1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Custom DAG lowering for SI
12//
13//===----------------------------------------------------------------------===//
14
15#ifdef _MSC_VER
16// Provide M_PI.
17#define _USE_MATH_DEFINES
18#include <cmath>
19#endif
20
21#include "SIISelLowering.h"
22#include "AMDGPU.h"
23#include "AMDGPUDiagnosticInfoUnsupported.h"
24#include "AMDGPUIntrinsicInfo.h"
25#include "AMDGPUSubtarget.h"
26#include "SIInstrInfo.h"
27#include "SIMachineFunctionInfo.h"
28#include "SIRegisterInfo.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/CodeGen/CallingConvLower.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/IR/Function.h"
35#include "llvm/ADT/SmallString.h"
36
37using namespace llvm;
38
39SITargetLowering::SITargetLowering(TargetMachine &TM,
40                                   const AMDGPUSubtarget &STI)
41    : AMDGPUTargetLowering(TM, STI) {
42  addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
43  addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
44
45  addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
46  addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
47
48  addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
49  addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
50
51  addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
52  addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
53  addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
54
55  addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
56  addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
57
58  addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
59  addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
60
61  addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
62  addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
63
64  addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
65  addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
66
67  computeRegisterProperties(STI.getRegisterInfo());
68
69  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
70  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
71  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
72  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
73
74  setOperationAction(ISD::ADD, MVT::i32, Legal);
75  setOperationAction(ISD::ADDC, MVT::i32, Legal);
76  setOperationAction(ISD::ADDE, MVT::i32, Legal);
77  setOperationAction(ISD::SUBC, MVT::i32, Legal);
78  setOperationAction(ISD::SUBE, MVT::i32, Legal);
79
80  setOperationAction(ISD::FSIN, MVT::f32, Custom);
81  setOperationAction(ISD::FCOS, MVT::f32, Custom);
82
83  setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
84  setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
85
86  // We need to custom lower vector stores from local memory
87  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
88  setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
89  setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
90
91  setOperationAction(ISD::STORE, MVT::v8i32, Custom);
92  setOperationAction(ISD::STORE, MVT::v16i32, Custom);
93
94  setOperationAction(ISD::STORE, MVT::i1, Custom);
95  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
96
97  setOperationAction(ISD::SELECT, MVT::i64, Custom);
98  setOperationAction(ISD::SELECT, MVT::f64, Promote);
99  AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
100
101  setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
102  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
103  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
104  setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
105
106  setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
107  setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
108
109  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
110  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
111
112  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
113  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
114  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
115
116  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
117  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
118  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
119
120  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
121  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
122  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
123
124  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
125  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
126
127  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
128  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
129  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
130  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
131
132  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
133  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
134
135  for (MVT VT : MVT::integer_valuetypes()) {
136    if (VT == MVT::i64)
137      continue;
138
139    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
140    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
141    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
142    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
143
144    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
145    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
146    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
147    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
148
149    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
150    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
151    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
152    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
153  }
154
155  for (MVT VT : MVT::integer_vector_valuetypes()) {
156    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
157    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
158  }
159
160  for (MVT VT : MVT::fp_valuetypes())
161    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
162
163  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
164  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
165
166  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
167  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
168  setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
169  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
170
171
172  setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
173
174  setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
175  setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
176
177  setOperationAction(ISD::LOAD, MVT::i1, Custom);
178
179  setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
180  AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
181
182  setOperationAction(ISD::STORE, MVT::v2i64, Promote);
183  AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
184
185  setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
186
187  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
188  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
189  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
190
191  // These should use UDIVREM, so set them to expand
192  setOperationAction(ISD::UDIV, MVT::i64, Expand);
193  setOperationAction(ISD::UREM, MVT::i64, Expand);
194
195  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
196  setOperationAction(ISD::SELECT, MVT::i1, Promote);
197
198  setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
199
200
201  setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
202
203  // We only support LOAD/STORE and vector manipulation ops for vectors
204  // with > 4 elements.
205  for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
206    for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
207      switch(Op) {
208      case ISD::LOAD:
209      case ISD::STORE:
210      case ISD::BUILD_VECTOR:
211      case ISD::BITCAST:
212      case ISD::EXTRACT_VECTOR_ELT:
213      case ISD::INSERT_VECTOR_ELT:
214      case ISD::INSERT_SUBVECTOR:
215      case ISD::EXTRACT_SUBVECTOR:
216      case ISD::SCALAR_TO_VECTOR:
217        break;
218      case ISD::CONCAT_VECTORS:
219        setOperationAction(Op, VT, Custom);
220        break;
221      default:
222        setOperationAction(Op, VT, Expand);
223        break;
224      }
225    }
226  }
227
228  // Most operations are naturally 32-bit vector operations. We only support
229  // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
230  for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
231    setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
232    AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
233
234    setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
235    AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
236
237    setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
238    AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
239
240    setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
241    AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
242  }
243
244  if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
245    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
246    setOperationAction(ISD::FCEIL, MVT::f64, Legal);
247    setOperationAction(ISD::FRINT, MVT::f64, Legal);
248  }
249
250  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
251  setOperationAction(ISD::FDIV, MVT::f32, Custom);
252  setOperationAction(ISD::FDIV, MVT::f64, Custom);
253
254  setTargetDAGCombine(ISD::FADD);
255  setTargetDAGCombine(ISD::FSUB);
256  setTargetDAGCombine(ISD::FMINNUM);
257  setTargetDAGCombine(ISD::FMAXNUM);
258  setTargetDAGCombine(ISD::SMIN);
259  setTargetDAGCombine(ISD::SMAX);
260  setTargetDAGCombine(ISD::UMIN);
261  setTargetDAGCombine(ISD::UMAX);
262  setTargetDAGCombine(ISD::SELECT_CC);
263  setTargetDAGCombine(ISD::SETCC);
264  setTargetDAGCombine(ISD::AND);
265  setTargetDAGCombine(ISD::OR);
266  setTargetDAGCombine(ISD::UINT_TO_FP);
267
268  // All memory operations. Some folding on the pointer operand is done to help
269  // matching the constant offsets in the addressing modes.
270  setTargetDAGCombine(ISD::LOAD);
271  setTargetDAGCombine(ISD::STORE);
272  setTargetDAGCombine(ISD::ATOMIC_LOAD);
273  setTargetDAGCombine(ISD::ATOMIC_STORE);
274  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
275  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
276  setTargetDAGCombine(ISD::ATOMIC_SWAP);
277  setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
278  setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
279  setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
280  setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
281  setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
282  setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
283  setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
284  setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
285  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
286  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
287
288  setSchedulingPreference(Sched::RegPressure);
289}
290
291//===----------------------------------------------------------------------===//
292// TargetLowering queries
293//===----------------------------------------------------------------------===//
294
295bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
296                                          EVT) const {
297  // SI has some legal vector types, but no legal vector operations. Say no
298  // shuffles are legal in order to prefer scalarizing some vector operations.
299  return false;
300}
301
302bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
303  // Flat instructions do not have offsets, and only have the register
304  // address.
305  return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
306}
307
308bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
309  // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
310  // additionally can do r + r + i with addr64. 32-bit has more addressing
311  // mode options. Depending on the resource constant, it can also do
312  // (i64 r0) + (i32 r1) * (i14 i).
313  //
314  // Private arrays end up using a scratch buffer most of the time, so also
315  // assume those use MUBUF instructions. Scratch loads / stores are currently
316  // implemented as mubuf instructions with offen bit set, so slightly
317  // different than the normal addr64.
318  if (!isUInt<12>(AM.BaseOffs))
319    return false;
320
321  // FIXME: Since we can split immediate into soffset and immediate offset,
322  // would it make sense to allow any immediate?
323
324  switch (AM.Scale) {
325  case 0: // r + i or just i, depending on HasBaseReg.
326    return true;
327  case 1:
328    return true; // We have r + r or r + i.
329  case 2:
330    if (AM.HasBaseReg) {
331      // Reject 2 * r + r.
332      return false;
333    }
334
335    // Allow 2 * r as r + r
336    // Or  2 * r + i is allowed as r + r + i.
337    return true;
338  default: // Don't allow n * r
339    return false;
340  }
341}
342
343bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
344                                             const AddrMode &AM, Type *Ty,
345                                             unsigned AS) const {
346  // No global is ever allowed as a base.
347  if (AM.BaseGV)
348    return false;
349
350  switch (AS) {
351  case AMDGPUAS::GLOBAL_ADDRESS: {
352    if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
353      // Assume the we will use FLAT for all global memory accesses
354      // on VI.
355      // FIXME: This assumption is currently wrong.  On VI we still use
356      // MUBUF instructions for the r + i addressing mode.  As currently
357      // implemented, the MUBUF instructions only work on buffer < 4GB.
358      // It may be possible to support > 4GB buffers with MUBUF instructions,
359      // by setting the stride value in the resource descriptor which would
360      // increase the size limit to (stride * 4GB).  However, this is risky,
361      // because it has never been validated.
362      return isLegalFlatAddressingMode(AM);
363    }
364
365    return isLegalMUBUFAddressingMode(AM);
366  }
367  case AMDGPUAS::CONSTANT_ADDRESS: {
368    // If the offset isn't a multiple of 4, it probably isn't going to be
369    // correctly aligned.
370    if (AM.BaseOffs % 4 != 0)
371      return isLegalMUBUFAddressingMode(AM);
372
373    // There are no SMRD extloads, so if we have to do a small type access we
374    // will use a MUBUF load.
