SIISelLowering.cpp revision 6948897e478cbd66626159776a8017b3c18579b9
1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Custom DAG lowering for SI
12//
13//===----------------------------------------------------------------------===//
14
15#ifdef _MSC_VER
16// Provide M_PI.
17#define _USE_MATH_DEFINES
18#include <cmath>
19#endif
20
21#include "SIISelLowering.h"
22#include "AMDGPU.h"
23#include "AMDGPUIntrinsicInfo.h"
24#include "AMDGPUSubtarget.h"
25#include "SIInstrInfo.h"
26#include "SIMachineFunctionInfo.h"
27#include "SIRegisterInfo.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/IR/Function.h"
34#include "llvm/ADT/SmallString.h"
35
36using namespace llvm;
37
38SITargetLowering::SITargetLowering(TargetMachine &TM,
39                                   const AMDGPUSubtarget &STI)
40    : AMDGPUTargetLowering(TM, STI) {
41  addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
42  addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
43
44  addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
45  addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
46
47  addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
48  addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
49
50  addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
51  addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
52  addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
53
54  addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
55  addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
56
57  addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
58  addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
59
60  addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
61  addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
62
63  computeRegisterProperties(STI.getRegisterInfo());
64
65  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
66  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
67  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
68  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
69
70  setOperationAction(ISD::ADD, MVT::i32, Legal);
71  setOperationAction(ISD::ADDC, MVT::i32, Legal);
72  setOperationAction(ISD::ADDE, MVT::i32, Legal);
73  setOperationAction(ISD::SUBC, MVT::i32, Legal);
74  setOperationAction(ISD::SUBE, MVT::i32, Legal);
75
76  setOperationAction(ISD::FSIN, MVT::f32, Custom);
77  setOperationAction(ISD::FCOS, MVT::f32, Custom);
78
79  setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
80  setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
81
82  // We need to custom lower vector stores from local memory
83  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
84  setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
85  setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
86
87  setOperationAction(ISD::STORE, MVT::v8i32, Custom);
88  setOperationAction(ISD::STORE, MVT::v16i32, Custom);
89
90  setOperationAction(ISD::STORE, MVT::i1, Custom);
91  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
92
93  setOperationAction(ISD::SELECT, MVT::i64, Custom);
94  setOperationAction(ISD::SELECT, MVT::f64, Promote);
95  AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
96
97  setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
98  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
99  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
100  setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
101
102  setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
103  setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
104
105  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
106
107  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
108  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
109  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
110
111  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
112  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
113  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
114
115  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
116  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
117  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
118
119  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
120  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
121
122  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
123  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
124  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
125  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
126
127  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
128  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
129
130  for (MVT VT : MVT::integer_valuetypes()) {
131    if (VT == MVT::i64)
132      continue;
133
134    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
135    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
136    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
137    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
138
139    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
140    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
141    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
142    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
143
144    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
145    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
146    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
147    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
148  }
149
150  for (MVT VT : MVT::integer_vector_valuetypes()) {
151    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
152    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
153  }
154
155  for (MVT VT : MVT::fp_valuetypes())
156    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
157
158  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
159  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
160  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
161
162  setOperationAction(ISD::LOAD, MVT::i1, Custom);
163
164  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
165  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
166  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
167
168  // These should use UDIVREM, so set them to expand
169  setOperationAction(ISD::UDIV, MVT::i64, Expand);
170  setOperationAction(ISD::UREM, MVT::i64, Expand);
171
172  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
173  setOperationAction(ISD::SELECT, MVT::i1, Promote);
174
175  // We only support LOAD/STORE and vector manipulation ops for vectors
176  // with > 4 elements.
177  for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}) {
178    for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
179      switch(Op) {
180      case ISD::LOAD:
181      case ISD::STORE:
182      case ISD::BUILD_VECTOR:
183      case ISD::BITCAST:
184      case ISD::EXTRACT_VECTOR_ELT:
185      case ISD::INSERT_VECTOR_ELT:
186      case ISD::INSERT_SUBVECTOR:
187      case ISD::EXTRACT_SUBVECTOR:
188        break;
189      case ISD::CONCAT_VECTORS:
190        setOperationAction(Op, VT, Custom);
191        break;
192      default:
193        setOperationAction(Op, VT, Expand);
194        break;
195      }
196    }
197  }
198
199  if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
200    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
201    setOperationAction(ISD::FCEIL, MVT::f64, Legal);
202    setOperationAction(ISD::FRINT, MVT::f64, Legal);
203  }
204
205  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
206  setOperationAction(ISD::FDIV, MVT::f32, Custom);
207  setOperationAction(ISD::FDIV, MVT::f64, Custom);
208
209  setTargetDAGCombine(ISD::FADD);
210  setTargetDAGCombine(ISD::FSUB);
211  setTargetDAGCombine(ISD::FMINNUM);
212  setTargetDAGCombine(ISD::FMAXNUM);
213  setTargetDAGCombine(ISD::SMIN);
214  setTargetDAGCombine(ISD::SMAX);
215  setTargetDAGCombine(ISD::UMIN);
216  setTargetDAGCombine(ISD::UMAX);
217  setTargetDAGCombine(ISD::SELECT_CC);
218  setTargetDAGCombine(ISD::SETCC);
219  setTargetDAGCombine(ISD::AND);
220  setTargetDAGCombine(ISD::OR);
221  setTargetDAGCombine(ISD::UINT_TO_FP);
222
223  // All memory operations. Some folding on the pointer operand is done to help
224  // matching the constant offsets in the addressing modes.
225  setTargetDAGCombine(ISD::LOAD);
226  setTargetDAGCombine(ISD::STORE);
227  setTargetDAGCombine(ISD::ATOMIC_LOAD);
228  setTargetDAGCombine(ISD::ATOMIC_STORE);
229  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
230  setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
231  setTargetDAGCombine(ISD::ATOMIC_SWAP);
232  setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
233  setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
234  setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
235  setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
236  setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
237  setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
238  setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
239  setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
240  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
241  setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
242
243  setSchedulingPreference(Sched::RegPressure);
244}
245
246//===----------------------------------------------------------------------===//
247// TargetLowering queries
248//===----------------------------------------------------------------------===//
249
250bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
251                                          EVT) const {
252  // SI has some legal vector types, but no legal vector operations. Say no
253  // shuffles are legal in order to prefer scalarizing some vector operations.
254  return false;
255}
256
257bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
258                                             Type *Ty, unsigned AS) const {
259  // No global is ever allowed as a base.
260  if (AM.BaseGV)
261    return false;
262
263  switch (AS) {
264  case AMDGPUAS::GLOBAL_ADDRESS:
265  case AMDGPUAS::CONSTANT_ADDRESS: // XXX - Should we assume SMRD instructions?
266  case AMDGPUAS::PRIVATE_ADDRESS:
267  case AMDGPUAS::UNKNOWN_ADDRESS_SPACE: {
268    // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
269    // additionally can do r + r + i with addr64. 32-bit has more addressing
270    // mode options. Depending on the resource constant, it can also do
271    // (i64 r0) + (i32 r1) * (i14 i).
272    //
273    // SMRD instructions have an 8-bit, dword offset.
274    //
275    // Assume nonunifom access, since the address space isn't enough to know
276    // what instruction we will use, and since we don't know if this is a load
277    // or store and scalar stores are only available on VI.
278    //
279    // We also know if we are doing an extload, we can't do a scalar load.
280    //
281    // Private arrays end up using a scratch buffer most of the time, so also
282    // assume those use MUBUF instructions. Scratch loads / stores are currently
283    // implemented as mubuf instructions with offen bit set, so slightly
284    // different than the normal addr64.
285    if (!isUInt<12>(AM.BaseOffs))
286      return false;
287
288    // FIXME: Since we can split immediate into soffset and immediate offset,
289    // would it make sense to allow any immediate?
290
291    switch (AM.Scale) {
292    case 0: // r + i or just i, depending on HasBaseReg.
293      return true;
294    case 1:
295      return true; // We have r + r or r + i.
296    case 2:
297      if (AM.HasBaseReg) {
298        // Reject 2 * r + r.
299        return false;
300      }
301
302      // Allow 2 * r as r + r
303      // Or  2 * r + i is allowed as r + r + i.
