660
661/// Per-region scheduling driver, called back from
662/// MachineScheduler::runOnMachineFunction. This is a simplified driver that
663/// does not consider liveness or register pressure. It is useful for PostRA
664/// scheduling and potentially other custom schedulers.
665void ScheduleDAGMI::schedule() {
666  DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
667  DEBUG(SchedImpl->dumpPolicy());
668
669  // Build the DAG.
670  buildSchedGraph(AA);
671
672  Topo.InitDAGTopologicalSorting();
673
674  postprocessDAG();
675
676  SmallVector<SUnit*, 8> TopRoots, BotRoots;
677  findRootsAndBiasEdges(TopRoots, BotRoots);
678
679  // Initialize the strategy before modifying the DAG.
680  // This may initialize a DFSResult to be used for queue priority.
681  SchedImpl->initialize(this);
682
683  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
684          SUnits[su].dumpAll(this));
685  if (ViewMISchedDAGs) viewGraph();
686
687  // Initialize ready queues now that the DAG and priority data are finalized.
688  initQueues(TopRoots, BotRoots);
689
690  bool IsTopNode = false;
691  while (true) {
692    DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
693    SUnit *SU = SchedImpl->pickNode(IsTopNode);
694    if (!SU) break;
695
696    assert(!SU->isScheduled && "Node already scheduled");
697    if (!checkSchedLimit())
698      break;
699
700    MachineInstr *MI = SU->getInstr();
701    if (IsTopNode) {
702      assert(SU->isTopReady() && "node still has unscheduled dependencies");
703      if (&*CurrentTop == MI)
704        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
705      else
706        moveInstruction(MI, CurrentTop);
707    }
708    else {
709      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
710      MachineBasicBlock::iterator priorII =
711        priorNonDebug(CurrentBottom, CurrentTop);
712      if (&*priorII == MI)
713        CurrentBottom = priorII;
714      else {
715        if (&*CurrentTop == MI)
716          CurrentTop = nextIfDebug(++CurrentTop, priorII);
717        moveInstruction(MI, CurrentBottom);
718        CurrentBottom = MI;
719      }
720    }
721    // Notify the scheduling strategy before updating the DAG.
722    // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
723    // runs, it can then use the accurate ReadyCycle time to determine whether
724    // newly released nodes can move to the readyQ.
725    SchedImpl->schedNode(SU, IsTopNode);
726
727    updateQueues(SU, IsTopNode);
728  }
729  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
730
731  placeDebugValues();
732
733  DEBUG({
734      unsigned BBNum = begin()->getParent()->getNumber();
735      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
736      dumpSchedule();
737      dbgs() << '\n';
738    });
739}
740
741/// Apply each ScheduleDAGMutation step in order.
742void ScheduleDAGMI::postprocessDAG() {
743  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
744    Mutations[i]->apply(this);
745  }
746}
747
748void ScheduleDAGMI::
749findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
750                      SmallVectorImpl<SUnit*> &BotRoots) {
751  for (std::vector<SUnit>::iterator
752         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
753    SUnit *SU = &(*I);
754    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
755
756    // Order predecessors so DFSResult follows the critical path.
757    SU->biasCriticalPath();
758
759    // A SUnit is ready to top schedule if it has no predecessors.
760    if (!I->NumPredsLeft)
761      TopRoots.push_back(SU);
762    // A SUnit is ready to bottom schedule if it has no successors.
763    if (!I->NumSuccsLeft)
764      BotRoots.push_back(SU);
765  }
766  ExitSU.biasCriticalPath();
767}
768
769/// Identify DAG roots and setup scheduler queues.
770void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
771                               ArrayRef<SUnit*> BotRoots) {
772  NextClusterSucc = nullptr;
773  NextClusterPred = nullptr;
774
775  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
776  //
777  // Nodes with unreleased weak edges can still be roots.
778  // Release top roots in forward order.
779  for (SmallVectorImpl<SUnit*>::const_iterator
780         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
781    SchedImpl->releaseTopNode(*I);
782  }
783  // Release bottom roots in reverse order so the higher priority nodes appear
784  // first. This is more natural and slightly more efficient.
785  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
786         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
787    SchedImpl->releaseBottomNode(*I);
788  }
789
790  releaseSuccessors(&EntrySU);
791  releasePredecessors(&ExitSU);
792
793  SchedImpl->registerRoots();
794
795  // Advance past initial DebugValues.
796  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
797  CurrentBottom = RegionEnd;
798}
799
800/// Update scheduler queues after scheduling an instruction.
801void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
802  // Release dependent instructions for scheduling.
803  if (IsTopNode)
804    releaseSuccessors(SU);
805  else
806    releasePredecessors(SU);
807
808  SU->isScheduled = true;
809}
810
811/// Reinsert any remaining debug_values, just like the PostRA scheduler.
812void ScheduleDAGMI::placeDebugValues() {
813  // If first instruction was a DBG_VALUE then put it back.
814  if (FirstDbgValue) {
815    BB->splice(RegionBegin, BB, FirstDbgValue);
816    RegionBegin = FirstDbgValue;
817  }
818
819  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
820         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
821    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
822    MachineInstr *DbgValue = P.first;
823    MachineBasicBlock::iterator OrigPrevMI = P.second;
824    if (&*RegionBegin == DbgValue)
825      ++RegionBegin;
826    BB->splice(++OrigPrevMI, BB, DbgValue);
827    if (OrigPrevMI == std::prev(RegionEnd))
828      RegionEnd = DbgValue;
829  }
830  DbgValues.clear();
831  FirstDbgValue = nullptr;
832}
833
834#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
835void ScheduleDAGMI::dumpSchedule() const {
836  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
837    if (SUnit *SU = getSUnit(&(*MI)))
838      SU->dump(this);
839    else
840      dbgs() << "Missing SUnit\n";
841  }
842}
843#endif
844
845//===----------------------------------------------------------------------===//
846// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
847// preservation.
848//===----------------------------------------------------------------------===//
849
850ScheduleDAGMILive::~ScheduleDAGMILive() {
851  delete DFSResult;
852}
853
854/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
855/// crossing a scheduling boundary. [begin, end) includes all instructions in
856/// the region, including the boundary itself and single-instruction regions
857/// that don't get scheduled.
858void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
859                                MachineBasicBlock::iterator begin,
860                                MachineBasicBlock::iterator end,
861                                unsigned regioninstrs)
862{
863  // ScheduleDAGMI initializes SchedImpl's per-region policy.
864  ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
865
866  // For convenience remember the end of the liveness region.
867  LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
868
869  SUPressureDiffs.clear();
870
871  ShouldTrackPressure = SchedImpl->shouldTrackPressure();
872}
873
874// Setup the register pressure trackers for the top scheduled top and bottom
875// scheduled regions.
876void ScheduleDAGMILive::initRegPressure() {
877  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
878  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
879
880  // Close the RPTracker to finalize live ins.
881  RPTracker.closeRegion();
882
883  DEBUG(RPTracker.dump());
884
885  // Initialize the live ins and live outs.
886  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
887  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
888
889  // Close one end of the tracker so we can call
890  // getMaxUpward/DownwardPressureDelta before advancing across any
891  // instructions. This converts currently live regs into live ins/outs.
892  TopRPTracker.closeTop();
893  BotRPTracker.closeBottom();
894
895  BotRPTracker.initLiveThru(RPTracker);
896  if (!BotRPTracker.getLiveThru().empty()) {
897    TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
898    DEBUG(dbgs() << "Live Thru: ";
899          dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
900  };
901
902  // For each live out vreg reduce the pressure change associated with other
903  // uses of the same vreg below the live-out reaching def.
904  updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
905
906  // Account for liveness generated by the region boundary.
907  if (LiveRegionEnd != RegionEnd) {
908    SmallVector<unsigned, 8> LiveUses;
909    BotRPTracker.recede(&LiveUses);
910    updatePressureDiffs(LiveUses);
911  }
912
913  DEBUG(
914    dbgs() << "Top Pressure:\n";
915    dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
916    dbgs() << "Bottom Pressure:\n";
917    dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
918  );
919
920  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
921
922  // Cache the list of excess pressure sets in this region. This will also track
923  // the max pressure in the scheduled code for these sets.
924  RegionCriticalPSets.clear();
925  const std::vector<unsigned> &RegionPressure =
926    RPTracker.getPressure().MaxSetPressure;
927  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
928    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
929    if (RegionPressure[i] > Limit) {
930      DEBUG(dbgs() << TRI->getRegPressureSetName(i)
931            << " Limit " << Limit
932            << " Actual " << RegionPressure[i] << "\n");
933      RegionCriticalPSets.push_back(PressureChange(i));
934    }
935  }
936  DEBUG(dbgs() << "Excess PSets: ";
937        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
938          dbgs() << TRI->getRegPressureSetName(
939            RegionCriticalPSets[i].getPSet()) << " ";
940        dbgs() << "\n");
941}
942
943void ScheduleDAGMILive::
944updateScheduledPressure(const SUnit *SU,
945                        const std::vector<unsigned> &NewMaxPressure) {
946  const PressureDiff &PDiff = getPressureDiff(SU);
947  unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
948  for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
949       I != E; ++I) {
950    if (!I->isValid())
951      break;
952    unsigned ID = I->getPSet();
953    while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
954      ++CritIdx;
955    if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
956      if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
957          && NewMaxPressure[ID] <= INT16_MAX)
958        RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
959    }
960    unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
961    if (NewMaxPressure[ID] >= Limit - 2) {
962      DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
963            << NewMaxPressure[ID]
964            << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
965            << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
966    }
967  }
968}
969
970/// Update the PressureDiff array for liveness after scheduling this
971/// instruction.
972void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
973  for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
974    /// FIXME: Currently assuming single-use physregs.
975    unsigned Reg = LiveUses[LUIdx];
976    DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
977    if (!TRI->isVirtualRegister(Reg))
978      continue;
979
980    // This may be called before CurrentBottom has been initialized. However,
981    // BotRPTracker must have a valid position. We want the value live into the
982    // instruction or live out of the block, so ask for the previous
983    // instruction's live-out.
984    const LiveInterval &LI = LIS->getInterval(Reg);
985    VNInfo *VNI;
986    MachineBasicBlock::const_iterator I =
987      nextIfDebug(BotRPTracker.getPos(), BB->end());
988    if (I == BB->end())
989      VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
990    else {
991      LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
992      VNI = LRQ.valueIn();
993    }
994    // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
995    assert(VNI && "No live value at use.");
996    for (const VReg2SUnit &V2SU
997         : make_range(VRegUses.find(Reg), VRegUses.end())) {
998      SUnit *SU = V2SU.SU;
999      // If this use comes before the reaching def, it cannot be a last use, so
1000      // descrease its pressure change.
1001      if (!SU->isScheduled && SU != &ExitSU) {
1002        LiveQueryResult LRQ
1003          = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
1004        if (LRQ.valueIn() == VNI) {
1005          PressureDiff &PDiff = getPressureDiff(SU);
1006          PDiff.addPressureChange(Reg, true, &MRI);
1007          DEBUG(
1008            dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1009                   << *SU->getInstr();
1010            dbgs() << "              to ";
1011            PDiff.dump(*TRI);
1012          );
1013        }
1014      }
1015    }
1016  }
1017}
1018
1019/// schedule - Called back from MachineScheduler::runOnMachineFunction
1020/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1021/// only includes instructions that have DAG nodes, not scheduling boundaries.