375    // FIXME?: We also need to do this if unaligned, but we don't know the
376    // alignment here.
377    if (DL.getTypeStoreSize(Ty) < 4)
378      return isLegalMUBUFAddressingMode(AM);
379
380    if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
381      // SMRD instructions have an 8-bit, dword offset on SI.
382      if (!isUInt<8>(AM.BaseOffs / 4))
383        return false;
384    } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
385      // On CI+, this can also be a 32-bit literal constant offset. If it fits
386      // in 8-bits, it can use a smaller encoding.
387      if (!isUInt<32>(AM.BaseOffs / 4))
388        return false;
389    } else if (Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) {
390      // On VI, these use the SMEM format and the offset is 20-bit in bytes.
391      if (!isUInt<20>(AM.BaseOffs))
392        return false;
393    } else
394      llvm_unreachable("unhandled generation");
395
396    if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
397      return true;
398
399    if (AM.Scale == 1 && AM.HasBaseReg)
400      return true;
401
402    return false;
403  }
404
405  case AMDGPUAS::PRIVATE_ADDRESS:
406  case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
407    return isLegalMUBUFAddressingMode(AM);
408
409  case AMDGPUAS::LOCAL_ADDRESS:
410  case AMDGPUAS::REGION_ADDRESS: {
411    // Basic, single offset DS instructions allow a 16-bit unsigned immediate
412    // field.
413    // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
414    // an 8-bit dword offset but we don't know the alignment here.
415    if (!isUInt<16>(AM.BaseOffs))
416      return false;
417
418    if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
419      return true;
420
421    if (AM.Scale == 1 && AM.HasBaseReg)
422      return true;
423
424    return false;
425  }
426  case AMDGPUAS::FLAT_ADDRESS:
427    return isLegalFlatAddressingMode(AM);
428
429  default:
430    llvm_unreachable("unhandled address space");
431  }
432}
433
434bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
435                                                      unsigned AddrSpace,
436                                                      unsigned Align,
437                                                      bool *IsFast) const {
438  if (IsFast)
439    *IsFast = false;
440
441  // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
442  // which isn't a simple VT.
443  if (!VT.isSimple() || VT == MVT::Other)
444    return false;
445
446  // TODO - CI+ supports unaligned memory accesses, but this requires driver
447  // support.
448
449  // XXX - The only mention I see of this in the ISA manual is for LDS direct
450  // reads the "byte address and must be dword aligned". Is it also true for the
451  // normal loads and stores?
452  if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
453    // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
454    // aligned, 8 byte access in a single operation using ds_read2/write2_b32
455    // with adjacent offsets.
456    bool AlignedBy4 = (Align % 4 == 0);
457    if (IsFast)
458      *IsFast = AlignedBy4;
459    return AlignedBy4;
460  }
461
462  // Smaller than dword value must be aligned.
463  // FIXME: This should be allowed on CI+
464  if (VT.bitsLT(MVT::i32))
465    return false;
466
467  // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
468  // byte-address are ignored, thus forcing Dword alignment.
469  // This applies to private, global, and constant memory.
470  if (IsFast)
471    *IsFast = true;
472
473  return VT.bitsGT(MVT::i32) && Align % 4 == 0;
474}
475
476EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
477                                          unsigned SrcAlign, bool IsMemset,
478                                          bool ZeroMemset,
479                                          bool MemcpyStrSrc,
480                                          MachineFunction &MF) const {
481  // FIXME: Should account for address space here.
482
483  // The default fallback uses the private pointer size as a guess for a type to
484  // use. Make sure we switch these to 64-bit accesses.
485
486  if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
487    return MVT::v4i32;
488
489  if (Size >= 8 && DstAlign >= 4)
490    return MVT::v2i32;
491
492  // Use the default.
493  return MVT::Other;
494}
495
496static bool isFlatGlobalAddrSpace(unsigned AS) {
497  return AS == AMDGPUAS::GLOBAL_ADDRESS ||
498    AS == AMDGPUAS::FLAT_ADDRESS ||
499    AS == AMDGPUAS::CONSTANT_ADDRESS;
500}
501
502bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
503                                           unsigned DestAS) const {
504  return isFlatGlobalAddrSpace(SrcAS) &&  isFlatGlobalAddrSpace(DestAS);
505}
506
507
508bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
509  const MemSDNode *MemNode = cast<MemSDNode>(N);
510  const Value *Ptr = MemNode->getMemOperand()->getValue();
511
512  // UndefValue means this is a load of a kernel input.  These are uniform.
513  // Sometimes LDS instructions have constant pointers
514  if (isa<UndefValue>(Ptr) || isa<Argument>(Ptr) || isa<Constant>(Ptr) ||
515      isa<GlobalValue>(Ptr))
516    return true;
517
518  const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
519  return I && I->getMetadata("amdgpu.uniform");
520}
521
522TargetLoweringBase::LegalizeTypeAction
523SITargetLowering::getPreferredVectorAction(EVT VT) const {
524  if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
525    return TypeSplitVector;
526
527  return TargetLoweringBase::getPreferredVectorAction(VT);
528}
529
530bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
531                                                         Type *Ty) const {
532  const SIInstrInfo *TII =
533      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
534  return TII->isInlineConstant(Imm);
535}
536
537SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
538                                         SDLoc SL, SDValue Chain,
539                                         unsigned Offset, bool Signed) const {
540  const DataLayout &DL = DAG.getDataLayout();
541  MachineFunction &MF = DAG.getMachineFunction();
542  const SIRegisterInfo *TRI =
543      static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
544  unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
545
546  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
547
548  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
549  MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
550  PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
551  SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
552                                       MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
553  SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
554                            DAG.getConstant(Offset, SL, PtrVT));
555  SDValue PtrOffset = DAG.getUNDEF(PtrVT);
556  MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
557
558  unsigned Align = DL.getABITypeAlignment(Ty);
559
560  ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
561  if (MemVT.isFloatingPoint())
562    ExtTy = ISD::EXTLOAD;
563
564  return DAG.getLoad(ISD::UNINDEXED, ExtTy,
565                     VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
566                     false, // isVolatile
567                     true, // isNonTemporal
568                     true, // isInvariant
569                     Align); // Alignment
570}
571
572SDValue SITargetLowering::LowerFormalArguments(
573    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
574    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
575    SmallVectorImpl<SDValue> &InVals) const {
576  const SIRegisterInfo *TRI =
577      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
578
579  MachineFunction &MF = DAG.getMachineFunction();
580  FunctionType *FType = MF.getFunction()->getFunctionType();
581  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
582  const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
583
584  if (Subtarget->isAmdHsaOS() && Info->getShaderType() != ShaderType::COMPUTE) {
585    const Function *Fn = MF.getFunction();
586    DiagnosticInfoUnsupported NoGraphicsHSA(*Fn, "non-compute shaders with HSA");
587    DAG.getContext()->diagnose(NoGraphicsHSA);
588    return SDValue();
589  }
590
591  // FIXME: We currently assume all calling conventions are kernels.
592
593  SmallVector<ISD::InputArg, 16> Splits;
594  BitVector Skipped(Ins.size());
595
596  for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
597    const ISD::InputArg &Arg = Ins[i];
598
599    // First check if it's a PS input addr
600    if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
601        !Arg.Flags.isByVal()) {
602
603      assert((PSInputNum <= 15) && "Too many PS inputs!");
604
605      if (!Arg.Used) {
606        // We can safely skip PS inputs
607        Skipped.set(i);
608        ++PSInputNum;
609        continue;
610      }
611
612      Info->PSInputAddr |= 1 << PSInputNum++;
613    }
614
615    // Second split vertices into their elements
616    if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
617      ISD::InputArg NewArg = Arg;
618      NewArg.Flags.setSplit();
619      NewArg.VT = Arg.VT.getVectorElementType();
620
621      // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
622      // three or five element vertex only needs three or five registers,
623      // NOT four or eight.
624      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
625      unsigned NumElements = ParamType->getVectorNumElements();
626
627      for (unsigned j = 0; j != NumElements; ++j) {
628        Splits.push_back(NewArg);
629        NewArg.PartOffset += NewArg.VT.getStoreSize();
630      }
631
632    } else if (Info->getShaderType() != ShaderType::COMPUTE) {
633      Splits.push_back(Arg);
634    }
635  }
636
637  SmallVector<CCValAssign, 16> ArgLocs;
638  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
639                 *DAG.getContext());
640
641  // At least one interpolation mode must be enabled or else the GPU will hang.