304      return true;
305    default: // Don't allow n * r
306      return false;
307    }
308  }
309  case AMDGPUAS::LOCAL_ADDRESS:
310  case AMDGPUAS::REGION_ADDRESS: {
311    // Basic, single offset DS instructions allow a 16-bit unsigned immediate
312    // field.
313    // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
314    // an 8-bit dword offset but we don't know the alignment here.
315    if (!isUInt<16>(AM.BaseOffs))
316      return false;
317
318    if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
319      return true;
320
321    if (AM.Scale == 1 && AM.HasBaseReg)
322      return true;
323
324    return false;
325  }
326  case AMDGPUAS::FLAT_ADDRESS: {
327    // Flat instructions do not have offsets, and only have the register
328    // address.
329    return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
330  }
331  default:
332    llvm_unreachable("unhandled address space");
333  }
334}
335
336bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
337                                                      unsigned AddrSpace,
338                                                      unsigned Align,
339                                                      bool *IsFast) const {
340  if (IsFast)
341    *IsFast = false;
342
343  // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
344  // which isn't a simple VT.
345  if (!VT.isSimple() || VT == MVT::Other)
346    return false;
347
348  // TODO - CI+ supports unaligned memory accesses, but this requires driver
349  // support.
350
351  // XXX - The only mention I see of this in the ISA manual is for LDS direct
352  // reads the "byte address and must be dword aligned". Is it also true for the
353  // normal loads and stores?
354  if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
355    // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
356    // aligned, 8 byte access in a single operation using ds_read2/write2_b32
357    // with adjacent offsets.
358    return Align % 4 == 0;
359  }
360
361  // Smaller than dword value must be aligned.
362  // FIXME: This should be allowed on CI+
363  if (VT.bitsLT(MVT::i32))
364    return false;
365
366  // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
367  // byte-address are ignored, thus forcing Dword alignment.
368  // This applies to private, global, and constant memory.
369  if (IsFast)
370    *IsFast = true;
371
372  return VT.bitsGT(MVT::i32) && Align % 4 == 0;
373}
374
375EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
376                                          unsigned SrcAlign, bool IsMemset,
377                                          bool ZeroMemset,
378                                          bool MemcpyStrSrc,
379                                          MachineFunction &MF) const {
380  // FIXME: Should account for address space here.
381
382  // The default fallback uses the private pointer size as a guess for a type to
383  // use. Make sure we switch these to 64-bit accesses.
384
385  if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
386    return MVT::v4i32;
387
388  if (Size >= 8 && DstAlign >= 4)
389    return MVT::v2i32;
390
391  // Use the default.
392  return MVT::Other;
393}
394
395TargetLoweringBase::LegalizeTypeAction
396SITargetLowering::getPreferredVectorAction(EVT VT) const {
397  if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
398    return TypeSplitVector;
399
400  return TargetLoweringBase::getPreferredVectorAction(VT);
401}
402
403bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
404                                                         Type *Ty) const {
405  const SIInstrInfo *TII =
406      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
407  return TII->isInlineConstant(Imm);
408}
409
410static EVT toIntegerVT(EVT VT) {
411  if (VT.isVector())
412    return VT.changeVectorElementTypeToInteger();
413  return MVT::getIntegerVT(VT.getSizeInBits());
414}
415
416SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
417                                         SDLoc SL, SDValue Chain,
418                                         unsigned Offset, bool Signed) const {
419  const DataLayout *DL = getDataLayout();
420  MachineFunction &MF = DAG.getMachineFunction();
421  const SIRegisterInfo *TRI =
422      static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
423  unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
424
425  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
426
427  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
428  MVT PtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
429  PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
430  SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
431                                       MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
432  SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
433                            DAG.getConstant(Offset, SL, PtrVT));
434  SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
435  MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
436
437  unsigned Align = DL->getABITypeAlignment(Ty);
438
439  if (VT != MemVT && VT.isFloatingPoint()) {
440    // Do an integer load and convert.
441    // FIXME: This is mostly because load legalization after type legalization
442    // doesn't handle FP extloads.
443    assert(VT.getScalarType() == MVT::f32 &&
444           MemVT.getScalarType() == MVT::f16);
445
446    EVT IVT = toIntegerVT(VT);
447    EVT MemIVT = toIntegerVT(MemVT);
448    SDValue Load = DAG.getLoad(ISD::UNINDEXED, ISD::ZEXTLOAD,
449                               IVT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemIVT,
450                               false, // isVolatile
451                               true, // isNonTemporal
452                               true, // isInvariant
453                               Align); // Alignment
454    return DAG.getNode(ISD::FP16_TO_FP, SL, VT, Load);
455  }
456
457  ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
458  return DAG.getLoad(ISD::UNINDEXED, ExtTy,
459                     VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
460                     false, // isVolatile
461                     true, // isNonTemporal
462                     true, // isInvariant
463                     Align); // Alignment
464}
465
466SDValue SITargetLowering::LowerFormalArguments(
467    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
468    const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
469    SmallVectorImpl<SDValue> &InVals) const {
470  const SIRegisterInfo *TRI =
471      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
472
473  MachineFunction &MF = DAG.getMachineFunction();
474  FunctionType *FType = MF.getFunction()->getFunctionType();
475  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
476
477  assert(CallConv == CallingConv::C);
478
479  SmallVector<ISD::InputArg, 16> Splits;
480  BitVector Skipped(Ins.size());
481
482  for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
483    const ISD::InputArg &Arg = Ins[i];
484
485    // First check if it's a PS input addr
486    if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
487        !Arg.Flags.isByVal()) {
488
489      assert((PSInputNum <= 15) && "Too many PS inputs!");
490
491      if (!Arg.Used) {
492        // We can savely skip PS inputs
493        Skipped.set(i);
494        ++PSInputNum;
495        continue;
496      }
497
498      Info->PSInputAddr |= 1 << PSInputNum++;
499    }
500
501    // Second split vertices into their elements
502    if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
503      ISD::InputArg NewArg = Arg;
504      NewArg.Flags.setSplit();
505      NewArg.VT = Arg.VT.getVectorElementType();
506
507      // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
508      // three or five element vertex only needs three or five registers,
509      // NOT four or eigth.
510      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
511      unsigned NumElements = ParamType->getVectorNumElements();
512
513      for (unsigned j = 0; j != NumElements; ++j) {
514        Splits.push_back(NewArg);
515        NewArg.PartOffset += NewArg.VT.getStoreSize();
516      }
517
518    } else if (Info->getShaderType() != ShaderType::COMPUTE) {
519      Splits.push_back(Arg);
520    }
521  }
522
523  SmallVector<CCValAssign, 16> ArgLocs;
524  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
525                 *DAG.getContext());
526
527  // At least one interpolation mode must be enabled or else the GPU will hang.
528  if (Info->getShaderType() == ShaderType::PIXEL &&
529      (Info->PSInputAddr & 0x7F) == 0) {
530    Info->PSInputAddr |= 1;
531    CCInfo.AllocateReg(AMDGPU::VGPR0);
532    CCInfo.AllocateReg(AMDGPU::VGPR1);
533  }
534
535  // The pointer to the list of arguments is stored in SGPR0, SGPR1
536	// The pointer to the scratch buffer is stored in SGPR2, SGPR3
537  if (Info->getShaderType() == ShaderType::COMPUTE) {
538    if (Subtarget->isAmdHsaOS())
539      Info->NumUserSGPRs = 2;  // FIXME: Need to support scratch buffers.
540    else
541      Info->NumUserSGPRs = 4;
542
543    unsigned InputPtrReg =
544        TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
545    unsigned InputPtrRegLo =
546        TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0);
547    unsigned InputPtrRegHi =
548        TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1);
549
550    unsigned ScratchPtrReg =
551        TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
552    unsigned ScratchPtrRegLo =
553        TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0);
554    unsigned ScratchPtrRegHi =
555        TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1);
556
557    CCInfo.AllocateReg(InputPtrRegLo);
558    CCInfo.AllocateReg(InputPtrRegHi);
559    CCInfo.AllocateReg(ScratchPtrRegLo);
560    CCInfo.AllocateReg(ScratchPtrRegHi);
561    MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
562    MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass);
563  }
564
565  if (Info->getShaderType() == ShaderType::COMPUTE) {
566    getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
567                            Splits);
568  }
569
570  AnalyzeFormalArguments(CCInfo, Splits);
571
572  for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
573
574    const ISD::InputArg &Arg = Ins[i];
575    if (Skipped[i]) {
576      InVals.push_back(DAG.getUNDEF(Arg.VT));
577      continue;
578    }
579
580    CCValAssign &VA = ArgLocs[ArgIdx++];
581    MVT VT = VA.getLocVT();
582
583    if (VA.isMemLoc()) {
584      VT = Ins[i].VT;
585      EVT MemVT = Splits[i].VT;
586      const unsigned Offset = 36 + VA.getLocMemOffset();
587      // The first 36 bytes of the input buffer contains information about
588      // thread group and global sizes.
