PPCInstrInfo.cpp revision 64c34e253563a8ba6b41fbce2bb020632cf65961
1//===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the PowerPC implementation of the TargetInstrInfo class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "PPCInstrInfo.h" 15#include "PPC.h" 16#include "PPCInstrBuilder.h" 17#include "PPCMachineFunctionInfo.h" 18#include "PPCTargetMachine.h" 19#include "PPCHazardRecognizers.h" 20#include "MCTargetDesc/PPCPredicates.h" 21#include "llvm/CodeGen/MachineFrameInfo.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/CodeGen/MachineMemOperand.h" 24#include "llvm/CodeGen/MachineRegisterInfo.h" 25#include "llvm/MC/MCAsmInfo.h" 26#include "llvm/Support/CommandLine.h" 27#include "llvm/Support/ErrorHandling.h" 28#include "llvm/Support/TargetRegistry.h" 29#include "llvm/Support/raw_ostream.h" 30#include "llvm/ADT/STLExtras.h" 31 32#define GET_INSTRINFO_CTOR 33#include "PPCGenInstrInfo.inc" 34 35namespace llvm { 36extern cl::opt<bool> EnablePPC32RS; // FIXME (64-bit): See PPCRegisterInfo.cpp. 37extern cl::opt<bool> EnablePPC64RS; // FIXME (64-bit): See PPCRegisterInfo.cpp. 38} 39 40using namespace llvm; 41 42PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) 43 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 44 TM(tm), RI(*TM.getSubtargetImpl(), *this) {} 45 46/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 47/// this target when scheduling the DAG. 48ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer( 49 const TargetMachine *TM, 50 const ScheduleDAG *DAG) const { 51 unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective(); 52 if (Directive == PPC::DIR_440) { 53 const InstrItineraryData *II = TM->getInstrItineraryData(); 54 return new PPCHazardRecognizer440(II, DAG); 55 } 56 57 return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG); 58} 59 60/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 61/// to use for this target when scheduling the DAG. 62ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 63 const InstrItineraryData *II, 64 const ScheduleDAG *DAG) const { 65 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 66 67 // Most subtargets use a PPC970 recognizer. 68 if (Directive != PPC::DIR_440) { 69 const TargetInstrInfo *TII = TM.getInstrInfo(); 70 assert(TII && "No InstrInfo?"); 71 72 return new PPCHazardRecognizer970(*TII); 73 } 74 75 return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG); 76} 77unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 78 int &FrameIndex) const { 79 switch (MI->getOpcode()) { 80 default: break; 81 case PPC::LD: 82 case PPC::LWZ: 83 case PPC::LFS: 84 case PPC::LFD: 85 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 86 MI->getOperand(2).isFI()) { 87 FrameIndex = MI->getOperand(2).getIndex(); 88 return MI->getOperand(0).getReg(); 89 } 90 break; 91 } 92 return 0; 93} 94 95unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 96 int &FrameIndex) const { 97 switch (MI->getOpcode()) { 98 default: break; 99 case PPC::STD: 100 case PPC::STW: 101 case PPC::STFS: 102 case PPC::STFD: 103 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 104 MI->getOperand(2).isFI()) { 105 FrameIndex = MI->getOperand(2).getIndex(); 106 return MI->getOperand(0).getReg(); 107 } 108 break; 109 } 110 return 0; 111} 112 113// commuteInstruction - We can commute rlwimi instructions, but only if the 114// rotate amt is zero. We also have to munge the immediates a bit. 115MachineInstr * 116PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 117 MachineFunction &MF = *MI->getParent()->getParent(); 118 119 // Normal instructions can be commuted the obvious way. 120 if (MI->getOpcode() != PPC::RLWIMI) 121 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); 122 123 // Cannot commute if it has a non-zero rotate count. 124 if (MI->getOperand(3).getImm() != 0) 125 return 0; 126 127 // If we have a zero rotate count, we have: 128 // M = mask(MB,ME) 129 // Op0 = (Op1 & ~M) | (Op2 & M) 130 // Change this to: 131 // M = mask((ME+1)&31, (MB-1)&31) 132 // Op0 = (Op2 & ~M) | (Op1 & M) 133 134 // Swap op1/op2 135 unsigned Reg0 = MI->getOperand(0).getReg(); 136 unsigned Reg1 = MI->getOperand(1).getReg(); 137 unsigned Reg2 = MI->getOperand(2).getReg(); 138 bool Reg1IsKill = MI->getOperand(1).isKill(); 139 bool Reg2IsKill = MI->getOperand(2).isKill(); 140 bool ChangeReg0 = false; 141 // If machine instrs are no longer in two-address forms, update 142 // destination register as well. 143 if (Reg0 == Reg1) { 144 // Must be two address instruction! 145 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 146 "Expecting a two-address instruction!"); 147 Reg2IsKill = false; 148 ChangeReg0 = true; 149 } 150 151 // Masks. 