1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// MachineScheduler schedules machine instructions after phi elimination. It 11// preserves LiveIntervals so it can be invoked before register allocation. 12// 13//===----------------------------------------------------------------------===// 14 15#include "llvm/CodeGen/MachineScheduler.h" 16#include "llvm/ADT/PriorityQueue.h" 17#include "llvm/Analysis/AliasAnalysis.h" 18#include "llvm/CodeGen/LiveIntervalAnalysis.h" 19#include "llvm/CodeGen/MachineDominators.h" 20#include "llvm/CodeGen/MachineLoopInfo.h" 21#include "llvm/CodeGen/MachineRegisterInfo.h" 22#include "llvm/CodeGen/Passes.h" 23#include "llvm/CodeGen/RegisterClassInfo.h" 24#include "llvm/CodeGen/ScheduleDFS.h" 25#include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26#include "llvm/Support/CommandLine.h" 27#include "llvm/Support/Debug.h" 28#include "llvm/Support/ErrorHandling.h" 29#include "llvm/Support/GraphWriter.h" 30#include "llvm/Support/raw_ostream.h" 31#include "llvm/Target/TargetInstrInfo.h" 32#include <queue> 33 34using namespace llvm; 35 36#define DEBUG_TYPE "misched" 37 38namespace llvm { 39cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43cl::opt<bool> 44DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46} 47 48#ifndef NDEBUG 49static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52/// In some situations a few uninteresting nodes depend on nearly all other 53/// nodes in the graph, provide a cutoff to hide them. 54static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64#else 65static bool ViewMISchedDAGs = false; 66#endif // NDEBUG 67 68static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 69 cl::desc("Enable register pressure scheduling."), cl::init(true)); 70 71static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 72 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 73 74static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 75 cl::desc("Enable load clustering."), cl::init(true)); 76 77// Experimental heuristics 78static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 79 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 80 81static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 82 cl::desc("Verify machine instrs before and after machine scheduling")); 83 84// DAG subtrees must have at least this many nodes. 85static const unsigned MinSubtreeSize = 8; 86 87// Pin the vtables to this file. 88void MachineSchedStrategy::anchor() {} 89void ScheduleDAGMutation::anchor() {} 90 91//===----------------------------------------------------------------------===// 92// Machine Instruction Scheduling Pass and Registry 93//===----------------------------------------------------------------------===// 94 95MachineSchedContext::MachineSchedContext(): 96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 97 RegClassInfo = new RegisterClassInfo(); 98} 99 100MachineSchedContext::~MachineSchedContext() { 101 delete RegClassInfo; 102} 103 104namespace { 105/// Base class for a machine scheduler class that can run at any point. 106class MachineSchedulerBase : public MachineSchedContext, 107 public MachineFunctionPass { 108public: 109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 110 111 void print(raw_ostream &O, const Module* = nullptr) const override; 112 113protected: 114 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 115}; 116 117/// MachineScheduler runs after coalescing and before register allocation. 118class MachineScheduler : public MachineSchedulerBase { 119public: 120 MachineScheduler(); 121 122 void getAnalysisUsage(AnalysisUsage &AU) const override; 123 124 bool runOnMachineFunction(MachineFunction&) override; 125 126 static char ID; // Class identification, replacement for typeinfo 127 128protected: 129 ScheduleDAGInstrs *createMachineScheduler(); 130}; 131 132/// PostMachineScheduler runs after shortly before code emission. 133class PostMachineScheduler : public MachineSchedulerBase { 134public: 135 PostMachineScheduler(); 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override; 138 139 bool runOnMachineFunction(MachineFunction&) override; 140 141 static char ID; // Class identification, replacement for typeinfo 142 143protected: 144 ScheduleDAGInstrs *createPostMachineScheduler(); 145}; 146} // namespace 147 148char MachineScheduler::ID = 0; 149 150char &llvm::MachineSchedulerID = MachineScheduler::ID; 151 152INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 155INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 156INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 157INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 158 "Machine Instruction Scheduler", false, false) 159 160MachineScheduler::MachineScheduler() 161: MachineSchedulerBase(ID) { 162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 163} 164 165void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesCFG(); 167 AU.addRequiredID(MachineDominatorsID); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<AAResultsWrapperPass>(); 170 AU.addRequired<TargetPassConfig>(); 171 AU.addRequired<SlotIndexes>(); 172 AU.addPreserved<SlotIndexes>(); 173 AU.addRequired<LiveIntervals>(); 174 AU.addPreserved<LiveIntervals>(); 175 MachineFunctionPass::getAnalysisUsage(AU); 176} 177 178char PostMachineScheduler::ID = 0; 179 180char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 181 182INITIALIZE_PASS(PostMachineScheduler, "postmisched", 183 "PostRA Machine Instruction Scheduler", false, false) 184 185PostMachineScheduler::PostMachineScheduler() 186: MachineSchedulerBase(ID) { 187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 188} 189 190void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 191 AU.setPreservesCFG(); 192 AU.addRequiredID(MachineDominatorsID); 193 AU.addRequired<MachineLoopInfo>(); 194 AU.addRequired<TargetPassConfig>(); 195 MachineFunctionPass::getAnalysisUsage(AU); 196} 197 198MachinePassRegistry MachineSchedRegistry::Registry; 199 200/// A dummy default scheduler factory indicates whether the scheduler 201/// is overridden on the command line. 202static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 203 return nullptr; 204} 205 206/// MachineSchedOpt allows command line selection of the scheduler. 207static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 208 RegisterPassParser<MachineSchedRegistry> > 209MachineSchedOpt("misched", 210 cl::init(&useDefaultMachineSched), cl::Hidden, 211 cl::desc("Machine instruction scheduler to use")); 212 213static MachineSchedRegistry 214DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 215 useDefaultMachineSched); 216 217static cl::opt<bool> EnableMachineSched( 218 "enable-misched", 219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 220 cl::Hidden); 221 222/// Forward declare the standard machine scheduler. This will be used as the 223/// default scheduler if the target does not set a default. 224static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 225static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 226 227/// Decrement this iterator until reaching the top or a non-debug instr. 228static MachineBasicBlock::const_iterator 229priorNonDebug(MachineBasicBlock::const_iterator I, 230 MachineBasicBlock::const_iterator Beg) { 231 assert(I != Beg && "reached the top of the region, cannot decrement"); 232 while (--I != Beg) { 233 if (!I->isDebugValue()) 234 break; 235 } 236 return I; 237} 238 239/// Non-const version. 240static MachineBasicBlock::iterator 241priorNonDebug(MachineBasicBlock::iterator I, 242 MachineBasicBlock::const_iterator Beg) { 243 return const_cast<MachineInstr*>( 244 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 245} 246 247/// If this iterator is a debug value, increment until reaching the End or a 248/// non-debug instruction. 249static MachineBasicBlock::const_iterator 250nextIfDebug(MachineBasicBlock::const_iterator I, 251 MachineBasicBlock::const_iterator End) { 252 for(; I != End; ++I) { 253 if (!I->isDebugValue()) 254 break; 255 } 256 return I; 257} 258 259/// Non-const version. 260static MachineBasicBlock::iterator 261nextIfDebug(MachineBasicBlock::iterator I, 262 MachineBasicBlock::const_iterator End) { 263 // Cast the return value to nonconst MachineInstr, then cast to an 264 // instr_iterator, which does not check for null, finally return a 265 // bundle_iterator. 266 return MachineBasicBlock::instr_iterator( 267 const_cast<MachineInstr*>( 268 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 269} 270 271/// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 272ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 273 // Select the scheduler, or set the default. 274 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 275 if (Ctor != useDefaultMachineSched) 276 return Ctor(this); 277 278 // Get the default scheduler set by the target for this function. 279 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 280 if (Scheduler) 281 return Scheduler; 282 283 // Default to GenericScheduler. 284 return createGenericSchedLive(this); 285} 286 287/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 288/// the caller. We don't have a command line option to override the postRA 289/// scheduler. The Target must configure it. 290ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 291 // Get the postRA scheduler set by the target for this function. 292 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 293 if (Scheduler) 294 return Scheduler; 295 296 // Default to GenericScheduler. 297 return createGenericSchedPostRA(this); 298} 299 300/// Top-level MachineScheduler pass driver. 301/// 302/// Visit blocks in function order. Divide each block into scheduling regions 303/// and visit them bottom-up. Visiting regions bottom-up is not required, but is 304/// consistent with the DAG builder, which traverses the interior of the 305/// scheduling regions bottom-up. 306/// 307/// This design avoids exposing scheduling boundaries to the DAG builder, 308/// simplifying the DAG builder's support for "special" target instructions. 309/// At the same time the design allows target schedulers to operate across 310/// scheduling boundaries, for example to bundle the boudary instructions 311/// without reordering them. This creates complexity, because the target 312/// scheduler must update the RegionBegin and RegionEnd positions cached by 313/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 314/// design would be to split blocks at scheduling boundaries, but LLVM has a 315/// general bias against block splitting purely for implementation simplicity. 316bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 317 if (EnableMachineSched.getNumOccurrences()) { 318 if (!EnableMachineSched) 319 return false; 320 } else if (!mf.getSubtarget().enableMachineScheduler()) 321 return false; 322 323 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 324 325 // Initialize the context of the pass. 326 MF = &mf; 327 MLI = &getAnalysis<MachineLoopInfo>(); 328 MDT = &getAnalysis<MachineDominatorTree>(); 329 PassConfig = &getAnalysis<TargetPassConfig>(); 330 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 331 332 LIS = &getAnalysis<LiveIntervals>(); 333 334 if (VerifyScheduling) { 335 DEBUG(LIS->dump()); 336 MF->verify(this, "Before machine scheduling."); 337 } 338 RegClassInfo->runOnMachineFunction(*MF); 339 340 // Instantiate the selected scheduler for this target, function, and 341 // optimization level. 342 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 343 scheduleRegions(*Scheduler, false); 344 345 DEBUG(LIS->dump()); 346 if (VerifyScheduling) 347 MF->verify(this, "After machine scheduling."); 348 return true; 349} 350 351bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 352 if (skipOptnoneFunction(*mf.getFunction())) 353 return false; 354 355 if (!mf.getSubtarget().enablePostRAScheduler()) { 356 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 357 return false; 358 } 359 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 360 361 // Initialize the context of the pass. 362 MF = &mf; 363 PassConfig = &getAnalysis<TargetPassConfig>(); 364 365 if (VerifyScheduling) 366 MF->verify(this, "Before post machine scheduling."); 367 368 // Instantiate the selected scheduler for this target, function, and 369 // optimization level. 370 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 371 scheduleRegions(*Scheduler, true); 372 373 if (VerifyScheduling) 374 MF->verify(this, "After post machine scheduling."); 375 return true; 376} 377 378/// Return true of the given instruction should not be included in a scheduling 379/// region. 380/// 381/// MachineScheduler does not currently support scheduling across calls. To 382/// handle calls, the DAG builder needs to be modified to create register 383/// anti/output dependencies on the registers clobbered by the call's regmask 384/// operand. In PreRA scheduling, the stack pointer adjustment already prevents 385/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 386/// the boundary, but there would be no benefit to postRA scheduling across 387/// calls this late anyway. 388static bool isSchedBoundary(MachineBasicBlock::iterator MI, 389 MachineBasicBlock *MBB, 390 MachineFunction *MF, 391 const TargetInstrInfo *TII) { 392 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 393} 394 395/// Main driver for both MachineScheduler and PostMachineScheduler. 396void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 397 bool FixKillFlags) { 398 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 399 400 // Visit all machine basic blocks. 401 // 402 // TODO: Visit blocks in global postorder or postorder within the bottom-up 403 // loop tree. Then we can optionally compute global RegPressure. 404 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 405 MBB != MBBEnd; ++MBB) { 406 407 Scheduler.startBlock(&*MBB); 408 409#ifndef NDEBUG 410 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 411 continue; 412 if (SchedOnlyBlock.getNumOccurrences() 413 && (int)SchedOnlyBlock != MBB->getNumber()) 414 continue; 415#endif 416 417 // Break the block into scheduling regions [I, RegionEnd), and schedule each 418 // region as soon as it is discovered. RegionEnd points the scheduling 419 // boundary at the bottom of the region. The DAG does not include RegionEnd, 420 // but the region does (i.e. the next RegionEnd is above the previous 421 // RegionBegin). If the current block has no terminator then RegionEnd == 422 // MBB->end() for the bottom region. 423 // 424 // The Scheduler may insert instructions during either schedule() or 425 // exitRegion(), even for empty regions. So the local iterators 'I' and 426 // 'RegionEnd' are invalid across these calls. 427 // 428 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 429 // as a single instruction. 430 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 431 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 432 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 433 434 // Avoid decrementing RegionEnd for blocks with no terminator. 435 if (RegionEnd != MBB->end() || 436 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 437 --RegionEnd; 438 // Count the boundary instruction. 