589      SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, DAG.getRoot(),
590                                   Offset, Ins[i].Flags.isSExt());
591
592      const PointerType *ParamTy =
593        dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
594      if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
595          ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
596        // On SI local pointers are just offsets into LDS, so they are always
597        // less than 16-bits.  On CI and newer they could potentially be
598        // real pointers, so we can't guarantee their size.
599        Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
600                          DAG.getValueType(MVT::i16));
601      }
602
603      InVals.push_back(Arg);
604      Info->ABIArgOffset = Offset + MemVT.getStoreSize();
605      continue;
606    }
607    assert(VA.isRegLoc() && "Parameter must be in a register!");
608
609    unsigned Reg = VA.getLocReg();
610
611    if (VT == MVT::i64) {
612      // For now assume it is a pointer
613      Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
614                                     &AMDGPU::SReg_64RegClass);
615      Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
616      InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
617      continue;
618    }
619
620    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
621
622    Reg = MF.addLiveIn(Reg, RC);
623    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
624
625    if (Arg.VT.isVector()) {
626
627      // Build a vector from the registers
628      Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
629      unsigned NumElements = ParamType->getVectorNumElements();
630
631      SmallVector<SDValue, 4> Regs;
632      Regs.push_back(Val);
633      for (unsigned j = 1; j != NumElements; ++j) {
634        Reg = ArgLocs[ArgIdx++].getLocReg();
635        Reg = MF.addLiveIn(Reg, RC);
636        Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
637      }
638
639      // Fill up the missing vector elements
640      NumElements = Arg.VT.getVectorNumElements() - NumElements;
641      Regs.append(NumElements, DAG.getUNDEF(VT));
642
643      InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
644      continue;
645    }
646
647    InVals.push_back(Val);
648  }
649
650  if (Info->getShaderType() != ShaderType::COMPUTE) {
651    unsigned ScratchIdx = CCInfo.getFirstUnallocated(ArrayRef<MCPhysReg>(
652        AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs()));
653    Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx);
654  }
655  return Chain;
656}
657
658MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
659    MachineInstr * MI, MachineBasicBlock * BB) const {
660
661  MachineBasicBlock::iterator I = *MI;
662  const SIInstrInfo *TII =
663      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
664
665  switch (MI->getOpcode()) {
666  default:
667    return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
668  case AMDGPU::BRANCH:
669    return BB;
670  case AMDGPU::SI_RegisterStorePseudo: {
671    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
672    unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
673    MachineInstrBuilder MIB =
674        BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
675                Reg);
676    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
677      MIB.addOperand(MI->getOperand(i));
678
679    MI->eraseFromParent();
680    break;
681  }
682  }
683  return BB;
684}
685
686bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
687  // This currently forces unfolding various combinations of fsub into fma with
688  // free fneg'd operands. As long as we have fast FMA (controlled by
689  // isFMAFasterThanFMulAndFAdd), we should perform these.
690
691  // When fma is quarter rate, for f64 where add / sub are at best half rate,
692  // most of these combines appear to be cycle neutral but save on instruction
693  // count / code size.
694  return true;
695}
696
697EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const {
698  if (!VT.isVector()) {
699    return MVT::i1;
700  }
701  return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
702}
703
704MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
705  return MVT::i32;
706}
707
708// Answering this is somewhat tricky and depends on the specific device which
709// have different rates for fma or all f64 operations.
710//
711// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
712// regardless of which device (although the number of cycles differs between
713// devices), so it is always profitable for f64.
714//
715// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
716// only on full rate devices. Normally, we should prefer selecting v_mad_f32
717// which we can always do even without fused FP ops since it returns the same
718// result as the separate operations and since it is always full
719// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
720// however does not support denormals, so we do report fma as faster if we have
721// a fast fma device and require denormals.
722//
723bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
724  VT = VT.getScalarType();
725
726  if (!VT.isSimple())
727    return false;
728
729  switch (VT.getSimpleVT().SimpleTy) {
730  case MVT::f32:
731    // This is as fast on some subtargets. However, we always have full rate f32
732    // mad available which returns the same result as the separate operations
733    // which we should prefer over fma. We can't use this if we want to support
734    // denormals, so only report this in these cases.
735    return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
736  case MVT::f64:
737    return true;
738  default:
739    break;
740  }
741
742  return false;
743}
744
745//===----------------------------------------------------------------------===//
746// Custom DAG Lowering Operations
747//===----------------------------------------------------------------------===//
748
749SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
750  switch (Op.getOpcode()) {
751  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
752  case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
753  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
754  case ISD::LOAD: {
755    SDValue Result = LowerLOAD(Op, DAG);
756    assert((!Result.getNode() ||
757            Result.getNode()->getNumValues() == 2) &&
758           "Load should return a value and a chain");
759    return Result;
760  }
761
762  case ISD::FSIN:
763  case ISD::FCOS:
764    return LowerTrig(Op, DAG);
765  case ISD::SELECT: return LowerSELECT(Op, DAG);
766  case ISD::FDIV: return LowerFDIV(Op, DAG);
767  case ISD::STORE: return LowerSTORE(Op, DAG);
768  case ISD::GlobalAddress: {
769    MachineFunction &MF = DAG.getMachineFunction();
770    SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
771    return LowerGlobalAddress(MFI, Op, DAG);
772  }
773  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
774  case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
775  }
776  return SDValue();
777}
778
779/// \brief Helper function for LowerBRCOND
780static SDNode *findUser(SDValue Value, unsigned Opcode) {
781
782  SDNode *Parent = Value.getNode();
783  for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
784       I != E; ++I) {
785
786    if (I.getUse().get() != Value)
787      continue;
788
789    if (I->getOpcode() == Opcode)
790      return *I;
791  }
792  return nullptr;
793}
794
795SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
796
797  FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
798  unsigned FrameIndex = FINode->getIndex();
799
800  return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
801}
802
803/// This transforms the control flow intrinsics to get the branch destination as
804/// last parameter, also switches branch target with BR if the need arise
805SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
806                                      SelectionDAG &DAG) const {
807
808  SDLoc DL(BRCOND);
809
810  SDNode *Intr = BRCOND.getOperand(1).getNode();
811  SDValue Target = BRCOND.getOperand(2);
812  SDNode *BR = nullptr;
813
814  if (Intr->getOpcode() == ISD::SETCC) {
815    // As long as we negate the condition everything is fine
816    SDNode *SetCC = Intr;
817    assert(SetCC->getConstantOperandVal(1) == 1);
818    assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
819           ISD::SETNE);
820    Intr = SetCC->getOperand(0).getNode();
821
822  } else {
823    // Get the target from BR if we don't negate the condition
824    BR = findUser(BRCOND, ISD::BR);
825    Target = BR->getOperand(1);
826  }
827
828  assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
829
830  // Build the result and
831  ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
832
833  // operands of the new intrinsic call
834  SmallVector<SDValue, 4> Ops;
835  Ops.push_back(BRCOND.getOperand(0));
836  Ops.append(Intr->op_begin() + 1, Intr->op_end());
837  Ops.push_back(Target);
838
839  // build the new intrinsic call
840  SDNode *Result = DAG.getNode(
841    Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
842    DAG.getVTList(Res), Ops).getNode();
843
844  if (BR) {
845    // Give the branch instruction our target
846    SDValue Ops[] = {
847      BR->getOperand(0),
848      BRCOND.getOperand(2)
849    };
850    SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
851    DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
852    BR = NewBR.getNode();
853  }
854
855  SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
856
857  // Copy the intrinsic results to registers
858  for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
859    SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
860    if (!CopyToReg)
861      continue;
862
863    Chain = DAG.getCopyToReg(
864      Chain, DL,
865      CopyToReg->getOperand(1),
866      SDValue(Result, i - 1),
867      SDValue());
868
869    DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
870  }
871
872  // Remove the old intrinsic from the chain
873  DAG.ReplaceAllUsesOfValueWith(
874    SDValue(Intr, Intr->getNumValues() - 1),
875    Intr->getOperand(0));
876
877  return Chain;
878}
879
880SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
881                                             SDValue Op,
882                                             SelectionDAG &DAG) const {
883  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
884
885  if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
886    return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
887
888  SDLoc DL(GSD);
889  const GlobalValue *GV = GSD->getGlobal();
890  MVT PtrVT = getPointerTy(GSD->getAddressSpace());
891
892  SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
893  SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
894
895  SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
896                              DAG.getConstant(0, DL, MVT::i32));
897  SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
898                              DAG.getConstant(1, DL, MVT::i32));
899
900  SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
901                           PtrLo, GA);
902  SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
903                           PtrHi, DAG.getConstant(0, DL, MVT::i32),
904                           SDValue(Lo.getNode(), 1));
905  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
906}
907
908SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL,
909                                   SDValue V) const {
910  // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
911  // so we will end up with redundant moves to m0.