642  if (Info->getShaderType() == ShaderType::PIXEL &&
643      (Info->PSInputAddr & 0x7F) == 0) {
644    Info->PSInputAddr |= 1;
645    CCInfo.AllocateReg(AMDGPU::VGPR0);
646    CCInfo.AllocateReg(AMDGPU::VGPR1);
647  }
648
649  if (Info->getShaderType() == ShaderType::COMPUTE) {
650    getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
651                            Splits);
652  }
653
654  // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
655  if (Info->hasPrivateSegmentBuffer()) {
656    unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
657    MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
658    CCInfo.AllocateReg(PrivateSegmentBufferReg);
659  }
660
661  if (Info->hasDispatchPtr()) {
662    unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
663    MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
664    CCInfo.AllocateReg(DispatchPtrReg);
665  }
666
667  if (Info->hasKernargSegmentPtr()) {
668    unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
669    MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
670    CCInfo.AllocateReg(InputPtrReg);
671  }
672
673  AnalyzeFormalArguments(CCInfo, Splits);
674
675  SmallVector<SDValue, 16> Chains;
676
677  for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
678
679    const ISD::InputArg &Arg = Ins[i];
680    if (Skipped[i]) {
681      InVals.push_back(DAG.getUNDEF(Arg.VT));
682      continue;
683    }
684
685    CCValAssign &VA = ArgLocs[ArgIdx++];
686    MVT VT = VA.getLocVT();
687
688    if (VA.isMemLoc()) {
689      VT = Ins[i].VT;
690      EVT MemVT = Splits[i].VT;
691      const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
692                              VA.getLocMemOffset();
693      // The first 36 bytes of the input buffer contains information about
694      // thread group and global sizes.
695      SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, Chain,
696                                   Offset, Ins[i].Flags.isSExt());
697      Chains.push_back(Arg.getValue(1));
698
699      auto *ParamTy =
700        dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
701      if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
702          ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
703        // On SI local pointers are just offsets into LDS, so they are always
704        // less than 16-bits.  On CI and newer they could potentially be
705        // real pointers, so we can't guarantee their size.
706        Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
707                          DAG.getValueType(MVT::i16));
708      }
709
710      InVals.push_back(Arg);
711      Info->ABIArgOffset = Offset + MemVT.getStoreSize();
712      continue;
713    }
714    assert(VA.isRegLoc() && "Parameter must be in a register!");
715
716    unsigned Reg = VA.getLocReg();
717
718    if (VT == MVT::i64) {
719      // For now assume it is a pointer
720      Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
721                                     &AMDGPU::SReg_64RegClass);
722      Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
723      SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
724      InVals.push_back(Copy);
725      continue;
726    }
727
728    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
729
730    Reg = MF.addLiveIn(Reg, RC);
731    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
732
733    if (Arg.VT.isVector()) {
734
735      // Build a vector from the registers
736      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
737      unsigned NumElements = ParamType->getVectorNumElements();
738
739      SmallVector<SDValue, 4> Regs;
740      Regs.push_back(Val);
741      for (unsigned j = 1; j != NumElements; ++j) {
742        Reg = ArgLocs[ArgIdx++].getLocReg();
743        Reg = MF.addLiveIn(Reg, RC);
744
745        SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
746        Regs.push_back(Copy);
747      }
748
749      // Fill up the missing vector elements
750      NumElements = Arg.VT.getVectorNumElements() - NumElements;
751      Regs.append(NumElements, DAG.getUNDEF(VT));
752
753      InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
754      continue;
755    }
756
757    InVals.push_back(Val);
758  }
759
760  // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
761  // these from the dispatch pointer.
762
763  // Start adding system SGPRs.
764  if (Info->hasWorkGroupIDX()) {
765    unsigned Reg = Info->addWorkGroupIDX();
766    MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
767    CCInfo.AllocateReg(Reg);
768  } else
769    llvm_unreachable("work group id x is always enabled");
770
771  if (Info->hasWorkGroupIDY()) {
772    unsigned Reg = Info->addWorkGroupIDY();
773    MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
774    CCInfo.AllocateReg(Reg);
775  }
776
777  if (Info->hasWorkGroupIDZ()) {
778    unsigned Reg = Info->addWorkGroupIDZ();
779    MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
780    CCInfo.AllocateReg(Reg);
781  }
782
783  if (Info->hasWorkGroupInfo()) {
784    unsigned Reg = Info->addWorkGroupInfo();
785    MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
786    CCInfo.AllocateReg(Reg);
787  }
788
789  if (Info->hasPrivateSegmentWaveByteOffset()) {
790    // Scratch wave offset passed in system SGPR.
791    unsigned PrivateSegmentWaveByteOffsetReg
792      = Info->addPrivateSegmentWaveByteOffset();
793
794    MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
795    CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
796  }
797
798  // Now that we've figured out where the scratch register inputs are, see if
799  // should reserve the arguments and use them directly.
800
801  bool HasStackObjects = MF.getFrameInfo()->hasStackObjects();
802
803  if (ST.isAmdHsaOS()) {
804    // TODO: Assume we will spill without optimizations.
805    if (HasStackObjects) {
806      // If we have stack objects, we unquestionably need the private buffer
807      // resource. For the HSA ABI, this will be the first 4 user SGPR
808      // inputs. We can reserve those and use them directly.
809
810      unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
811        MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
812      Info->setScratchRSrcReg(PrivateSegmentBufferReg);
813
814      unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
815        MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
816      Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
817    } else {
818      unsigned ReservedBufferReg
819        = TRI->reservedPrivateSegmentBufferReg(MF);
820      unsigned ReservedOffsetReg
821        = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
822
823      // We tentatively reserve the last registers (skipping the last two
824      // which may contain VCC). After register allocation, we'll replace
825      // these with the ones immediately after those which were really
826      // allocated. In the prologue copies will be inserted from the argument
827      // to these reserved registers.
828      Info->setScratchRSrcReg(ReservedBufferReg);
829      Info->setScratchWaveOffsetReg(ReservedOffsetReg);
830    }
831  } else {
832    unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
833
834    // Without HSA, relocations are used for the scratch pointer and the
835    // buffer resource setup is always inserted in the prologue. Scratch wave
836    // offset is still in an input SGPR.
837    Info->setScratchRSrcReg(ReservedBufferReg);
838
839    if (HasStackObjects) {
840      unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
841        MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
842      Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
843    } else {
844      unsigned ReservedOffsetReg
845        = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
846      Info->setScratchWaveOffsetReg(ReservedOffsetReg);
847    }
848  }
849
850  if (Info->hasWorkItemIDX()) {
851    unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
852    MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
853    CCInfo.AllocateReg(Reg);
854  } else
855    llvm_unreachable("workitem id x should always be enabled");
856
857  if (Info->hasWorkItemIDY()) {
858    unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
859    MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
860    CCInfo.AllocateReg(Reg);
861  }
862
863  if (Info->hasWorkItemIDZ()) {
864    unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
865    MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
866    CCInfo.AllocateReg(Reg);
867  }
868
869  if (Chains.empty())
870    return Chain;
871
872  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
873}
874
875MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
876    MachineInstr * MI, MachineBasicBlock * BB) const {
877
878  switch (MI->getOpcode()) {
879  default:
880    return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
881  case AMDGPU::BRANCH:
882    return BB;
883  }
884  return BB;
885}
886
887bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
888  // This currently forces unfolding various combinations of fsub into fma with
889  // free fneg'd operands. As long as we have fast FMA (controlled by
890  // isFMAFasterThanFMulAndFAdd), we should perform these.
891
892  // When fma is quarter rate, for f64 where add / sub are at best half rate,
893  // most of these combines appear to be cycle neutral but save on instruction
894  // count / code size.
895  return true;
896}
897
898EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
899                                         EVT VT) const {
900  if (!VT.isVector()) {
901    return MVT::i1;
902  }
903  return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
904}
905
906MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
907  return MVT::i32;
908}
909
910// Answering this is somewhat tricky and depends on the specific device which
911// have different rates for fma or all f64 operations.
912//
913// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
914// regardless of which device (although the number of cycles differs between
915// devices), so it is always profitable for f64.
916//
917// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
918// only on full rate devices. Normally, we should prefer selecting v_mad_f32
919// which we can always do even without fused FP ops since it returns the same
920// result as the separate operations and since it is always full
921// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
922// however does not support denormals, so we do report fma as faster if we have
923// a fast fma device and require denormals.
924//
925bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
926  VT = VT.getScalarType();
927
928  if (!VT.isSimple())
929    return false;
930
931  switch (VT.getSimpleVT().SimpleTy) {
932  case MVT::f32:
933    // This is as fast on some subtargets. However, we always have full rate f32
934    // mad available which returns the same result as the separate operations
935    // which we should prefer over fma. We can't use this if we want to support
936    // denormals, so only report this in these cases.
937    return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
938  case MVT::f64:
939    return true;
940  default:
941    break;
942  }
943
944  return false;
945}
946
947//===----------------------------------------------------------------------===//
948// Custom DAG Lowering Operations
949//===----------------------------------------------------------------------===//
950
951SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
952  switch (Op.getOpcode()) {
953  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
954  case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
955  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
956  case ISD::LOAD: {
957    SDValue Result = LowerLOAD(Op, DAG);
958    assert((!Result.getNode() ||
959            Result.getNode()->getNumValues() == 2) &&
960           "Load should return a value and a chain");
961    return Result;
962  }
963
964  case ISD::FSIN:
965  case ISD::FCOS:
966    return LowerTrig(Op, DAG);
967  case ISD::SELECT: return LowerSELECT(Op, DAG);
968  case ISD::FDIV: return LowerFDIV(Op, DAG);
969  case ISD::STORE: return LowerSTORE(Op, DAG);
970  case ISD::GlobalAddress: {
971    MachineFunction &MF = DAG.getMachineFunction();
972    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
973    return LowerGlobalAddress(MFI, Op, DAG);
974  }
975  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
976  case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
977  }
978  return SDValue();
979}
980
981/// \brief Helper function for LowerBRCOND
982static SDNode *findUser(SDValue Value, unsigned Opcode) {
983
984  SDNode *Parent = Value.getNode();
985  for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
986       I != E; ++I) {
987
988    if (I.getUse().get() != Value)
989      continue;
990
991    if (I->getOpcode() == Opcode)
992      return *I;
993  }
994  return nullptr;
995}
996
997SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
998
999  SDLoc SL(Op);
1000  FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
1001  unsigned FrameIndex = FINode->getIndex();
1002
1003  // A FrameIndex node represents a 32-bit offset into scratch memory.  If
1004  // the high bit of a frame index offset were to be set, this would mean
1005  // that it represented an offset of ~2GB * 64 = ~128GB from the start of the
1006  // scratch buffer, with 64 being the number of threads per wave.