439 --RemainingInstrs; 440 } 441 442 // The next region starts above the previous region. Look backward in the 443 // instruction stream until we find the nearest boundary. 444 unsigned NumRegionInstrs = 0; 445 MachineBasicBlock::iterator I = RegionEnd; 446 for(;I != MBB->begin(); --I, --RemainingInstrs) { 447 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII)) 448 break; 449 if (!I->isDebugValue()) 450 ++NumRegionInstrs; 451 } 452 // Notify the scheduler of the region, even if we may skip scheduling 453 // it. Perhaps it still needs to be bundled. 454 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 455 456 // Skip empty scheduling regions (0 or 1 schedulable instructions). 457 if (I == RegionEnd || I == std::prev(RegionEnd)) { 458 // Close the current region. Bundle the terminator if needed. 459 // This invalidates 'RegionEnd' and 'I'. 460 Scheduler.exitRegion(); 461 continue; 462 } 463 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 464 DEBUG(dbgs() << MF->getName() 465 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 466 << "\n From: " << *I << " To: "; 467 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 468 else dbgs() << "End"; 469 dbgs() << " RegionInstrs: " << NumRegionInstrs 470 << " Remaining: " << RemainingInstrs << "\n"); 471 if (DumpCriticalPathLength) { 472 errs() << MF->getName(); 473 errs() << ":BB# " << MBB->getNumber(); 474 errs() << " " << MBB->getName() << " \n"; 475 } 476 477 // Schedule a region: possibly reorder instructions. 478 // This invalidates 'RegionEnd' and 'I'. 479 Scheduler.schedule(); 480 481 // Close the current region. 482 Scheduler.exitRegion(); 483 484 // Scheduling has invalidated the current iterator 'I'. Ask the 485 // scheduler for the top of it's scheduled region. 486 RegionEnd = Scheduler.begin(); 487 } 488 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 489 Scheduler.finishBlock(); 490 // FIXME: Ideally, no further passes should rely on kill flags. However, 491 // thumb2 size reduction is currently an exception, so the PostMIScheduler 492 // needs to do this. 493 if (FixKillFlags) 494 Scheduler.fixupKills(&*MBB); 495 } 496 Scheduler.finalizeSchedule(); 497} 498 499void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 500 // unimplemented 501} 502 503LLVM_DUMP_METHOD 504void ReadyQueue::dump() { 505 dbgs() << "Queue " << Name << ": "; 506 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 507 dbgs() << Queue[i]->NodeNum << " "; 508 dbgs() << "\n"; 509} 510 511//===----------------------------------------------------------------------===// 512// ScheduleDAGMI - Basic machine instruction scheduling. This is 513// independent of PreRA/PostRA scheduling and involves no extra book-keeping for 514// virtual registers. 515// ===----------------------------------------------------------------------===/ 516 517// Provide a vtable anchor. 518ScheduleDAGMI::~ScheduleDAGMI() { 519} 520 521bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 522 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 523} 524 525bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 526 if (SuccSU != &ExitSU) { 527 // Do not use WillCreateCycle, it assumes SD scheduling. 528 // If Pred is reachable from Succ, then the edge creates a cycle. 529 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 530 return false; 531 Topo.AddPred(SuccSU, PredDep.getSUnit()); 532 } 533 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 534 // Return true regardless of whether a new edge needed to be inserted. 535 return true; 536} 537 538/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 539/// NumPredsLeft reaches zero, release the successor node. 540/// 541/// FIXME: Adjust SuccSU height based on MinLatency. 542void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 543 SUnit *SuccSU = SuccEdge->getSUnit(); 544 545 if (SuccEdge->isWeak()) { 546 --SuccSU->WeakPredsLeft; 547 if (SuccEdge->isCluster()) 548 NextClusterSucc = SuccSU; 549 return; 550 } 551#ifndef NDEBUG 552 if (SuccSU->NumPredsLeft == 0) { 553 dbgs() << "*** Scheduling failed! ***\n"; 554 SuccSU->dump(this); 555 dbgs() << " has been released too many times!\n"; 556 llvm_unreachable(nullptr); 557 } 558#endif 559 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 560 // CurrCycle may have advanced since then. 561 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 562 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 563 564 --SuccSU->NumPredsLeft; 565 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 566 SchedImpl->releaseTopNode(SuccSU); 567} 568 569/// releaseSuccessors - Call releaseSucc on each of SU's successors. 570void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 571 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 572 I != E; ++I) { 573 releaseSucc(SU, &*I); 574 } 575} 576 577/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 578/// NumSuccsLeft reaches zero, release the predecessor node. 579/// 580/// FIXME: Adjust PredSU height based on MinLatency. 581void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 582 SUnit *PredSU = PredEdge->getSUnit(); 583 584 if (PredEdge->isWeak()) { 585 --PredSU->WeakSuccsLeft; 586 if (PredEdge->isCluster()) 587 NextClusterPred = PredSU; 588 return; 589 } 590#ifndef NDEBUG 591 if (PredSU->NumSuccsLeft == 0) { 592 dbgs() << "*** Scheduling failed! ***\n"; 593 PredSU->dump(this); 594 dbgs() << " has been released too many times!\n"; 595 llvm_unreachable(nullptr); 596 } 597#endif 598 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 599 // CurrCycle may have advanced since then. 600 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 601 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 602 603 --PredSU->NumSuccsLeft; 604 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 605 SchedImpl->releaseBottomNode(PredSU); 606} 607 608/// releasePredecessors - Call releasePred on each of SU's predecessors. 609void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 610 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 611 I != E; ++I) { 612 releasePred(SU, &*I); 613 } 614} 615 616/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 617/// crossing a scheduling boundary. [begin, end) includes all instructions in 618/// the region, including the boundary itself and single-instruction regions 619/// that don't get scheduled. 620void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 621 MachineBasicBlock::iterator begin, 622 MachineBasicBlock::iterator end, 623 unsigned regioninstrs) 624{ 625 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 626 627 SchedImpl->initPolicy(begin, end, regioninstrs); 628} 629 630/// This is normally called from the main scheduler loop but may also be invoked 631/// by the scheduling strategy to perform additional code motion. 632void ScheduleDAGMI::moveInstruction( 633 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 634 // Advance RegionBegin if the first instruction moves down. 635 if (&*RegionBegin == MI) 636 ++RegionBegin; 637 638 // Update the instruction stream. 639 BB->splice(InsertPos, BB, MI); 640 641 // Update LiveIntervals 642 if (LIS) 643 LIS->handleMove(MI, /*UpdateFlags=*/true); 644 645 // Recede RegionBegin if an instruction moves above the first. 646 if (RegionBegin == InsertPos) 647 RegionBegin = MI; 648} 649 650bool ScheduleDAGMI::checkSchedLimit() { 651#ifndef NDEBUG 652 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 653 CurrentTop = CurrentBottom; 654 return false; 655 } 656 ++NumInstrsScheduled; 657#endif 658 return true; 659} 660 661/// Per-region scheduling driver, called back from 662/// MachineScheduler::runOnMachineFunction. This is a simplified driver that 663/// does not consider liveness or register pressure. It is useful for PostRA 664/// scheduling and potentially other custom schedulers. 665void ScheduleDAGMI::schedule() { 666 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 667 DEBUG(SchedImpl->dumpPolicy()); 668 669 // Build the DAG. 670 buildSchedGraph(AA); 671 672 Topo.InitDAGTopologicalSorting(); 673 674 postprocessDAG(); 675 676 SmallVector<SUnit*, 8> TopRoots, BotRoots; 677 findRootsAndBiasEdges(TopRoots, BotRoots); 678 679 // Initialize the strategy before modifying the DAG. 680 // This may initialize a DFSResult to be used for queue priority. 681 SchedImpl->initialize(this); 682 683 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 684 SUnits[su].dumpAll(this)); 685 if (ViewMISchedDAGs) viewGraph(); 686 687 // Initialize ready queues now that the DAG and priority data are finalized. 688 initQueues(TopRoots, BotRoots); 689 690 bool IsTopNode = false; 691 while (true) { 692 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 693 SUnit *SU = SchedImpl->pickNode(IsTopNode); 694 if (!SU) break; 695 696 assert(!SU->isScheduled && "Node already scheduled"); 697 if (!checkSchedLimit()) 698 break; 699 700 MachineInstr *MI = SU->getInstr(); 701 if (IsTopNode) { 702 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 703 if (&*CurrentTop == MI) 704 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 705 else 706 moveInstruction(MI, CurrentTop); 707 } 708 else { 709 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 710 MachineBasicBlock::iterator priorII = 711 priorNonDebug(CurrentBottom, CurrentTop); 712 if (&*priorII == MI) 713 CurrentBottom = priorII; 714 else { 715 if (&*CurrentTop == MI) 716 CurrentTop = nextIfDebug(++CurrentTop, priorII); 717 moveInstruction(MI, CurrentBottom); 718 CurrentBottom = MI; 719 } 720 } 721 // Notify the scheduling strategy before updating the DAG. 722 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 723 // runs, it can then use the accurate ReadyCycle time to determine whether 724 // newly released nodes can move to the readyQ. 725 SchedImpl->schedNode(SU, IsTopNode); 726 727 updateQueues(SU, IsTopNode); 728 } 729 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 730 731 placeDebugValues(); 732 733 DEBUG({ 734 unsigned BBNum = begin()->getParent()->getNumber(); 735 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 736 dumpSchedule(); 737 dbgs() << '\n'; 738 }); 739} 740 741/// Apply each ScheduleDAGMutation step in order. 742void ScheduleDAGMI::postprocessDAG() { 743 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 744 Mutations[i]->apply(this); 745 } 746} 747 748void ScheduleDAGMI:: 749findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 750 SmallVectorImpl<SUnit*> &BotRoots) { 751 for (std::vector<SUnit>::iterator 752 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 753 SUnit *SU = &(*I); 754 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 755 756 // Order predecessors so DFSResult follows the critical path. 757 SU->biasCriticalPath(); 758 759 // A SUnit is ready to top schedule if it has no predecessors. 760 if (!I->NumPredsLeft) 761 TopRoots.push_back(SU); 762 // A SUnit is ready to bottom schedule if it has no successors. 763 if (!I->NumSuccsLeft) 764 BotRoots.push_back(SU); 765 } 766 ExitSU.biasCriticalPath(); 767} 768 769/// Identify DAG roots and setup scheduler queues. 770void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 771 ArrayRef<SUnit*> BotRoots) { 772 NextClusterSucc = nullptr; 773 NextClusterPred = nullptr; 774 775 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 776 // 777 // Nodes with unreleased weak edges can still be roots. 778 // Release top roots in forward order. 779 for (SmallVectorImpl<SUnit*>::const_iterator 780 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 781 SchedImpl->releaseTopNode(*I); 782 } 783 // Release bottom roots in reverse order so the higher priority nodes appear 784 // first. This is more natural and slightly more efficient. 785 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 786 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 787 SchedImpl->releaseBottomNode(*I); 788 } 789 790 releaseSuccessors(&EntrySU); 791 releasePredecessors(&ExitSU); 792 793 SchedImpl->registerRoots(); 794 795 // Advance past initial DebugValues. 796 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 797 CurrentBottom = RegionEnd; 798} 799 800/// Update scheduler queues after scheduling an instruction. 801void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 802 // Release dependent instructions for scheduling. 803 if (IsTopNode) 804 releaseSuccessors(SU); 805 else 806 releasePredecessors(SU); 807 808 SU->isScheduled = true; 809} 810 811/// Reinsert any remaining debug_values, just like the PostRA scheduler. 812void ScheduleDAGMI::placeDebugValues() { 813 // If first instruction was a DBG_VALUE then put it back. 814 if (FirstDbgValue) { 815 BB->splice(RegionBegin, BB, FirstDbgValue); 816 RegionBegin = FirstDbgValue; 817 } 818 819 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 820 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 821 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 822 MachineInstr *DbgValue = P.first; 823 MachineBasicBlock::iterator OrigPrevMI = P.second; 824 if (&*RegionBegin == DbgValue) 825 ++RegionBegin; 826 BB->splice(++OrigPrevMI, BB, DbgValue); 827 if (OrigPrevMI == std::prev(RegionEnd)) 828 RegionEnd = DbgValue; 829 } 830 DbgValues.clear(); 831 FirstDbgValue = nullptr; 832} 833 834#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 835void ScheduleDAGMI::dumpSchedule() const { 836 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 837 if (SUnit *SU = getSUnit(&(*MI))) 838 SU->dump(this); 839 else 840 dbgs() << "Missing SUnit\n"; 841 } 842} 843#endif 844 845//===----------------------------------------------------------------------===// 846// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 847// preservation. 848//===----------------------------------------------------------------------===// 849 850ScheduleDAGMILive::~ScheduleDAGMILive() { 851 delete DFSResult; 852} 853 854/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 855/// crossing a scheduling boundary. [begin, end) includes all instructions in 856/// the region, including the boundary itself and single-instruction regions 857/// that don't get scheduled. 858void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 859 MachineBasicBlock::iterator begin, 860 MachineBasicBlock::iterator end, 861 unsigned regioninstrs) 862{ 863 // ScheduleDAGMI initializes SchedImpl's per-region policy. 864 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 865 866 // For convenience remember the end of the liveness region. 867 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 868 869 SUPressureDiffs.clear(); 870 871 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 872} 873 874// Setup the register pressure trackers for the top scheduled top and bottom 875// scheduled regions. 