912  //
913  // We can't use S_MOV_B32, because there is no way to specify m0 as the
914  // destination register.
915  //
916  // We have to use them both.  Machine cse will combine all the S_MOV_B32
917  // instructions and the register coalescer eliminate the extra copies.
918  SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V);
919  return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32),
920                          SDValue(M0, 0), SDValue()); // Glue
921                                                      // A Null SDValue creates
922                                                      // a glue result.
923}
924
925SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
926                                                  SelectionDAG &DAG) const {
927  MachineFunction &MF = DAG.getMachineFunction();
928  const SIRegisterInfo *TRI =
929      static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
930
931  EVT VT = Op.getValueType();
932  SDLoc DL(Op);
933  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
934
935  switch (IntrinsicID) {
936  case Intrinsic::r600_read_ngroups_x:
937    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
938                          SI::KernelInputOffsets::NGROUPS_X, false);
939  case Intrinsic::r600_read_ngroups_y:
940    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
941                          SI::KernelInputOffsets::NGROUPS_Y, false);
942  case Intrinsic::r600_read_ngroups_z:
943    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
944                          SI::KernelInputOffsets::NGROUPS_Z, false);
945  case Intrinsic::r600_read_global_size_x:
946    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
947                          SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
948  case Intrinsic::r600_read_global_size_y:
949    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
950                          SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
951  case Intrinsic::r600_read_global_size_z:
952    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
953                          SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
954  case Intrinsic::r600_read_local_size_x:
955    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
956                          SI::KernelInputOffsets::LOCAL_SIZE_X, false);
957  case Intrinsic::r600_read_local_size_y:
958    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
959                          SI::KernelInputOffsets::LOCAL_SIZE_Y, false);
960  case Intrinsic::r600_read_local_size_z:
961    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
962                          SI::KernelInputOffsets::LOCAL_SIZE_Z, false);
963
964  case Intrinsic::AMDGPU_read_workdim:
965    return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
966                          MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset,
967                          false);
968
969  case Intrinsic::r600_read_tgid_x:
970    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
971      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT);
972  case Intrinsic::r600_read_tgid_y:
973    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
974      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT);
975  case Intrinsic::r600_read_tgid_z:
976    return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
977      TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT);
978  case Intrinsic::r600_read_tidig_x:
979    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
980      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT);
981  case Intrinsic::r600_read_tidig_y:
982    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
983      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT);
984  case Intrinsic::r600_read_tidig_z:
985    return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
986      TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT);
987  case AMDGPUIntrinsic::SI_load_const: {
988    SDValue Ops[] = {
989      Op.getOperand(1),
990      Op.getOperand(2)
991    };
992
993    MachineMemOperand *MMO = MF.getMachineMemOperand(
994      MachinePointerInfo(),
995      MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
996      VT.getStoreSize(), 4);
997    return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
998                                   Op->getVTList(), Ops, VT, MMO);
999  }
1000  case AMDGPUIntrinsic::SI_sample:
1001    return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
1002  case AMDGPUIntrinsic::SI_sampleb:
1003    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
1004  case AMDGPUIntrinsic::SI_sampled:
1005    return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
1006  case AMDGPUIntrinsic::SI_samplel:
1007    return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
1008  case AMDGPUIntrinsic::SI_vs_load_input:
1009    return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
1010                       Op.getOperand(1),
1011                       Op.getOperand(2),
1012                       Op.getOperand(3));
1013
1014  case AMDGPUIntrinsic::AMDGPU_fract:
1015  case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
1016    return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
1017                       DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));
1018  case AMDGPUIntrinsic::SI_fs_constant: {
1019    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1020    SDValue Glue = M0.getValue(1);
1021    return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
1022                       DAG.getConstant(2, DL, MVT::i32), // P0
1023                       Op.getOperand(1), Op.getOperand(2), Glue);
1024  }
1025  case AMDGPUIntrinsic::SI_fs_interp: {
1026    SDValue IJ = Op.getOperand(4);
1027    SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1028                            DAG.getConstant(0, DL, MVT::i32));
1029    SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1030                            DAG.getConstant(1, DL, MVT::i32));
1031    SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1032    SDValue Glue = M0.getValue(1);
1033    SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
1034                             DAG.getVTList(MVT::f32, MVT::Glue),
1035                             I, Op.getOperand(1), Op.getOperand(2), Glue);
1036    Glue = SDValue(P1.getNode(), 1);
1037    return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
1038                             Op.getOperand(1), Op.getOperand(2), Glue);
1039  }
1040  default:
1041    return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1042  }
1043}
1044
1045SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
1046                                              SelectionDAG &DAG) const {
1047  MachineFunction &MF = DAG.getMachineFunction();
1048  SDLoc DL(Op);
1049  SDValue Chain = Op.getOperand(0);
1050  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1051
1052  switch (IntrinsicID) {
1053  case AMDGPUIntrinsic::SI_sendmsg: {
1054    Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
1055    SDValue Glue = Chain.getValue(1);
1056    return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
1057                       Op.getOperand(2), Glue);
1058  }
1059  case AMDGPUIntrinsic::SI_tbuffer_store: {
1060    SDValue Ops[] = {
1061      Chain,
1062      Op.getOperand(2),
1063      Op.getOperand(3),
1064      Op.getOperand(4),
1065      Op.getOperand(5),
1066      Op.getOperand(6),
1067      Op.getOperand(7),
1068      Op.getOperand(8),
1069      Op.getOperand(9),
1070      Op.getOperand(10),
1071      Op.getOperand(11),
1072      Op.getOperand(12),
1073      Op.getOperand(13),
1074      Op.getOperand(14)
1075    };
1076
1077    EVT VT = Op.getOperand(3).getValueType();
1078
1079    MachineMemOperand *MMO = MF.getMachineMemOperand(
1080      MachinePointerInfo(),
1081      MachineMemOperand::MOStore,
1082      VT.getStoreSize(), 4);
1083    return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
1084                                   Op->getVTList(), Ops, VT, MMO);
1085  }
1086  default:
1087    return SDValue();
1088  }
1089}
1090
1091SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1092  SDLoc DL(Op);
1093  LoadSDNode *Load = cast<LoadSDNode>(Op);
1094
1095  if (Op.getValueType().isVector()) {
1096    assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
1097           "Custom lowering for non-i32 vectors hasn't been implemented.");
1098    unsigned NumElements = Op.getValueType().getVectorNumElements();
1099    assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
1100    switch (Load->getAddressSpace()) {
1101      default: break;
1102      case AMDGPUAS::GLOBAL_ADDRESS:
1103      case AMDGPUAS::PRIVATE_ADDRESS:
1104        // v4 loads are supported for private and global memory.