1007  //
1008  // If we know the machine uses less than 128GB of scratch, then we can
1009  // amrk the high bit of the FrameIndex node as known zero,
1010  // which is important, because it means in most situations we can
1011  // prove that values derived from FrameIndex nodes are non-negative.
1012  // This enables us to take advantage of more addressing modes when
1013  // accessing scratch buffers, since for scratch reads/writes, the register
1014  // offset must always be positive.
1015
1016  SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
1017  if (Subtarget->enableHugeScratchBuffer())
1018    return TFI;
1019
1020  return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI,
1021                    DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 31)));
1022}
1023
1024/// This transforms the control flow intrinsics to get the branch destination as
1025/// last parameter, also switches branch target with BR if the need arise
1026SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
1027                                      SelectionDAG &DAG) const {
1028
1029  SDLoc DL(BRCOND);
1030
1031  SDNode *Intr = BRCOND.getOperand(1).getNode();
1032  SDValue Target = BRCOND.getOperand(2);
1033  SDNode *BR = nullptr;
1034
1035  if (Intr->getOpcode() == ISD::SETCC) {
1036    // As long as we negate the condition everything is fine
1037    SDNode *SetCC = Intr;
1038    assert(SetCC->getConstantOperandVal(1) == 1);
1039    assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
1040           ISD::SETNE);
1041    Intr = SetCC->getOperand(0).getNode();
1042
1043  } else {
1044    // Get the target from BR if we don't negate the condition
1045    BR = findUser(BRCOND, ISD::BR);
1046    Target = BR->getOperand(1);
1047  }
1048
1049  assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
1050
1051  // Build the result and
1052  ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
1053
1054  // operands of the new intrinsic call
1055  SmallVector<SDValue, 4> Ops;
1056  Ops.push_back(BRCOND.getOperand(0));
1057  Ops.append(Intr->op_begin() + 1, Intr->op_end());
1058  Ops.push_back(Target);
1059
1060  // build the new intrinsic call
1061  SDNode *Result = DAG.getNode(
1062    Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
1063    DAG.getVTList(Res), Ops).getNode();
1064
1065  if (BR) {
1066    // Give the branch instruction our target
1067    SDValue Ops[] = {
1068      BR->getOperand(0),
1069      BRCOND.getOperand(2)
1070    };
1071    SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
1072    DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
1073    BR = NewBR.getNode();
1074  }
1075
1076  SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
1077
1078  // Copy the intrinsic results to registers
1079  for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
1080    SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
1081    if (!CopyToReg)
1082      continue;
1083
1084    Chain = DAG.getCopyToReg(
1085      Chain, DL,
1086      CopyToReg->getOperand(1),
1087      SDValue(Result, i - 1),
1088      SDValue());
1089
1090    DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
1091  }
1092
1093  // Remove the old intrinsic from the chain
1094  DAG.ReplaceAllUsesOfValueWith(
1095    SDValue(Intr, Intr->getNumValues() - 1),
1096    Intr->getOperand(0));
1097
1098  return Chain;
1099}
1100
1101SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
1102                                             SDValue Op,
1103                                             SelectionDAG &DAG) const {
1104  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
1105
1106  if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
1107    return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
1108
1109  SDLoc DL(GSD);
1110  const GlobalValue *GV = GSD->getGlobal();
1111  MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace());
1112
1113  SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
1114  return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT, GA);
1115}
1116
1117SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL,
1118                                   SDValue V) const {
1119  // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
1120  // so we will end up with redundant moves to m0.
1121  //
1122  // We can't use S_MOV_B32, because there is no way to specify m0 as the
1123  // destination register.
1124  //
1125  // We have to use them both.  Machine cse will combine all the S_MOV_B32
1126  // instructions and the register coalescer eliminate the extra copies.
1127  SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V);
1128  return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32),
1129                          SDValue(M0, 0), SDValue()); // Glue
1130                                                      // A Null SDValue creates
1131                                                      // a glue result.
1132}
1133
1134SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
1135                                                 SDValue Op,
1136                                                 MVT VT,
1137                                                 unsigned Offset) const {
1138  SDLoc SL(Op);
1139  SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
1140                                 DAG.getEntryNode(), Offset, false);
1141  // The local size values will have the hi 16-bits as zero.
1142  return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
1143                     DAG.getValueType(VT));
1144}
1145
1146SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
1147                                                  SelectionDAG &DAG) const {
1148  MachineFunction &MF = DAG.getMachineFunction();
1149  auto MFI = MF.getInfo<SIMachineFunctionInfo>();
1150  const SIRegisterInfo *TRI =
1151      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
1152
1153  EVT VT = Op.getValueType();
1154  SDLoc DL(Op);
1155  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1156
1157  // TODO: Should this propagate fast-math-flags?
1158
1159  switch (IntrinsicID) {
1160  case Intrinsic::amdgcn_dispatch_ptr:
1161    return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
1162      TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_PTR), VT);
1163
1164  case Intrinsic::r600_read_ngroups_x:
1165    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1166                          SI::KernelInputOffsets::NGROUPS_X, false);
1167  case Intrinsic::r600_read_ngroups_y:
1168    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1169                          SI::KernelInputOffsets::NGROUPS_Y, false);
1170  case Intrinsic::r600_read_ngroups_z:
1171    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1172                          SI::KernelInputOffsets::NGROUPS_Z, false);
1173  case Intrinsic::r600_read_global_size_x:
1174    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1175                          SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
1176  case Intrinsic::r600_read_global_size_y:
1177    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1178                          SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
1179  case Intrinsic::r600_read_global_size_z:
1180    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1181                          SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
1182  case Intrinsic::r600_read_local_size_x:
1183    return lowerImplicitZextParam(DAG, Op, MVT::i16,
1184                                  SI::KernelInputOffsets::LOCAL_SIZE_X);
1185  case Intrinsic::r600_read_local_size_y:
1186    return lowerImplicitZextParam(DAG, Op, MVT::i16,
1187                                  SI::KernelInputOffsets::LOCAL_SIZE_Y);
1188  case Intrinsic::r600_read_local_size_z:
1189    return lowerImplicitZextParam(DAG, Op, MVT::i16,
1190                                  SI::KernelInputOffsets::LOCAL_SIZE_Z);
1191  case Intrinsic::AMDGPU_read_workdim:
1192    // Really only 2 bits.