876void ScheduleDAGMILive::initRegPressure() { 877 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 878 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 879 880 // Close the RPTracker to finalize live ins. 881 RPTracker.closeRegion(); 882 883 DEBUG(RPTracker.dump()); 884 885 // Initialize the live ins and live outs. 886 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 887 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 888 889 // Close one end of the tracker so we can call 890 // getMaxUpward/DownwardPressureDelta before advancing across any 891 // instructions. This converts currently live regs into live ins/outs. 892 TopRPTracker.closeTop(); 893 BotRPTracker.closeBottom(); 894 895 BotRPTracker.initLiveThru(RPTracker); 896 if (!BotRPTracker.getLiveThru().empty()) { 897 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 898 DEBUG(dbgs() << "Live Thru: "; 899 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 900 }; 901 902 // For each live out vreg reduce the pressure change associated with other 903 // uses of the same vreg below the live-out reaching def. 904 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 905 906 // Account for liveness generated by the region boundary. 907 if (LiveRegionEnd != RegionEnd) { 908 SmallVector<unsigned, 8> LiveUses; 909 BotRPTracker.recede(&LiveUses); 910 updatePressureDiffs(LiveUses); 911 } 912 913 DEBUG( 914 dbgs() << "Top Pressure:\n"; 915 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 916 dbgs() << "Bottom Pressure:\n"; 917 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 918 ); 919 920 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 921 922 // Cache the list of excess pressure sets in this region. This will also track 923 // the max pressure in the scheduled code for these sets. 924 RegionCriticalPSets.clear(); 925 const std::vector<unsigned> &RegionPressure = 926 RPTracker.getPressure().MaxSetPressure; 927 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 928 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 929 if (RegionPressure[i] > Limit) { 930 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 931 << " Limit " << Limit 932 << " Actual " << RegionPressure[i] << "\n"); 933 RegionCriticalPSets.push_back(PressureChange(i)); 934 } 935 } 936 DEBUG(dbgs() << "Excess PSets: "; 937 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 938 dbgs() << TRI->getRegPressureSetName( 939 RegionCriticalPSets[i].getPSet()) << " "; 940 dbgs() << "\n"); 941} 942 943void ScheduleDAGMILive:: 944updateScheduledPressure(const SUnit *SU, 945 const std::vector<unsigned> &NewMaxPressure) { 946 const PressureDiff &PDiff = getPressureDiff(SU); 947 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 948 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 949 I != E; ++I) { 950 if (!I->isValid()) 951 break; 952 unsigned ID = I->getPSet(); 953 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 954 ++CritIdx; 955 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 956 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 957 && NewMaxPressure[ID] <= INT16_MAX) 958 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 959 } 960 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 961 if (NewMaxPressure[ID] >= Limit - 2) { 962 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 963 << NewMaxPressure[ID] 964 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 965 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 966 } 967 } 968} 969 970/// Update the PressureDiff array for liveness after scheduling this 971/// instruction. 972void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 973 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 974 /// FIXME: Currently assuming single-use physregs. 975 unsigned Reg = LiveUses[LUIdx]; 976 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 977 if (!TRI->isVirtualRegister(Reg)) 978 continue; 979 980 // This may be called before CurrentBottom has been initialized. However, 981 // BotRPTracker must have a valid position. We want the value live into the 982 // instruction or live out of the block, so ask for the previous 983 // instruction's live-out. 984 const LiveInterval &LI = LIS->getInterval(Reg); 985 VNInfo *VNI; 986 MachineBasicBlock::const_iterator I = 987 nextIfDebug(BotRPTracker.getPos(), BB->end()); 988 if (I == BB->end()) 989 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 990 else { 991 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 992 VNI = LRQ.valueIn(); 993 } 994 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 995 assert(VNI && "No live value at use."); 996 for (const VReg2SUnit &V2SU 997 : make_range(VRegUses.find(Reg), VRegUses.end())) { 998 SUnit *SU = V2SU.SU; 999 // If this use comes before the reaching def, it cannot be a last use, so 1000 // descrease its pressure change. 1001 if (!SU->isScheduled && SU != &ExitSU) { 1002 LiveQueryResult LRQ 1003 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 1004 if (LRQ.valueIn() == VNI) { 1005 PressureDiff &PDiff = getPressureDiff(SU); 1006 PDiff.addPressureChange(Reg, true, &MRI); 1007 DEBUG( 1008 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1009 << *SU->getInstr(); 1010 dbgs() << " to "; 1011 PDiff.dump(*TRI); 1012 ); 1013 } 1014 } 1015 } 1016 } 1017} 1018 1019/// schedule - Called back from MachineScheduler::runOnMachineFunction 1020/// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1021/// only includes instructions that have DAG nodes, not scheduling boundaries. 1022/// 1023/// This is a skeletal driver, with all the functionality pushed into helpers, 1024/// so that it can be easily extended by experimental schedulers. Generally, 1025/// implementing MachineSchedStrategy should be sufficient to implement a new 1026/// scheduling algorithm. However, if a scheduler further subclasses 1027/// ScheduleDAGMILive then it will want to override this virtual method in order 1028/// to update any specialized state. 1029void ScheduleDAGMILive::schedule() { 1030 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1031 DEBUG(SchedImpl->dumpPolicy()); 1032 buildDAGWithRegPressure(); 1033 1034 Topo.InitDAGTopologicalSorting(); 1035 1036 postprocessDAG(); 1037 1038 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1039 findRootsAndBiasEdges(TopRoots, BotRoots); 1040 1041 // Initialize the strategy before modifying the DAG. 1042 // This may initialize a DFSResult to be used for queue priority. 1043 SchedImpl->initialize(this); 1044 1045 DEBUG( 1046 for (const SUnit &SU : SUnits) { 1047 SU.dumpAll(this); 1048 if (ShouldTrackPressure) { 1049 dbgs() << " Pressure Diff : "; 1050 getPressureDiff(&SU).dump(*TRI); 1051 } 1052 dbgs() << '\n'; 1053 } 1054 ); 1055 if (ViewMISchedDAGs) viewGraph(); 1056 1057 // Initialize ready queues now that the DAG and priority data are finalized. 1058 initQueues(TopRoots, BotRoots); 1059 1060 if (ShouldTrackPressure) { 1061 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1062 TopRPTracker.setPos(CurrentTop); 1063 } 1064 1065 bool IsTopNode = false; 1066 while (true) { 1067 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1068 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1069 if (!SU) break; 1070 1071 assert(!SU->isScheduled && "Node already scheduled"); 1072 if (!checkSchedLimit()) 1073 break; 1074 1075 scheduleMI(SU, IsTopNode); 1076 1077 if (DFSResult) { 1078 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1079 if (!ScheduledTrees.test(SubtreeID)) { 1080 ScheduledTrees.set(SubtreeID); 1081 DFSResult->scheduleTree(SubtreeID); 1082 SchedImpl->scheduleTree(SubtreeID); 1083 } 1084 } 1085 1086 // Notify the scheduling strategy after updating the DAG. 1087 SchedImpl->schedNode(SU, IsTopNode); 1088 1089 updateQueues(SU, IsTopNode); 1090 } 1091 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1092 1093 placeDebugValues(); 1094 1095 DEBUG({ 1096 unsigned BBNum = begin()->getParent()->getNumber(); 1097 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1098 dumpSchedule(); 1099 dbgs() << '\n'; 1100 }); 1101} 1102 1103/// Build the DAG and setup three register pressure trackers. 1104void ScheduleDAGMILive::buildDAGWithRegPressure() { 1105 if (!ShouldTrackPressure) { 1106 RPTracker.reset(); 1107 RegionCriticalPSets.clear(); 1108 buildSchedGraph(AA); 1109 return; 1110 } 1111 1112 // Initialize the register pressure tracker used by buildSchedGraph. 1113 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1114 /*TrackUntiedDefs=*/true); 1115 1116 // Account for liveness generate by the region boundary. 1117 if (LiveRegionEnd != RegionEnd) 1118 RPTracker.recede(); 1119 1120 // Build the DAG, and compute current register pressure. 1121 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1122 1123 // Initialize top/bottom trackers after computing region pressure. 1124 initRegPressure(); 1125} 1126 1127void ScheduleDAGMILive::computeDFSResult() { 1128 if (!DFSResult) 1129 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1130 DFSResult->clear(); 1131 ScheduledTrees.clear(); 1132 DFSResult->resize(SUnits.size()); 1133 DFSResult->compute(SUnits); 1134 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1135} 1136 1137/// Compute the max cyclic critical path through the DAG. The scheduling DAG 1138/// only provides the critical path for single block loops. To handle loops that 1139/// span blocks, we could use the vreg path latencies provided by 1140/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1141/// available for use in the scheduler. 1142/// 1143/// The cyclic path estimation identifies a def-use pair that crosses the back 1144/// edge and considers the depth and height of the nodes. For example, consider 1145/// the following instruction sequence where each instruction has unit latency 1146/// and defines an epomymous virtual register: 1147/// 1148/// a->b(a,c)->c(b)->d(c)->exit 1149/// 1150/// The cyclic critical path is a two cycles: b->c->b 1151/// The acyclic critical path is four cycles: a->b->c->d->exit 1152/// LiveOutHeight = height(c) = len(c->d->exit) = 2 1153/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1154/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1155/// LiveInDepth = depth(b) = len(a->b) = 1 1156/// 1157/// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1158/// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1159/// CyclicCriticalPath = min(2, 2) = 2 1160/// 1161/// This could be relevant to PostRA scheduling, but is currently implemented 1162/// assuming LiveIntervals. 1163unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1164 // This only applies to single block loop. 1165 if (!BB->isSuccessor(BB)) 1166 return 0; 1167 1168 unsigned MaxCyclicLatency = 0; 1169 // Visit each live out vreg def to find def/use pairs that cross iterations. 1170 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1171 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1172 RI != RE; ++RI) { 1173 unsigned Reg = *RI; 1174 if (!TRI->isVirtualRegister(Reg)) 1175 continue; 1176 const LiveInterval &LI = LIS->getInterval(Reg); 1177 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1178 if (!DefVNI) 1179 continue; 1180 1181 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1182 const SUnit *DefSU = getSUnit(DefMI); 1183 if (!DefSU) 1184 continue; 1185 1186 unsigned LiveOutHeight = DefSU->getHeight(); 1187 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1188 // Visit all local users of the vreg def. 1189 for (const VReg2SUnit &V2SU 1190 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1191 SUnit *SU = V2SU.SU; 1192 if (SU == &ExitSU) 1193 continue; 1194 1195 // Only consider uses of the phi. 1196 LiveQueryResult LRQ = 1197 LI.Query(LIS->getInstructionIndex(SU->getInstr())); 1198 if (!LRQ.valueIn()->isPHIDef()) 1199 continue; 1200 1201 // Assume that a path spanning two iterations is a cycle, which could 1202 // overestimate in strange cases. This allows cyclic latency to be 1203 // estimated as the minimum slack of the vreg's depth or height. 1204 unsigned CyclicLatency = 0; 1205 if (LiveOutDepth > SU->getDepth()) 1206 CyclicLatency = LiveOutDepth - SU->getDepth(); 1207 1208 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1209 if (LiveInHeight > LiveOutHeight) { 1210 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1211 CyclicLatency = LiveInHeight - LiveOutHeight; 1212 } 1213 else 1214 CyclicLatency = 0; 1215 1216 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1217 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1218 if (CyclicLatency > MaxCyclicLatency) 1219 MaxCyclicLatency = CyclicLatency; 1220 } 1221 } 1222 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1223 return MaxCyclicLatency; 1224} 1225 1226/// Move an instruction and update register pressure. 1227void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1228 // Move the instruction to its new location in the instruction stream. 1229 MachineInstr *MI = SU->getInstr(); 1230 1231 if (IsTopNode) { 1232 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1233 if (&*CurrentTop == MI) 1234 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1235 else { 1236 moveInstruction(MI, CurrentTop); 1237 TopRPTracker.setPos(MI); 1238 } 1239 1240 if (ShouldTrackPressure) { 1241 // Update top scheduled pressure. 1242 TopRPTracker.advance(); 1243 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1244 DEBUG( 1245 dbgs() << "Top Pressure:\n"; 1246 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1247 ); 1248 1249 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1250 } 1251 } 1252 else { 1253 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1254 MachineBasicBlock::iterator priorII = 1255 priorNonDebug(CurrentBottom, CurrentTop); 1256 if (&*priorII == MI) 1257 CurrentBottom = priorII; 1258 else { 1259 if (&*CurrentTop == MI) { 1260 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1261 TopRPTracker.setPos(CurrentTop); 1262 } 1263 moveInstruction(MI, CurrentBottom); 1264 CurrentBottom = MI; 1265 } 1266 if (ShouldTrackPressure) { 1267 // Update bottom scheduled pressure. 1268 SmallVector<unsigned, 8> LiveUses; 1269 BotRPTracker.recede(&LiveUses); 1270 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1271 DEBUG( 1272 dbgs() << "Bottom Pressure:\n"; 1273 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1274 ); 1275 1276 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1277 updatePressureDiffs(LiveUses); 1278 } 1279 } 1280} 1281 1282//===----------------------------------------------------------------------===// 1283// LoadClusterMutation - DAG post-processing to cluster loads. 1284//===----------------------------------------------------------------------===// 1285 1286namespace { 1287/// \brief Post-process the DAG to create cluster edges between neighboring 1288/// loads. 1289class LoadClusterMutation : public ScheduleDAGMutation { 1290 struct LoadInfo { 1291 SUnit *SU; 1292 unsigned BaseReg; 1293 unsigned Offset; 1294 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1295 : SU(su), BaseReg(reg), Offset(ofs) {} 1296 1297 bool operator<(const LoadInfo &RHS) const { 1298 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1299 } 1300 }; 1301 1302 const TargetInstrInfo *TII; 1303 const TargetRegisterInfo *TRI; 1304public: 1305 LoadClusterMutation(const TargetInstrInfo *tii, 1306 const TargetRegisterInfo *tri) 1307 : TII(tii), TRI(tri) {} 1308 1309 void apply(ScheduleDAGMI *DAG) override; 1310protected: 1311 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1312}; 1313} // anonymous 1314 1315void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1316 ScheduleDAGMI *DAG) { 1317 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1318 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1319 SUnit *SU = Loads[Idx]; 1320 unsigned BaseReg; 1321 unsigned Offset; 1322 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1323 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1324 } 1325 if (LoadRecords.size() < 2) 1326 return; 1327 std::sort(LoadRecords.begin(), LoadRecords.end()); 1328 unsigned ClusterLength = 1; 1329 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1330 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1331 ClusterLength = 1; 1332 continue; 1333 } 1334 1335 SUnit *SUa = LoadRecords[Idx].SU; 1336 SUnit *SUb = LoadRecords[Idx+1].SU; 1337 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1338 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1339 1340 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1341 << SUb->NodeNum << ")\n"); 1342 // Copy successor edges from SUa to SUb. Interleaving computation 1343 // dependent on SUa can prevent load combining due to register reuse. 