1105        if (NumElements <= 4)
1106          break;
1107        // fall-through
1108      case AMDGPUAS::LOCAL_ADDRESS:
1109        return ScalarizeVectorLoad(Op, DAG);
1110    }
1111  }
1112
1113  return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
1114}
1115
1116SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
1117                                               const SDValue &Op,
1118                                               SelectionDAG &DAG) const {
1119  return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
1120                     Op.getOperand(2),
1121                     Op.getOperand(3),
1122                     Op.getOperand(4));
1123}
1124
1125SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1126  if (Op.getValueType() != MVT::i64)
1127    return SDValue();
1128
1129  SDLoc DL(Op);
1130  SDValue Cond = Op.getOperand(0);
1131
1132  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
1133  SDValue One = DAG.getConstant(1, DL, MVT::i32);
1134
1135  SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
1136  SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
1137
1138  SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
1139  SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
1140
1141  SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
1142
1143  SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
1144  SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
1145
1146  SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
1147
1148  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
1149  return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
1150}
1151
1152// Catch division cases where we can use shortcuts with rcp and rsq
1153// instructions.
1154SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
1155  SDLoc SL(Op);
1156  SDValue LHS = Op.getOperand(0);
1157  SDValue RHS = Op.getOperand(1);
1158  EVT VT = Op.getValueType();
1159  bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
1160
1161  if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
1162    if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
1163        CLHS->isExactlyValue(1.0)) {
1164      // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
1165      // the CI documentation has a worst case error of 1 ulp.
1166      // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
1167      // use it as long as we aren't trying to use denormals.
1168
1169      // 1.0 / sqrt(x) -> rsq(x)
1170      //
1171      // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
1172      // error seems really high at 2^29 ULP.
1173      if (RHS.getOpcode() == ISD::FSQRT)
1174        return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
1175
1176      // 1.0 / x -> rcp(x)
1177      return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1178    }
1179  }
1180
1181  if (Unsafe) {
1182    // Turn into multiply by the reciprocal.
1183    // x / y -> x * (1.0 / y)
1184    SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1185    return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
1186  }
1187
1188  return SDValue();
1189}
1190
1191SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
1192  SDValue FastLowered = LowerFastFDIV(Op, DAG);
1193  if (FastLowered.getNode())
1194    return FastLowered;
1195
1196  // This uses v_rcp_f32 which does not handle denormals. Let this hit a
1197  // selection error for now rather than do something incorrect.
1198  if (Subtarget->hasFP32Denormals())
1199    return SDValue();
1200
1201  SDLoc SL(Op);
1202  SDValue LHS = Op.getOperand(0);
1203  SDValue RHS = Op.getOperand(1);
1204
1205  SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
1206
1207  const APFloat K0Val(BitsToFloat(0x6f800000));
1208  const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
1209
1210  const APFloat K1Val(BitsToFloat(0x2f800000));
1211  const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
1212
1213  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1214
1215  EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
1216
1217  SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
1218
1219  SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
1220
1221  r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
1222
1223  SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
1224
1225  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
1226
1227  return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
1228}
1229
1230SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
1231  if (DAG.getTarget().Options.UnsafeFPMath)
1232    return LowerFastFDIV(Op, DAG);
1233
1234  SDLoc SL(Op);
1235  SDValue X = Op.getOperand(0);
1236  SDValue Y = Op.getOperand(1);
1237
1238  const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1239
1240  SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
1241
1242  SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
1243
1244  SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
1245
1246  SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
1247
1248  SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
1249
1250  SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
1251
1252  SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
1253
1254  SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
1255
1256  SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
1257  SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
1258
1259  SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
1260                             NegDivScale0, Mul, DivScale1);
1261
1262  SDValue Scale;
1263
1264  if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1265    // Workaround a hardware bug on SI where the condition output from div_scale
1266    // is not usable.
1267
1268    const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
1269
1270    // Figure out if the scale to use for div_fmas.
1271    SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1272    SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
1273    SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
1274    SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
1275
1276    SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
1277    SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
1278
1279    SDValue Scale0Hi
1280      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
1281    SDValue Scale1Hi
1282      = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
1283
1284    SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
1285    SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
1286    Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
1287  } else {
1288    Scale = DivScale1.getValue(1);
1289  }
1290
1291  SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
1292                             Fma4, Fma3, Mul, Scale);
1293
1294  return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
1295}
1296
1297SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
1298  EVT VT = Op.getValueType();
1299
1300  if (VT == MVT::f32)
1301    return LowerFDIV32(Op, DAG);
1302
1303  if (VT == MVT::f64)
1304    return LowerFDIV64(Op, DAG);
1305
1306  llvm_unreachable("Unexpected type for fdiv");
1307}
1308
1309SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1310  SDLoc DL(Op);
1311  StoreSDNode *Store = cast<StoreSDNode>(Op);
1312  EVT VT = Store->getMemoryVT();
1313
1314  // These stores are legal.
1315  if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1316    if (VT.isVector() && VT.getVectorNumElements() > 4)
1317      return ScalarizeVectorStore(Op, DAG);
1318    return SDValue();
1319  }
1320
1321  SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
1322  if (Ret.getNode())
1323    return Ret;
1324
1325  if (VT.isVector() && VT.getVectorNumElements() >= 8)
1326      return ScalarizeVectorStore(Op, DAG);
1327
1328  if (VT == MVT::i1)
1329    return DAG.getTruncStore(Store->getChain(), DL,
1330                        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
1331                        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
1332
1333  return SDValue();
1334}
1335
1336SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
1337  SDLoc DL(Op);
1338  EVT VT = Op.getValueType();
1339  SDValue Arg = Op.getOperand(0);
1340  SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
1341                                  DAG.getNode(ISD::FMUL, DL, VT, Arg,
1342                                              DAG.getConstantFP(0.5/M_PI, DL,
1343                                                                VT)));
1344
1345  switch (Op.getOpcode()) {
1346  case ISD::FCOS:
1347    return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
1348  case ISD::FSIN:
1349    return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
1350  default:
1351    llvm_unreachable("Wrong trig opcode");
1352  }
1353}
1354
1355//===----------------------------------------------------------------------===//
1356// Custom DAG optimizations
1357//===----------------------------------------------------------------------===//
1358
1359SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
1360                                                     DAGCombinerInfo &DCI) const {
1361  EVT VT = N->getValueType(0);
1362  EVT ScalarVT = VT.getScalarType();
1363  if (ScalarVT != MVT::f32)
1364    return SDValue();
1365
1366  SelectionDAG &DAG = DCI.DAG;
1367  SDLoc DL(N);
1368
1369  SDValue Src = N->getOperand(0);
1370  EVT SrcVT = Src.getValueType();
1371
1372  // TODO: We could try to match extracting the higher bytes, which would be
1373  // easier if i8 vectors weren't promoted to i32 vectors, particularly after
1374  // types are legalized. v4i8 -> v4f32 is probably the only case to worry
1375  // about in practice.
1376  if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
1377    if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
1378      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
1379      DCI.AddToWorklist(Cvt.getNode());
1380      return Cvt;
1381    }
1382  }
1383
1384  // We are primarily trying to catch operations on illegal vector types
1385  // before they are expanded.
1386  // For scalars, we can use the more flexible method of checking masked bits
1387  // after legalization.
1388  if (!DCI.isBeforeLegalize() ||
1389      !SrcVT.isVector() ||
1390      SrcVT.getVectorElementType() != MVT::i8) {
1391    return SDValue();
1392  }
1393
1394  assert(DCI.isBeforeLegalize() && "Unexpected legal type");
1395
1396  // Weird sized vectors are a pain to handle, but we know 3 is really the same
1397  // size as 4.
1398  unsigned NElts = SrcVT.getVectorNumElements();
1399  if (!SrcVT.isSimple() && NElts != 3)
1400    return SDValue();
1401
1402  // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
1403  // prevent a mess from expanding to v4i32 and repacking.
1404  if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
1405    EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
1406    EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
1407    EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
1408    LoadSDNode *Load = cast<LoadSDNode>(Src);
1409
1410    unsigned AS = Load->getAddressSpace();
1411    unsigned Align = Load->getAlignment();
1412    Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
1413    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
1414
1415    // Don't try to replace the load if we have to expand it due to alignment
1416    // problems. Otherwise we will end up scalarizing the load, and trying to
1417    // repack into the vector for no real reason.
1418    if (Align < ABIAlignment &&
1419        !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
1420      return SDValue();
1421    }
1422
1423    SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
1424                                     Load->getChain(),
1425                                     Load->getBasePtr(),
1426                                     LoadVT,
1427                                     Load->getMemOperand());
1428
1429    // Make sure successors of the original load stay after it by updating
1430    // them to use the new Chain.