152 unsigned MB = MI->getOperand(4).getImm(); 153 unsigned ME = MI->getOperand(5).getImm(); 154 155 if (NewMI) { 156 // Create a new instruction. 157 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 158 bool Reg0IsDead = MI->getOperand(0).isDead(); 159 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 160 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 161 .addReg(Reg2, getKillRegState(Reg2IsKill)) 162 .addReg(Reg1, getKillRegState(Reg1IsKill)) 163 .addImm((ME+1) & 31) 164 .addImm((MB-1) & 31); 165 } 166 167 if (ChangeReg0) 168 MI->getOperand(0).setReg(Reg2); 169 MI->getOperand(2).setReg(Reg1); 170 MI->getOperand(1).setReg(Reg2); 171 MI->getOperand(2).setIsKill(Reg1IsKill); 172 MI->getOperand(1).setIsKill(Reg2IsKill); 173 174 // Swap the mask around. 175 MI->getOperand(4).setImm((ME+1) & 31); 176 MI->getOperand(5).setImm((MB-1) & 31); 177 return MI; 178} 179 180void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 181 MachineBasicBlock::iterator MI) const { 182 DebugLoc DL; 183 BuildMI(MBB, MI, DL, get(PPC::NOP)); 184} 185 186 187// Branch analysis. 188bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 189 MachineBasicBlock *&FBB, 190 SmallVectorImpl<MachineOperand> &Cond, 191 bool AllowModify) const { 192 // If the block has no terminators, it just falls into the block after it. 193 MachineBasicBlock::iterator I = MBB.end(); 194 if (I == MBB.begin()) 195 return false; 196 --I; 197 while (I->isDebugValue()) { 198 if (I == MBB.begin()) 199 return false; 200 --I; 201 } 202 if (!isUnpredicatedTerminator(I)) 203 return false; 204 205 // Get the last instruction in the block. 206 MachineInstr *LastInst = I; 207 208 // If there is only one terminator instruction, process it. 209 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 210 if (LastInst->getOpcode() == PPC::B) { 211 if (!LastInst->getOperand(0).isMBB()) 212 return true; 213 TBB = LastInst->getOperand(0).getMBB(); 214 return false; 215 } else if (LastInst->getOpcode() == PPC::BCC) { 216 if (!LastInst->getOperand(2).isMBB()) 217 return true; 218 // Block ends with fall-through condbranch. 219 TBB = LastInst->getOperand(2).getMBB(); 220 Cond.push_back(LastInst->getOperand(0)); 221 Cond.push_back(LastInst->getOperand(1)); 222 return false; 223 } 224 // Otherwise, don't know what this is. 225 return true; 226 } 227 228 // Get the instruction before it if it's a terminator. 229 MachineInstr *SecondLastInst = I; 230 231 // If there are three terminators, we don't know what sort of block this is. 232 if (SecondLastInst && I != MBB.begin() && 233 isUnpredicatedTerminator(--I)) 234 return true; 235 236 // If the block ends with PPC::B and PPC:BCC, handle it. 237 if (SecondLastInst->getOpcode() == PPC::BCC && 238 LastInst->getOpcode() == PPC::B) { 239 if (!SecondLastInst->getOperand(2).isMBB() || 240 !LastInst->getOperand(0).isMBB()) 241 return true; 242 TBB = SecondLastInst->getOperand(2).getMBB(); 243 Cond.push_back(SecondLastInst->getOperand(0)); 244 Cond.push_back(SecondLastInst->getOperand(1)); 245 FBB = LastInst->getOperand(0).getMBB(); 246 return false; 247 } 248 249 // If the block ends with two PPC:Bs, handle it. The second one is not 250 // executed, so remove it. 251 if (SecondLastInst->getOpcode() == PPC::B && 252 LastInst->getOpcode() == PPC::B) { 253 if (!SecondLastInst->getOperand(0).isMBB()) 254 return true; 255 TBB = SecondLastInst->getOperand(0).getMBB(); 256 I = LastInst; 257 if (AllowModify) 258 I->eraseFromParent(); 259 return false; 260 } 261 262 // Otherwise, can't handle this. 263 return true; 264} 265 266unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 267 MachineBasicBlock::iterator I = MBB.end(); 268 if (I == MBB.begin()) return 0; 269 --I; 270 while (I->isDebugValue()) { 271 if (I == MBB.begin()) 272 return 0; 273 --I; 274 } 275 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC) 276 return 0; 277 278 // Remove the branch. 279 I->eraseFromParent(); 280 281 I = MBB.end(); 282 283 if (I == MBB.begin()) return 1; 284 --I; 285 if (I->getOpcode() != PPC::BCC) 286 return 1; 287 288 // Remove the branch. 289 I->eraseFromParent(); 290 return 2; 291} 292 293unsigned 294PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 295 MachineBasicBlock *FBB, 296 const SmallVectorImpl<MachineOperand> &Cond, 297 DebugLoc DL) const { 298 // Shouldn't be a fall through. 299 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 300 assert((Cond.size() == 2 || Cond.size() == 0) && 301 "PPC branch conditions have two components!"); 302 303 // One-way branch. 