1022///
1023/// This is a skeletal driver, with all the functionality pushed into helpers,
1024/// so that it can be easily extended by experimental schedulers. Generally,
1025/// implementing MachineSchedStrategy should be sufficient to implement a new
1026/// scheduling algorithm. However, if a scheduler further subclasses
1027/// ScheduleDAGMILive then it will want to override this virtual method in order
1028/// to update any specialized state.
1029void ScheduleDAGMILive::schedule() {
1030  DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1031  DEBUG(SchedImpl->dumpPolicy());
1032  buildDAGWithRegPressure();
1033
1034  Topo.InitDAGTopologicalSorting();
1035
1036  postprocessDAG();
1037
1038  SmallVector<SUnit*, 8> TopRoots, BotRoots;
1039  findRootsAndBiasEdges(TopRoots, BotRoots);
1040
1041  // Initialize the strategy before modifying the DAG.
1042  // This may initialize a DFSResult to be used for queue priority.
1043  SchedImpl->initialize(this);
1044
1045  DEBUG(
1046    for (const SUnit &SU : SUnits) {
1047      SU.dumpAll(this);
1048      if (ShouldTrackPressure) {
1049        dbgs() << "  Pressure Diff      : ";
1050        getPressureDiff(&SU).dump(*TRI);
1051      }
1052      dbgs() << '\n';
1053    }
1054  );
1055  if (ViewMISchedDAGs) viewGraph();
1056
1057  // Initialize ready queues now that the DAG and priority data are finalized.
1058  initQueues(TopRoots, BotRoots);
1059
1060  if (ShouldTrackPressure) {
1061    assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1062    TopRPTracker.setPos(CurrentTop);
1063  }
1064
1065  bool IsTopNode = false;
1066  while (true) {
1067    DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1068    SUnit *SU = SchedImpl->pickNode(IsTopNode);
1069    if (!SU) break;
1070
1071    assert(!SU->isScheduled && "Node already scheduled");
1072    if (!checkSchedLimit())
1073      break;
1074
1075    scheduleMI(SU, IsTopNode);
1076
1077    if (DFSResult) {
1078      unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1079      if (!ScheduledTrees.test(SubtreeID)) {
1080        ScheduledTrees.set(SubtreeID);
1081        DFSResult->scheduleTree(SubtreeID);
1082        SchedImpl->scheduleTree(SubtreeID);
1083      }
1084    }
1085
1086    // Notify the scheduling strategy after updating the DAG.
1087    SchedImpl->schedNode(SU, IsTopNode);
1088
1089    updateQueues(SU, IsTopNode);
1090  }
1091  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1092
1093  placeDebugValues();
1094
1095  DEBUG({
1096      unsigned BBNum = begin()->getParent()->getNumber();
1097      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1098      dumpSchedule();
1099      dbgs() << '\n';
1100    });
1101}
1102
1103/// Build the DAG and setup three register pressure trackers.
1104void ScheduleDAGMILive::buildDAGWithRegPressure() {
1105  if (!ShouldTrackPressure) {
1106    RPTracker.reset();
1107    RegionCriticalPSets.clear();
1108    buildSchedGraph(AA);
1109    return;
1110  }
1111
1112  // Initialize the register pressure tracker used by buildSchedGraph.
1113  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1114                 /*TrackUntiedDefs=*/true);
1115
1116  // Account for liveness generate by the region boundary.
1117  if (LiveRegionEnd != RegionEnd)
1118    RPTracker.recede();
1119
1120  // Build the DAG, and compute current register pressure.
1121  buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
1122
1123  // Initialize top/bottom trackers after computing region pressure.
1124  initRegPressure();
1125}
1126
1127void ScheduleDAGMILive::computeDFSResult() {
1128  if (!DFSResult)
1129    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1130  DFSResult->clear();
1131  ScheduledTrees.clear();
1132  DFSResult->resize(SUnits.size());
1133  DFSResult->compute(SUnits);
1134  ScheduledTrees.resize(DFSResult->getNumSubtrees());
1135}
1136
1137/// Compute the max cyclic critical path through the DAG. The scheduling DAG
1138/// only provides the critical path for single block loops. To handle loops that
1139/// span blocks, we could use the vreg path latencies provided by
1140/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1141/// available for use in the scheduler.
1142///
1143/// The cyclic path estimation identifies a def-use pair that crosses the back
1144/// edge and considers the depth and height of the nodes. For example, consider
1145/// the following instruction sequence where each instruction has unit latency
1146/// and defines an epomymous virtual register:
1147///
1148/// a->b(a,c)->c(b)->d(c)->exit
1149///
1150/// The cyclic critical path is a two cycles: b->c->b
1151/// The acyclic critical path is four cycles: a->b->c->d->exit
1152/// LiveOutHeight = height(c) = len(c->d->exit) = 2
1153/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1154/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1155/// LiveInDepth = depth(b) = len(a->b) = 1
1156///
1157/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1158/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1159/// CyclicCriticalPath = min(2, 2) = 2
1160///
1161/// This could be relevant to PostRA scheduling, but is currently implemented
1162/// assuming LiveIntervals.
1163unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1164  // This only applies to single block loop.
1165  if (!BB->isSuccessor(BB))
1166    return 0;
1167
1168  unsigned MaxCyclicLatency = 0;
1169  // Visit each live out vreg def to find def/use pairs that cross iterations.
1170  ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
1171  for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
1172       RI != RE; ++RI) {
1173    unsigned Reg = *RI;
1174    if (!TRI->isVirtualRegister(Reg))
1175        continue;
1176    const LiveInterval &LI = LIS->getInterval(Reg);
1177    const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1178    if (!DefVNI)
1179      continue;
1180
1181    MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1182    const SUnit *DefSU = getSUnit(DefMI);
1183    if (!DefSU)
1184      continue;
1185
1186    unsigned LiveOutHeight = DefSU->getHeight();
1187    unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1188    // Visit all local users of the vreg def.
1189    for (const VReg2SUnit &V2SU
1190         : make_range(VRegUses.find(Reg), VRegUses.end())) {
1191      SUnit *SU = V2SU.SU;
1192      if (SU == &ExitSU)
1193        continue;
1194
1195      // Only consider uses of the phi.
1196      LiveQueryResult LRQ =
1197        LI.Query(LIS->getInstructionIndex(SU->getInstr()));
1198      if (!LRQ.valueIn()->isPHIDef())
1199        continue;
1200
1201      // Assume that a path spanning two iterations is a cycle, which could
1202      // overestimate in strange cases. This allows cyclic latency to be
1203      // estimated as the minimum slack of the vreg's depth or height.
1204      unsigned CyclicLatency = 0;
1205      if (LiveOutDepth > SU->getDepth())
1206        CyclicLatency = LiveOutDepth - SU->getDepth();
1207
1208      unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1209      if (LiveInHeight > LiveOutHeight) {
1210        if (LiveInHeight - LiveOutHeight < CyclicLatency)
1211          CyclicLatency = LiveInHeight - LiveOutHeight;
1212      }
1213      else
1214        CyclicLatency = 0;
1215
1216      DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1217            << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1218      if (CyclicLatency > MaxCyclicLatency)
1219        MaxCyclicLatency = CyclicLatency;
1220    }
1221  }
1222  DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1223  return MaxCyclicLatency;
1224}
1225
1226/// Move an instruction and update register pressure.
1227void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1228  // Move the instruction to its new location in the instruction stream.
1229  MachineInstr *MI = SU->getInstr();
1230
1231  if (IsTopNode) {
1232    assert(SU->isTopReady() && "node still has unscheduled dependencies");
1233    if (&*CurrentTop == MI)
1234      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1235    else {
1236      moveInstruction(MI, CurrentTop);
1237      TopRPTracker.setPos(MI);
1238    }
1239
1240    if (ShouldTrackPressure) {
1241      // Update top scheduled pressure.
1242      TopRPTracker.advance();
1243      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1244      DEBUG(
1245        dbgs() << "Top Pressure:\n";
1246        dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1247      );
1248
1249      updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1250    }
1251  }
1252  else {
1253    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1254    MachineBasicBlock::iterator priorII =
1255      priorNonDebug(CurrentBottom, CurrentTop);
1256    if (&*priorII == MI)
1257      CurrentBottom = priorII;
1258    else {
1259      if (&*CurrentTop == MI) {
1260        CurrentTop = nextIfDebug(++CurrentTop, priorII);
1261        TopRPTracker.setPos(CurrentTop);
1262      }
1263      moveInstruction(MI, CurrentBottom);
1264      CurrentBottom = MI;
1265    }
1266    if (ShouldTrackPressure) {
1267      // Update bottom scheduled pressure.
1268      SmallVector<unsigned, 8> LiveUses;
1269      BotRPTracker.recede(&LiveUses);
1270      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1271      DEBUG(
1272        dbgs() << "Bottom Pressure:\n";
1273        dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1274      );
1275
1276      updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1277      updatePressureDiffs(LiveUses);
1278    }
1279  }
1280}
1281
1282//===----------------------------------------------------------------------===//
1283// LoadClusterMutation - DAG post-processing to cluster loads.
1284//===----------------------------------------------------------------------===//
1285
1286namespace {
1287/// \brief Post-process the DAG to create cluster edges between neighboring
1288/// loads.
1289class LoadClusterMutation : public ScheduleDAGMutation {
1290  struct LoadInfo {
1291    SUnit *SU;
1292    unsigned BaseReg;
1293    unsigned Offset;
1294    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1295      : SU(su), BaseReg(reg), Offset(ofs) {}
1296
1297    bool operator<(const LoadInfo &RHS) const {
1298      return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1299    }
1300  };
1301
1302  const TargetInstrInfo *TII;
1303  const TargetRegisterInfo *TRI;
1304public:
1305  LoadClusterMutation(const TargetInstrInfo *tii,
1306                      const TargetRegisterInfo *tri)
1307    : TII(tii), TRI(tri) {}
1308
1309  void apply(ScheduleDAGMI *DAG) override;
1310protected:
1311  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1312};
1313} // anonymous
1314
1315void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1316                                                  ScheduleDAGMI *DAG) {
1317  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1318  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1319    SUnit *SU = Loads[Idx];
1320    unsigned BaseReg;
1321    unsigned Offset;
1322    if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1323      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1324  }
1325  if (LoadRecords.size() < 2)
1326    return;
1327  std::sort(LoadRecords.begin(), LoadRecords.end());
1328  unsigned ClusterLength = 1;
1329  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1330    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1331      ClusterLength = 1;
1332      continue;
1333    }
1334
1335    SUnit *SUa = LoadRecords[Idx].SU;
1336    SUnit *SUb = LoadRecords[Idx+1].SU;
1337    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1338        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1339
1340      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1341            << SUb->NodeNum << ")\n");
1342      // Copy successor edges from SUa to SUb. Interleaving computation
1343      // dependent on SUa can prevent load combining due to register reuse.
1344      // Predecessor edges do not need to be copied from SUb to SUa since nearby
1345      // loads should have effectively the same inputs.