1431    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
1432
1433    SmallVector<SDValue, 4> Elts;
1434    if (RegVT.isVector())
1435      DAG.ExtractVectorElements(NewLoad, Elts);
1436    else
1437      Elts.push_back(NewLoad);
1438
1439    SmallVector<SDValue, 4> Ops;
1440
1441    unsigned EltIdx = 0;
1442    for (SDValue Elt : Elts) {
1443      unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
1444      for (unsigned I = 0; I < ComponentsInElt; ++I) {
1445        unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
1446        SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
1447        DCI.AddToWorklist(Cvt.getNode());
1448        Ops.push_back(Cvt);
1449      }
1450
1451      ++EltIdx;
1452    }
1453
1454    assert(Ops.size() == NElts);
1455
1456    return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
1457  }
1458
1459  return SDValue();
1460}
1461
1462/// \brief Return true if the given offset Size in bytes can be folded into
1463/// the immediate offsets of a memory instruction for the given address space.
1464static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
1465                          const AMDGPUSubtarget &STI) {
1466  switch (AS) {
1467  case AMDGPUAS::GLOBAL_ADDRESS: {
1468    // MUBUF instructions a 12-bit offset in bytes.
1469    return isUInt<12>(OffsetSize);
1470  }
1471  case AMDGPUAS::CONSTANT_ADDRESS: {
1472    // SMRD instructions have an 8-bit offset in dwords on SI and
1473    // a 20-bit offset in bytes on VI.
1474    if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1475      return isUInt<20>(OffsetSize);
1476    else
1477      return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
1478  }
1479  case AMDGPUAS::LOCAL_ADDRESS:
1480  case AMDGPUAS::REGION_ADDRESS: {
1481    // The single offset versions have a 16-bit offset in bytes.
1482    return isUInt<16>(OffsetSize);
1483  }
1484  case AMDGPUAS::PRIVATE_ADDRESS:
1485  // Indirect register addressing does not use any offsets.
1486  default:
1487    return 0;
1488  }
1489}
1490
1491// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
1492
1493// This is a variant of
1494// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
1495//
1496// The normal DAG combiner will do this, but only if the add has one use since
1497// that would increase the number of instructions.
1498//
1499// This prevents us from seeing a constant offset that can be folded into a
1500// memory instruction's addressing mode. If we know the resulting add offset of
1501// a pointer can be folded into an addressing offset, we can replace the pointer
1502// operand with the add of new constant offset. This eliminates one of the uses,
1503// and may allow the remaining use to also be simplified.
1504//
1505SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
1506                                               unsigned AddrSpace,
1507                                               DAGCombinerInfo &DCI) const {
1508  SDValue N0 = N->getOperand(0);
1509  SDValue N1 = N->getOperand(1);
1510
1511  if (N0.getOpcode() != ISD::ADD)
1512    return SDValue();
1513
1514  const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
1515  if (!CN1)
1516    return SDValue();
1517
1518  const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1519  if (!CAdd)
1520    return SDValue();
1521
1522  // If the resulting offset is too large, we can't fold it into the addressing
1523  // mode offset.
1524  APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
1525  if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
1526    return SDValue();
1527
1528  SelectionDAG &DAG = DCI.DAG;
1529  SDLoc SL(N);
1530  EVT VT = N->getValueType(0);
1531
1532  SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
1533  SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
1534
1535  return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
1536}
1537
1538SDValue SITargetLowering::performAndCombine(SDNode *N,
1539                                            DAGCombinerInfo &DCI) const {
1540  if (DCI.isBeforeLegalize())
1541    return SDValue();
1542
1543  SelectionDAG &DAG = DCI.DAG;
1544
1545  // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
1546  // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
1547  SDValue LHS = N->getOperand(0);
1548  SDValue RHS = N->getOperand(1);
1549
1550  if (LHS.getOpcode() == ISD::SETCC &&
1551      RHS.getOpcode() == ISD::SETCC) {
1552    ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
1553    ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
1554
1555    SDValue X = LHS.getOperand(0);
1556    SDValue Y = RHS.getOperand(0);
1557    if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
1558      return SDValue();
1559
1560    if (LCC == ISD::SETO) {
1561      if (X != LHS.getOperand(1))
1562        return SDValue();
1563
1564      if (RCC == ISD::SETUNE) {
1565        const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
1566        if (!C1 || !C1->isInfinity() || C1->isNegative())
1567          return SDValue();
1568
1569        const uint32_t Mask = SIInstrFlags::N_NORMAL |
1570                              SIInstrFlags::N_SUBNORMAL |
1571                              SIInstrFlags::N_ZERO |
1572                              SIInstrFlags::P_ZERO |
1573                              SIInstrFlags::P_SUBNORMAL |
1574                              SIInstrFlags::P_NORMAL;
1575
1576        static_assert(((~(SIInstrFlags::S_NAN |
1577                          SIInstrFlags::Q_NAN |
1578                          SIInstrFlags::N_INFINITY |
1579                          SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
1580                      "mask not equal");
1581
1582        SDLoc DL(N);
1583        return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
1584                           X, DAG.getConstant(Mask, DL, MVT::i32));
1585      }
1586    }
1587  }
1588
1589  return SDValue();
1590}
1591
1592SDValue SITargetLowering::performOrCombine(SDNode *N,
1593                                           DAGCombinerInfo &DCI) const {
1594  SelectionDAG &DAG = DCI.DAG;
1595  SDValue LHS = N->getOperand(0);
1596  SDValue RHS = N->getOperand(1);
1597
1598  // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
1599  if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
1600      RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
1601    SDValue Src = LHS.getOperand(0);
1602    if (Src != RHS.getOperand(0))
1603      return SDValue();
1604
1605    const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
1606    const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
1607    if (!CLHS || !CRHS)
1608      return SDValue();
1609
1610    // Only 10 bits are used.
1611    static const uint32_t MaxMask = 0x3ff;
1612
1613    uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
1614    SDLoc DL(N);
1615    return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
1616                       Src, DAG.getConstant(NewMask, DL, MVT::i32));
1617  }
1618
1619  return SDValue();
1620}
1621
1622SDValue SITargetLowering::performClassCombine(SDNode *N,
1623                                              DAGCombinerInfo &DCI) const {
1624  SelectionDAG &DAG = DCI.DAG;
1625  SDValue Mask = N->getOperand(1);
1626
1627  // fp_class x, 0 -> false
1628  if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
1629    if (CMask->isNullValue())
1630      return DAG.getConstant(0, SDLoc(N), MVT::i1);
1631  }
1632
1633  return SDValue();
1634}
1635
1636static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
1637  switch (Opc) {
1638  case ISD::FMAXNUM:
1639    return AMDGPUISD::FMAX3;
1640  case ISD::SMAX:
1641    return AMDGPUISD::SMAX3;
1642  case ISD::UMAX:
1643    return AMDGPUISD::UMAX3;
1644  case ISD::FMINNUM:
1645    return AMDGPUISD::FMIN3;
1646  case ISD::SMIN:
1647    return AMDGPUISD::SMIN3;
1648  case ISD::UMIN:
1649    return AMDGPUISD::UMIN3;
1650  default:
1651    llvm_unreachable("Not a min/max opcode");
1652  }
1653}
1654
1655SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
1656                                                 DAGCombinerInfo &DCI) const {
1657  SelectionDAG &DAG = DCI.DAG;
1658
1659  unsigned Opc = N->getOpcode();
1660  SDValue Op0 = N->getOperand(0);
1661  SDValue Op1 = N->getOperand(1);
1662
1663  // Only do this if the inner op has one use since this will just increases
1664  // register pressure for no benefit.