1193    return lowerImplicitZextParam(DAG, Op, MVT::i8,
1194                                  getImplicitParameterOffset(MFI, GRID_DIM));
1195  case Intrinsic::r600_read_tgid_x:
1196    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1197      TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
1198  case Intrinsic::r600_read_tgid_y:
1199    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1200      TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
1201  case Intrinsic::r600_read_tgid_z:
1202    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1203      TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
1204  case Intrinsic::r600_read_tidig_x:
1205    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1206      TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
1207  case Intrinsic::r600_read_tidig_y:
1208    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1209      TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
1210  case Intrinsic::r600_read_tidig_z:
1211    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1212      TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
1213  case AMDGPUIntrinsic::SI_load_const: {
1214    SDValue Ops[] = {
1215      Op.getOperand(1),
1216      Op.getOperand(2)
1217    };
1218
1219    MachineMemOperand *MMO = MF.getMachineMemOperand(
1220      MachinePointerInfo(),
1221      MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
1222      VT.getStoreSize(), 4);
1223    return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
1224                                   Op->getVTList(), Ops, VT, MMO);
1225  }
1226  case AMDGPUIntrinsic::SI_sample:
1227    return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
1228  case AMDGPUIntrinsic::SI_sampleb:
1229    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
1230  case AMDGPUIntrinsic::SI_sampled:
1231    return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
1232  case AMDGPUIntrinsic::SI_samplel:
1233    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
1234  case AMDGPUIntrinsic::SI_vs_load_input:
1235    return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
1236                       Op.getOperand(1),
1237                       Op.getOperand(2),
1238                       Op.getOperand(3));
1239
1240  case AMDGPUIntrinsic::AMDGPU_fract:
1241  case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
1242    return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
1243                       DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));
1244  case AMDGPUIntrinsic::SI_fs_constant: {
1245    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1246    SDValue Glue = M0.getValue(1);
1247    return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
1248                       DAG.getConstant(2, DL, MVT::i32), // P0
1249                       Op.getOperand(1), Op.getOperand(2), Glue);
1250  }
1251  case AMDGPUIntrinsic::SI_packf16:
1252    if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
1253      return DAG.getUNDEF(MVT::i32);
1254    return Op;
1255  case AMDGPUIntrinsic::SI_fs_interp: {
1256    SDValue IJ = Op.getOperand(4);
1257    SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1258                            DAG.getConstant(0, DL, MVT::i32));
1259    SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1260                            DAG.getConstant(1, DL, MVT::i32));
1261    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1262    SDValue Glue = M0.getValue(1);
1263    SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
1264                             DAG.getVTList(MVT::f32, MVT::Glue),
1265                             I, Op.getOperand(1), Op.getOperand(2), Glue);
1266    Glue = SDValue(P1.getNode(), 1);
1267    return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
1268                             Op.getOperand(1), Op.getOperand(2), Glue);
1269  }
1270  case Intrinsic::amdgcn_interp_p1: {
1271    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
1272    SDValue Glue = M0.getValue(1);
1273    return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
1274                       Op.getOperand(2), Op.getOperand(3), Glue);
1275  }
1276  case Intrinsic::amdgcn_interp_p2: {
1277    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
1278    SDValue Glue = SDValue(M0.getNode(), 1);
1279    return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
1280                       Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
1281                       Glue);
1282  }
1283  default:
1284    return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1285  }
1286}
1287
1288SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
1289                                              SelectionDAG &DAG) const {
1290  MachineFunction &MF = DAG.getMachineFunction();
1291  SDLoc DL(Op);
1292  SDValue Chain = Op.getOperand(0);
1293  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1294
1295  switch (IntrinsicID) {
1296  case AMDGPUIntrinsic::SI_sendmsg: {
1297    Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
1298    SDValue Glue = Chain.getValue(1);
1299    return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
1300                       Op.getOperand(2), Glue);
1301  }
1302  case AMDGPUIntrinsic::SI_tbuffer_store: {
1303    SDValue Ops[] = {
1304      Chain,
1305      Op.getOperand(2),
1306      Op.getOperand(3),
1307      Op.getOperand(4),
1308      Op.getOperand(5),
1309      Op.getOperand(6),
1310      Op.getOperand(7),
1311      Op.getOperand(8),
1312      Op.getOperand(9),
1313      Op.getOperand(10),
1314      Op.getOperand(11),
1315      Op.getOperand(12),
1316      Op.getOperand(13),
1317      Op.getOperand(14)
1318    };
1319
1320    EVT VT = Op.getOperand(3).getValueType();
1321
1322    MachineMemOperand *MMO = MF.getMachineMemOperand(
1323      MachinePointerInfo(),
1324      MachineMemOperand::MOStore,
1325      VT.getStoreSize(), 4);
1326    return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
1327                                   Op->getVTList(), Ops, VT, MMO);
1328  }
1329  default:
1330    return SDValue();
1331  }
1332}
1333
1334SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1335  SDLoc DL(Op);
1336  LoadSDNode *Load = cast<LoadSDNode>(Op);
1337
1338  if (Op.getValueType().isVector()) {
1339    assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
1340           "Custom lowering for non-i32 vectors hasn't been implemented.");
1341    unsigned NumElements = Op.getValueType().getVectorNumElements();
1342    assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
1343
1344    switch (Load->getAddressSpace()) {
1345      default: break;
1346      case AMDGPUAS::CONSTANT_ADDRESS:
1347      if (isMemOpUniform(Load))
1348        break;
1349        // Non-uniform loads will be selected to MUBUF instructions, so they
1350        // have the same legalization requires ments as global and private
1351        // loads.
1352        //
1353        // Fall-through
1354      case AMDGPUAS::GLOBAL_ADDRESS:
1355      case AMDGPUAS::PRIVATE_ADDRESS:
1356        if (NumElements >= 8)
1357          return SplitVectorLoad(Op, DAG);
1358
1359        // v4 loads are supported for private and global memory.
1360        if (NumElements <= 4)
1361          break;
1362        // fall-through
1363      case AMDGPUAS::LOCAL_ADDRESS:
1364        // If properly aligned, if we split we might be able to use ds_read_b64.
1365        return SplitVectorLoad(Op, DAG);
1366    }
1367  }
1368
1369  return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
1370}
1371
1372SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
1373                                               const SDValue &Op,
1374                                               SelectionDAG &DAG) const {
1375  return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
1376                     Op.getOperand(2),
1377                     Op.getOperand(3),
1378                     Op.getOperand(4));
1379}
1380
1381SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1382  if (Op.getValueType() != MVT::i64)
1383    return SDValue();
1384
1385  SDLoc DL(Op);
1386  SDValue Cond = Op.getOperand(0);
1387
1388  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
1389  SDValue One = DAG.getConstant(1, DL, MVT::i32);
1390
1391  SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
1392  SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
1393
1394  SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
1395  SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
1396
1397  SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
1398
1399  SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
1400  SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
1401
1402  SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
1403
1404  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
1405  return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
1406}
1407
1408// Catch division cases where we can use shortcuts with rcp and rsq
1409// instructions.
1410SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
1411  SDLoc SL(Op);
1412  SDValue LHS = Op.getOperand(0);
1413  SDValue RHS = Op.getOperand(1);
1414  EVT VT = Op.getValueType();
1415  bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
1416
1417  if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
1418    if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
1419        CLHS->isExactlyValue(1.0)) {
1420      // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
1421      // the CI documentation has a worst case error of 1 ulp.
1422      // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
1423      // use it as long as we aren't trying to use denormals.
1424
1425      // 1.0 / sqrt(x) -> rsq(x)
1426      //
1427      // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
1428      // error seems really high at 2^29 ULP.
1429      if (RHS.getOpcode() == ISD::FSQRT)
1430        return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
1431
1432      // 1.0 / x -> rcp(x)
1433      return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1434    }
1435  }
1436
1437  if (Unsafe) {
1438    // Turn into multiply by the reciprocal.
1439    // x / y -> x * (1.0 / y)
1440    SDNodeFlags Flags;
1441    Flags.setUnsafeAlgebra(true);
1442    SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1443    return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
1444  }
1445
1446  return SDValue();
1447}
1448
1449SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
1450  SDValue FastLowered = LowerFastFDIV(Op, DAG);
1451  if (FastLowered.getNode())
1452    return FastLowered;
1453
1454  // This uses v_rcp_f32 which does not handle denormals. Let this hit a
1455  // selection error for now rather than do something incorrect.
1456  if (Subtarget->hasFP32Denormals())
1457    return SDValue();
1458
1459  SDLoc SL(Op);
1460  SDValue LHS = Op.getOperand(0);
1461  SDValue RHS = Op.getOperand(1);
1462
1463  SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
1464
1465  const APFloat K0Val(BitsToFloat(0x6f800000));
1466  const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
1467
1468  const APFloat K1Val(BitsToFloat(0x2f800000));
1469  const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
1470
1471  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1472
1473  EVT SetCCVT =
1474      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1475
1476  SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
1477
1478  SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
1479
1480  // TODO: Should this propagate fast-math-flags?
1481
1482  r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
1483
1484  SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
1485
1486  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
1487
1488  return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
1489}
1490
1491SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
1492  if (DAG.getTarget().Options.UnsafeFPMath)
1493    return LowerFastFDIV(Op, DAG);
1494
1495  SDLoc SL(Op);
1496  SDValue X = Op.getOperand(0);
1497  SDValue Y = Op.getOperand(1);
1498
1499  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1500
1501  SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
1502
1503  SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
1504
1505  SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
1506
1507  SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
1508
1509  SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
1510
1511  SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
1512
1513  SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
1514
1515  SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
1516
1517  SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
1518  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
1519
1520  SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
1521                             NegDivScale0, Mul, DivScale1);
1522
1523  SDValue Scale;
1524
1525  if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1526    // Workaround a hardware bug on SI where the condition output from div_scale
1527    // is not usable.
1528
1529    const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
1530
1531    // Figure out if the scale to use for div_fmas.
1532    SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1533    SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
1534    SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
1535    SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
1536
1537    SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
1538    SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
1539
1540    SDValue Scale0Hi
1541      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
1542    SDValue Scale1Hi
1543      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
1544
1545    SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
1546    SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
1547    Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
1548  } else {
1549    Scale = DivScale1.getValue(1);
1550  }
1551
1552  SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
1553                             Fma4, Fma3, Mul, Scale);
1554
1555  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
1556}
1557
1558SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
1559  EVT VT = Op.getValueType();
1560
1561  if (VT == MVT::f32)
1562    return LowerFDIV32(Op, DAG);
1563
1564  if (VT == MVT::f64)
1565    return LowerFDIV64(Op, DAG);
1566
1567  llvm_unreachable("Unexpected type for fdiv");
1568}
1569
1570SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1571  SDLoc DL(Op);
1572  StoreSDNode *Store = cast<StoreSDNode>(Op);
1573  EVT VT = Store->getMemoryVT();
1574
1575  // These stores are legal.
1576  if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1577    if (VT.isVector() && VT.getVectorNumElements() > 4)
1578      return ScalarizeVectorStore(Op, DAG);
1579    return SDValue();
1580  }
1581
1582  SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
1583  if (Ret.getNode())
1584    return Ret;
1585
1586  if (VT.isVector() && VT.getVectorNumElements() >= 8)
1587      return SplitVectorStore(Op, DAG);
1588
1589  if (VT == MVT::i1)
1590    return DAG.getTruncStore(Store->getChain(), DL,
1591                        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
1592                        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
1593
1594  return SDValue();
1595}
1596
1597SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
1598  SDLoc DL(Op);
1599  EVT VT = Op.getValueType();
1600  SDValue Arg = Op.getOperand(0);
1601  // TODO: Should this propagate fast-math-flags?