1346      for (SUnit::const_succ_iterator
1347             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1348        if (SI->getSUnit() == SUb)
1349          continue;
1350        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1351        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1352      }
1353      ++ClusterLength;
1354    }
1355    else
1356      ClusterLength = 1;
1357  }
1358}
1359
1360/// \brief Callback from DAG postProcessing to create cluster edges for loads.
1361void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1362  // Map DAG NodeNum to store chain ID.
1363  DenseMap<unsigned, unsigned> StoreChainIDs;
1364  // Map each store chain to a set of dependent loads.
1365  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1366  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1367    SUnit *SU = &DAG->SUnits[Idx];
1368    if (!SU->getInstr()->mayLoad())
1369      continue;
1370    unsigned ChainPredID = DAG->SUnits.size();
1371    for (SUnit::const_pred_iterator
1372           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1373      if (PI->isCtrl()) {
1374        ChainPredID = PI->getSUnit()->NodeNum;
1375        break;
1376      }
1377    }
1378    // Check if this chain-like pred has been seen
1379    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1380    unsigned NumChains = StoreChainDependents.size();
1381    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1382      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1383    if (Result.second)
1384      StoreChainDependents.resize(NumChains + 1);
1385    StoreChainDependents[Result.first->second].push_back(SU);
1386  }
1387  // Iterate over the store chains.
1388  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1389    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1390}
1391
1392//===----------------------------------------------------------------------===//
1393// MacroFusion - DAG post-processing to encourage fusion of macro ops.
1394//===----------------------------------------------------------------------===//
1395
1396namespace {
1397/// \brief Post-process the DAG to create cluster edges between instructions
1398/// that may be fused by the processor into a single operation.
1399class MacroFusion : public ScheduleDAGMutation {
1400  const TargetInstrInfo &TII;
1401  const TargetRegisterInfo &TRI;
1402public:
1403  MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
1404    : TII(TII), TRI(TRI) {}
1405
1406  void apply(ScheduleDAGMI *DAG) override;
1407};
1408} // anonymous
1409
1410/// Returns true if \p MI reads a register written by \p Other.
1411static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
1412                       const MachineInstr &Other) {
1413  for (const MachineOperand &MO : MI.uses()) {
1414    if (!MO.isReg() || !MO.readsReg())
1415      continue;
1416
1417    unsigned Reg = MO.getReg();
1418    if (Other.modifiesRegister(Reg, &TRI))
1419      return true;
1420  }
1421  return false;
1422}
1423
1424/// \brief Callback from DAG postProcessing to create cluster edges to encourage
1425/// fused operations.
1426void MacroFusion::apply(ScheduleDAGMI *DAG) {
1427  // For now, assume targets can only fuse with the branch.
1428  SUnit &ExitSU = DAG->ExitSU;
1429  MachineInstr *Branch = ExitSU.getInstr();
1430  if (!Branch)
1431    return;
1432
1433  for (SUnit &SU : DAG->SUnits) {
1434    // SUnits with successors can't be schedule in front of the ExitSU.
1435    if (!SU.Succs.empty())
1436      continue;
1437    // We only care if the node writes to a register that the branch reads.
1438    MachineInstr *Pred = SU.getInstr();
1439    if (!HasDataDep(TRI, *Branch, *Pred))
1440      continue;
1441
1442    if (!TII.shouldScheduleAdjacent(Pred, Branch))
1443      continue;
1444
1445    // Create a single weak edge from SU to ExitSU. The only effect is to cause
1446    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1447    // need to copy predecessor edges from ExitSU to SU, since top-down
1448    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1449    // of SU, we could create an artificial edge from the deepest root, but it
1450    // hasn't been needed yet.
1451    bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1452    (void)Success;
1453    assert(Success && "No DAG nodes should be reachable from ExitSU");
1454
1455    DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1456    break;
1457  }
1458}
1459
1460//===----------------------------------------------------------------------===//
1461// CopyConstrain - DAG post-processing to encourage copy elimination.
1462//===----------------------------------------------------------------------===//
1463
1464namespace {
1465/// \brief Post-process the DAG to create weak edges from all uses of a copy to
1466/// the one use that defines the copy's source vreg, most likely an induction
1467/// variable increment.
1468class CopyConstrain : public ScheduleDAGMutation {
1469  // Transient state.
1470  SlotIndex RegionBeginIdx;
1471  // RegionEndIdx is the slot index of the last non-debug instruction in the
1472  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1473  SlotIndex RegionEndIdx;
1474public:
1475  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1476
1477  void apply(ScheduleDAGMI *DAG) override;
1478
1479protected:
1480  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1481};
1482} // anonymous
1483
1484/// constrainLocalCopy handles two possibilities:
1485/// 1) Local src:
1486/// I0:     = dst
1487/// I1: src = ...
1488/// I2:     = dst
1489/// I3: dst = src (copy)
1490/// (create pred->succ edges I0->I1, I2->I1)
1491///
1492/// 2) Local copy:
1493/// I0: dst = src (copy)
1494/// I1:     = dst
1495/// I2: src = ...
1496/// I3:     = dst
1497/// (create pred->succ edges I1->I2, I3->I2)
1498///
1499/// Although the MachineScheduler is currently constrained to single blocks,
1500/// this algorithm should handle extended blocks. An EBB is a set of
1501/// contiguously numbered blocks such that the previous block in the EBB is
1502/// always the single predecessor.
1503void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1504  LiveIntervals *LIS = DAG->getLIS();
1505  MachineInstr *Copy = CopySU->getInstr();
1506
1507  // Check for pure vreg copies.
1508  unsigned SrcReg = Copy->getOperand(1).getReg();
1509  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1510    return;
1511
1512  unsigned DstReg = Copy->getOperand(0).getReg();
1513  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1514    return;
1515
1516  // Check if either the dest or source is local. If it's live across a back
1517  // edge, it's not local. Note that if both vregs are live across the back
1518  // edge, we cannot successfully contrain the copy without cyclic scheduling.
1519  // If both the copy's source and dest are local live intervals, then we
1520  // should treat the dest as the global for the purpose of adding
1521  // constraints. This adds edges from source's other uses to the copy.
1522  unsigned LocalReg = SrcReg;
1523  unsigned GlobalReg = DstReg;
1524  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1525  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1526    LocalReg = DstReg;
1527    GlobalReg = SrcReg;
1528    LocalLI = &LIS->getInterval(LocalReg);
1529    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1530      return;
1531  }
1532  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1533
1534  // Find the global segment after the start of the local LI.
1535  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1536  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1537  // local live range. We could create edges from other global uses to the local
1538  // start, but the coalescer should have already eliminated these cases, so
1539  // don't bother dealing with it.
1540  if (GlobalSegment == GlobalLI->end())
1541    return;
1542
1543  // If GlobalSegment is killed at the LocalLI->start, the call to find()
1544  // returned the next global segment. But if GlobalSegment overlaps with
1545  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1546  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1547  if (GlobalSegment->contains(LocalLI->beginIndex()))
1548    ++GlobalSegment;
1549
1550  if (GlobalSegment == GlobalLI->end())
1551    return;
1552
1553  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1554  if (GlobalSegment != GlobalLI->begin()) {
1555    // Two address defs have no hole.
1556    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1557                               GlobalSegment->start)) {
1558      return;
1559    }
1560    // If the prior global segment may be defined by the same two-address
1561    // instruction that also defines LocalLI, then can't make a hole here.
1562    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1563                               LocalLI->beginIndex())) {
1564      return;
1565    }
1566    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1567    // it would be a disconnected component in the live range.
1568    assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1569           "Disconnected LRG within the scheduling region.");
1570  }
1571  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1572  if (!GlobalDef)
1573    return;
1574
1575  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1576  if (!GlobalSU)
1577    return;
1578
1579  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1580  // constraining the uses of the last local def to precede GlobalDef.
1581  SmallVector<SUnit*,8> LocalUses;
1582  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1583  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1584  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1585  for (SUnit::const_succ_iterator
1586         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1587       I != E; ++I) {
1588    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1589      continue;
1590    if (I->getSUnit() == GlobalSU)
1591      continue;
1592    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1593      return;
1594    LocalUses.push_back(I->getSUnit());
1595  }
1596  // Open the top of the GlobalLI hole by constraining any earlier global uses
1597  // to precede the start of LocalLI.
1598  SmallVector<SUnit*,8> GlobalUses;
1599  MachineInstr *FirstLocalDef =
1600    LIS->getInstructionFromIndex(LocalLI->beginIndex());
1601  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1602  for (SUnit::const_pred_iterator
1603         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1604    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1605      continue;
1606    if (I->getSUnit() == FirstLocalSU)
1607      continue;
1608    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1609      return;
1610    GlobalUses.push_back(I->getSUnit());
1611  }
1612  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1613  // Add the weak edges.
1614  for (SmallVectorImpl<SUnit*>::const_iterator
1615         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1616    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1617          << GlobalSU->NodeNum << ")\n");
1618    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1619  }
1620  for (SmallVectorImpl<SUnit*>::const_iterator
1621         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1622    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1623          << FirstLocalSU->NodeNum << ")\n");
1624    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1625  }
1626}
1627
1628/// \brief Callback from DAG postProcessing to create weak edges to encourage
1629/// copy elimination.
1630void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1631  assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1632
1633  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1634  if (FirstPos == DAG->end())
1635    return;
1636  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1637  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1638    &*priorNonDebug(DAG->end(), DAG->begin()));
1639
1640  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1641    SUnit *SU = &DAG->SUnits[Idx];
1642    if (!SU->getInstr()->isCopy())
1643      continue;
1644
1645    constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1646  }
1647}
1648
1649//===----------------------------------------------------------------------===//
1650// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1651// and possibly other custom schedulers.
1652//===----------------------------------------------------------------------===//
1653
1654static const unsigned InvalidCycle = ~0U;
1655
1656SchedBoundary::~SchedBoundary() { delete HazardRec; }
1657
1658void SchedBoundary::reset() {
1659  // A new HazardRec is created for each DAG and owned by SchedBoundary.
1660  // Destroying and reconstructing it is very expensive though. So keep
1661  // invalid, placeholder HazardRecs.
1662  if (HazardRec && HazardRec->isEnabled()) {
1663    delete HazardRec;
1664    HazardRec = nullptr;
1665  }
1666  Available.clear();
1667  Pending.clear();
1668  CheckPending = false;
1669  NextSUs.clear();
1670  CurrCycle = 0;
1671  CurrMOps = 0;
1672  MinReadyCycle = UINT_MAX;
1673  ExpectedLatency = 0;
1674  DependentLatency = 0;
1675  RetiredMOps = 0;
1676  MaxExecutedResCount = 0;
1677  ZoneCritResIdx = 0;
1678  IsResourceLimited = false;
1679  ReservedCycles.clear();
1680#ifndef NDEBUG
1681  // Track the maximum number of stall cycles that could arise either from the
1682  // latency of a DAG edge or the number of cycles that a processor resource is
1683  // reserved (SchedBoundary::ReservedCycles).
1684  MaxObservedStall = 0;
1685#endif
1686  // Reserve a zero-count for invalid CritResIdx.