1665
1666  // max(max(a, b), c)
1667  if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
1668    SDLoc DL(N);
1669    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1670                       DL,
1671                       N->getValueType(0),
1672                       Op0.getOperand(0),
1673                       Op0.getOperand(1),
1674                       Op1);
1675  }
1676
1677  // max(a, max(b, c))
1678  if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
1679    SDLoc DL(N);
1680    return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1681                       DL,
1682                       N->getValueType(0),
1683                       Op0,
1684                       Op1.getOperand(0),
1685                       Op1.getOperand(1));
1686  }
1687
1688  return SDValue();
1689}
1690
1691SDValue SITargetLowering::performSetCCCombine(SDNode *N,
1692                                              DAGCombinerInfo &DCI) const {
1693  SelectionDAG &DAG = DCI.DAG;
1694  SDLoc SL(N);
1695
1696  SDValue LHS = N->getOperand(0);
1697  SDValue RHS = N->getOperand(1);
1698  EVT VT = LHS.getValueType();
1699
1700  if (VT != MVT::f32 && VT != MVT::f64)
1701    return SDValue();
1702
1703  // Match isinf pattern
1704  // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
1705  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1706  if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
1707    const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
1708    if (!CRHS)
1709      return SDValue();
1710
1711    const APFloat &APF = CRHS->getValueAPF();
1712    if (APF.isInfinity() && !APF.isNegative()) {
1713      unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
1714      return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
1715                         DAG.getConstant(Mask, SL, MVT::i32));
1716    }
1717  }
1718
1719  return SDValue();
1720}
1721
1722SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
1723                                            DAGCombinerInfo &DCI) const {
1724  SelectionDAG &DAG = DCI.DAG;
1725  SDLoc DL(N);
1726
1727  switch (N->getOpcode()) {
1728  default:
1729    return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1730  case ISD::SETCC:
1731    return performSetCCCombine(N, DCI);
1732  case ISD::FMAXNUM: // TODO: What about fmax_legacy?
1733  case ISD::FMINNUM:
1734  case ISD::SMAX:
1735  case ISD::SMIN:
1736  case ISD::UMAX:
1737  case ISD::UMIN: {
1738    if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
1739        N->getValueType(0) != MVT::f64 &&
1740        getTargetMachine().getOptLevel() > CodeGenOpt::None)
1741      return performMin3Max3Combine(N, DCI);
1742    break;
1743  }
1744
1745  case AMDGPUISD::CVT_F32_UBYTE0:
1746  case AMDGPUISD::CVT_F32_UBYTE1:
1747  case AMDGPUISD::CVT_F32_UBYTE2:
1748  case AMDGPUISD::CVT_F32_UBYTE3: {
1749    unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
1750
1751    SDValue Src = N->getOperand(0);
1752    APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
1753
1754    APInt KnownZero, KnownOne;
1755    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1756                                          !DCI.isBeforeLegalizeOps());
1757    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1758    if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
1759        TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
1760      DCI.CommitTargetLoweringOpt(TLO);
1761    }
1762
1763    break;
1764  }
1765
1766  case ISD::UINT_TO_FP: {
1767    return performUCharToFloatCombine(N, DCI);
1768
1769  case ISD::FADD: {
1770    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
1771      break;
1772
1773    EVT VT = N->getValueType(0);
1774    if (VT != MVT::f32)
1775      break;
1776
1777    // Only do this if we are not trying to support denormals. v_mad_f32 does
1778    // not support denormals ever.
1779    if (Subtarget->hasFP32Denormals())
1780      break;
1781
1782    SDValue LHS = N->getOperand(0);
1783    SDValue RHS = N->getOperand(1);
1784
1785    // These should really be instruction patterns, but writing patterns with
1786    // source modiifiers is a pain.
1787
1788    // fadd (fadd (a, a), b) -> mad 2.0, a, b
1789    if (LHS.getOpcode() == ISD::FADD) {
1790      SDValue A = LHS.getOperand(0);
1791      if (A == LHS.getOperand(1)) {
1792        const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
1793        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
1794      }
1795    }
1796
1797    // fadd (b, fadd (a, a)) -> mad 2.0, a, b
1798    if (RHS.getOpcode() == ISD::FADD) {
1799      SDValue A = RHS.getOperand(0);
1800      if (A == RHS.getOperand(1)) {
1801        const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
1802        return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
1803      }
1804    }
1805
1806    return SDValue();
1807  }
1808  case ISD::FSUB: {
1809    if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
1810      break;
1811
1812    EVT VT = N->getValueType(0);
1813
1814    // Try to get the fneg to fold into the source modifier. This undoes generic
1815    // DAG combines and folds them into the mad.
1816    //
1817    // Only do this if we are not trying to support denormals. v_mad_f32 does
1818    // not support denormals ever.
1819    if (VT == MVT::f32 &&
1820        !Subtarget->hasFP32Denormals()) {
1821      SDValue LHS = N->getOperand(0);
1822      SDValue RHS = N->getOperand(1);
1823      if (LHS.getOpcode() == ISD::FADD) {
1824        // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
1825
1826        SDValue A = LHS.getOperand(0);
1827        if (A == LHS.getOperand(1)) {
1828          const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
1829          SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
1830
1831          return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
1832        }
1833      }
1834
1835      if (RHS.getOpcode() == ISD::FADD) {
1836        // (fsub c, (fadd a, a)) -> mad -2.0, a, c
1837
1838        SDValue A = RHS.getOperand(0);
1839        if (A == RHS.getOperand(1)) {
1840          const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
1841          return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
1842        }
1843      }
1844
1845      return SDValue();
1846    }
1847
1848    break;
1849  }
1850  }
1851  case ISD::LOAD:
1852  case ISD::STORE:
1853  case ISD::ATOMIC_LOAD:
1854  case ISD::ATOMIC_STORE:
1855  case ISD::ATOMIC_CMP_SWAP:
1856  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1857  case ISD::ATOMIC_SWAP:
1858  case ISD::ATOMIC_LOAD_ADD:
1859  case ISD::ATOMIC_LOAD_SUB:
1860  case ISD::ATOMIC_LOAD_AND:
1861  case ISD::ATOMIC_LOAD_OR:
1862  case ISD::ATOMIC_LOAD_XOR:
1863  case ISD::ATOMIC_LOAD_NAND:
1864  case ISD::ATOMIC_LOAD_MIN:
1865  case ISD::ATOMIC_LOAD_MAX:
1866  case ISD::ATOMIC_LOAD_UMIN:
1867  case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
1868    if (DCI.isBeforeLegalize())
1869      break;
1870
1871    MemSDNode *MemNode = cast<MemSDNode>(N);
1872    SDValue Ptr = MemNode->getBasePtr();
1873
1874    // TODO: We could also do this for multiplies.
1875    unsigned AS = MemNode->getAddressSpace();
1876    if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
1877      SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
1878      if (NewPtr) {
1879        SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
1880
1881        NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
1882        return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
1883      }
1884    }
1885    break;
1886  }
1887  case ISD::AND:
1888    return performAndCombine(N, DCI);
1889  case ISD::OR:
1890    return performOrCombine(N, DCI);
1891  case AMDGPUISD::FP_CLASS:
1892    return performClassCombine(N, DCI);
1893  }
1894  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1895}
1896
1897/// \brief Analyze the possible immediate value Op
1898///
1899/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
1900/// and the immediate value if it's a literal immediate
1901int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
1902
1903  const SIInstrInfo *TII =
1904      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1905
1906  if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
1907    if (TII->isInlineConstant(Node->getAPIntValue()))
1908      return 0;
1909
1910    uint64_t Val = Node->getZExtValue();
1911    return isUInt<32>(Val) ? Val : -1;
1912  }
1913
1914  if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
1915    if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
1916      return 0;
1917
1918    if (Node->getValueType(0) == MVT::f32)
1919      return FloatToBits(Node->getValueAPF().convertToFloat());
1920
1921    return -1;
1922  }
1923
1924  return -1;
1925}
1926
1927/// \brief Helper function for adjustWritemask
1928static unsigned SubIdx2Lane(unsigned Idx) {
1929  switch (Idx) {
1930  default: return 0;
1931  case AMDGPU::sub0: return 0;
1932  case AMDGPU::sub1: return 1;
1933  case AMDGPU::sub2: return 2;
1934  case AMDGPU::sub3: return 3;
1935  }
1936}
1937
1938/// \brief Adjust the writemask of MIMG instructions
1939void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
1940                                       SelectionDAG &DAG) const {
1941  SDNode *Users[4] = { };
1942  unsigned Lane = 0;
1943  unsigned OldDmask = Node->getConstantOperandVal(0);
1944  unsigned NewDmask = 0;
1945
1946  // Try to figure out the used register components
1947  for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
1948       I != E; ++I) {
1949
1950    // Abort if we can't understand the usage
1951    if (!I->isMachineOpcode() ||
1952        I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
1953      return;
1954
1955    // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
1956    // Note that subregs are packed, i.e. Lane==0 is the first bit set
1957    // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
1958    // set, etc.