1602  SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
1603                                  DAG.getNode(ISD::FMUL, DL, VT, Arg,
1604                                              DAG.getConstantFP(0.5/M_PI, DL,
1605                                                                VT)));
1606
1607  switch (Op.getOpcode()) {
1608  case ISD::FCOS:
1609    return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
1610  case ISD::FSIN:
1611    return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
1612  default:
1613    llvm_unreachable("Wrong trig opcode");
1614  }
1615}
1616
1617//===----------------------------------------------------------------------===//
1618// Custom DAG optimizations
1619//===----------------------------------------------------------------------===//
1620
1621SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
1622                                                     DAGCombinerInfo &DCI) const {
1623  EVT VT = N->getValueType(0);
1624  EVT ScalarVT = VT.getScalarType();
1625  if (ScalarVT != MVT::f32)
1626    return SDValue();
1627
1628  SelectionDAG &DAG = DCI.DAG;
1629  SDLoc DL(N);
1630
1631  SDValue Src = N->getOperand(0);
1632  EVT SrcVT = Src.getValueType();
1633
1634  // TODO: We could try to match extracting the higher bytes, which would be
1635  // easier if i8 vectors weren't promoted to i32 vectors, particularly after
1636  // types are legalized. v4i8 -> v4f32 is probably the only case to worry
1637  // about in practice.
1638  if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
1639    if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
1640      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
1641      DCI.AddToWorklist(Cvt.getNode());
1642      return Cvt;
1643    }
1644  }
1645
1646  // We are primarily trying to catch operations on illegal vector types
1647  // before they are expanded.
1648  // For scalars, we can use the more flexible method of checking masked bits
1649  // after legalization.
1650  if (!DCI.isBeforeLegalize() ||
1651      !SrcVT.isVector() ||
1652      SrcVT.getVectorElementType() != MVT::i8) {
1653    return SDValue();
1654  }
1655
1656  assert(DCI.isBeforeLegalize() && "Unexpected legal type");
1657
1658  // Weird sized vectors are a pain to handle, but we know 3 is really the same
1659  // size as 4.
1660  unsigned NElts = SrcVT.getVectorNumElements();
1661  if (!SrcVT.isSimple() && NElts != 3)
1662    return SDValue();
1663
1664  // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
1665  // prevent a mess from expanding to v4i32 and repacking.
1666  if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
1667    EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
1668    EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
1669    EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
1670    LoadSDNode *Load = cast<LoadSDNode>(Src);
1671
1672    unsigned AS = Load->getAddressSpace();
1673    unsigned Align = Load->getAlignment();
1674    Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
1675    unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
1676
1677    // Don't try to replace the load if we have to expand it due to alignment
1678    // problems. Otherwise we will end up scalarizing the load, and trying to
1679    // repack into the vector for no real reason.
1680    if (Align < ABIAlignment &&
1681        !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
1682      return SDValue();
1683    }
1684
1685    SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
1686                                     Load->getChain(),
1687                                     Load->getBasePtr(),
1688                                     LoadVT,
1689                                     Load->getMemOperand());
1690
1691    // Make sure successors of the original load stay after it by updating
1692    // them to use the new Chain.
1693    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
1694
1695    SmallVector<SDValue, 4> Elts;
1696    if (RegVT.isVector())
1697      DAG.ExtractVectorElements(NewLoad, Elts);
1698    else
1699      Elts.push_back(NewLoad);
1700
1701    SmallVector<SDValue, 4> Ops;
1702
1703    unsigned EltIdx = 0;
1704    for (SDValue Elt : Elts) {
1705      unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
1706      for (unsigned I = 0; I < ComponentsInElt; ++I) {
1707        unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
1708        SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
1709        DCI.AddToWorklist(Cvt.getNode());
1710        Ops.push_back(Cvt);
1711      }
1712
1713      ++EltIdx;
1714    }
1715
1716    assert(Ops.size() == NElts);
1717
1718    return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
1719  }
1720
1721  return SDValue();
1722}
1723
1724/// \brief Return true if the given offset Size in bytes can be folded into
1725/// the immediate offsets of a memory instruction for the given address space.
1726static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
1727                          const AMDGPUSubtarget &STI) {
1728  switch (AS) {
1729  case AMDGPUAS::GLOBAL_ADDRESS: {
1730    // MUBUF instructions a 12-bit offset in bytes.
1731    return isUInt<12>(OffsetSize);
1732  }
1733  case AMDGPUAS::CONSTANT_ADDRESS: {
1734    // SMRD instructions have an 8-bit offset in dwords on SI and
1735    // a 20-bit offset in bytes on VI.
1736    if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1737      return isUInt<20>(OffsetSize);
1738    else
1739      return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
1740  }
1741  case AMDGPUAS::LOCAL_ADDRESS:
1742  case AMDGPUAS::REGION_ADDRESS: {
1743    // The single offset versions have a 16-bit offset in bytes.
1744    return isUInt<16>(OffsetSize);
1745  }
1746  case AMDGPUAS::PRIVATE_ADDRESS:
1747  // Indirect register addressing does not use any offsets.
1748  default:
1749    return 0;
1750  }
1751}
1752
1753// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
1754
1755// This is a variant of
1756// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
1757//
1758// The normal DAG combiner will do this, but only if the add has one use since
1759// that would increase the number of instructions.
1760//
1761// This prevents us from seeing a constant offset that can be folded into a
1762// memory instruction's addressing mode. If we know the resulting add offset of
1763// a pointer can be folded into an addressing offset, we can replace the pointer
1764// operand with the add of new constant offset. This eliminates one of the uses,
1765// and may allow the remaining use to also be simplified.
1766//
1767SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
1768                                               unsigned AddrSpace,
1769                                               DAGCombinerInfo &DCI) const {
1770  SDValue N0 = N->getOperand(0);
1771  SDValue N1 = N->getOperand(1);
1772
1773  if (N0.getOpcode() != ISD::ADD)
1774    return SDValue();
1775
1776  const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
1777  if (!CN1)
1778    return SDValue();
1779
1780  const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1781  if (!CAdd)
1782    return SDValue();
1783
1784  // If the resulting offset is too large, we can't fold it into the addressing
1785  // mode offset.
1786  APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
1787  if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
1788    return SDValue();
1789
1790  SelectionDAG &DAG = DCI.DAG;
1791  SDLoc SL(N);
1792  EVT VT = N->getValueType(0);
1793
1794  SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
1795  SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
1796
1797  return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
1798}
1799
1800SDValue SITargetLowering::performAndCombine(SDNode *N,
1801                                            DAGCombinerInfo &DCI) const {
1802  if (DCI.isBeforeLegalize())
1803    return SDValue();
1804
1805  SelectionDAG &DAG = DCI.DAG;
1806
1807  // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
1808  // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
1809  SDValue LHS = N->getOperand(0);
1810  SDValue RHS = N->getOperand(1);
1811
1812  if (LHS.getOpcode() == ISD::SETCC &&
1813      RHS.getOpcode() == ISD::SETCC) {
1814    ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
1815    ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
1816
1817    SDValue X = LHS.getOperand(0);
1818    SDValue Y = RHS.getOperand(0);
1819    if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
1820      return SDValue();
1821
1822    if (LCC == ISD::SETO) {
1823      if (X != LHS.getOperand(1))
1824        return SDValue();
1825
1826      if (RCC == ISD::SETUNE) {
1827        const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
1828        if (!C1 || !C1->isInfinity() || C1->isNegative())
1829          return SDValue();
1830
1831        const uint32_t Mask = SIInstrFlags::N_NORMAL |
1832                              SIInstrFlags::N_SUBNORMAL |
1833                              SIInstrFlags::N_ZERO |
1834                              SIInstrFlags::P_ZERO |
1835                              SIInstrFlags::P_SUBNORMAL |
1836                              SIInstrFlags::P_NORMAL;
1837
1838        static_assert(((~(SIInstrFlags::S_NAN |
1839                          SIInstrFlags::Q_NAN |
1840                          SIInstrFlags::N_INFINITY |
1841                          SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
1842                      "mask not equal");
1843
1844        SDLoc DL(N);
1845        return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
1846                           X, DAG.getConstant(Mask, DL, MVT::i32));
1847      }
1848    }
1849  }
1850
1851  return SDValue();
1852}
1853
1854SDValue SITargetLowering::performOrCombine(SDNode *N,
1855                                           DAGCombinerInfo &DCI) const {
1856  SelectionDAG &DAG = DCI.DAG;
1857  SDValue LHS = N->getOperand(0);
1858  SDValue RHS = N->getOperand(1);
1859
1860  // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
1861  if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
1862      RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
1863    SDValue Src = LHS.getOperand(0);
1864    if (Src != RHS.getOperand(0))
1865      return SDValue();
1866
1867    const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
1868    const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
1869    if (!CLHS || !CRHS)
1870      return SDValue();
1871
1872    // Only 10 bits are used.