1344 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1345 // loads should have effectively the same inputs. 1346 for (SUnit::const_succ_iterator 1347 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1348 if (SI->getSUnit() == SUb) 1349 continue; 1350 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1351 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1352 } 1353 ++ClusterLength; 1354 } 1355 else 1356 ClusterLength = 1; 1357 } 1358} 1359 1360/// \brief Callback from DAG postProcessing to create cluster edges for loads. 1361void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1362 // Map DAG NodeNum to store chain ID. 1363 DenseMap<unsigned, unsigned> StoreChainIDs; 1364 // Map each store chain to a set of dependent loads. 1365 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1366 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1367 SUnit *SU = &DAG->SUnits[Idx]; 1368 if (!SU->getInstr()->mayLoad()) 1369 continue; 1370 unsigned ChainPredID = DAG->SUnits.size(); 1371 for (SUnit::const_pred_iterator 1372 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1373 if (PI->isCtrl()) { 1374 ChainPredID = PI->getSUnit()->NodeNum; 1375 break; 1376 } 1377 } 1378 // Check if this chain-like pred has been seen 1379 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1380 unsigned NumChains = StoreChainDependents.size(); 1381 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1382 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1383 if (Result.second) 1384 StoreChainDependents.resize(NumChains + 1); 1385 StoreChainDependents[Result.first->second].push_back(SU); 1386 } 1387 // Iterate over the store chains. 1388 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1389 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1390} 1391 1392//===----------------------------------------------------------------------===// 1393// MacroFusion - DAG post-processing to encourage fusion of macro ops. 1394//===----------------------------------------------------------------------===// 1395 1396namespace { 1397/// \brief Post-process the DAG to create cluster edges between instructions 1398/// that may be fused by the processor into a single operation. 1399class MacroFusion : public ScheduleDAGMutation { 1400 const TargetInstrInfo &TII; 1401 const TargetRegisterInfo &TRI; 1402public: 1403 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1404 : TII(TII), TRI(TRI) {} 1405 1406 void apply(ScheduleDAGMI *DAG) override; 1407}; 1408} // anonymous 1409 1410/// Returns true if \p MI reads a register written by \p Other. 1411static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1412 const MachineInstr &Other) { 1413 for (const MachineOperand &MO : MI.uses()) { 1414 if (!MO.isReg() || !MO.readsReg()) 1415 continue; 1416 1417 unsigned Reg = MO.getReg(); 1418 if (Other.modifiesRegister(Reg, &TRI)) 1419 return true; 1420 } 1421 return false; 1422} 1423 1424/// \brief Callback from DAG postProcessing to create cluster edges to encourage 1425/// fused operations. 1426void MacroFusion::apply(ScheduleDAGMI *DAG) { 1427 // For now, assume targets can only fuse with the branch. 1428 SUnit &ExitSU = DAG->ExitSU; 1429 MachineInstr *Branch = ExitSU.getInstr(); 1430 if (!Branch) 1431 return; 1432 1433 for (SUnit &SU : DAG->SUnits) { 1434 // SUnits with successors can't be schedule in front of the ExitSU. 1435 if (!SU.Succs.empty()) 1436 continue; 1437 // We only care if the node writes to a register that the branch reads. 1438 MachineInstr *Pred = SU.getInstr(); 1439 if (!HasDataDep(TRI, *Branch, *Pred)) 1440 continue; 1441 1442 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1443 continue; 1444 1445 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1446 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1447 // need to copy predecessor edges from ExitSU to SU, since top-down 1448 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1449 // of SU, we could create an artificial edge from the deepest root, but it 1450 // hasn't been needed yet. 1451 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1452 (void)Success; 1453 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1454 1455 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1456 break; 1457 } 1458} 1459 1460//===----------------------------------------------------------------------===// 1461// CopyConstrain - DAG post-processing to encourage copy elimination. 1462//===----------------------------------------------------------------------===// 1463 1464namespace { 1465/// \brief Post-process the DAG to create weak edges from all uses of a copy to 1466/// the one use that defines the copy's source vreg, most likely an induction 1467/// variable increment. 1468class CopyConstrain : public ScheduleDAGMutation { 1469 // Transient state. 1470 SlotIndex RegionBeginIdx; 1471 // RegionEndIdx is the slot index of the last non-debug instruction in the 1472 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1473 SlotIndex RegionEndIdx; 1474public: 1475 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1476 1477 void apply(ScheduleDAGMI *DAG) override; 1478 1479protected: 1480 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1481}; 1482} // anonymous 1483 1484/// constrainLocalCopy handles two possibilities: 1485/// 1) Local src: 1486/// I0: = dst 1487/// I1: src = ... 1488/// I2: = dst 1489/// I3: dst = src (copy) 1490/// (create pred->succ edges I0->I1, I2->I1) 1491/// 1492/// 2) Local copy: 1493/// I0: dst = src (copy) 1494/// I1: = dst 1495/// I2: src = ... 1496/// I3: = dst 1497/// (create pred->succ edges I1->I2, I3->I2) 1498/// 1499/// Although the MachineScheduler is currently constrained to single blocks, 1500/// this algorithm should handle extended blocks. An EBB is a set of 1501/// contiguously numbered blocks such that the previous block in the EBB is 1502/// always the single predecessor. 1503void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1504 LiveIntervals *LIS = DAG->getLIS(); 1505 MachineInstr *Copy = CopySU->getInstr(); 1506 1507 // Check for pure vreg copies. 1508 unsigned SrcReg = Copy->getOperand(1).getReg(); 1509 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1510 return; 1511 1512 unsigned DstReg = Copy->getOperand(0).getReg(); 1513 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1514 return; 1515 1516 // Check if either the dest or source is local. If it's live across a back 1517 // edge, it's not local. Note that if both vregs are live across the back 1518 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1519 // If both the copy's source and dest are local live intervals, then we 1520 // should treat the dest as the global for the purpose of adding 1521 // constraints. This adds edges from source's other uses to the copy. 1522 unsigned LocalReg = SrcReg; 1523 unsigned GlobalReg = DstReg; 1524 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1525 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1526 LocalReg = DstReg; 1527 GlobalReg = SrcReg; 1528 LocalLI = &LIS->getInterval(LocalReg); 1529 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1530 return; 1531 } 1532 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1533 1534 // Find the global segment after the start of the local LI. 1535 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1536 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1537 // local live range. We could create edges from other global uses to the local 1538 // start, but the coalescer should have already eliminated these cases, so 1539 // don't bother dealing with it. 1540 if (GlobalSegment == GlobalLI->end()) 1541 return; 1542 1543 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1544 // returned the next global segment. But if GlobalSegment overlaps with 1545 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1546 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1547 if (GlobalSegment->contains(LocalLI->beginIndex())) 1548 ++GlobalSegment; 1549 1550 if (GlobalSegment == GlobalLI->end()) 1551 return; 1552 1553 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1554 if (GlobalSegment != GlobalLI->begin()) { 1555 // Two address defs have no hole. 1556 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1557 GlobalSegment->start)) { 1558 return; 1559 } 1560 // If the prior global segment may be defined by the same two-address 1561 // instruction that also defines LocalLI, then can't make a hole here. 1562 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1563 LocalLI->beginIndex())) { 1564 return; 1565 } 1566 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1567 // it would be a disconnected component in the live range. 1568 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1569 "Disconnected LRG within the scheduling region."); 1570 } 1571 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1572 if (!GlobalDef) 1573 return; 1574 1575 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1576 if (!GlobalSU) 1577 return; 1578 1579 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1580 // constraining the uses of the last local def to precede GlobalDef. 1581 SmallVector<SUnit*,8> LocalUses; 1582 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1583 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1584 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1585 for (SUnit::const_succ_iterator 1586 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1587 I != E; ++I) { 1588 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1589 continue; 1590 if (I->getSUnit() == GlobalSU) 1591 continue; 1592 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1593 return; 1594 LocalUses.push_back(I->getSUnit()); 1595 } 1596 // Open the top of the GlobalLI hole by constraining any earlier global uses 1597 // to precede the start of LocalLI. 1598 SmallVector<SUnit*,8> GlobalUses; 1599 MachineInstr *FirstLocalDef = 1600 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1601 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1602 for (SUnit::const_pred_iterator 1603 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1604 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1605 continue; 1606 if (I->getSUnit() == FirstLocalSU) 1607 continue; 1608 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1609 return; 1610 GlobalUses.push_back(I->getSUnit()); 1611 } 1612 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1613 // Add the weak edges. 1614 for (SmallVectorImpl<SUnit*>::const_iterator 1615 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1616 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1617 << GlobalSU->NodeNum << ")\n"); 1618 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1619 } 1620 for (SmallVectorImpl<SUnit*>::const_iterator 1621 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1622 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1623 << FirstLocalSU->NodeNum << ")\n"); 1624 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1625 } 1626} 1627 1628/// \brief Callback from DAG postProcessing to create weak edges to encourage 1629/// copy elimination. 1630void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1631 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1632 1633 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1634 if (FirstPos == DAG->end()) 1635 return; 1636 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1637 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1638 &*priorNonDebug(DAG->end(), DAG->begin())); 1639 1640 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1641 SUnit *SU = &DAG->SUnits[Idx]; 1642 if (!SU->getInstr()->isCopy()) 1643 continue; 1644 1645 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1646 } 1647} 1648 1649//===----------------------------------------------------------------------===// 1650// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1651// and possibly other custom schedulers. 1652//===----------------------------------------------------------------------===// 1653 1654static const unsigned InvalidCycle = ~0U; 1655 1656SchedBoundary::~SchedBoundary() { delete HazardRec; } 1657 1658void SchedBoundary::reset() { 1659 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1660 // Destroying and reconstructing it is very expensive though. So keep 1661 // invalid, placeholder HazardRecs. 1662 if (HazardRec && HazardRec->isEnabled()) { 1663 delete HazardRec; 1664 HazardRec = nullptr; 1665 } 1666 Available.clear(); 1667 Pending.clear(); 1668 CheckPending = false; 1669 NextSUs.clear(); 1670 CurrCycle = 0; 1671 CurrMOps = 0; 1672 MinReadyCycle = UINT_MAX; 1673 ExpectedLatency = 0; 1674 DependentLatency = 0; 1675 RetiredMOps = 0; 1676 MaxExecutedResCount = 0; 1677 ZoneCritResIdx = 0; 1678 IsResourceLimited = false; 1679 ReservedCycles.clear(); 1680#ifndef NDEBUG 1681 // Track the maximum number of stall cycles that could arise either from the 1682 // latency of a DAG edge or the number of cycles that a processor resource is 1683 // reserved (SchedBoundary::ReservedCycles). 1684 MaxObservedStall = 0; 1685#endif 1686 // Reserve a zero-count for invalid CritResIdx. 1687 ExecutedResCounts.resize(1); 1688 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1689} 1690 1691void SchedRemainder:: 1692init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1693 reset(); 1694 if (!SchedModel->hasInstrSchedModel()) 1695 return; 1696 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1697 for (std::vector<SUnit>::iterator 1698 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1699 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1700 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1701 * SchedModel->getMicroOpFactor(); 1702 for (TargetSchedModel::ProcResIter 1703 PI = SchedModel->getWriteProcResBegin(SC), 1704 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1705 unsigned PIdx = PI->ProcResourceIdx; 1706 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1707 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1708 } 1709 } 1710} 1711 1712void SchedBoundary:: 1713init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1714 reset(); 1715 DAG = dag; 1716 SchedModel = smodel; 1717 Rem = rem; 1718 if (SchedModel->hasInstrSchedModel()) { 1719 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1720 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1721 } 1722} 1723 1724/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1725/// these "soft stalls" differently than the hard stall cycles based on CPU 1726/// resources and computed by checkHazard(). A fully in-order model 1727/// (MicroOpBufferSize==0) will not make use of this since instructions are not 1728/// available for scheduling until they are ready. However, a weaker in-order 1729/// model may use this for heuristics. For example, if a processor has in-order 1730/// behavior when reading certain resources, this may come into play. 1731unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1732 if (!SU->isUnbuffered) 1733 return 0; 1734 1735 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1736 if (ReadyCycle > CurrCycle) 1737 return ReadyCycle - CurrCycle; 1738 return 0; 1739} 1740 1741/// Compute the next cycle at which the given processor resource can be 1742/// scheduled. 