1959    Lane = SubIdx2Lane(I->getConstantOperandVal(1));
1960
1961    // Set which texture component corresponds to the lane.
1962    unsigned Comp;
1963    for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
1964      assert(Dmask);
1965      Comp = countTrailingZeros(Dmask);
1966      Dmask &= ~(1 << Comp);
1967    }
1968
1969    // Abort if we have more than one user per component
1970    if (Users[Lane])
1971      return;
1972
1973    Users[Lane] = *I;
1974    NewDmask |= 1 << Comp;
1975  }
1976
1977  // Abort if there's no change
1978  if (NewDmask == OldDmask)
1979    return;
1980
1981  // Adjust the writemask in the node
1982  std::vector<SDValue> Ops;
1983  Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
1984  Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
1985  Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
1986
1987  // If we only got one lane, replace it with a copy
1988  // (if NewDmask has only one bit set...)
1989  if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
1990    SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
1991                                       MVT::i32);
1992    SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1993                                      SDLoc(), Users[Lane]->getValueType(0),
1994                                      SDValue(Node, 0), RC);
1995    DAG.ReplaceAllUsesWith(Users[Lane], Copy);
1996    return;
1997  }
1998
1999  // Update the users of the node with the new indices
2000  for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
2001
2002    SDNode *User = Users[i];
2003    if (!User)
2004      continue;
2005
2006    SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
2007    DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
2008
2009    switch (Idx) {
2010    default: break;
2011    case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
2012    case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
2013    case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
2014    }
2015  }
2016}
2017
2018/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
2019/// with frame index operands.
2020/// LLVM assumes that inputs are to these instructions are registers.
2021void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
2022                                                     SelectionDAG &DAG) const {
2023
2024  SmallVector<SDValue, 8> Ops;
2025  for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
2026    if (!isa<FrameIndexSDNode>(Node->getOperand(i))) {
2027      Ops.push_back(Node->getOperand(i));
2028      continue;
2029    }
2030
2031    SDLoc DL(Node);
2032    Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
2033                                     Node->getOperand(i).getValueType(),
2034                                     Node->getOperand(i)), 0));
2035  }
2036
2037  DAG.UpdateNodeOperands(Node, Ops);
2038}
2039
2040/// \brief Fold the instructions after selecting them.
2041SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
2042                                          SelectionDAG &DAG) const {
2043  const SIInstrInfo *TII =
2044      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2045
2046  if (TII->isMIMG(Node->getMachineOpcode()))
2047    adjustWritemask(Node, DAG);
2048
2049  if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
2050      Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
2051    legalizeTargetIndependentNode(Node, DAG);
2052    return Node;
2053  }
2054  return Node;
2055}
2056
2057/// \brief Assign the register class depending on the number of
2058/// bits set in the writemask
2059void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
2060                                                     SDNode *Node) const {
2061  const SIInstrInfo *TII =
2062      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2063
2064  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
2065  TII->legalizeOperands(MI);
2066
2067  if (TII->isMIMG(MI->getOpcode())) {
2068    unsigned VReg = MI->getOperand(0).getReg();
2069    unsigned Writemask = MI->getOperand(1).getImm();
2070    unsigned BitsSet = 0;
2071    for (unsigned i = 0; i < 4; ++i)
2072      BitsSet += Writemask & (1 << i) ? 1 : 0;
2073
2074    const TargetRegisterClass *RC;
2075    switch (BitsSet) {
2076    default: return;
2077    case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
2078    case 2:  RC = &AMDGPU::VReg_64RegClass; break;
2079    case 3:  RC = &AMDGPU::VReg_96RegClass; break;
2080    }
2081
2082    unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
2083    MI->setDesc(TII->get(NewOpcode));
2084    MRI.setRegClass(VReg, RC);
2085    return;
2086  }
2087
2088  // Replace unused atomics with the no return version.
2089  int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
2090  if (NoRetAtomicOp != -1) {
2091    if (!Node->hasAnyUseOfValue(0)) {
2092      MI->setDesc(TII->get(NoRetAtomicOp));
2093      MI->RemoveOperand(0);
2094    }
2095
2096    return;
2097  }
2098}
2099
2100static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
2101  SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
2102  return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
2103}
2104
2105MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
2106                                                SDLoc DL,
2107                                                SDValue Ptr) const {
2108  const SIInstrInfo *TII =
2109      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2110#if 1
2111    // XXX - Workaround for moveToVALU not handling different register class
2112    // inserts for REG_SEQUENCE.
2113
2114    // Build the half of the subregister with the constants.
2115    const SDValue Ops0[] = {
2116      DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
2117      buildSMovImm32(DAG, DL, 0),
2118      DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
2119      buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
2120      DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
2121    };
2122
2123    SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
2124                                                  MVT::v2i32, Ops0), 0);
2125
2126    // Combine the constants and the pointer.
2127    const SDValue Ops1[] = {
2128      DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
2129      Ptr,
2130      DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
2131      SubRegHi,
2132      DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
2133    };
2134
2135    return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
2136#else
2137    const SDValue Ops[] = {
2138      DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2139      Ptr,
2140      DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
2141      buildSMovImm32(DAG, DL, 0),
2142      DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
2143      buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32),
2144      DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
2145    };
2146
2147    return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2148
2149#endif
2150}
2151
2152/// \brief Return a resource descriptor with the 'Add TID' bit enabled
2153///        The TID (Thread ID) is multipled by the stride value (bits [61:48]
2154///        of the resource descriptor) to create an offset, which is added to the
2155///        resource ponter.
2156MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
2157                                           SDLoc DL,
2158                                           SDValue Ptr,
2159                                           uint32_t RsrcDword1,
2160                                           uint64_t RsrcDword2And3) const {
2161  SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
2162  SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
2163  if (RsrcDword1) {
2164    PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
2165                                     DAG.getConstant(RsrcDword1, DL, MVT::i32)),
2166                    0);
2167  }
2168
2169  SDValue DataLo = buildSMovImm32(DAG, DL,
2170                                  RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
2171  SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
2172
2173  const SDValue Ops[] = {
2174    DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
2175    PtrLo,
2176    DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
2177    PtrHi,
2178    DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
2179    DataLo,
2180    DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
2181    DataHi,
2182    DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
2183  };
2184
2185  return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2186}
2187
2188MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG,
2189                                                  SDLoc DL,
2190                                                  SDValue Ptr) const {
2191  const SIInstrInfo *TII =
2192      static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2193  uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE |
2194                  0xffffffff; // Size
2195
2196  return buildRSRC(DAG, DL, Ptr, 0, Rsrc);
2197}
2198
2199SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2200                                               const TargetRegisterClass *RC,
2201                                               unsigned Reg, EVT VT) const {
2202  SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
2203
2204  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
2205                            cast<RegisterSDNode>(VReg)->getReg(), VT);
2206}
2207
2208//===----------------------------------------------------------------------===//
2209//                         SI Inline Assembly Support
2210//===----------------------------------------------------------------------===//
2211
2212std::pair<unsigned, const TargetRegisterClass *>
2213SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2214                                               const std::string &Constraint,
2215                                               MVT VT) const {
2216  if (Constraint == "r") {
2217    switch(VT.SimpleTy) {
2218      default: llvm_unreachable("Unhandled type for 'r' inline asm constraint");
2219      case MVT::i64:
2220        return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
2221      case MVT::i32:
2222        return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
2223    }
2224  }
2225
2226  if (Constraint.size() > 1) {
2227    const TargetRegisterClass *RC = nullptr;
2228    if (Constraint[1] == 'v') {
2229      RC = &AMDGPU::VGPR_32RegClass;
2230    } else if (Constraint[1] == 's') {
2231      RC = &AMDGPU::SGPR_32RegClass;
2232    }
2233
2234    if (RC) {
2235      unsigned Idx = std::atoi(Constraint.substr(2).c_str());
2236      if (Idx < RC->getNumRegs())
2237        return std::make_pair(RC->getRegister(Idx), RC);
2238    }
2239  }
2240  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2241}
2242