304 if (FBB == 0) { 305 if (Cond.empty()) // Unconditional branch 306 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 307 else // Conditional branch 308 BuildMI(&MBB, DL, get(PPC::BCC)) 309 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 310 return 1; 311 } 312 313 // Two-way Conditional Branch. 314 BuildMI(&MBB, DL, get(PPC::BCC)) 315 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 316 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 317 return 2; 318} 319 320void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 321 MachineBasicBlock::iterator I, DebugLoc DL, 322 unsigned DestReg, unsigned SrcReg, 323 bool KillSrc) const { 324 unsigned Opc; 325 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 326 Opc = PPC::OR; 327 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 328 Opc = PPC::OR8; 329 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 330 Opc = PPC::FMR; 331 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 332 Opc = PPC::MCRF; 333 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 334 Opc = PPC::VOR; 335 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 336 Opc = PPC::CROR; 337 else 338 llvm_unreachable("Impossible reg-to-reg copy"); 339 340 const MCInstrDesc &MCID = get(Opc); 341 if (MCID.getNumOperands() == 3) 342 BuildMI(MBB, I, DL, MCID, DestReg) 343 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 344 else 345 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 346} 347 348bool 349PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 350 unsigned SrcReg, bool isKill, 351 int FrameIdx, 352 const TargetRegisterClass *RC, 353 SmallVectorImpl<MachineInstr*> &NewMIs) const{ 354 DebugLoc DL; 355 if (PPC::GPRCRegisterClass->hasSubClassEq(RC)) { 356 if (SrcReg != PPC::LR) { 357 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 358 .addReg(SrcReg, 359 getKillRegState(isKill)), 360 FrameIdx)); 361 } else { 362 // FIXME: this spills LR immediately to memory in one step. To do this, 363 // we use R11, which we know cannot be used in the prolog/epilog. This is 364 // a hack. 365 NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR), PPC::R11)); 366 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 367 .addReg(PPC::R11, 368 getKillRegState(isKill)), 369 FrameIdx)); 370 } 371 } else if (PPC::G8RCRegisterClass->hasSubClassEq(RC)) { 372 if (SrcReg != PPC::LR8) { 373 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 374 .addReg(SrcReg, 375 getKillRegState(isKill)), 376 FrameIdx)); 377 } else { 378 // FIXME: this spills LR immediately to memory in one step. To do this, 379 // we use R11, which we know cannot be used in the prolog/epilog. This is 380 // a hack. 381 NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR8), PPC::X11)); 382 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 383 .addReg(PPC::X11, 384 getKillRegState(isKill)), 385 FrameIdx)); 386 } 387 } else if (PPC::F8RCRegisterClass->hasSubClassEq(RC)) { 388 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 389 .addReg(SrcReg, 390 getKillRegState(isKill)), 391 FrameIdx)); 392 } else if (PPC::F4RCRegisterClass->hasSubClassEq(RC)) { 393 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 394 .addReg(SrcReg, 395 getKillRegState(isKill)), 396 FrameIdx)); 397 } else if (PPC::CRRCRegisterClass->hasSubClassEq(RC)) { 398 if ((EnablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) || 399 (EnablePPC64RS && TM.getSubtargetImpl()->isPPC64())) { 400 // FIXME (64-bit): Enable 401 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 402 .addReg(SrcReg, 403 getKillRegState(isKill)), 404 FrameIdx)); 405 return true; 406 } else { 407 // FIXME: We need a scatch reg here. The trouble with using R0 is that 408 // it's possible for the stack frame to be so big the save location is 409 // out of range of immediate offsets, necessitating another register. 410 // We hack this on Darwin by reserving R2. It's probably broken on Linux 411 // at the moment. 412 413 // We need to store the CR in the low 4-bits of the saved value. First, 414 // issue a MFCR to save all of the CRBits. 415 unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ? 416 PPC::R2 : PPC::R0; 417 NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFCRpseud), ScratchReg) 418 .addReg(SrcReg, getKillRegState(isKill))); 419 420 // If the saved register wasn't CR0, shift the bits left so that they are 421 // in CR0's slot. 422 if (SrcReg != PPC::CR0) { 423 unsigned ShiftBits = getPPCRegisterNumbering(SrcReg)*4; 424 // rlwinm scratch, scratch, ShiftBits, 0, 31. 