1743unsigned SchedBoundary:: 1744getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1745 unsigned NextUnreserved = ReservedCycles[PIdx]; 1746 // If this resource has never been used, always return cycle zero. 1747 if (NextUnreserved == InvalidCycle) 1748 return 0; 1749 // For bottom-up scheduling add the cycles needed for the current operation. 1750 if (!isTop()) 1751 NextUnreserved += Cycles; 1752 return NextUnreserved; 1753} 1754 1755/// Does this SU have a hazard within the current instruction group. 1756/// 1757/// The scheduler supports two modes of hazard recognition. The first is the 1758/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1759/// supports highly complicated in-order reservation tables 1760/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1761/// 1762/// The second is a streamlined mechanism that checks for hazards based on 1763/// simple counters that the scheduler itself maintains. It explicitly checks 1764/// for instruction dispatch limitations, including the number of micro-ops that 1765/// can dispatch per cycle. 1766/// 1767/// TODO: Also check whether the SU must start a new group. 1768bool SchedBoundary::checkHazard(SUnit *SU) { 1769 if (HazardRec->isEnabled() 1770 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1771 return true; 1772 } 1773 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1774 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1775 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1776 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1777 return true; 1778 } 1779 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1780 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1781 for (TargetSchedModel::ProcResIter 1782 PI = SchedModel->getWriteProcResBegin(SC), 1783 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1784 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1785 if (NRCycle > CurrCycle) { 1786#ifndef NDEBUG 1787 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1788#endif 1789 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1790 << SchedModel->getResourceName(PI->ProcResourceIdx) 1791 << "=" << NRCycle << "c\n"); 1792 return true; 1793 } 1794 } 1795 } 1796 return false; 1797} 1798 1799// Find the unscheduled node in ReadySUs with the highest latency. 1800unsigned SchedBoundary:: 1801findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1802 SUnit *LateSU = nullptr; 1803 unsigned RemLatency = 0; 1804 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1805 I != E; ++I) { 1806 unsigned L = getUnscheduledLatency(*I); 1807 if (L > RemLatency) { 1808 RemLatency = L; 1809 LateSU = *I; 1810 } 1811 } 1812 if (LateSU) { 1813 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1814 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1815 } 1816 return RemLatency; 1817} 1818 1819// Count resources in this zone and the remaining unscheduled 1820// instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1821// resource index, or zero if the zone is issue limited. 1822unsigned SchedBoundary:: 1823getOtherResourceCount(unsigned &OtherCritIdx) { 1824 OtherCritIdx = 0; 1825 if (!SchedModel->hasInstrSchedModel()) 1826 return 0; 1827 1828 unsigned OtherCritCount = Rem->RemIssueCount 1829 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1830 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1831 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1832 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1833 PIdx != PEnd; ++PIdx) { 1834 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1835 if (OtherCount > OtherCritCount) { 1836 OtherCritCount = OtherCount; 1837 OtherCritIdx = PIdx; 1838 } 1839 } 1840 if (OtherCritIdx) { 1841 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1842 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1843 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1844 } 1845 return OtherCritCount; 1846} 1847 1848void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1849 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1850 1851#ifndef NDEBUG 1852 // ReadyCycle was been bumped up to the CurrCycle when this node was 1853 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1854 // scheduling, so may now be greater than ReadyCycle. 1855 if (ReadyCycle > CurrCycle) 1856 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1857#endif 1858 1859 if (ReadyCycle < MinReadyCycle) 1860 MinReadyCycle = ReadyCycle; 1861 1862 // Check for interlocks first. For the purpose of other heuristics, an 1863 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1864 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1865 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1866 Pending.push(SU); 1867 else 1868 Available.push(SU); 1869 1870 // Record this node as an immediate dependent of the scheduled node. 1871 NextSUs.insert(SU); 1872} 1873 1874void SchedBoundary::releaseTopNode(SUnit *SU) { 1875 if (SU->isScheduled) 1876 return; 1877 1878 releaseNode(SU, SU->TopReadyCycle); 1879} 1880 1881void SchedBoundary::releaseBottomNode(SUnit *SU) { 1882 if (SU->isScheduled) 1883 return; 1884 1885 releaseNode(SU, SU->BotReadyCycle); 1886} 1887 1888/// Move the boundary of scheduled code by one cycle. 1889void SchedBoundary::bumpCycle(unsigned NextCycle) { 1890 if (SchedModel->getMicroOpBufferSize() == 0) { 1891 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1892 if (MinReadyCycle > NextCycle) 1893 NextCycle = MinReadyCycle; 1894 } 1895 // Update the current micro-ops, which will issue in the next cycle. 1896 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1897 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1898 1899 // Decrement DependentLatency based on the next cycle. 1900 if ((NextCycle - CurrCycle) > DependentLatency) 1901 DependentLatency = 0; 1902 else 1903 DependentLatency -= (NextCycle - CurrCycle); 1904 1905 if (!HazardRec->isEnabled()) { 1906 // Bypass HazardRec virtual calls. 1907 CurrCycle = NextCycle; 1908 } 1909 else { 1910 // Bypass getHazardType calls in case of long latency. 1911 for (; CurrCycle != NextCycle; ++CurrCycle) { 1912 if (isTop()) 1913 HazardRec->AdvanceCycle(); 1914 else 1915 HazardRec->RecedeCycle(); 1916 } 1917 } 1918 CheckPending = true; 1919 unsigned LFactor = SchedModel->getLatencyFactor(); 1920 IsResourceLimited = 1921 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1922 > (int)LFactor; 1923 1924 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1925} 1926 1927void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1928 ExecutedResCounts[PIdx] += Count; 1929 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1930 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1931} 1932 1933/// Add the given processor resource to this scheduled zone. 1934/// 1935/// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1936/// during which this resource is consumed. 1937/// 1938/// \return the next cycle at which the instruction may execute without 1939/// oversubscribing resources. 1940unsigned SchedBoundary:: 1941countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1942 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1943 unsigned Count = Factor * Cycles; 1944 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1945 << " +" << Cycles << "x" << Factor << "u\n"); 1946 1947 // Update Executed resources counts. 1948 incExecutedResources(PIdx, Count); 1949 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1950 Rem->RemainingCounts[PIdx] -= Count; 1951 1952 // Check if this resource exceeds the current critical resource. If so, it 1953 // becomes the critical resource. 1954 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1955 ZoneCritResIdx = PIdx; 1956 DEBUG(dbgs() << " *** Critical resource " 1957 << SchedModel->getResourceName(PIdx) << ": " 1958 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1959 } 1960 // For reserved resources, record the highest cycle using the resource. 1961 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1962 if (NextAvailable > CurrCycle) { 1963 DEBUG(dbgs() << " Resource conflict: " 1964 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1965 << NextAvailable << "\n"); 1966 } 1967 return NextAvailable; 1968} 1969 1970/// Move the boundary of scheduled code by one SUnit. 1971void SchedBoundary::bumpNode(SUnit *SU) { 1972 // Update the reservation table. 1973 if (HazardRec->isEnabled()) { 1974 if (!isTop() && SU->isCall) { 1975 // Calls are scheduled with their preceding instructions. For bottom-up 1976 // scheduling, clear the pipeline state before emitting. 1977 HazardRec->Reset(); 1978 } 1979 HazardRec->EmitInstruction(SU); 1980 } 1981 // checkHazard should prevent scheduling multiple instructions per cycle that 1982 // exceed the issue width. 1983 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1984 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1985 assert( 1986 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1987 "Cannot schedule this instruction's MicroOps in the current cycle."); 1988 1989 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1990 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1991 1992 unsigned NextCycle = CurrCycle; 1993 switch (SchedModel->getMicroOpBufferSize()) { 1994 case 0: 1995 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1996 break; 1997 case 1: 1998 if (ReadyCycle > NextCycle) { 1999 NextCycle = ReadyCycle; 2000 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2001 } 2002 break; 2003 default: 2004 // We don't currently model the OOO reorder buffer, so consider all 2005 // scheduled MOps to be "retired". We do loosely model in-order resource 2006 // latency. If this instruction uses an in-order resource, account for any 2007 // likely stall cycles. 2008 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2009 NextCycle = ReadyCycle; 2010 break; 2011 } 2012 RetiredMOps += IncMOps; 2013 2014 // Update resource counts and critical resource. 2015 if (SchedModel->hasInstrSchedModel()) { 2016 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2017 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2018 Rem->RemIssueCount -= DecRemIssue; 2019 if (ZoneCritResIdx) { 2020 // Scale scheduled micro-ops for comparing with the critical resource. 2021 unsigned ScaledMOps = 2022 RetiredMOps * SchedModel->getMicroOpFactor(); 2023 2024 // If scaled micro-ops are now more than the previous critical resource by 2025 // a full cycle, then micro-ops issue becomes critical. 2026 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2027 >= (int)SchedModel->getLatencyFactor()) { 2028 ZoneCritResIdx = 0; 2029 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2030 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2031 } 2032 } 2033 for (TargetSchedModel::ProcResIter 2034 PI = SchedModel->getWriteProcResBegin(SC), 2035 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2036 unsigned RCycle = 2037 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2038 if (RCycle > NextCycle) 2039 NextCycle = RCycle; 2040 } 2041 if (SU->hasReservedResource) { 2042 // For reserved resources, record the highest cycle using the resource. 2043 // For top-down scheduling, this is the cycle in which we schedule this 2044 // instruction plus the number of cycles the operations reserves the 2045 // resource. For bottom-up is it simply the instruction's cycle. 2046 for (TargetSchedModel::ProcResIter 2047 PI = SchedModel->getWriteProcResBegin(SC), 2048 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2049 unsigned PIdx = PI->ProcResourceIdx; 2050 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2051 if (isTop()) { 2052 ReservedCycles[PIdx] = 2053 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2054 } 2055 else 2056 ReservedCycles[PIdx] = NextCycle; 2057 } 2058 } 2059 } 2060 } 2061 // Update ExpectedLatency and DependentLatency. 2062 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2063 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2064 if (SU->getDepth() > TopLatency) { 2065 TopLatency = SU->getDepth(); 2066 DEBUG(dbgs() << " " << Available.getName() 2067 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2068 } 2069 if (SU->getHeight() > BotLatency) { 2070 BotLatency = SU->getHeight(); 2071 DEBUG(dbgs() << " " << Available.getName() 2072 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2073 } 2074 // If we stall for any reason, bump the cycle. 2075 if (NextCycle > CurrCycle) { 2076 bumpCycle(NextCycle); 2077 } 2078 else { 2079 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2080 // resource limited. If a stall occurred, bumpCycle does this. 2081 unsigned LFactor = SchedModel->getLatencyFactor(); 2082 IsResourceLimited = 2083 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2084 > (int)LFactor; 2085 } 2086 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2087 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2088 // one cycle. Since we commonly reach the max MOps here, opportunistically 2089 // bump the cycle to avoid uselessly checking everything in the readyQ. 2090 CurrMOps += IncMOps; 2091 while (CurrMOps >= SchedModel->getIssueWidth()) { 2092 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2093 << " at cycle " << CurrCycle << '\n'); 2094 bumpCycle(++NextCycle); 2095 } 2096 DEBUG(dumpScheduledState()); 2097} 2098 2099/// Release pending ready nodes in to the available queue. This makes them 2100/// visible to heuristics. 2101void SchedBoundary::releasePending() { 2102 // If the available queue is empty, it is safe to reset MinReadyCycle. 2103 if (Available.empty()) 2104 MinReadyCycle = UINT_MAX; 2105 2106 // Check to see if any of the pending instructions are ready to issue. If 2107 // so, add them to the available queue. 2108 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2109 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2110 SUnit *SU = *(Pending.begin()+i); 2111 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2112 2113 if (ReadyCycle < MinReadyCycle) 2114 MinReadyCycle = ReadyCycle; 2115 2116 if (!IsBuffered && ReadyCycle > CurrCycle) 2117 continue; 2118 2119 if (checkHazard(SU)) 2120 continue; 2121 2122 Available.push(SU); 2123 Pending.remove(Pending.begin()+i); 2124 --i; --e; 2125 } 2126 DEBUG(if (!Pending.empty()) Pending.dump()); 2127 CheckPending = false; 2128} 2129 2130/// Remove SU from the ready set for this boundary. 