1687  ExecutedResCounts.resize(1);
1688  assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1689}
1690
1691void SchedRemainder::
1692init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1693  reset();
1694  if (!SchedModel->hasInstrSchedModel())
1695    return;
1696  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1697  for (std::vector<SUnit>::iterator
1698         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1699    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1700    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1701      * SchedModel->getMicroOpFactor();
1702    for (TargetSchedModel::ProcResIter
1703           PI = SchedModel->getWriteProcResBegin(SC),
1704           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1705      unsigned PIdx = PI->ProcResourceIdx;
1706      unsigned Factor = SchedModel->getResourceFactor(PIdx);
1707      RemainingCounts[PIdx] += (Factor * PI->Cycles);
1708    }
1709  }
1710}
1711
1712void SchedBoundary::
1713init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1714  reset();
1715  DAG = dag;
1716  SchedModel = smodel;
1717  Rem = rem;
1718  if (SchedModel->hasInstrSchedModel()) {
1719    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1720    ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1721  }
1722}
1723
1724/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1725/// these "soft stalls" differently than the hard stall cycles based on CPU
1726/// resources and computed by checkHazard(). A fully in-order model
1727/// (MicroOpBufferSize==0) will not make use of this since instructions are not
1728/// available for scheduling until they are ready. However, a weaker in-order
1729/// model may use this for heuristics. For example, if a processor has in-order
1730/// behavior when reading certain resources, this may come into play.
1731unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1732  if (!SU->isUnbuffered)
1733    return 0;
1734
1735  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1736  if (ReadyCycle > CurrCycle)
1737    return ReadyCycle - CurrCycle;
1738  return 0;
1739}
1740
1741/// Compute the next cycle at which the given processor resource can be
1742/// scheduled.
1743unsigned SchedBoundary::
1744getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1745  unsigned NextUnreserved = ReservedCycles[PIdx];
1746  // If this resource has never been used, always return cycle zero.
1747  if (NextUnreserved == InvalidCycle)
1748    return 0;
1749  // For bottom-up scheduling add the cycles needed for the current operation.
1750  if (!isTop())
1751    NextUnreserved += Cycles;
1752  return NextUnreserved;
1753}
1754
1755/// Does this SU have a hazard within the current instruction group.
1756///
1757/// The scheduler supports two modes of hazard recognition. The first is the
1758/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1759/// supports highly complicated in-order reservation tables
1760/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1761///
1762/// The second is a streamlined mechanism that checks for hazards based on
1763/// simple counters that the scheduler itself maintains. It explicitly checks
1764/// for instruction dispatch limitations, including the number of micro-ops that
1765/// can dispatch per cycle.
1766///
1767/// TODO: Also check whether the SU must start a new group.
1768bool SchedBoundary::checkHazard(SUnit *SU) {
1769  if (HazardRec->isEnabled()
1770      && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1771    return true;
1772  }
1773  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1774  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1775    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1776          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1777    return true;
1778  }
1779  if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1780    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1781    for (TargetSchedModel::ProcResIter
1782           PI = SchedModel->getWriteProcResBegin(SC),
1783           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1784      unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1785      if (NRCycle > CurrCycle) {
1786#ifndef NDEBUG
1787        MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1788#endif
1789        DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1790              << SchedModel->getResourceName(PI->ProcResourceIdx)
1791              << "=" << NRCycle << "c\n");
1792        return true;
1793      }
1794    }
1795  }
1796  return false;
1797}
1798
1799// Find the unscheduled node in ReadySUs with the highest latency.
1800unsigned SchedBoundary::
1801findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1802  SUnit *LateSU = nullptr;
1803  unsigned RemLatency = 0;
1804  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1805       I != E; ++I) {
1806    unsigned L = getUnscheduledLatency(*I);
1807    if (L > RemLatency) {
1808      RemLatency = L;
1809      LateSU = *I;
1810    }
1811  }
1812  if (LateSU) {
1813    DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1814          << LateSU->NodeNum << ") " << RemLatency << "c\n");
1815  }
1816  return RemLatency;
1817}
1818
1819// Count resources in this zone and the remaining unscheduled
1820// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1821// resource index, or zero if the zone is issue limited.
1822unsigned SchedBoundary::
1823getOtherResourceCount(unsigned &OtherCritIdx) {
1824  OtherCritIdx = 0;
1825  if (!SchedModel->hasInstrSchedModel())
1826    return 0;
1827
1828  unsigned OtherCritCount = Rem->RemIssueCount
1829    + (RetiredMOps * SchedModel->getMicroOpFactor());
1830  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1831        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1832  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1833       PIdx != PEnd; ++PIdx) {
1834    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1835    if (OtherCount > OtherCritCount) {
1836      OtherCritCount = OtherCount;
1837      OtherCritIdx = PIdx;
1838    }
1839  }
1840  if (OtherCritIdx) {
1841    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1842          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1843          << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1844  }
1845  return OtherCritCount;
1846}
1847
1848void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1849  assert(SU->getInstr() && "Scheduled SUnit must have instr");
1850
1851#ifndef NDEBUG
1852  // ReadyCycle was been bumped up to the CurrCycle when this node was
1853  // scheduled, but CurrCycle may have been eagerly advanced immediately after
1854  // scheduling, so may now be greater than ReadyCycle.
1855  if (ReadyCycle > CurrCycle)
1856    MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1857#endif
1858
1859  if (ReadyCycle < MinReadyCycle)
1860    MinReadyCycle = ReadyCycle;
1861
1862  // Check for interlocks first. For the purpose of other heuristics, an
1863  // instruction that cannot issue appears as if it's not in the ReadyQueue.
1864  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1865  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1866    Pending.push(SU);
1867  else
1868    Available.push(SU);
1869
1870  // Record this node as an immediate dependent of the scheduled node.
1871  NextSUs.insert(SU);
1872}
1873
1874void SchedBoundary::releaseTopNode(SUnit *SU) {
1875  if (SU->isScheduled)
1876    return;
1877
1878  releaseNode(SU, SU->TopReadyCycle);
1879}
1880
1881void SchedBoundary::releaseBottomNode(SUnit *SU) {
1882  if (SU->isScheduled)
1883    return;
1884
1885  releaseNode(SU, SU->BotReadyCycle);
1886}
1887
1888/// Move the boundary of scheduled code by one cycle.
1889void SchedBoundary::bumpCycle(unsigned NextCycle) {
1890  if (SchedModel->getMicroOpBufferSize() == 0) {
1891    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1892    if (MinReadyCycle > NextCycle)
1893      NextCycle = MinReadyCycle;
1894  }
1895  // Update the current micro-ops, which will issue in the next cycle.
1896  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1897  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1898
1899  // Decrement DependentLatency based on the next cycle.
1900  if ((NextCycle - CurrCycle) > DependentLatency)
1901    DependentLatency = 0;
1902  else
1903    DependentLatency -= (NextCycle - CurrCycle);
1904
1905  if (!HazardRec->isEnabled()) {
1906    // Bypass HazardRec virtual calls.
1907    CurrCycle = NextCycle;
1908  }
1909  else {
1910    // Bypass getHazardType calls in case of long latency.
1911    for (; CurrCycle != NextCycle; ++CurrCycle) {
1912      if (isTop())
1913        HazardRec->AdvanceCycle();
1914      else
1915        HazardRec->RecedeCycle();
1916    }
1917  }
1918  CheckPending = true;
1919  unsigned LFactor = SchedModel->getLatencyFactor();
1920  IsResourceLimited =
1921    (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1922    > (int)LFactor;
1923
1924  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1925}
1926
1927void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1928  ExecutedResCounts[PIdx] += Count;
1929  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1930    MaxExecutedResCount = ExecutedResCounts[PIdx];
1931}
1932
1933/// Add the given processor resource to this scheduled zone.
1934///
1935/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1936/// during which this resource is consumed.
1937///
1938/// \return the next cycle at which the instruction may execute without
1939/// oversubscribing resources.
1940unsigned SchedBoundary::
1941countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
1942  unsigned Factor = SchedModel->getResourceFactor(PIdx);
1943  unsigned Count = Factor * Cycles;
1944  DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
1945        << " +" << Cycles << "x" << Factor << "u\n");
1946
1947  // Update Executed resources counts.
1948  incExecutedResources(PIdx, Count);
1949  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1950  Rem->RemainingCounts[PIdx] -= Count;
1951
1952  // Check if this resource exceeds the current critical resource. If so, it
1953  // becomes the critical resource.
1954  if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1955    ZoneCritResIdx = PIdx;
1956    DEBUG(dbgs() << "  *** Critical resource "
1957          << SchedModel->getResourceName(PIdx) << ": "
1958          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1959  }
1960  // For reserved resources, record the highest cycle using the resource.
1961  unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
1962  if (NextAvailable > CurrCycle) {
1963    DEBUG(dbgs() << "  Resource conflict: "
1964          << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
1965          << NextAvailable << "\n");
1966  }
1967  return NextAvailable;
1968}
1969
1970/// Move the boundary of scheduled code by one SUnit.
1971void SchedBoundary::bumpNode(SUnit *SU) {
1972  // Update the reservation table.
1973  if (HazardRec->isEnabled()) {
1974    if (!isTop() && SU->isCall) {
1975      // Calls are scheduled with their preceding instructions. For bottom-up
1976      // scheduling, clear the pipeline state before emitting.
1977      HazardRec->Reset();
1978    }
1979    HazardRec->EmitInstruction(SU);
1980  }
1981  // checkHazard should prevent scheduling multiple instructions per cycle that
1982  // exceed the issue width.
1983  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1984  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1985  assert(
1986      (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
1987      "Cannot schedule this instruction's MicroOps in the current cycle.");
1988
1989  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1990  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
1991
1992  unsigned NextCycle = CurrCycle;
1993  switch (SchedModel->getMicroOpBufferSize()) {
1994  case 0:
1995    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1996    break;
1997  case 1:
1998    if (ReadyCycle > NextCycle) {
1999      NextCycle = ReadyCycle;
2000      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2001    }
2002    break;
2003  default:
2004    // We don't currently model the OOO reorder buffer, so consider all
2005    // scheduled MOps to be "retired". We do loosely model in-order resource
2006    // latency. If this instruction uses an in-order resource, account for any
2007    // likely stall cycles.
2008    if (SU->isUnbuffered && ReadyCycle > NextCycle)
2009      NextCycle = ReadyCycle;
2010    break;
2011  }
2012  RetiredMOps += IncMOps;
2013
2014  // Update resource counts and critical resource.
2015  if (SchedModel->hasInstrSchedModel()) {
2016    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2017    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2018    Rem->RemIssueCount -= DecRemIssue;
2019    if (ZoneCritResIdx) {
2020      // Scale scheduled micro-ops for comparing with the critical resource.
2021      unsigned ScaledMOps =
2022        RetiredMOps * SchedModel->getMicroOpFactor();
2023
2024      // If scaled micro-ops are now more than the previous critical resource by
2025      // a full cycle, then micro-ops issue becomes critical.
2026      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2027          >= (int)SchedModel->getLatencyFactor()) {
2028        ZoneCritResIdx = 0;
2029        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2030              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2031      }
2032    }
2033    for (TargetSchedModel::ProcResIter
2034           PI = SchedModel->getWriteProcResBegin(SC),
2035           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2036      unsigned RCycle =
2037        countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2038      if (RCycle > NextCycle)
2039        NextCycle = RCycle;
2040    }
2041    if (SU->hasReservedResource) {
2042      // For reserved resources, record the highest cycle using the resource.