1873    static const uint32_t MaxMask = 0x3ff;
1874
1875    uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
1876    SDLoc DL(N);
1877    return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
1878                       Src, DAG.getConstant(NewMask, DL, MVT::i32));
1879  }
1880
1881  return SDValue();
1882}
1883
1884SDValue SITargetLowering::performClassCombine(SDNode *N,
1885                                              DAGCombinerInfo &DCI) const {
1886  SelectionDAG &DAG = DCI.DAG;
1887  SDValue Mask = N->getOperand(1);
1888
1889  // fp_class x, 0 -> false
1890  if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
1891    if (CMask->isNullValue())
1892      return DAG.getConstant(0, SDLoc(N), MVT::i1);
1893  }
1894
1895  return SDValue();
1896}
1897
1898static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
1899  switch (Opc) {
1900  case ISD::FMAXNUM:
1901    return AMDGPUISD::FMAX3;
1902  case ISD::SMAX:
1903    return AMDGPUISD::SMAX3;
1904  case ISD::UMAX:
1905    return AMDGPUISD::UMAX3;
1906  case ISD::FMINNUM:
1907    return AMDGPUISD::FMIN3;
1908  case ISD::SMIN:
1909    return AMDGPUISD::SMIN3;
1910  case ISD::UMIN:
1911    return AMDGPUISD::UMIN3;
1912  default:
1913    llvm_unreachable("Not a min/max opcode");
1914  }
1915}
1916
1917SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
1918                                                 DAGCombinerInfo &DCI) const {
1919  SelectionDAG &DAG = DCI.DAG;
1920
1921  unsigned Opc = N->getOpcode();
1922  SDValue Op0 = N->getOperand(0);
1923  SDValue Op1 = N->getOperand(1);
1924
1925  // Only do this if the inner op has one use since this will just increases
1926  // register pressure for no benefit.
1927
1928  // max(max(a, b), c)
1929  if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
1930    SDLoc DL(N);
1931    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1932                       DL,
1933                       N->getValueType(0),
1934                       Op0.getOperand(0),
1935                       Op0.getOperand(1),
1936                       Op1);
1937  }
1938
1939  // max(a, max(b, c))
1940  if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
1941    SDLoc DL(N);
1942    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1943                       DL,
1944                       N->getValueType(0),
1945                       Op0,
1946                       Op1.getOperand(0),
1947                       Op1.getOperand(1));
1948  }
1949
1950  return SDValue();
1951}
1952
1953SDValue SITargetLowering::performSetCCCombine(SDNode *N,
1954                                              DAGCombinerInfo &DCI) const {
1955  SelectionDAG &DAG = DCI.DAG;
1956  SDLoc SL(N);
1957
1958  SDValue LHS = N->getOperand(0);
1959  SDValue RHS = N->getOperand(1);
1960  EVT VT = LHS.getValueType();
1961
1962  if (VT != MVT::f32 && VT != MVT::f64)
1963    return SDValue();
1964
1965  // Match isinf pattern
1966  // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
1967  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1968  if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
1969    const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
1970    if (!CRHS)
1971      return SDValue();
1972
1973    const APFloat &APF = CRHS->getValueAPF();
1974    if (APF.isInfinity() && !APF.isNegative()) {
1975      unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
1976      return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
1977                         DAG.getConstant(Mask, SL, MVT::i32));
1978    }
1979  }
1980
1981  return SDValue();
1982}
1983
1984SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
1985                                            DAGCombinerInfo &DCI) const {
1986  SelectionDAG &DAG = DCI.DAG;
1987  SDLoc DL(N);
1988
1989  switch (N->getOpcode()) {
1990  default:
1991    return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1992  case ISD::SETCC:
1993    return performSetCCCombine(N, DCI);
1994  case ISD::FMAXNUM: // TODO: What about fmax_legacy?
1995  case ISD::FMINNUM:
1996  case ISD::SMAX:
1997  case ISD::SMIN:
1998  case ISD::UMAX:
1999  case ISD::UMIN: {
2000    if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
2001        N->getValueType(0) != MVT::f64 &&
2002        getTargetMachine().getOptLevel() > CodeGenOpt::None)
2003      return performMin3Max3Combine(N, DCI);
2004    break;
2005  }
2006
2007  case AMDGPUISD::CVT_F32_UBYTE0:
2008  case AMDGPUISD::CVT_F32_UBYTE1:
2009  case AMDGPUISD::CVT_F32_UBYTE2:
2010  case AMDGPUISD::CVT_F32_UBYTE3: {
2011    unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
2012
2013    SDValue Src = N->getOperand(0);
2014    APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
2015
2016    APInt KnownZero, KnownOne;
2017    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2018                                          !DCI.isBeforeLegalizeOps());
2019    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2020    if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
2021        TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
2022      DCI.CommitTargetLoweringOpt(TLO);
2023    }
2024
2025    break;
2026  }
2027
2028  case ISD::UINT_TO_FP: {
2029    return performUCharToFloatCombine(N, DCI);
2030
2031  case ISD::FADD: {
2032    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2033      break;
2034
2035    EVT VT = N->getValueType(0);
2036    if (VT != MVT::f32)
2037      break;
2038
2039    // Only do this if we are not trying to support denormals. v_mad_f32 does
2040    // not support denormals ever.
2041    if (Subtarget->hasFP32Denormals())
2042      break;
2043
2044    SDValue LHS = N->getOperand(0);
2045    SDValue RHS = N->getOperand(1);
2046
2047    // These should really be instruction patterns, but writing patterns with
2048    // source modiifiers is a pain.
2049
2050    // fadd (fadd (a, a), b) -> mad 2.0, a, b
2051    if (LHS.getOpcode() == ISD::FADD) {
2052      SDValue A = LHS.getOperand(0);
2053      if (A == LHS.getOperand(1)) {
2054        const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2055        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
2056      }
2057    }
2058
2059    // fadd (b, fadd (a, a)) -> mad 2.0, a, b
2060    if (RHS.getOpcode() == ISD::FADD) {
2061      SDValue A = RHS.getOperand(0);
2062      if (A == RHS.getOperand(1)) {
2063        const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2064        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
2065      }
2066    }
2067
2068    return SDValue();
2069  }
2070  case ISD::FSUB: {
2071    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2072      break;
2073
2074    EVT VT = N->getValueType(0);
2075
2076    // Try to get the fneg to fold into the source modifier. This undoes generic
2077    // DAG combines and folds them into the mad.
2078    //
2079    // Only do this if we are not trying to support denormals. v_mad_f32 does
2080    // not support denormals ever.
2081    if (VT == MVT::f32 &&
2082        !Subtarget->hasFP32Denormals()) {
2083      SDValue LHS = N->getOperand(0);
2084      SDValue RHS = N->getOperand(1);
2085      if (LHS.getOpcode() == ISD::FADD) {
2086        // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
2087
2088        SDValue A = LHS.getOperand(0);
2089        if (A == LHS.getOperand(1)) {
2090          const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2091          SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
2092
2093          return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
2094        }
2095      }
2096
2097      if (RHS.getOpcode() == ISD::FADD) {
2098        // (fsub c, (fadd a, a)) -> mad -2.0, a, c
2099
2100        SDValue A = RHS.getOperand(0);
2101        if (A == RHS.getOperand(1)) {
2102          const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
2103          return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
2104        }
2105      }
2106
2107      return SDValue();
2108    }
2109
2110    break;
2111  }
2112  }
2113  case ISD::LOAD:
2114  case ISD::STORE:
2115  case ISD::ATOMIC_LOAD:
2116  case ISD::ATOMIC_STORE:
2117  case ISD::ATOMIC_CMP_SWAP:
2118  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2119  case ISD::ATOMIC_SWAP:
2120  case ISD::ATOMIC_LOAD_ADD:
2121  case ISD::ATOMIC_LOAD_SUB:
2122  case ISD::ATOMIC_LOAD_AND:
2123  case ISD::ATOMIC_LOAD_OR:
2124  case ISD::ATOMIC_LOAD_XOR:
2125  case ISD::ATOMIC_LOAD_NAND:
2126  case ISD::ATOMIC_LOAD_MIN:
2127  case ISD::ATOMIC_LOAD_MAX:
2128  case ISD::ATOMIC_LOAD_UMIN:
2129  case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
2130    if (DCI.isBeforeLegalize())
2131      break;
2132
2133    MemSDNode *MemNode = cast<MemSDNode>(N);
2134    SDValue Ptr = MemNode->getBasePtr();
2135
2136    // TODO: We could also do this for multiplies.
2137    unsigned AS = MemNode->getAddressSpace();
2138    if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
2139      SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
2140      if (NewPtr) {
2141        SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
2142
2143        NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
2144        return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
2145      }
2146    }
2147    break;
2148  }
2149  case ISD::AND:
2150    return performAndCombine(N, DCI);
2151  case ISD::OR:
2152    return performOrCombine(N, DCI);
2153  case AMDGPUISD::FP_CLASS:
2154    return performClassCombine(N, DCI);
2155  }
2156  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2157}
2158
2159/// \brief Analyze the possible immediate value Op
2160///
2161/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
2162/// and the immediate value if it's a literal immediate
2163int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
2164
2165  const SIInstrInfo *TII =
2166      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2167
2168  if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
2169    if (TII->isInlineConstant(Node->getAPIntValue()))
2170      return 0;
2171
2172    uint64_t Val = Node->getZExtValue();
2173    return isUInt<32>(Val) ? Val : -1;
2174  }
2175
2176  if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
2177    if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
2178      return 0;
2179
2180    if (Node->getValueType(0) == MVT::f32)
2181      return FloatToBits(Node->getValueAPF().convertToFloat());
2182
2183    return -1;
2184  }
2185
2186  return -1;
2187}
2188
2189/// \brief Helper function for adjustWritemask
2190static unsigned SubIdx2Lane(unsigned Idx) {
2191  switch (Idx) {
2192  default: return 0;
2193  case AMDGPU::sub0: return 0;
2194  case AMDGPU::sub1: return 1;
2195  case AMDGPU::sub2: return 2;
2196  case AMDGPU::sub3: return 3;
2197  }
2198}
2199
2200/// \brief Adjust the writemask of MIMG instructions
2201void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
2202                                       SelectionDAG &DAG) const {
2203  SDNode *Users[4] = { };
2204  unsigned Lane = 0;
2205  unsigned OldDmask = Node->getConstantOperandVal(0);
2206  unsigned NewDmask = 0;
2207
2208  // Try to figure out the used register components
2209  for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
2210       I != E; ++I) {
2211
2212    // Abort if we can't understand the usage
2213    if (!I->isMachineOpcode() ||
2214        I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
2215      return;
2216
2217    // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
2218    // Note that subregs are packed, i.e. Lane==0 is the first bit set
2219    // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
2220    // set, etc.