2131void SchedBoundary::removeReady(SUnit *SU) { 2132 if (Available.isInQueue(SU)) 2133 Available.remove(Available.find(SU)); 2134 else { 2135 assert(Pending.isInQueue(SU) && "bad ready count"); 2136 Pending.remove(Pending.find(SU)); 2137 } 2138} 2139 2140/// If this queue only has one ready candidate, return it. As a side effect, 2141/// defer any nodes that now hit a hazard, and advance the cycle until at least 2142/// one node is ready. If multiple instructions are ready, return NULL. 2143SUnit *SchedBoundary::pickOnlyChoice() { 2144 if (CheckPending) 2145 releasePending(); 2146 2147 if (CurrMOps > 0) { 2148 // Defer any ready instrs that now have a hazard. 2149 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2150 if (checkHazard(*I)) { 2151 Pending.push(*I); 2152 I = Available.remove(I); 2153 continue; 2154 } 2155 ++I; 2156 } 2157 } 2158 for (unsigned i = 0; Available.empty(); ++i) { 2159// FIXME: Re-enable assert once PR20057 is resolved. 2160// assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2161// "permanent hazard"); 2162 (void)i; 2163 bumpCycle(CurrCycle + 1); 2164 releasePending(); 2165 } 2166 if (Available.size() == 1) 2167 return *Available.begin(); 2168 return nullptr; 2169} 2170 2171#ifndef NDEBUG 2172// This is useful information to dump after bumpNode. 2173// Note that the Queue contents are more useful before pickNodeFromQueue. 2174void SchedBoundary::dumpScheduledState() { 2175 unsigned ResFactor; 2176 unsigned ResCount; 2177 if (ZoneCritResIdx) { 2178 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2179 ResCount = getResourceCount(ZoneCritResIdx); 2180 } 2181 else { 2182 ResFactor = SchedModel->getMicroOpFactor(); 2183 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2184 } 2185 unsigned LFactor = SchedModel->getLatencyFactor(); 2186 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2187 << " Retired: " << RetiredMOps; 2188 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2189 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2190 << ResCount / ResFactor << " " 2191 << SchedModel->getResourceName(ZoneCritResIdx) 2192 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2193 << (IsResourceLimited ? " - Resource" : " - Latency") 2194 << " limited.\n"; 2195} 2196#endif 2197 2198//===----------------------------------------------------------------------===// 2199// GenericScheduler - Generic implementation of MachineSchedStrategy. 2200//===----------------------------------------------------------------------===// 2201 2202void GenericSchedulerBase::SchedCandidate:: 2203initResourceDelta(const ScheduleDAGMI *DAG, 2204 const TargetSchedModel *SchedModel) { 2205 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2206 return; 2207 2208 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2209 for (TargetSchedModel::ProcResIter 2210 PI = SchedModel->getWriteProcResBegin(SC), 2211 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2212 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2213 ResDelta.CritResources += PI->Cycles; 2214 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2215 ResDelta.DemandedResources += PI->Cycles; 2216 } 2217} 2218 2219/// Set the CandPolicy given a scheduling zone given the current resources and 2220/// latencies inside and outside the zone. 2221void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2222 bool IsPostRA, 2223 SchedBoundary &CurrZone, 2224 SchedBoundary *OtherZone) { 2225 // Apply preemptive heuristics based on the total latency and resources 2226 // inside and outside this zone. Potential stalls should be considered before 2227 // following this policy. 2228 2229 // Compute remaining latency. We need this both to determine whether the 2230 // overall schedule has become latency-limited and whether the instructions 2231 // outside this zone are resource or latency limited. 2232 // 2233 // The "dependent" latency is updated incrementally during scheduling as the 2234 // max height/depth of scheduled nodes minus the cycles since it was 2235 // scheduled: 2236 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2237 // 2238 // The "independent" latency is the max ready queue depth: 2239 // ILat = max N.depth for N in Available|Pending 2240 // 2241 // RemainingLatency is the greater of independent and dependent latency. 2242 unsigned RemLatency = CurrZone.getDependentLatency(); 2243 RemLatency = std::max(RemLatency, 2244 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2245 RemLatency = std::max(RemLatency, 2246 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2247 2248 // Compute the critical resource outside the zone. 2249 unsigned OtherCritIdx = 0; 2250 unsigned OtherCount = 2251 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2252 2253 bool OtherResLimited = false; 2254 if (SchedModel->hasInstrSchedModel()) { 2255 unsigned LFactor = SchedModel->getLatencyFactor(); 2256 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2257 } 2258 // Schedule aggressively for latency in PostRA mode. We don't check for 2259 // acyclic latency during PostRA, and highly out-of-order processors will 2260 // skip PostRA scheduling. 2261 if (!OtherResLimited) { 2262 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2263 Policy.ReduceLatency |= true; 2264 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2265 << " RemainingLatency " << RemLatency << " + " 2266 << CurrZone.getCurrCycle() << "c > CritPath " 2267 << Rem.CriticalPath << "\n"); 2268 } 2269 } 2270 // If the same resource is limiting inside and outside the zone, do nothing. 2271 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2272 return; 2273 2274 DEBUG( 2275 if (CurrZone.isResourceLimited()) { 2276 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2277 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2278 << "\n"; 2279 } 2280 if (OtherResLimited) 2281 dbgs() << " RemainingLimit: " 2282 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2283 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2284 dbgs() << " Latency limited both directions.\n"); 2285 2286 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2287 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2288 2289 if (OtherResLimited) 2290 Policy.DemandResIdx = OtherCritIdx; 2291} 2292 2293#ifndef NDEBUG 2294const char *GenericSchedulerBase::getReasonStr( 2295 GenericSchedulerBase::CandReason Reason) { 2296 switch (Reason) { 2297 case NoCand: return "NOCAND "; 2298 case PhysRegCopy: return "PREG-COPY"; 2299 case RegExcess: return "REG-EXCESS"; 2300 case RegCritical: return "REG-CRIT "; 2301 case Stall: return "STALL "; 2302 case Cluster: return "CLUSTER "; 2303 case Weak: return "WEAK "; 2304 case RegMax: return "REG-MAX "; 2305 case ResourceReduce: return "RES-REDUCE"; 2306 case ResourceDemand: return "RES-DEMAND"; 2307 case TopDepthReduce: return "TOP-DEPTH "; 2308 case TopPathReduce: return "TOP-PATH "; 2309 case BotHeightReduce:return "BOT-HEIGHT"; 2310 case BotPathReduce: return "BOT-PATH "; 2311 case NextDefUse: return "DEF-USE "; 2312 case NodeOrder: return "ORDER "; 2313 }; 2314 llvm_unreachable("Unknown reason!"); 2315} 2316 2317void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2318 PressureChange P; 2319 unsigned ResIdx = 0; 2320 unsigned Latency = 0; 2321 switch (Cand.Reason) { 2322 default: 2323 break; 2324 case RegExcess: 2325 P = Cand.RPDelta.Excess; 2326 break; 2327 case RegCritical: 2328 P = Cand.RPDelta.CriticalMax; 2329 break; 2330 case RegMax: 2331 P = Cand.RPDelta.CurrentMax; 2332 break; 2333 case ResourceReduce: 2334 ResIdx = Cand.Policy.ReduceResIdx; 2335 break; 2336 case ResourceDemand: 2337 ResIdx = Cand.Policy.DemandResIdx; 2338 break; 2339 case TopDepthReduce: 2340 Latency = Cand.SU->getDepth(); 2341 break; 2342 case TopPathReduce: 2343 Latency = Cand.SU->getHeight(); 2344 break; 2345 case BotHeightReduce: 2346 Latency = Cand.SU->getHeight(); 2347 break; 2348 case BotPathReduce: 2349 Latency = Cand.SU->getDepth(); 2350 break; 2351 } 2352 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2353 if (P.isValid()) 2354 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2355 << ":" << P.getUnitInc() << " "; 2356 else 2357 dbgs() << " "; 2358 if (ResIdx) 2359 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2360 else 2361 dbgs() << " "; 2362 if (Latency) 2363 dbgs() << " " << Latency << " cycles "; 2364 else 2365 dbgs() << " "; 2366 dbgs() << '\n'; 2367} 2368#endif 2369 2370/// Return true if this heuristic determines order. 2371static bool tryLess(int TryVal, int CandVal, 2372 GenericSchedulerBase::SchedCandidate &TryCand, 2373 GenericSchedulerBase::SchedCandidate &Cand, 2374 GenericSchedulerBase::CandReason Reason) { 2375 if (TryVal < CandVal) { 2376 TryCand.Reason = Reason; 2377 return true; 2378 } 2379 if (TryVal > CandVal) { 2380 if (Cand.Reason > Reason) 2381 Cand.Reason = Reason; 2382 return true; 2383 } 2384 Cand.setRepeat(Reason); 2385 return false; 2386} 2387 2388static bool tryGreater(int TryVal, int CandVal, 2389 GenericSchedulerBase::SchedCandidate &TryCand, 2390 GenericSchedulerBase::SchedCandidate &Cand, 2391 GenericSchedulerBase::CandReason Reason) { 2392 if (TryVal > CandVal) { 2393 TryCand.Reason = Reason; 2394 return true; 2395 } 2396 if (TryVal < CandVal) { 2397 if (Cand.Reason > Reason) 2398 Cand.Reason = Reason; 2399 return true; 2400 } 2401 Cand.setRepeat(Reason); 2402 return false; 2403} 2404 2405static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2406 GenericSchedulerBase::SchedCandidate &Cand, 2407 SchedBoundary &Zone) { 2408 if (Zone.isTop()) { 2409 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2410 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2411 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2412 return true; 2413 } 2414 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2415 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2416 return true; 2417 } 2418 else { 2419 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2420 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2421 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2422 return true; 2423 } 2424 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2425 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2426 return true; 2427 } 2428 return false; 2429} 2430 2431static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2432 bool IsTop) { 2433 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2434 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2435} 2436 2437void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2438 assert(dag->hasVRegLiveness() && 2439 "(PreRA)GenericScheduler needs vreg liveness"); 2440 DAG = static_cast<ScheduleDAGMILive*>(dag); 2441 SchedModel = DAG->getSchedModel(); 2442 TRI = DAG->TRI; 2443 2444 Rem.init(DAG, SchedModel); 2445 Top.init(DAG, SchedModel, &Rem); 2446 Bot.init(DAG, SchedModel, &Rem); 2447 2448 // Initialize resource counts. 2449 2450 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2451 // are disabled, then these HazardRecs will be disabled. 2452 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2453 if (!Top.HazardRec) { 2454 Top.HazardRec = 2455 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2456 Itin, DAG); 2457 } 2458 if (!Bot.HazardRec) { 2459 Bot.HazardRec = 2460 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2461 Itin, DAG); 2462 } 2463} 2464 2465/// Initialize the per-region scheduling policy. 2466void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2467 MachineBasicBlock::iterator End, 2468 unsigned NumRegionInstrs) { 2469 const MachineFunction &MF = *Begin->getParent()->getParent(); 2470 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2471 2472 // Avoid setting up the register pressure tracker for small regions to save 2473 // compile time. As a rough heuristic, only track pressure when the number of 2474 // schedulable instructions exceeds half the integer register file. 2475 RegionPolicy.ShouldTrackPressure = true; 2476 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2477 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2478 if (TLI->isTypeLegal(LegalIntVT)) { 2479 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2480 TLI->getRegClassFor(LegalIntVT)); 2481 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2482 } 2483 } 2484 2485 // For generic targets, we default to bottom-up, because it's simpler and more 2486 // compile-time optimizations have been implemented in that direction. 2487 RegionPolicy.OnlyBottomUp = true; 2488 2489 // Allow the subtarget to override default policy. 2490 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2491 NumRegionInstrs); 2492 2493 // After subtarget overrides, apply command line options. 2494 if (!EnableRegPressure) 2495 RegionPolicy.ShouldTrackPressure = false; 2496 2497 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2498 // e.g. -misched-bottomup=false allows scheduling in both directions. 2499 assert((!ForceTopDown || !ForceBottomUp) && 2500 "-misched-topdown incompatible with -misched-bottomup"); 2501 if (ForceBottomUp.getNumOccurrences() > 0) { 2502 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2503 if (RegionPolicy.OnlyBottomUp) 2504 RegionPolicy.OnlyTopDown = false; 2505 } 2506 if (ForceTopDown.getNumOccurrences() > 0) { 2507 RegionPolicy.OnlyTopDown = ForceTopDown; 2508 if (RegionPolicy.OnlyTopDown) 2509 RegionPolicy.OnlyBottomUp = false; 2510 } 2511} 2512 2513void GenericScheduler::dumpPolicy() { 2514 dbgs() << "GenericScheduler RegionPolicy: " 2515 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2516 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2517 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2518 << "\n"; 2519} 2520 2521/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2522/// critical path by more cycles than it takes to drain the instruction buffer. 2523/// We estimate an upper bounds on in-flight instructions as: 2524/// 2525/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2526/// InFlightIterations = AcyclicPath / CyclesPerIteration 2527/// InFlightResources = InFlightIterations * LoopResources 2528/// 2529/// TODO: Check execution resources in addition to IssueCount. 2530void GenericScheduler::checkAcyclicLatency() { 2531 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2532 return; 2533 2534 // Scaled number of cycles per loop iteration. 