2043      // For top-down scheduling, this is the cycle in which we schedule this
2044      // instruction plus the number of cycles the operations reserves the
2045      // resource. For bottom-up is it simply the instruction's cycle.
2046      for (TargetSchedModel::ProcResIter
2047             PI = SchedModel->getWriteProcResBegin(SC),
2048             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2049        unsigned PIdx = PI->ProcResourceIdx;
2050        if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2051          if (isTop()) {
2052            ReservedCycles[PIdx] =
2053              std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2054          }
2055          else
2056            ReservedCycles[PIdx] = NextCycle;
2057        }
2058      }
2059    }
2060  }
2061  // Update ExpectedLatency and DependentLatency.
2062  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2063  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2064  if (SU->getDepth() > TopLatency) {
2065    TopLatency = SU->getDepth();
2066    DEBUG(dbgs() << "  " << Available.getName()
2067          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2068  }
2069  if (SU->getHeight() > BotLatency) {
2070    BotLatency = SU->getHeight();
2071    DEBUG(dbgs() << "  " << Available.getName()
2072          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2073  }
2074  // If we stall for any reason, bump the cycle.
2075  if (NextCycle > CurrCycle) {
2076    bumpCycle(NextCycle);
2077  }
2078  else {
2079    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2080    // resource limited. If a stall occurred, bumpCycle does this.
2081    unsigned LFactor = SchedModel->getLatencyFactor();
2082    IsResourceLimited =
2083      (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2084      > (int)LFactor;
2085  }
2086  // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2087  // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2088  // one cycle.  Since we commonly reach the max MOps here, opportunistically
2089  // bump the cycle to avoid uselessly checking everything in the readyQ.
2090  CurrMOps += IncMOps;
2091  while (CurrMOps >= SchedModel->getIssueWidth()) {
2092    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2093          << " at cycle " << CurrCycle << '\n');
2094    bumpCycle(++NextCycle);
2095  }
2096  DEBUG(dumpScheduledState());
2097}
2098
2099/// Release pending ready nodes in to the available queue. This makes them
2100/// visible to heuristics.
2101void SchedBoundary::releasePending() {
2102  // If the available queue is empty, it is safe to reset MinReadyCycle.
2103  if (Available.empty())
2104    MinReadyCycle = UINT_MAX;
2105
2106  // Check to see if any of the pending instructions are ready to issue.  If
2107  // so, add them to the available queue.
2108  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2109  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2110    SUnit *SU = *(Pending.begin()+i);
2111    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2112
2113    if (ReadyCycle < MinReadyCycle)
2114      MinReadyCycle = ReadyCycle;
2115
2116    if (!IsBuffered && ReadyCycle > CurrCycle)
2117      continue;
2118
2119    if (checkHazard(SU))
2120      continue;
2121
2122    Available.push(SU);
2123    Pending.remove(Pending.begin()+i);
2124    --i; --e;
2125  }
2126  DEBUG(if (!Pending.empty()) Pending.dump());
2127  CheckPending = false;
2128}
2129
2130/// Remove SU from the ready set for this boundary.
2131void SchedBoundary::removeReady(SUnit *SU) {
2132  if (Available.isInQueue(SU))
2133    Available.remove(Available.find(SU));
2134  else {
2135    assert(Pending.isInQueue(SU) && "bad ready count");
2136    Pending.remove(Pending.find(SU));
2137  }
2138}
2139
2140/// If this queue only has one ready candidate, return it. As a side effect,
2141/// defer any nodes that now hit a hazard, and advance the cycle until at least
2142/// one node is ready. If multiple instructions are ready, return NULL.
2143SUnit *SchedBoundary::pickOnlyChoice() {
2144  if (CheckPending)
2145    releasePending();
2146
2147  if (CurrMOps > 0) {
2148    // Defer any ready instrs that now have a hazard.
2149    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2150      if (checkHazard(*I)) {
2151        Pending.push(*I);
2152        I = Available.remove(I);
2153        continue;
2154      }
2155      ++I;
2156    }
2157  }
2158  for (unsigned i = 0; Available.empty(); ++i) {
2159//  FIXME: Re-enable assert once PR20057 is resolved.
2160//    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2161//           "permanent hazard");
2162    (void)i;
2163    bumpCycle(CurrCycle + 1);
2164    releasePending();
2165  }
2166  if (Available.size() == 1)
2167    return *Available.begin();
2168  return nullptr;
2169}
2170
2171#ifndef NDEBUG
2172// This is useful information to dump after bumpNode.
2173// Note that the Queue contents are more useful before pickNodeFromQueue.
2174void SchedBoundary::dumpScheduledState() {
2175  unsigned ResFactor;
2176  unsigned ResCount;
2177  if (ZoneCritResIdx) {
2178    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2179    ResCount = getResourceCount(ZoneCritResIdx);
2180  }
2181  else {
2182    ResFactor = SchedModel->getMicroOpFactor();
2183    ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2184  }
2185  unsigned LFactor = SchedModel->getLatencyFactor();
2186  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2187         << "  Retired: " << RetiredMOps;
2188  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2189  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2190         << ResCount / ResFactor << " "
2191         << SchedModel->getResourceName(ZoneCritResIdx)
2192         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2193         << (IsResourceLimited ? "  - Resource" : "  - Latency")
2194         << " limited.\n";
2195}
2196#endif
2197
2198//===----------------------------------------------------------------------===//
2199// GenericScheduler - Generic implementation of MachineSchedStrategy.
2200//===----------------------------------------------------------------------===//
2201
2202void GenericSchedulerBase::SchedCandidate::
2203initResourceDelta(const ScheduleDAGMI *DAG,
2204                  const TargetSchedModel *SchedModel) {
2205  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2206    return;
2207
2208  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2209  for (TargetSchedModel::ProcResIter
2210         PI = SchedModel->getWriteProcResBegin(SC),
2211         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2212    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2213      ResDelta.CritResources += PI->Cycles;
2214    if (PI->ProcResourceIdx == Policy.DemandResIdx)
2215      ResDelta.DemandedResources += PI->Cycles;
2216  }
2217}
2218
2219/// Set the CandPolicy given a scheduling zone given the current resources and
2220/// latencies inside and outside the zone.
2221void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2222                                     bool IsPostRA,
2223                                     SchedBoundary &CurrZone,
2224                                     SchedBoundary *OtherZone) {
2225  // Apply preemptive heuristics based on the total latency and resources
2226  // inside and outside this zone. Potential stalls should be considered before
2227  // following this policy.
2228
2229  // Compute remaining latency. We need this both to determine whether the
2230  // overall schedule has become latency-limited and whether the instructions
2231  // outside this zone are resource or latency limited.
2232  //
2233  // The "dependent" latency is updated incrementally during scheduling as the
2234  // max height/depth of scheduled nodes minus the cycles since it was
2235  // scheduled:
2236  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2237  //
2238  // The "independent" latency is the max ready queue depth:
2239  //   ILat = max N.depth for N in Available|Pending
2240  //
2241  // RemainingLatency is the greater of independent and dependent latency.
2242  unsigned RemLatency = CurrZone.getDependentLatency();
2243  RemLatency = std::max(RemLatency,
2244                        CurrZone.findMaxLatency(CurrZone.Available.elements()));
2245  RemLatency = std::max(RemLatency,
2246                        CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2247
2248  // Compute the critical resource outside the zone.
2249  unsigned OtherCritIdx = 0;
2250  unsigned OtherCount =
2251    OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2252
2253  bool OtherResLimited = false;
2254  if (SchedModel->hasInstrSchedModel()) {
2255    unsigned LFactor = SchedModel->getLatencyFactor();
2256    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2257  }
2258  // Schedule aggressively for latency in PostRA mode. We don't check for
2259  // acyclic latency during PostRA, and highly out-of-order processors will
2260  // skip PostRA scheduling.
2261  if (!OtherResLimited) {
2262    if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2263      Policy.ReduceLatency |= true;
2264      DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2265            << " RemainingLatency " << RemLatency << " + "
2266            << CurrZone.getCurrCycle() << "c > CritPath "
2267            << Rem.CriticalPath << "\n");
2268    }
2269  }
2270  // If the same resource is limiting inside and outside the zone, do nothing.
2271  if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2272    return;
2273
2274  DEBUG(
2275    if (CurrZone.isResourceLimited()) {
2276      dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2277             << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2278             << "\n";
2279    }
2280    if (OtherResLimited)
2281      dbgs() << "  RemainingLimit: "
2282             << SchedModel->getResourceName(OtherCritIdx) << "\n";
2283    if (!CurrZone.isResourceLimited() && !OtherResLimited)
2284      dbgs() << "  Latency limited both directions.\n");
2285
2286  if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2287    Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2288
2289  if (OtherResLimited)
2290    Policy.DemandResIdx = OtherCritIdx;
2291}
2292
2293#ifndef NDEBUG
2294const char *GenericSchedulerBase::getReasonStr(
2295  GenericSchedulerBase::CandReason Reason) {
2296  switch (Reason) {
2297  case NoCand:         return "NOCAND    ";
2298  case PhysRegCopy:    return "PREG-COPY";
2299  case RegExcess:      return "REG-EXCESS";
2300  case RegCritical:    return "REG-CRIT  ";
2301  case Stall:          return "STALL     ";
2302  case Cluster:        return "CLUSTER   ";
2303  case Weak:           return "WEAK      ";
2304  case RegMax:         return "REG-MAX   ";
2305  case ResourceReduce: return "RES-REDUCE";
2306  case ResourceDemand: return "RES-DEMAND";
2307  case TopDepthReduce: return "TOP-DEPTH ";
2308  case TopPathReduce:  return "TOP-PATH  ";
2309  case BotHeightReduce:return "BOT-HEIGHT";
2310  case BotPathReduce:  return "BOT-PATH  ";
2311  case NextDefUse:     return "DEF-USE   ";
2312  case NodeOrder:      return "ORDER     ";
2313  };
2314  llvm_unreachable("Unknown reason!");
2315}
2316
2317void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2318  PressureChange P;
2319  unsigned ResIdx = 0;
2320  unsigned Latency = 0;
2321  switch (Cand.Reason) {
2322  default:
2323    break;
2324  case RegExcess:
2325    P = Cand.RPDelta.Excess;
2326    break;
2327  case RegCritical:
2328    P = Cand.RPDelta.CriticalMax;
2329    break;
2330  case RegMax:
2331    P = Cand.RPDelta.CurrentMax;
2332    break;
2333  case ResourceReduce:
2334    ResIdx = Cand.Policy.ReduceResIdx;
2335    break;
2336  case ResourceDemand:
2337    ResIdx = Cand.Policy.DemandResIdx;
2338    break;
2339  case TopDepthReduce:
2340    Latency = Cand.SU->getDepth();
2341    break;
2342  case TopPathReduce:
2343    Latency = Cand.SU->getHeight();
2344    break;
2345  case BotHeightReduce:
2346    Latency = Cand.SU->getHeight();
2347    break;
2348  case BotPathReduce:
2349    Latency = Cand.SU->getDepth();
2350    break;
2351  }
2352  dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2353  if (P.isValid())
2354    dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2355           << ":" << P.getUnitInc() << " ";
2356  else
2357    dbgs() << "      ";
2358  if (ResIdx)
2359    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2360  else
2361    dbgs() << "         ";
2362  if (Latency)
2363    dbgs() << " " << Latency << " cycles ";
2364  else
2365    dbgs() << "          ";
2366  dbgs() << '\n';
2367}
2368#endif
2369
2370/// Return true if this heuristic determines order.