425 NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg) 426 .addReg(ScratchReg).addImm(ShiftBits) 427 .addImm(0).addImm(31)); 428 } 429 430 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 431 .addReg(ScratchReg, 432 getKillRegState(isKill)), 433 FrameIdx)); 434 } 435 } else if (PPC::CRBITRCRegisterClass->hasSubClassEq(RC)) { 436 // FIXME: We use CRi here because there is no mtcrf on a bit. Since the 437 // backend currently only uses CR1EQ as an individual bit, this should 438 // not cause any bug. If we need other uses of CR bits, the following 439 // code may be invalid. 440 unsigned Reg = 0; 441 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT || 442 SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN) 443 Reg = PPC::CR0; 444 else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT || 445 SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN) 446 Reg = PPC::CR1; 447 else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT || 448 SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN) 449 Reg = PPC::CR2; 450 else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT || 451 SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN) 452 Reg = PPC::CR3; 453 else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT || 454 SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN) 455 Reg = PPC::CR4; 456 else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT || 457 SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN) 458 Reg = PPC::CR5; 459 else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT || 460 SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN) 461 Reg = PPC::CR6; 462 else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT || 463 SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN) 464 Reg = PPC::CR7; 465 466 return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, 467 PPC::CRRCRegisterClass, NewMIs); 468 469 } else if (PPC::VRRCRegisterClass->hasSubClassEq(RC)) { 470 // We don't have indexed addressing for vector loads. Emit: 471 // R0 = ADDI FI# 472 // STVX VAL, 0, R0 473 // 474 // FIXME: We use R0 here, because it isn't available for RA. 475 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0), 476 FrameIdx, 0, 0)); 477 NewMIs.push_back(BuildMI(MF, DL, get(PPC::STVX)) 478 .addReg(SrcReg, getKillRegState(isKill)) 479 .addReg(PPC::R0) 480 .addReg(PPC::R0)); 481 } else { 482 llvm_unreachable("Unknown regclass!"); 483 } 484 485 return false; 486} 487 488void 489PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 490 MachineBasicBlock::iterator MI, 491 unsigned SrcReg, bool isKill, int FrameIdx, 492 const TargetRegisterClass *RC, 493 const TargetRegisterInfo *TRI) const { 494 MachineFunction &MF = *MBB.getParent(); 495 SmallVector<MachineInstr*, 4> NewMIs; 496 497 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) { 498 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 499 FuncInfo->setSpillsCR(); 500 } 501 502 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 503 MBB.insert(MI, NewMIs[i]); 504 505 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 506 MachineMemOperand *MMO = 507 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 508 MachineMemOperand::MOStore, 509 MFI.getObjectSize(FrameIdx), 510 MFI.getObjectAlignment(FrameIdx)); 511 NewMIs.back()->addMemOperand(MF, MMO); 512} 513 514void 515PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 516 unsigned DestReg, int FrameIdx, 517 const TargetRegisterClass *RC, 518 SmallVectorImpl<MachineInstr*> &NewMIs)const{ 519 if (PPC::GPRCRegisterClass->hasSubClassEq(RC)) { 520 if (DestReg != PPC::LR) { 521 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 522 DestReg), FrameIdx)); 523 } else { 524 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 525 PPC::R11), FrameIdx)); 526 NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR)).addReg(PPC::R11)); 527 } 528 } else if (PPC::G8RCRegisterClass->hasSubClassEq(RC)) { 529 if (DestReg != PPC::LR8) { 530 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 531 FrameIdx)); 532 } else { 533 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), 534 PPC::R11), FrameIdx)); 535 NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR8)).addReg(PPC::R11)); 536 } 537 } else if (PPC::F8RCRegisterClass->hasSubClassEq(RC)) { 538 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 539 FrameIdx)); 540 } else if (PPC::F4RCRegisterClass->hasSubClassEq(RC)) { 541 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 542 FrameIdx)); 543 } else if (PPC::CRRCRegisterClass->hasSubClassEq(RC)) { 544 // FIXME: We need a scatch reg here. The trouble with using R0 is that 545 // it's possible for the stack frame to be so big the save location is 546 // out of range of immediate offsets, necessitating another register. 547 // We hack this on Darwin by reserving R2. It's probably broken on Linux 548 // at the moment. 