2535 unsigned IterCount = 2536 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2537 Rem.RemIssueCount); 2538 // Scaled acyclic critical path. 2539 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2540 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2541 unsigned InFlightCount = 2542 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2543 unsigned BufferLimit = 2544 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2545 2546 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2547 2548 DEBUG(dbgs() << "IssueCycles=" 2549 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2550 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2551 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2552 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2553 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2554 if (Rem.IsAcyclicLatencyLimited) 2555 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2556} 2557 2558void GenericScheduler::registerRoots() { 2559 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2560 2561 // Some roots may not feed into ExitSU. Check all of them in case. 2562 for (std::vector<SUnit*>::const_iterator 2563 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2564 if ((*I)->getDepth() > Rem.CriticalPath) 2565 Rem.CriticalPath = (*I)->getDepth(); 2566 } 2567 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2568 if (DumpCriticalPathLength) { 2569 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2570 } 2571 2572 if (EnableCyclicPath) { 2573 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2574 checkAcyclicLatency(); 2575 } 2576} 2577 2578static bool tryPressure(const PressureChange &TryP, 2579 const PressureChange &CandP, 2580 GenericSchedulerBase::SchedCandidate &TryCand, 2581 GenericSchedulerBase::SchedCandidate &Cand, 2582 GenericSchedulerBase::CandReason Reason, 2583 const TargetRegisterInfo *TRI, 2584 const MachineFunction &MF) { 2585 unsigned TryPSet = TryP.getPSetOrMax(); 2586 unsigned CandPSet = CandP.getPSetOrMax(); 2587 // If both candidates affect the same set, go with the smallest increase. 2588 if (TryPSet == CandPSet) { 2589 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2590 Reason); 2591 } 2592 // If one candidate decreases and the other increases, go with it. 2593 // Invalid candidates have UnitInc==0. 2594 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2595 Reason)) { 2596 return true; 2597 } 2598 2599 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2600 std::numeric_limits<int>::max(); 2601 2602 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2603 std::numeric_limits<int>::max(); 2604 2605 // If the candidates are decreasing pressure, reverse priority. 2606 if (TryP.getUnitInc() < 0) 2607 std::swap(TryRank, CandRank); 2608 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2609} 2610 2611static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2612 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2613} 2614 2615/// Minimize physical register live ranges. Regalloc wants them adjacent to 2616/// their physreg def/use. 2617/// 2618/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2619/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2620/// with the operation that produces or consumes the physreg. We'll do this when 2621/// regalloc has support for parallel copies. 2622static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2623 const MachineInstr *MI = SU->getInstr(); 2624 if (!MI->isCopy()) 2625 return 0; 2626 2627 unsigned ScheduledOper = isTop ? 1 : 0; 2628 unsigned UnscheduledOper = isTop ? 0 : 1; 2629 // If we have already scheduled the physreg produce/consumer, immediately 2630 // schedule the copy. 2631 if (TargetRegisterInfo::isPhysicalRegister( 2632 MI->getOperand(ScheduledOper).getReg())) 2633 return 1; 2634 // If the physreg is at the boundary, defer it. Otherwise schedule it 2635 // immediately to free the dependent. We can hoist the copy later. 2636 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2637 if (TargetRegisterInfo::isPhysicalRegister( 2638 MI->getOperand(UnscheduledOper).getReg())) 2639 return AtBoundary ? -1 : 1; 2640 return 0; 2641} 2642 2643/// Apply a set of heursitics to a new candidate. Heuristics are currently 2644/// hierarchical. This may be more efficient than a graduated cost model because 2645/// we don't need to evaluate all aspects of the model for each node in the 2646/// queue. But it's really done to make the heuristics easier to debug and 2647/// statistically analyze. 2648/// 2649/// \param Cand provides the policy and current best candidate. 2650/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2651/// \param Zone describes the scheduled zone that we are extending. 2652/// \param RPTracker describes reg pressure within the scheduled zone. 2653/// \param TempTracker is a scratch pressure tracker to reuse in queries. 2654void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2655 SchedCandidate &TryCand, 2656 SchedBoundary &Zone, 2657 const RegPressureTracker &RPTracker, 2658 RegPressureTracker &TempTracker) { 2659 2660 if (DAG->isTrackingPressure()) { 2661 // Always initialize TryCand's RPDelta. 2662 if (Zone.isTop()) { 2663 TempTracker.getMaxDownwardPressureDelta( 2664 TryCand.SU->getInstr(), 2665 TryCand.RPDelta, 2666 DAG->getRegionCriticalPSets(), 2667 DAG->getRegPressure().MaxSetPressure); 2668 } 2669 else { 2670 if (VerifyScheduling) { 2671 TempTracker.getMaxUpwardPressureDelta( 2672 TryCand.SU->getInstr(), 2673 &DAG->getPressureDiff(TryCand.SU), 2674 TryCand.RPDelta, 2675 DAG->getRegionCriticalPSets(), 2676 DAG->getRegPressure().MaxSetPressure); 2677 } 2678 else { 2679 RPTracker.getUpwardPressureDelta( 2680 TryCand.SU->getInstr(), 2681 DAG->getPressureDiff(TryCand.SU), 2682 TryCand.RPDelta, 2683 DAG->getRegionCriticalPSets(), 2684 DAG->getRegPressure().MaxSetPressure); 2685 } 2686 } 2687 } 2688 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2689 dbgs() << " Try SU(" << TryCand.SU->NodeNum << ") " 2690 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2691 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2692 2693 // Initialize the candidate if needed. 2694 if (!Cand.isValid()) { 2695 TryCand.Reason = NodeOrder; 2696 return; 2697 } 2698 2699 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2700 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2701 TryCand, Cand, PhysRegCopy)) 2702 return; 2703 2704 // Avoid exceeding the target's limit. 2705 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2706 Cand.RPDelta.Excess, 2707 TryCand, Cand, RegExcess, TRI, 2708 DAG->MF)) 2709 return; 2710 2711 // Avoid increasing the max critical pressure in the scheduled region. 2712 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2713 Cand.RPDelta.CriticalMax, 2714 TryCand, Cand, RegCritical, TRI, 2715 DAG->MF)) 2716 return; 2717 2718 // For loops that are acyclic path limited, aggressively schedule for latency. 2719 // This can result in very long dependence chains scheduled in sequence, so 2720 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2721 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2722 && tryLatency(TryCand, Cand, Zone)) 2723 return; 2724 2725 // Prioritize instructions that read unbuffered resources by stall cycles. 2726 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2727 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2728 return; 2729 2730 // Keep clustered nodes together to encourage downstream peephole 2731 // optimizations which may reduce resource requirements. 2732 // 2733 // This is a best effort to set things up for a post-RA pass. Optimizations 2734 // like generating loads of multiple registers should ideally be done within 2735 // the scheduler pass by combining the loads during DAG postprocessing. 2736 const SUnit *NextClusterSU = 2737 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2738 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2739 TryCand, Cand, Cluster)) 2740 return; 2741 2742 // Weak edges are for clustering and other constraints. 2743 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2744 getWeakLeft(Cand.SU, Zone.isTop()), 2745 TryCand, Cand, Weak)) { 2746 return; 2747 } 2748 // Avoid increasing the max pressure of the entire region. 2749 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2750 Cand.RPDelta.CurrentMax, 2751 TryCand, Cand, RegMax, TRI, 2752 DAG->MF)) 2753 return; 2754 2755 // Avoid critical resource consumption and balance the schedule. 2756 TryCand.initResourceDelta(DAG, SchedModel); 2757 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2758 TryCand, Cand, ResourceReduce)) 2759 return; 2760 if (tryGreater(TryCand.ResDelta.DemandedResources, 2761 Cand.ResDelta.DemandedResources, 2762 TryCand, Cand, ResourceDemand)) 2763 return; 2764 2765 // Avoid serializing long latency dependence chains. 2766 // For acyclic path limited loops, latency was already checked above. 2767 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency && 2768 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) { 2769 return; 2770 } 2771 2772 // Prefer immediate defs/users of the last scheduled instruction. This is a 2773 // local pressure avoidance strategy that also makes the machine code 2774 // readable. 2775 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2776 TryCand, Cand, NextDefUse)) 2777 return; 2778 2779 // Fall through to original instruction order. 2780 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2781 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2782 TryCand.Reason = NodeOrder; 2783 } 2784} 2785 2786/// Pick the best candidate from the queue. 2787/// 2788/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2789/// DAG building. To adjust for the current scheduling location we need to 2790/// maintain the number of vreg uses remaining to be top-scheduled. 2791void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2792 const RegPressureTracker &RPTracker, 2793 SchedCandidate &Cand) { 2794 ReadyQueue &Q = Zone.Available; 2795 2796 DEBUG(Q.dump()); 2797 2798 // getMaxPressureDelta temporarily modifies the tracker. 2799 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2800 2801 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2802 2803 SchedCandidate TryCand(Cand.Policy); 2804 TryCand.SU = *I; 2805 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2806 if (TryCand.Reason != NoCand) { 2807 // Initialize resource delta if needed in case future heuristics query it. 2808 if (TryCand.ResDelta == SchedResourceDelta()) 2809 TryCand.initResourceDelta(DAG, SchedModel); 2810 Cand.setBest(TryCand); 2811 DEBUG(traceCandidate(Cand)); 2812 } 2813 } 2814} 2815 2816/// Pick the best candidate node from either the top or bottom queue. 2817SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2818 // Schedule as far as possible in the direction of no choice. This is most 2819 // efficient, but also provides the best heuristics for CriticalPSets. 2820 if (SUnit *SU = Bot.pickOnlyChoice()) { 2821 IsTopNode = false; 2822 DEBUG(dbgs() << "Pick Bot ONLY1\n"); 2823 return SU; 2824 } 2825 if (SUnit *SU = Top.pickOnlyChoice()) { 2826 IsTopNode = true; 2827 DEBUG(dbgs() << "Pick Top ONLY1\n"); 2828 return SU; 2829 } 2830 CandPolicy NoPolicy; 2831 SchedCandidate BotCand(NoPolicy); 2832 SchedCandidate TopCand(NoPolicy); 2833 // Set the bottom-up policy based on the state of the current bottom zone and 2834 // the instructions outside the zone, including the top zone. 2835 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2836 // Set the top-down policy based on the state of the current top zone and 2837 // the instructions outside the zone, including the bottom zone. 2838 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2839 2840 // Prefer bottom scheduling when heuristics are silent. 2841 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2842 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2843 2844 // If either Q has a single candidate that provides the least increase in 2845 // Excess pressure, we can immediately schedule from that Q. 2846 // 2847 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2848 // affects picking from either Q. If scheduling in one direction must 2849 // increase pressure for one of the excess PSets, then schedule in that 2850 // direction first to provide more freedom in the other direction. 2851 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2852 || (BotCand.Reason == RegCritical 2853 && !BotCand.isRepeat(RegCritical))) 2854 { 2855 IsTopNode = false; 2856 tracePick(BotCand, IsTopNode); 2857 return BotCand.SU; 2858 } 2859 // Check if the top Q has a better candidate. 2860 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2861 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2862 2863 // Choose the queue with the most important (lowest enum) reason. 2864 if (TopCand.Reason < BotCand.Reason) { 2865 IsTopNode = true; 2866 tracePick(TopCand, IsTopNode); 2867 return TopCand.SU; 2868 } 2869 // Otherwise prefer the bottom candidate, in node order if all else failed. 2870 IsTopNode = false; 2871 tracePick(BotCand, IsTopNode); 2872 return BotCand.SU; 2873} 2874 2875/// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2876SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2877 if (DAG->top() == DAG->bottom()) { 2878 assert(Top.Available.empty() && Top.Pending.empty() && 2879 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2880 return nullptr; 2881 } 2882 SUnit *SU; 2883 do { 2884 if (RegionPolicy.OnlyTopDown) { 2885 SU = Top.pickOnlyChoice(); 2886 if (!SU) { 2887 CandPolicy NoPolicy; 2888 SchedCandidate TopCand(NoPolicy); 2889 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2890 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2891 tracePick(TopCand, true); 2892 SU = TopCand.SU; 2893 } 2894 IsTopNode = true; 2895 } 2896 else if (RegionPolicy.OnlyBottomUp) { 2897 SU = Bot.pickOnlyChoice(); 2898 if (!SU) { 2899 CandPolicy NoPolicy; 2900 SchedCandidate BotCand(NoPolicy); 2901 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2902 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2903 tracePick(BotCand, false); 2904 SU = BotCand.SU; 2905 } 2906 IsTopNode = false; 2907 } 2908 else { 2909 SU = pickNodeBidirectional(IsTopNode); 2910 } 2911 } while (SU->isScheduled); 2912 2913 if (SU->isTopReady()) 2914 Top.removeReady(SU); 2915 if (SU->isBottomReady()) 2916 Bot.removeReady(SU); 2917 2918 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2919 return SU; 2920} 2921 2922void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2923 2924 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2925 if (!isTop) 2926 ++InsertPos; 2927 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2928 2929 // Find already scheduled copies with a single physreg dependence and move 2930 // them just above the scheduled instruction. 2931 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2932 I != E; ++I) { 2933 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2934 continue; 2935 SUnit *DepSU = I->getSUnit(); 2936 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2937 continue; 2938 MachineInstr *Copy = DepSU->getInstr(); 2939 if (!Copy->isCopy()) 2940 continue; 2941 DEBUG(dbgs() << " Rescheduling physreg copy "; 2942 I->getSUnit()->dump(DAG)); 2943 DAG->moveInstruction(Copy, InsertPos); 2944 } 2945} 2946 2947/// Update the scheduler's state after scheduling a node. This is the same node 2948/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2949/// update it's state based on the current cycle before MachineSchedStrategy 2950/// does. 2951/// 2952/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2953/// them here. See comments in biasPhysRegCopy. 2954void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2955 if (IsTopNode) { 2956 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2957 Top.bumpNode(SU); 2958 if (SU->hasPhysRegUses) 2959 reschedulePhysRegCopies(SU, true); 2960 } 2961 else { 2962 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2963 Bot.bumpNode(SU); 2964 if (SU->hasPhysRegDefs) 2965 reschedulePhysRegCopies(SU, false); 2966 } 2967} 2968 2969/// Create the standard converging machine scheduler. This will be used as the 2970/// default scheduler if the target does not set a default. 