2371static bool tryLess(int TryVal, int CandVal,
2372                    GenericSchedulerBase::SchedCandidate &TryCand,
2373                    GenericSchedulerBase::SchedCandidate &Cand,
2374                    GenericSchedulerBase::CandReason Reason) {
2375  if (TryVal < CandVal) {
2376    TryCand.Reason = Reason;
2377    return true;
2378  }
2379  if (TryVal > CandVal) {
2380    if (Cand.Reason > Reason)
2381      Cand.Reason = Reason;
2382    return true;
2383  }
2384  Cand.setRepeat(Reason);
2385  return false;
2386}
2387
2388static bool tryGreater(int TryVal, int CandVal,
2389                       GenericSchedulerBase::SchedCandidate &TryCand,
2390                       GenericSchedulerBase::SchedCandidate &Cand,
2391                       GenericSchedulerBase::CandReason Reason) {
2392  if (TryVal > CandVal) {
2393    TryCand.Reason = Reason;
2394    return true;
2395  }
2396  if (TryVal < CandVal) {
2397    if (Cand.Reason > Reason)
2398      Cand.Reason = Reason;
2399    return true;
2400  }
2401  Cand.setRepeat(Reason);
2402  return false;
2403}
2404
2405static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2406                       GenericSchedulerBase::SchedCandidate &Cand,
2407                       SchedBoundary &Zone) {
2408  if (Zone.isTop()) {
2409    if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2410      if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2411                  TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2412        return true;
2413    }
2414    if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2415                   TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2416      return true;
2417  }
2418  else {
2419    if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2420      if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2421                  TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2422        return true;
2423    }
2424    if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2425                   TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2426      return true;
2427  }
2428  return false;
2429}
2430
2431static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2432                      bool IsTop) {
2433  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2434        << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2435}
2436
2437void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2438  assert(dag->hasVRegLiveness() &&
2439         "(PreRA)GenericScheduler needs vreg liveness");
2440  DAG = static_cast<ScheduleDAGMILive*>(dag);
2441  SchedModel = DAG->getSchedModel();
2442  TRI = DAG->TRI;
2443
2444  Rem.init(DAG, SchedModel);
2445  Top.init(DAG, SchedModel, &Rem);
2446  Bot.init(DAG, SchedModel, &Rem);
2447
2448  // Initialize resource counts.
2449
2450  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2451  // are disabled, then these HazardRecs will be disabled.
2452  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2453  if (!Top.HazardRec) {
2454    Top.HazardRec =
2455        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2456            Itin, DAG);
2457  }
2458  if (!Bot.HazardRec) {
2459    Bot.HazardRec =
2460        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2461            Itin, DAG);
2462  }
2463}
2464
2465/// Initialize the per-region scheduling policy.
2466void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2467                                  MachineBasicBlock::iterator End,
2468                                  unsigned NumRegionInstrs) {
2469  const MachineFunction &MF = *Begin->getParent()->getParent();
2470  const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2471
2472  // Avoid setting up the register pressure tracker for small regions to save
2473  // compile time. As a rough heuristic, only track pressure when the number of
2474  // schedulable instructions exceeds half the integer register file.
2475  RegionPolicy.ShouldTrackPressure = true;
2476  for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2477    MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2478    if (TLI->isTypeLegal(LegalIntVT)) {
2479      unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2480        TLI->getRegClassFor(LegalIntVT));
2481      RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2482    }
2483  }
2484
2485  // For generic targets, we default to bottom-up, because it's simpler and more
2486  // compile-time optimizations have been implemented in that direction.
2487  RegionPolicy.OnlyBottomUp = true;
2488
2489  // Allow the subtarget to override default policy.
2490  MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2491                                        NumRegionInstrs);
2492
2493  // After subtarget overrides, apply command line options.
2494  if (!EnableRegPressure)
2495    RegionPolicy.ShouldTrackPressure = false;
2496
2497  // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2498  // e.g. -misched-bottomup=false allows scheduling in both directions.
2499  assert((!ForceTopDown || !ForceBottomUp) &&
2500         "-misched-topdown incompatible with -misched-bottomup");
2501  if (ForceBottomUp.getNumOccurrences() > 0) {
2502    RegionPolicy.OnlyBottomUp = ForceBottomUp;
2503    if (RegionPolicy.OnlyBottomUp)
2504      RegionPolicy.OnlyTopDown = false;
2505  }
2506  if (ForceTopDown.getNumOccurrences() > 0) {
2507    RegionPolicy.OnlyTopDown = ForceTopDown;
2508    if (RegionPolicy.OnlyTopDown)
2509      RegionPolicy.OnlyBottomUp = false;
2510  }
2511}
2512
2513void GenericScheduler::dumpPolicy() {
2514  dbgs() << "GenericScheduler RegionPolicy: "
2515         << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2516         << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2517         << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2518         << "\n";
2519}
2520
2521/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2522/// critical path by more cycles than it takes to drain the instruction buffer.
2523/// We estimate an upper bounds on in-flight instructions as:
2524///
2525/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2526/// InFlightIterations = AcyclicPath / CyclesPerIteration
2527/// InFlightResources = InFlightIterations * LoopResources
2528///
2529/// TODO: Check execution resources in addition to IssueCount.
2530void GenericScheduler::checkAcyclicLatency() {
2531  if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2532    return;
2533
2534  // Scaled number of cycles per loop iteration.
2535  unsigned IterCount =
2536    std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2537             Rem.RemIssueCount);
2538  // Scaled acyclic critical path.
2539  unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2540  // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2541  unsigned InFlightCount =
2542    (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2543  unsigned BufferLimit =
2544    SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2545
2546  Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2547
2548  DEBUG(dbgs() << "IssueCycles="
2549        << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2550        << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2551        << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2552        << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2553        << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2554        if (Rem.IsAcyclicLatencyLimited)
2555          dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2556}
2557
2558void GenericScheduler::registerRoots() {
2559  Rem.CriticalPath = DAG->ExitSU.getDepth();
2560
2561  // Some roots may not feed into ExitSU. Check all of them in case.
2562  for (std::vector<SUnit*>::const_iterator
2563         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2564    if ((*I)->getDepth() > Rem.CriticalPath)
2565      Rem.CriticalPath = (*I)->getDepth();
2566  }
2567  DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2568  if (DumpCriticalPathLength) {
2569    errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2570  }
2571
2572  if (EnableCyclicPath) {
2573    Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2574    checkAcyclicLatency();
2575  }
2576}
2577
2578static bool tryPressure(const PressureChange &TryP,
2579                        const PressureChange &CandP,
2580                        GenericSchedulerBase::SchedCandidate &TryCand,
2581                        GenericSchedulerBase::SchedCandidate &Cand,
2582                        GenericSchedulerBase::CandReason Reason,
2583                        const TargetRegisterInfo *TRI,
2584                        const MachineFunction &MF) {
2585  unsigned TryPSet = TryP.getPSetOrMax();
2586  unsigned CandPSet = CandP.getPSetOrMax();
2587  // If both candidates affect the same set, go with the smallest increase.
2588  if (TryPSet == CandPSet) {
2589    return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2590                   Reason);
2591  }
2592  // If one candidate decreases and the other increases, go with it.
2593  // Invalid candidates have UnitInc==0.
2594  if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2595                 Reason)) {
2596    return true;
2597  }
2598
2599  int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2600                                 std::numeric_limits<int>::max();
2601
2602  int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2603                                   std::numeric_limits<int>::max();
2604
2605  // If the candidates are decreasing pressure, reverse priority.
2606  if (TryP.getUnitInc() < 0)
2607    std::swap(TryRank, CandRank);
2608  return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2609}
2610
2611static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2612  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2613}
2614
2615/// Minimize physical register live ranges. Regalloc wants them adjacent to
2616/// their physreg def/use.
2617///
2618/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2619/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2620/// with the operation that produces or consumes the physreg. We'll do this when
2621/// regalloc has support for parallel copies.
2622static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2623  const MachineInstr *MI = SU->getInstr();
2624  if (!MI->isCopy())
2625    return 0;
2626
2627  unsigned ScheduledOper = isTop ? 1 : 0;
2628  unsigned UnscheduledOper = isTop ? 0 : 1;
2629  // If we have already scheduled the physreg produce/consumer, immediately
2630  // schedule the copy.
2631  if (TargetRegisterInfo::isPhysicalRegister(
2632        MI->getOperand(ScheduledOper).getReg()))
2633    return 1;
2634  // If the physreg is at the boundary, defer it. Otherwise schedule it
2635  // immediately to free the dependent. We can hoist the copy later.
2636  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2637  if (TargetRegisterInfo::isPhysicalRegister(
2638        MI->getOperand(UnscheduledOper).getReg()))
2639    return AtBoundary ? -1 : 1;
2640  return 0;
2641}
2642
2643/// Apply a set of heursitics to a new candidate. Heuristics are currently
2644/// hierarchical. This may be more efficient than a graduated cost model because
2645/// we don't need to evaluate all aspects of the model for each node in the
2646/// queue. But it's really done to make the heuristics easier to debug and
2647/// statistically analyze.
2648///
2649/// \param Cand provides the policy and current best candidate.
2650/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2651/// \param Zone describes the scheduled zone that we are extending.
2652/// \param RPTracker describes reg pressure within the scheduled zone.
2653/// \param TempTracker is a scratch pressure tracker to reuse in queries.
2654void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2655                                    SchedCandidate &TryCand,
2656                                    SchedBoundary &Zone,
2657                                    const RegPressureTracker &RPTracker,
2658                                    RegPressureTracker &TempTracker) {
2659
2660  if (DAG->isTrackingPressure()) {
2661    // Always initialize TryCand's RPDelta.
2662    if (Zone.isTop()) {
2663      TempTracker.getMaxDownwardPressureDelta(
2664        TryCand.SU->getInstr(),
2665        TryCand.RPDelta,
2666        DAG->getRegionCriticalPSets(),
2667        DAG->getRegPressure().MaxSetPressure);
2668    }
2669    else {
2670      if (VerifyScheduling) {
2671        TempTracker.getMaxUpwardPressureDelta(
2672          TryCand.SU->getInstr(),
2673          &DAG->getPressureDiff(TryCand.SU),
2674          TryCand.RPDelta,
2675          DAG->getRegionCriticalPSets(),
2676          DAG->getRegPressure().MaxSetPressure);
2677      }
2678      else {
2679        RPTracker.getUpwardPressureDelta(
2680          TryCand.SU->getInstr(),
2681          DAG->getPressureDiff(TryCand.SU),
2682          TryCand.RPDelta,
2683          DAG->getRegionCriticalPSets(),
2684          DAG->getRegPressure().MaxSetPressure);
2685      }
2686    }
2687  }
2688  DEBUG(if (TryCand.RPDelta.Excess.isValid())
2689          dbgs() << "  Try  SU(" << TryCand.SU->NodeNum << ") "
2690                 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2691                 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2692
2693  // Initialize the candidate if needed.
2694  if (!Cand.isValid()) {
2695    TryCand.Reason = NodeOrder;
2696    return;
2697  }
2698
2699  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2700                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2701                 TryCand, Cand, PhysRegCopy))
2702    return;
2703
2704  // Avoid exceeding the target's limit.