549 unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ? 550 PPC::R2 : PPC::R0; 551 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 552 ScratchReg), FrameIdx)); 553 554 // If the reloaded register isn't CR0, shift the bits right so that they are 555 // in the right CR's slot. 556 if (DestReg != PPC::CR0) { 557 unsigned ShiftBits = getPPCRegisterNumbering(DestReg)*4; 558 // rlwinm r11, r11, 32-ShiftBits, 0, 31. 559 NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg) 560 .addReg(ScratchReg).addImm(32-ShiftBits).addImm(0) 561 .addImm(31)); 562 } 563 564 NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTCRF), DestReg) 565 .addReg(ScratchReg)); 566 } else if (PPC::CRBITRCRegisterClass->hasSubClassEq(RC)) { 567 568 unsigned Reg = 0; 569 if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT || 570 DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN) 571 Reg = PPC::CR0; 572 else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT || 573 DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN) 574 Reg = PPC::CR1; 575 else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT || 576 DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN) 577 Reg = PPC::CR2; 578 else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT || 579 DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN) 580 Reg = PPC::CR3; 581 else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT || 582 DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN) 583 Reg = PPC::CR4; 584 else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT || 585 DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN) 586 Reg = PPC::CR5; 587 else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT || 588 DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN) 589 Reg = PPC::CR6; 590 else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT || 591 DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN) 592 Reg = PPC::CR7; 593 594 return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx, 595 PPC::CRRCRegisterClass, NewMIs); 596 597 } else if (PPC::VRRCRegisterClass->hasSubClassEq(RC)) { 598 // We don't have indexed addressing for vector loads. Emit: 599 // R0 = ADDI FI# 600 // Dest = LVX 0, R0 601 // 602 // FIXME: We use R0 here, because it isn't available for RA. 603 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0), 604 FrameIdx, 0, 0)); 605 NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(PPC::R0) 606 .addReg(PPC::R0)); 607 } else { 608 llvm_unreachable("Unknown regclass!"); 609 } 610} 611 612void 613PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 614 MachineBasicBlock::iterator MI, 615 unsigned DestReg, int FrameIdx, 616 const TargetRegisterClass *RC, 617 const TargetRegisterInfo *TRI) const { 618 MachineFunction &MF = *MBB.getParent(); 619 SmallVector<MachineInstr*, 4> NewMIs; 620 DebugLoc DL; 621 if (MI != MBB.end()) DL = MI->getDebugLoc(); 622 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); 623 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 624 MBB.insert(MI, NewMIs[i]); 625 626 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 627 MachineMemOperand *MMO = 628 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 629 MachineMemOperand::MOLoad, 630 MFI.getObjectSize(FrameIdx), 631 MFI.getObjectAlignment(FrameIdx)); 632 NewMIs.back()->addMemOperand(MF, MMO); 633} 634 635MachineInstr* 636PPCInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, 637 int FrameIx, uint64_t Offset, 638 const MDNode *MDPtr, 639 DebugLoc DL) const { 640 MachineInstrBuilder MIB = BuildMI(MF, DL, get(PPC::DBG_VALUE)); 641 addFrameReference(MIB, FrameIx, 0, false).addImm(Offset).addMetadata(MDPtr); 642 return &*MIB; 643} 644 645bool PPCInstrInfo:: 646ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 647 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 648 // Leave the CR# the same, but invert the condition. 649 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 650 return false; 651} 652 653/// GetInstSize - Return the number of bytes of code the specified 654/// instruction may be. This returns the maximum number of bytes. 655/// 656unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 657 switch (MI->getOpcode()) { 658 case PPC::INLINEASM: { // Inline Asm: Variable size. 659 const MachineFunction *MF = MI->getParent()->getParent(); 660 const char *AsmStr = MI->getOperand(0).getSymbolName(); 661 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 662 } 663 case PPC::PROLOG_LABEL: 664 case PPC::EH_LABEL: 665 case PPC::GC_LABEL: 666 case PPC::DBG_VALUE: 667 return 0; 668 default: 669 return 4; // PowerPC instructions are all 4 bytes 670 } 671} 672