2971static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 2972 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 2973 // Register DAG post-processors. 2974 // 2975 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2976 // data and pass it to later mutations. Have a single mutation that gathers 2977 // the interesting nodes in one pass. 2978 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 2979 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2980 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 2981 if (EnableMacroFusion) 2982 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 2983 return DAG; 2984} 2985 2986static MachineSchedRegistry 2987GenericSchedRegistry("converge", "Standard converging scheduler.", 2988 createGenericSchedLive); 2989 2990//===----------------------------------------------------------------------===// 2991// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 2992//===----------------------------------------------------------------------===// 2993 2994void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 2995 DAG = Dag; 2996 SchedModel = DAG->getSchedModel(); 2997 TRI = DAG->TRI; 2998 2999 Rem.init(DAG, SchedModel); 3000 Top.init(DAG, SchedModel, &Rem); 3001 BotRoots.clear(); 3002 3003 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3004 // or are disabled, then these HazardRecs will be disabled. 3005 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3006 if (!Top.HazardRec) { 3007 Top.HazardRec = 3008 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3009 Itin, DAG); 3010 } 3011} 3012 3013 3014void PostGenericScheduler::registerRoots() { 3015 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3016 3017 // Some roots may not feed into ExitSU. Check all of them in case. 3018 for (SmallVectorImpl<SUnit*>::const_iterator 3019 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3020 if ((*I)->getDepth() > Rem.CriticalPath) 3021 Rem.CriticalPath = (*I)->getDepth(); 3022 } 3023 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3024 if (DumpCriticalPathLength) { 3025 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3026 } 3027} 3028 3029/// Apply a set of heursitics to a new candidate for PostRA scheduling. 3030/// 3031/// \param Cand provides the policy and current best candidate. 3032/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3033void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3034 SchedCandidate &TryCand) { 3035 3036 // Initialize the candidate if needed. 3037 if (!Cand.isValid()) { 3038 TryCand.Reason = NodeOrder; 3039 return; 3040 } 3041 3042 // Prioritize instructions that read unbuffered resources by stall cycles. 3043 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3044 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3045 return; 3046 3047 // Avoid critical resource consumption and balance the schedule. 3048 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3049 TryCand, Cand, ResourceReduce)) 3050 return; 3051 if (tryGreater(TryCand.ResDelta.DemandedResources, 3052 Cand.ResDelta.DemandedResources, 3053 TryCand, Cand, ResourceDemand)) 3054 return; 3055 3056 // Avoid serializing long latency dependence chains. 3057 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3058 return; 3059 } 3060 3061 // Fall through to original instruction order. 3062 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3063 TryCand.Reason = NodeOrder; 3064} 3065 3066void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3067 ReadyQueue &Q = Top.Available; 3068 3069 DEBUG(Q.dump()); 3070 3071 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3072 SchedCandidate TryCand(Cand.Policy); 3073 TryCand.SU = *I; 3074 TryCand.initResourceDelta(DAG, SchedModel); 3075 tryCandidate(Cand, TryCand); 3076 if (TryCand.Reason != NoCand) { 3077 Cand.setBest(TryCand); 3078 DEBUG(traceCandidate(Cand)); 3079 } 3080 } 3081} 3082 3083/// Pick the next node to schedule. 3084SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3085 if (DAG->top() == DAG->bottom()) { 3086 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3087 return nullptr; 3088 } 3089 SUnit *SU; 3090 do { 3091 SU = Top.pickOnlyChoice(); 3092 if (!SU) { 3093 CandPolicy NoPolicy; 3094 SchedCandidate TopCand(NoPolicy); 3095 // Set the top-down policy based on the state of the current top zone and 3096 // the instructions outside the zone, including the bottom zone. 3097 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3098 pickNodeFromQueue(TopCand); 3099 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3100 tracePick(TopCand, true); 3101 SU = TopCand.SU; 3102 } 3103 } while (SU->isScheduled); 3104 3105 IsTopNode = true; 3106 Top.removeReady(SU); 3107 3108 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3109 return SU; 3110} 3111 3112/// Called after ScheduleDAGMI has scheduled an instruction and updated 3113/// scheduled/remaining flags in the DAG nodes. 3114void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3115 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3116 Top.bumpNode(SU); 3117} 3118 3119/// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3120static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3121 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3122} 3123 3124//===----------------------------------------------------------------------===// 3125// ILP Scheduler. Currently for experimental analysis of heuristics. 3126//===----------------------------------------------------------------------===// 3127 3128namespace { 3129/// \brief Order nodes by the ILP metric. 3130struct ILPOrder { 3131 const SchedDFSResult *DFSResult; 3132 const BitVector *ScheduledTrees; 3133 bool MaximizeILP; 3134 3135 ILPOrder(bool MaxILP) 3136 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3137 3138 /// \brief Apply a less-than relation on node priority. 3139 /// 3140 /// (Return true if A comes after B in the Q.) 3141 bool operator()(const SUnit *A, const SUnit *B) const { 3142 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3143 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3144 if (SchedTreeA != SchedTreeB) { 3145 // Unscheduled trees have lower priority. 3146 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3147 return ScheduledTrees->test(SchedTreeB); 3148 3149 // Trees with shallower connections have have lower priority. 3150 if (DFSResult->getSubtreeLevel(SchedTreeA) 3151 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3152 return DFSResult->getSubtreeLevel(SchedTreeA) 3153 < DFSResult->getSubtreeLevel(SchedTreeB); 3154 } 3155 } 3156 if (MaximizeILP) 3157 return DFSResult->getILP(A) < DFSResult->getILP(B); 3158 else 3159 return DFSResult->getILP(A) > DFSResult->getILP(B); 3160 } 3161}; 3162 3163/// \brief Schedule based on the ILP metric. 3164class ILPScheduler : public MachineSchedStrategy { 3165 ScheduleDAGMILive *DAG; 3166 ILPOrder Cmp; 3167 3168 std::vector<SUnit*> ReadyQ; 3169public: 3170 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3171 3172 void initialize(ScheduleDAGMI *dag) override { 3173 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3174 DAG = static_cast<ScheduleDAGMILive*>(dag); 3175 DAG->computeDFSResult(); 3176 Cmp.DFSResult = DAG->getDFSResult(); 3177 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3178 ReadyQ.clear(); 3179 } 3180 3181 void registerRoots() override { 3182 // Restore the heap in ReadyQ with the updated DFS results. 3183 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3184 } 3185 3186 /// Implement MachineSchedStrategy interface. 3187 /// ----------------------------------------- 3188 3189 /// Callback to select the highest priority node from the ready Q. 3190 SUnit *pickNode(bool &IsTopNode) override { 3191 if (ReadyQ.empty()) return nullptr; 3192 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3193 SUnit *SU = ReadyQ.back(); 3194 ReadyQ.pop_back(); 3195 IsTopNode = false; 3196 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3197 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3198 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3199 << DAG->getDFSResult()->getSubtreeLevel( 3200 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3201 << "Scheduling " << *SU->getInstr()); 3202 return SU; 3203 } 3204 3205 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3206 void scheduleTree(unsigned SubtreeID) override { 3207 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3208 } 3209 3210 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3211 /// DFSResults, and resort the priority Q. 3212 void schedNode(SUnit *SU, bool IsTopNode) override { 3213 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3214 } 3215 3216 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3217 3218 void releaseBottomNode(SUnit *SU) override { 3219 ReadyQ.push_back(SU); 3220 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3221 } 3222}; 3223} // namespace 3224 3225static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3226 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3227} 3228static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3229 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3230} 3231static MachineSchedRegistry ILPMaxRegistry( 3232 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3233static MachineSchedRegistry ILPMinRegistry( 3234 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3235 3236//===----------------------------------------------------------------------===// 3237// Machine Instruction Shuffler for Correctness Testing 3238//===----------------------------------------------------------------------===// 3239 3240#ifndef NDEBUG 3241namespace { 3242/// Apply a less-than relation on the node order, which corresponds to the 3243/// instruction order prior to scheduling. IsReverse implements greater-than. 3244template<bool IsReverse> 3245struct SUnitOrder { 3246 bool operator()(SUnit *A, SUnit *B) const { 3247 if (IsReverse) 3248 return A->NodeNum > B->NodeNum; 3249 else 3250 return A->NodeNum < B->NodeNum; 3251 } 3252}; 3253 3254/// Reorder instructions as much as possible. 3255class InstructionShuffler : public MachineSchedStrategy { 3256 bool IsAlternating; 3257 bool IsTopDown; 3258 3259 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3260 // gives nodes with a higher number higher priority causing the latest 3261 // instructions to be scheduled first. 3262 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3263 TopQ; 3264 // When scheduling bottom-up, use greater-than as the queue priority. 3265 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3266 BottomQ; 3267public: 3268 InstructionShuffler(bool alternate, bool topdown) 3269 : IsAlternating(alternate), IsTopDown(topdown) {} 3270 3271 void initialize(ScheduleDAGMI*) override { 3272 TopQ.clear(); 3273 BottomQ.clear(); 3274 } 3275 3276 /// Implement MachineSchedStrategy interface. 3277 /// ----------------------------------------- 3278 3279 SUnit *pickNode(bool &IsTopNode) override { 3280 SUnit *SU; 3281 if (IsTopDown) { 3282 do { 3283 if (TopQ.empty()) return nullptr; 3284 SU = TopQ.top(); 3285 TopQ.pop(); 3286 } while (SU->isScheduled); 3287 IsTopNode = true; 3288 } 3289 else { 3290 do { 3291 if (BottomQ.empty()) return nullptr; 3292 SU = BottomQ.top(); 3293 BottomQ.pop(); 3294 } while (SU->isScheduled); 3295 IsTopNode = false; 3296 } 3297 if (IsAlternating) 3298 IsTopDown = !IsTopDown; 3299 return SU; 3300 } 3301 3302 void schedNode(SUnit *SU, bool IsTopNode) override {} 3303 3304 void releaseTopNode(SUnit *SU) override { 3305 TopQ.push(SU); 3306 } 3307 void releaseBottomNode(SUnit *SU) override { 3308 BottomQ.push(SU); 3309 } 3310}; 3311} // namespace 3312 3313static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3314 bool Alternate = !ForceTopDown && !ForceBottomUp; 3315 bool TopDown = !ForceBottomUp; 3316 assert((TopDown || !ForceTopDown) && 3317 "-misched-topdown incompatible with -misched-bottomup"); 3318 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3319} 3320static MachineSchedRegistry ShufflerRegistry( 3321 "shuffle", "Shuffle machine instructions alternating directions", 3322 createInstructionShuffler); 3323#endif // !NDEBUG 3324 3325//===----------------------------------------------------------------------===// 3326// GraphWriter support for ScheduleDAGMILive. 3327//===----------------------------------------------------------------------===// 3328 3329#ifndef NDEBUG 3330namespace llvm { 3331 3332template<> struct GraphTraits< 3333 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3334 3335template<> 3336struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3337 3338 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3339 3340 static std::string getGraphName(const ScheduleDAG *G) { 3341 return G->MF.getName(); 3342 } 3343 3344 static bool renderGraphFromBottomUp() { 3345 return true; 3346 } 3347 3348 static bool isNodeHidden(const SUnit *Node) { 3349 if (ViewMISchedCutoff == 0) 3350 return false; 3351 return (Node->Preds.size() > ViewMISchedCutoff 3352 || Node->Succs.size() > ViewMISchedCutoff); 3353 } 3354 3355 /// If you want to override the dot attributes printed for a particular 3356 /// edge, override this method. 3357 static std::string getEdgeAttributes(const SUnit *Node, 3358 SUnitIterator EI, 3359 const ScheduleDAG *Graph) { 3360 if (EI.isArtificialDep()) 3361 return "color=cyan,style=dashed"; 3362 if (EI.isCtrlDep()) 3363 return "color=blue,style=dashed"; 3364 return ""; 3365 } 3366 3367 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3368 std::string Str; 3369 raw_string_ostream SS(Str); 3370 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3371 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3372 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3373 SS << "SU:" << SU->NodeNum; 3374 if (DFS) 3375 SS << " I:" << DFS->getNumInstrs(SU); 3376 return SS.str(); 3377 } 3378 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3379 return G->getGraphNodeLabel(SU); 3380 } 3381 3382 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3383 std::string Str("shape=Mrecord"); 3384 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3385 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3386 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3387 if (DFS) { 3388 Str += ",style=filled,fillcolor=\"#"; 3389 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3390 Str += '"'; 3391 } 3392 return Str; 3393 } 3394}; 3395} // namespace llvm 3396#endif // NDEBUG 3397 3398/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3399/// rendered using 'dot'. 3400/// 3401void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3402#ifndef NDEBUG 3403 ViewGraph(this, Name, false, Title); 3404#else 3405 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3406 << "systems with Graphviz or gv!\n"; 3407#endif // NDEBUG 3408} 3409 3410/// Out-of-line implementation with no arguments is handy for gdb. 3411void ScheduleDAGMI::viewGraph() { 3412 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3413} 3414