2705  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2706                                               Cand.RPDelta.Excess,
2707                                               TryCand, Cand, RegExcess, TRI,
2708                                               DAG->MF))
2709    return;
2710
2711  // Avoid increasing the max critical pressure in the scheduled region.
2712  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2713                                               Cand.RPDelta.CriticalMax,
2714                                               TryCand, Cand, RegCritical, TRI,
2715                                               DAG->MF))
2716    return;
2717
2718  // For loops that are acyclic path limited, aggressively schedule for latency.
2719  // This can result in very long dependence chains scheduled in sequence, so
2720  // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2721  if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2722      && tryLatency(TryCand, Cand, Zone))
2723    return;
2724
2725  // Prioritize instructions that read unbuffered resources by stall cycles.
2726  if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2727              Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2728    return;
2729
2730  // Keep clustered nodes together to encourage downstream peephole
2731  // optimizations which may reduce resource requirements.
2732  //
2733  // This is a best effort to set things up for a post-RA pass. Optimizations
2734  // like generating loads of multiple registers should ideally be done within
2735  // the scheduler pass by combining the loads during DAG postprocessing.
2736  const SUnit *NextClusterSU =
2737    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2738  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2739                 TryCand, Cand, Cluster))
2740    return;
2741
2742  // Weak edges are for clustering and other constraints.
2743  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2744              getWeakLeft(Cand.SU, Zone.isTop()),
2745              TryCand, Cand, Weak)) {
2746    return;
2747  }
2748  // Avoid increasing the max pressure of the entire region.
2749  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2750                                               Cand.RPDelta.CurrentMax,
2751                                               TryCand, Cand, RegMax, TRI,
2752                                               DAG->MF))
2753    return;
2754
2755  // Avoid critical resource consumption and balance the schedule.
2756  TryCand.initResourceDelta(DAG, SchedModel);
2757  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2758              TryCand, Cand, ResourceReduce))
2759    return;
2760  if (tryGreater(TryCand.ResDelta.DemandedResources,
2761                 Cand.ResDelta.DemandedResources,
2762                 TryCand, Cand, ResourceDemand))
2763    return;
2764
2765  // Avoid serializing long latency dependence chains.
2766  // For acyclic path limited loops, latency was already checked above.
2767  if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency &&
2768      !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) {
2769    return;
2770  }
2771
2772  // Prefer immediate defs/users of the last scheduled instruction. This is a
2773  // local pressure avoidance strategy that also makes the machine code
2774  // readable.
2775  if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2776                 TryCand, Cand, NextDefUse))
2777    return;
2778
2779  // Fall through to original instruction order.
2780  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2781      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2782    TryCand.Reason = NodeOrder;
2783  }
2784}
2785
2786/// Pick the best candidate from the queue.
2787///
2788/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2789/// DAG building. To adjust for the current scheduling location we need to
2790/// maintain the number of vreg uses remaining to be top-scheduled.
2791void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2792                                         const RegPressureTracker &RPTracker,
2793                                         SchedCandidate &Cand) {
2794  ReadyQueue &Q = Zone.Available;
2795
2796  DEBUG(Q.dump());
2797
2798  // getMaxPressureDelta temporarily modifies the tracker.
2799  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2800
2801  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2802
2803    SchedCandidate TryCand(Cand.Policy);
2804    TryCand.SU = *I;
2805    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2806    if (TryCand.Reason != NoCand) {
2807      // Initialize resource delta if needed in case future heuristics query it.
2808      if (TryCand.ResDelta == SchedResourceDelta())
2809        TryCand.initResourceDelta(DAG, SchedModel);
2810      Cand.setBest(TryCand);
2811      DEBUG(traceCandidate(Cand));
2812    }
2813  }
2814}
2815
2816/// Pick the best candidate node from either the top or bottom queue.
2817SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2818  // Schedule as far as possible in the direction of no choice. This is most
2819  // efficient, but also provides the best heuristics for CriticalPSets.
2820  if (SUnit *SU = Bot.pickOnlyChoice()) {
2821    IsTopNode = false;
2822    DEBUG(dbgs() << "Pick Bot ONLY1\n");
2823    return SU;
2824  }
2825  if (SUnit *SU = Top.pickOnlyChoice()) {
2826    IsTopNode = true;
2827    DEBUG(dbgs() << "Pick Top ONLY1\n");
2828    return SU;
2829  }
2830  CandPolicy NoPolicy;
2831  SchedCandidate BotCand(NoPolicy);
2832  SchedCandidate TopCand(NoPolicy);
2833  // Set the bottom-up policy based on the state of the current bottom zone and
2834  // the instructions outside the zone, including the top zone.
2835  setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2836  // Set the top-down policy based on the state of the current top zone and
2837  // the instructions outside the zone, including the bottom zone.
2838  setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2839
2840  // Prefer bottom scheduling when heuristics are silent.
2841  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2842  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2843
2844  // If either Q has a single candidate that provides the least increase in
2845  // Excess pressure, we can immediately schedule from that Q.
2846  //
2847  // RegionCriticalPSets summarizes the pressure within the scheduled region and
2848  // affects picking from either Q. If scheduling in one direction must
2849  // increase pressure for one of the excess PSets, then schedule in that
2850  // direction first to provide more freedom in the other direction.
2851  if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2852      || (BotCand.Reason == RegCritical
2853          && !BotCand.isRepeat(RegCritical)))
2854  {
2855    IsTopNode = false;
2856    tracePick(BotCand, IsTopNode);
2857    return BotCand.SU;
2858  }
2859  // Check if the top Q has a better candidate.
2860  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2861  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2862
2863  // Choose the queue with the most important (lowest enum) reason.
2864  if (TopCand.Reason < BotCand.Reason) {
2865    IsTopNode = true;
2866    tracePick(TopCand, IsTopNode);
2867    return TopCand.SU;
2868  }
2869  // Otherwise prefer the bottom candidate, in node order if all else failed.
2870  IsTopNode = false;
2871  tracePick(BotCand, IsTopNode);
2872  return BotCand.SU;
2873}
2874
2875/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2876SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2877  if (DAG->top() == DAG->bottom()) {
2878    assert(Top.Available.empty() && Top.Pending.empty() &&
2879           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2880    return nullptr;
2881  }
2882  SUnit *SU;
2883  do {
2884    if (RegionPolicy.OnlyTopDown) {
2885      SU = Top.pickOnlyChoice();
2886      if (!SU) {
2887        CandPolicy NoPolicy;
2888        SchedCandidate TopCand(NoPolicy);
2889        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2890        assert(TopCand.Reason != NoCand && "failed to find a candidate");
2891        tracePick(TopCand, true);
2892        SU = TopCand.SU;
2893      }
2894      IsTopNode = true;
2895    }
2896    else if (RegionPolicy.OnlyBottomUp) {
2897      SU = Bot.pickOnlyChoice();
2898      if (!SU) {
2899        CandPolicy NoPolicy;
2900        SchedCandidate BotCand(NoPolicy);
2901        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2902        assert(BotCand.Reason != NoCand && "failed to find a candidate");
2903        tracePick(BotCand, false);
2904        SU = BotCand.SU;
2905      }
2906      IsTopNode = false;
2907    }
2908    else {
2909      SU = pickNodeBidirectional(IsTopNode);
2910    }
2911  } while (SU->isScheduled);
2912
2913  if (SU->isTopReady())
2914    Top.removeReady(SU);
2915  if (SU->isBottomReady())
2916    Bot.removeReady(SU);
2917
2918  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2919  return SU;
2920}
2921
2922void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2923
2924  MachineBasicBlock::iterator InsertPos = SU->getInstr();
2925  if (!isTop)
2926    ++InsertPos;
2927  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2928
2929  // Find already scheduled copies with a single physreg dependence and move
2930  // them just above the scheduled instruction.
2931  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2932       I != E; ++I) {
2933    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2934      continue;
2935    SUnit *DepSU = I->getSUnit();
2936    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2937      continue;
2938    MachineInstr *Copy = DepSU->getInstr();
2939    if (!Copy->isCopy())
2940      continue;
2941    DEBUG(dbgs() << "  Rescheduling physreg copy ";
2942          I->getSUnit()->dump(DAG));
2943    DAG->moveInstruction(Copy, InsertPos);
2944  }
2945}
2946
2947/// Update the scheduler's state after scheduling a node. This is the same node
2948/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
2949/// update it's state based on the current cycle before MachineSchedStrategy
2950/// does.
2951///
2952/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2953/// them here. See comments in biasPhysRegCopy.
2954void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2955  if (IsTopNode) {
2956    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2957    Top.bumpNode(SU);
2958    if (SU->hasPhysRegUses)
2959      reschedulePhysRegCopies(SU, true);
2960  }
2961  else {
2962    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
2963    Bot.bumpNode(SU);
2964    if (SU->hasPhysRegDefs)
2965      reschedulePhysRegCopies(SU, false);
2966  }
2967}
2968
2969/// Create the standard converging machine scheduler. This will be used as the
2970/// default scheduler if the target does not set a default.
2971static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
2972  ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
2973  // Register DAG post-processors.
2974  //
2975  // FIXME: extend the mutation API to allow earlier mutations to instantiate
2976  // data and pass it to later mutations. Have a single mutation that gathers
2977  // the interesting nodes in one pass.
2978  DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
2979  if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2980    DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
2981  if (EnableMacroFusion)
2982    DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
2983  return DAG;
2984}
2985
2986static MachineSchedRegistry
2987GenericSchedRegistry("converge", "Standard converging scheduler.",
2988                     createGenericSchedLive);
2989
2990//===----------------------------------------------------------------------===//
2991// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
2992//===----------------------------------------------------------------------===//
2993
2994void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
2995  DAG = Dag;
2996  SchedModel = DAG->getSchedModel();
2997  TRI = DAG->TRI;
2998
2999  Rem.init(DAG, SchedModel);
3000  Top.init(DAG, SchedModel, &Rem);
3001  BotRoots.clear();
3002
3003  // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3004  // or are disabled, then these HazardRecs will be disabled.
3005  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3006  if (!Top.HazardRec) {
3007    Top.HazardRec =
3008        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3009            Itin, DAG);
3010  }
3011}
3012
3013
3014void PostGenericScheduler::registerRoots() {
3015  Rem.CriticalPath = DAG->ExitSU.getDepth();
3016
3017  // Some roots may not feed into ExitSU. Check all of them in case.
3018  for (SmallVectorImpl<SUnit*>::const_iterator
3019         I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3020    if ((*I)->getDepth() > Rem.CriticalPath)
3021      Rem.CriticalPath = (*I)->getDepth();
3022  }
3023  DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3024  if (DumpCriticalPathLength) {
3025    errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3026  }
3027}
3028
3029/// Apply a set of heursitics to a new candidate for PostRA scheduling.
3030///
3031/// \param Cand provides the policy and current best candidate.
3032/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3033void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3034                                        SchedCandidate &TryCand) {
3035
3036  // Initialize the candidate if needed.
3037  if (!Cand.isValid()) {
3038    TryCand.Reason = NodeOrder;
3039    return;
3040  }
3041
3042  // Prioritize instructions that read unbuffered resources by stall cycles.