2221    Lane = SubIdx2Lane(I->getConstantOperandVal(1));
2222
2223    // Set which texture component corresponds to the lane.
2224    unsigned Comp;
2225    for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
2226      assert(Dmask);
2227      Comp = countTrailingZeros(Dmask);
2228      Dmask &= ~(1 << Comp);
2229    }
2230
2231    // Abort if we have more than one user per component
2232    if (Users[Lane])
2233      return;
2234
2235    Users[Lane] = *I;
2236    NewDmask |= 1 << Comp;
2237  }
2238
2239  // Abort if there's no change
2240  if (NewDmask == OldDmask)
2241    return;
2242
2243  // Adjust the writemask in the node
2244  std::vector<SDValue> Ops;
2245  Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
2246  Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
2247  Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
2248
2249  // If we only got one lane, replace it with a copy
2250  // (if NewDmask has only one bit set...)
2251  if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
2252    SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
2253                                       MVT::i32);
2254    SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
2255                                      SDLoc(), Users[Lane]->getValueType(0),
2256                                      SDValue(Node, 0), RC);
2257    DAG.ReplaceAllUsesWith(Users[Lane], Copy);
2258    return;
2259  }
2260
2261  // Update the users of the node with the new indices
2262  for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
2263
2264    SDNode *User = Users[i];
2265    if (!User)
2266      continue;
2267
2268    SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
2269    DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
2270
2271    switch (Idx) {
2272    default: break;
2273    case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
2274    case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
2275    case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
2276    }
2277  }
2278}
2279
2280static bool isFrameIndexOp(SDValue Op) {
2281  if (Op.getOpcode() == ISD::AssertZext)
2282    Op = Op.getOperand(0);
2283
2284  return isa<FrameIndexSDNode>(Op);
2285}
2286
2287/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
2288/// with frame index operands.
2289/// LLVM assumes that inputs are to these instructions are registers.
2290void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
2291                                                     SelectionDAG &DAG) const {
2292
2293  SmallVector<SDValue, 8> Ops;
2294  for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
2295    if (!isFrameIndexOp(Node->getOperand(i))) {
2296      Ops.push_back(Node->getOperand(i));
2297      continue;
2298    }
2299
2300    SDLoc DL(Node);
2301    Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
2302                                     Node->getOperand(i).getValueType(),
2303                                     Node->getOperand(i)), 0));
2304  }
2305
2306  DAG.UpdateNodeOperands(Node, Ops);
2307}
2308
2309/// \brief Fold the instructions after selecting them.
2310SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
2311                                          SelectionDAG &DAG) const {
2312  const SIInstrInfo *TII =
2313      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2314
2315  if (TII->isMIMG(Node->getMachineOpcode()))
2316    adjustWritemask(Node, DAG);
2317
2318  if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
2319      Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
2320    legalizeTargetIndependentNode(Node, DAG);
2321    return Node;
2322  }
2323  return Node;
2324}
2325
2326/// \brief Assign the register class depending on the number of
2327/// bits set in the writemask
2328void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
2329                                                     SDNode *Node) const {
2330  const SIInstrInfo *TII =
2331      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2332
2333  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
2334
2335  if (TII->isVOP3(MI->getOpcode())) {
2336    // Make sure constant bus requirements are respected.
2337    TII->legalizeOperandsVOP3(MRI, MI);
2338    return;
2339  }
2340
2341  if (TII->isMIMG(*MI)) {
2342    unsigned VReg = MI->getOperand(0).getReg();
2343    unsigned Writemask = MI->getOperand(1).getImm();
2344    unsigned BitsSet = 0;
2345    for (unsigned i = 0; i < 4; ++i)
2346      BitsSet += Writemask & (1 << i) ? 1 : 0;
2347
2348    const TargetRegisterClass *RC;
2349    switch (BitsSet) {
2350    default: return;
2351    case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
2352    case 2:  RC = &AMDGPU::VReg_64RegClass; break;
2353    case 3:  RC = &AMDGPU::VReg_96RegClass; break;
2354    }
2355
2356    unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
2357    MI->setDesc(TII->get(NewOpcode));
2358    MRI.setRegClass(VReg, RC);
2359    return;
2360  }
2361
2362  // Replace unused atomics with the no return version.
2363  int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
2364  if (NoRetAtomicOp != -1) {
2365    if (!Node->hasAnyUseOfValue(0)) {
2366      MI->setDesc(TII->get(NoRetAtomicOp));
2367      MI->RemoveOperand(0);
2368    }
2369
2370    return;
2371  }
2372}
2373
2374static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
2375  SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
2376  return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
2377}
2378
2379MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
2380                                                SDLoc DL,
2381                                                SDValue Ptr) const {
2382  const SIInstrInfo *TII =
2383    static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2384
2385  // Build the half of the subregister with the constants before building the
2386  // full 128-bit register. If we are building multiple resource descriptors,
2387  // this will allow CSEing of the 2-component register.
2388  const SDValue Ops0[] = {
2389    DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
2390    buildSMovImm32(DAG, DL, 0),
2391    DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
2392    buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
2393    DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
2394  };
2395
2396  SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
2397                                                MVT::v2i32, Ops0), 0);
2398
2399  // Combine the constants and the pointer.
2400  const SDValue Ops1[] = {
2401    DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
2402    Ptr,
2403    DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
2404    SubRegHi,
2405    DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
2406  };
2407
2408  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
2409}
2410
2411/// \brief Return a resource descriptor with the 'Add TID' bit enabled
2412///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
2413///        of the resource descriptor) to create an offset, which is added to
2414///        the resource pointer.
2415MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
2416                                           SDLoc DL,
2417                                           SDValue Ptr,
2418                                           uint32_t RsrcDword1,
2419                                           uint64_t RsrcDword2And3) const {
2420  SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
2421  SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
2422  if (RsrcDword1) {
2423    PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
2424                                     DAG.getConstant(RsrcDword1, DL, MVT::i32)),
2425                    0);
2426  }
2427
2428  SDValue DataLo = buildSMovImm32(DAG, DL,
2429                                  RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
2430  SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
2431
2432  const SDValue Ops[] = {
2433    DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
2434    PtrLo,
2435    DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
2436    PtrHi,
2437    DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
2438    DataLo,
2439    DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
2440    DataHi,
2441    DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
2442  };
2443
2444  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2445}
2446
2447SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2448                                               const TargetRegisterClass *RC,
2449                                               unsigned Reg, EVT VT) const {
2450  SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
2451
2452  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
2453                            cast<RegisterSDNode>(VReg)->getReg(), VT);
2454}
2455
2456//===----------------------------------------------------------------------===//
2457//                         SI Inline Assembly Support
2458//===----------------------------------------------------------------------===//
2459
2460std::pair<unsigned, const TargetRegisterClass *>
2461SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2462                                               StringRef Constraint,
2463                                               MVT VT) const {
2464
2465  if (Constraint.size() == 1) {
2466    switch (Constraint[0]) {
2467    case 's':
2468    case 'r':
2469      switch (VT.getSizeInBits()) {
2470      default:
2471        return std::make_pair(0U, nullptr);
2472      case 32:
2473        return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
2474      case 64:
2475        return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
2476      case 128:
2477        return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
2478      case 256:
2479        return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
2480      }
2481
2482    case 'v':
2483      switch (VT.getSizeInBits()) {
2484      default:
2485        return std::make_pair(0U, nullptr);
2486      case 32:
2487        return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
2488      case 64:
2489        return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
2490      case 96:
2491        return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
2492      case 128:
2493        return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
2494      case 256:
2495        return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
2496      case 512:
2497        return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
2498      }
2499    }
2500  }
2501
2502  if (Constraint.size() > 1) {
2503    const TargetRegisterClass *RC = nullptr;
2504    if (Constraint[1] == 'v') {
2505      RC = &AMDGPU::VGPR_32RegClass;
2506    } else if (Constraint[1] == 's') {
2507      RC = &AMDGPU::SGPR_32RegClass;
2508    }
2509
2510    if (RC) {
2511      uint32_t Idx;
2512      bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
2513      if (!Failed && Idx < RC->getNumRegs())
2514        return std::make_pair(RC->getRegister(Idx), RC);
2515    }
2516  }
2517  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2518}
2519
2520SITargetLowering::ConstraintType
2521SITargetLowering::getConstraintType(StringRef Constraint) const {
2522  if (Constraint.size() == 1) {
2523    switch (Constraint[0]) {
2524    default: break;
2525    case 's':
2526    case 'v':
2527      return C_RegisterClass;
2528    }
2529  }
2530  return TargetLowering::getConstraintType(Constraint);
2531}
2532