3043  if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3044              Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3045    return;
3046
3047  // Avoid critical resource consumption and balance the schedule.
3048  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3049              TryCand, Cand, ResourceReduce))
3050    return;
3051  if (tryGreater(TryCand.ResDelta.DemandedResources,
3052                 Cand.ResDelta.DemandedResources,
3053                 TryCand, Cand, ResourceDemand))
3054    return;
3055
3056  // Avoid serializing long latency dependence chains.
3057  if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3058    return;
3059  }
3060
3061  // Fall through to original instruction order.
3062  if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3063    TryCand.Reason = NodeOrder;
3064}
3065
3066void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3067  ReadyQueue &Q = Top.Available;
3068
3069  DEBUG(Q.dump());
3070
3071  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3072    SchedCandidate TryCand(Cand.Policy);
3073    TryCand.SU = *I;
3074    TryCand.initResourceDelta(DAG, SchedModel);
3075    tryCandidate(Cand, TryCand);
3076    if (TryCand.Reason != NoCand) {
3077      Cand.setBest(TryCand);
3078      DEBUG(traceCandidate(Cand));
3079    }
3080  }
3081}
3082
3083/// Pick the next node to schedule.
3084SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3085  if (DAG->top() == DAG->bottom()) {
3086    assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3087    return nullptr;
3088  }
3089  SUnit *SU;
3090  do {
3091    SU = Top.pickOnlyChoice();
3092    if (!SU) {
3093      CandPolicy NoPolicy;
3094      SchedCandidate TopCand(NoPolicy);
3095      // Set the top-down policy based on the state of the current top zone and
3096      // the instructions outside the zone, including the bottom zone.
3097      setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3098      pickNodeFromQueue(TopCand);
3099      assert(TopCand.Reason != NoCand && "failed to find a candidate");
3100      tracePick(TopCand, true);
3101      SU = TopCand.SU;
3102    }
3103  } while (SU->isScheduled);
3104
3105  IsTopNode = true;
3106  Top.removeReady(SU);
3107
3108  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3109  return SU;
3110}
3111
3112/// Called after ScheduleDAGMI has scheduled an instruction and updated
3113/// scheduled/remaining flags in the DAG nodes.
3114void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3115  SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3116  Top.bumpNode(SU);
3117}
3118
3119/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3120static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3121  return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3122}
3123
3124//===----------------------------------------------------------------------===//
3125// ILP Scheduler. Currently for experimental analysis of heuristics.
3126//===----------------------------------------------------------------------===//
3127
3128namespace {
3129/// \brief Order nodes by the ILP metric.
3130struct ILPOrder {
3131  const SchedDFSResult *DFSResult;
3132  const BitVector *ScheduledTrees;
3133  bool MaximizeILP;
3134
3135  ILPOrder(bool MaxILP)
3136    : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3137
3138  /// \brief Apply a less-than relation on node priority.
3139  ///
3140  /// (Return true if A comes after B in the Q.)
3141  bool operator()(const SUnit *A, const SUnit *B) const {
3142    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3143    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3144    if (SchedTreeA != SchedTreeB) {
3145      // Unscheduled trees have lower priority.
3146      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3147        return ScheduledTrees->test(SchedTreeB);
3148
3149      // Trees with shallower connections have have lower priority.
3150      if (DFSResult->getSubtreeLevel(SchedTreeA)
3151          != DFSResult->getSubtreeLevel(SchedTreeB)) {
3152        return DFSResult->getSubtreeLevel(SchedTreeA)
3153          < DFSResult->getSubtreeLevel(SchedTreeB);
3154      }
3155    }
3156    if (MaximizeILP)
3157      return DFSResult->getILP(A) < DFSResult->getILP(B);
3158    else
3159      return DFSResult->getILP(A) > DFSResult->getILP(B);
3160  }
3161};
3162
3163/// \brief Schedule based on the ILP metric.
3164class ILPScheduler : public MachineSchedStrategy {
3165  ScheduleDAGMILive *DAG;
3166  ILPOrder Cmp;
3167
3168  std::vector<SUnit*> ReadyQ;
3169public:
3170  ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3171
3172  void initialize(ScheduleDAGMI *dag) override {
3173    assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3174    DAG = static_cast<ScheduleDAGMILive*>(dag);
3175    DAG->computeDFSResult();
3176    Cmp.DFSResult = DAG->getDFSResult();
3177    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3178    ReadyQ.clear();
3179  }
3180
3181  void registerRoots() override {
3182    // Restore the heap in ReadyQ with the updated DFS results.
3183    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3184  }
3185
3186  /// Implement MachineSchedStrategy interface.
3187  /// -----------------------------------------
3188
3189  /// Callback to select the highest priority node from the ready Q.
3190  SUnit *pickNode(bool &IsTopNode) override {
3191    if (ReadyQ.empty()) return nullptr;
3192    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3193    SUnit *SU = ReadyQ.back();
3194    ReadyQ.pop_back();
3195    IsTopNode = false;
3196    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3197          << " ILP: " << DAG->getDFSResult()->getILP(SU)
3198          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3199          << DAG->getDFSResult()->getSubtreeLevel(
3200            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3201          << "Scheduling " << *SU->getInstr());
3202    return SU;
3203  }
3204
3205  /// \brief Scheduler callback to notify that a new subtree is scheduled.
3206  void scheduleTree(unsigned SubtreeID) override {
3207    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3208  }
3209
3210  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3211  /// DFSResults, and resort the priority Q.
3212  void schedNode(SUnit *SU, bool IsTopNode) override {
3213    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3214  }
3215
3216  void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3217
3218  void releaseBottomNode(SUnit *SU) override {
3219    ReadyQ.push_back(SU);
3220    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3221  }
3222};
3223} // namespace
3224
3225static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3226  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3227}
3228static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3229  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3230}
3231static MachineSchedRegistry ILPMaxRegistry(
3232  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3233static MachineSchedRegistry ILPMinRegistry(
3234  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3235
3236//===----------------------------------------------------------------------===//
3237// Machine Instruction Shuffler for Correctness Testing
3238//===----------------------------------------------------------------------===//
3239
3240#ifndef NDEBUG
3241namespace {
3242/// Apply a less-than relation on the node order, which corresponds to the
3243/// instruction order prior to scheduling. IsReverse implements greater-than.
3244template<bool IsReverse>
3245struct SUnitOrder {
3246  bool operator()(SUnit *A, SUnit *B) const {
3247    if (IsReverse)
3248      return A->NodeNum > B->NodeNum;
3249    else
3250      return A->NodeNum < B->NodeNum;
3251  }
3252};
3253
3254/// Reorder instructions as much as possible.
3255class InstructionShuffler : public MachineSchedStrategy {
3256  bool IsAlternating;
3257  bool IsTopDown;
3258
3259  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3260  // gives nodes with a higher number higher priority causing the latest
3261  // instructions to be scheduled first.
3262  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3263    TopQ;
3264  // When scheduling bottom-up, use greater-than as the queue priority.
3265  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3266    BottomQ;
3267public:
3268  InstructionShuffler(bool alternate, bool topdown)
3269    : IsAlternating(alternate), IsTopDown(topdown) {}
3270
3271  void initialize(ScheduleDAGMI*) override {
3272    TopQ.clear();
3273    BottomQ.clear();
3274  }
3275
3276  /// Implement MachineSchedStrategy interface.
3277  /// -----------------------------------------
3278
3279  SUnit *pickNode(bool &IsTopNode) override {
3280    SUnit *SU;
3281    if (IsTopDown) {
3282      do {
3283        if (TopQ.empty()) return nullptr;
3284        SU = TopQ.top();
3285        TopQ.pop();
3286      } while (SU->isScheduled);
3287      IsTopNode = true;
3288    }
3289    else {
3290      do {
3291        if (BottomQ.empty()) return nullptr;
3292        SU = BottomQ.top();
3293        BottomQ.pop();
3294      } while (SU->isScheduled);
3295      IsTopNode = false;
3296    }
3297    if (IsAlternating)
3298      IsTopDown = !IsTopDown;
3299    return SU;
3300  }
3301
3302  void schedNode(SUnit *SU, bool IsTopNode) override {}
3303
3304  void releaseTopNode(SUnit *SU) override {
3305    TopQ.push(SU);
3306  }
3307  void releaseBottomNode(SUnit *SU) override {
3308    BottomQ.push(SU);
3309  }
3310};
3311} // namespace
3312
3313static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3314  bool Alternate = !ForceTopDown && !ForceBottomUp;
3315  bool TopDown = !ForceBottomUp;
3316  assert((TopDown || !ForceTopDown) &&
3317         "-misched-topdown incompatible with -misched-bottomup");
3318  return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3319}
3320static MachineSchedRegistry ShufflerRegistry(
3321  "shuffle", "Shuffle machine instructions alternating directions",
3322  createInstructionShuffler);
3323#endif // !NDEBUG
3324
3325//===----------------------------------------------------------------------===//
3326// GraphWriter support for ScheduleDAGMILive.
3327//===----------------------------------------------------------------------===//
3328
3329#ifndef NDEBUG
3330namespace llvm {
3331
3332template<> struct GraphTraits<
3333  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3334
3335template<>
3336struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3337
3338  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3339
3340  static std::string getGraphName(const ScheduleDAG *G) {
3341    return G->MF.getName();
3342  }
3343
3344  static bool renderGraphFromBottomUp() {
3345    return true;
3346  }
3347
3348  static bool isNodeHidden(const SUnit *Node) {
3349    if (ViewMISchedCutoff == 0)
3350      return false;
3351    return (Node->Preds.size() > ViewMISchedCutoff
3352         || Node->Succs.size() > ViewMISchedCutoff);
3353  }
3354
3355  /// If you want to override the dot attributes printed for a particular
3356  /// edge, override this method.
3357  static std::string getEdgeAttributes(const SUnit *Node,
3358                                       SUnitIterator EI,
3359                                       const ScheduleDAG *Graph) {
3360    if (EI.isArtificialDep())
3361      return "color=cyan,style=dashed";
3362    if (EI.isCtrlDep())
3363      return "color=blue,style=dashed";
3364    return "";
3365  }
3366
3367  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3368    std::string Str;
3369    raw_string_ostream SS(Str);
3370    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3371    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3372      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3373    SS << "SU:" << SU->NodeNum;
3374    if (DFS)
3375      SS << " I:" << DFS->getNumInstrs(SU);
3376    return SS.str();
3377  }
3378  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3379    return G->getGraphNodeLabel(SU);
3380  }
3381
3382  static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3383    std::string Str("shape=Mrecord");
3384    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3385    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3386      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3387    if (DFS) {
3388      Str += ",style=filled,fillcolor=\"#";
3389      Str += DOT::getColorString(DFS->getSubtreeID(N));
3390      Str += '"';
3391    }
3392    return Str;
3393  }
3394};
3395} // namespace llvm
3396#endif // NDEBUG
3397
3398/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3399/// rendered using 'dot'.
3400///
3401void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3402#ifndef NDEBUG
3403  ViewGraph(this, Name, false, Title);
3404#else
3405  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3406         << "systems with Graphviz or gv!\n";
3407#endif  // NDEBUG
3408}
3409
3410/// Out-of-line implementation with no arguments is handy for gdb.
3411void ScheduleDAGMI::viewGraph() {
3412  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3413}
3414