PPCInstrInfo.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the PowerPC implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCInstrInfo.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPC.h"
17#include "PPCHazardRecognizers.h"
18#include "PPCInstrBuilder.h"
19#include "PPCMachineFunctionInfo.h"
20#include "PPCTargetMachine.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/CodeGen/SlotIndexes.h"
31#include "llvm/MC/MCAsmInfo.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/TargetRegistry.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace llvm;
39
40#define DEBUG_TYPE "ppc-instr-info"
41
42#define GET_INSTRMAP_INFO
43#define GET_INSTRINFO_CTOR_DTOR
44#include "PPCGenInstrInfo.inc"
45
46static cl::
47opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
48            cl::desc("Disable analysis for CTR loops"));
49
50static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
51cl::desc("Disable compare instruction optimization"), cl::Hidden);
52
53static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
54cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);
55
56static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58cl::Hidden);
59
60// Pin the vtable to this file.
61void PPCInstrInfo::anchor() {}
62
63PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
64  : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
65    TM(tm), RI(*TM.getSubtargetImpl()) {}
66
67/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
68/// this target when scheduling the DAG.
69ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer(
70  const TargetMachine *TM,
71  const ScheduleDAG *DAG) const {
72  unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective();
73  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
74      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
75    const InstrItineraryData *II = TM->getInstrItineraryData();
76    return new ScoreboardHazardRecognizer(II, DAG);
77  }
78
79  return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG);
80}
81
82/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
83/// to use for this target when scheduling the DAG.
84ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
85  const InstrItineraryData *II,
86  const ScheduleDAG *DAG) const {
87  unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
88
89  if (Directive == PPC::DIR_PWR7)
90    return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
91
92  // Most subtargets use a PPC970 recognizer.
93  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
94      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
95    assert(TM.getInstrInfo() && "No InstrInfo?");
96
97    return new PPCHazardRecognizer970(TM);
98  }
99
100  return new ScoreboardHazardRecognizer(II, DAG);
101}
102
103
104int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
105                                    const MachineInstr *DefMI, unsigned DefIdx,
106                                    const MachineInstr *UseMI,
107                                    unsigned UseIdx) const {
108  int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
109                                                   UseMI, UseIdx);
110
111  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
112  unsigned Reg = DefMO.getReg();
113
114  const TargetRegisterInfo *TRI = &getRegisterInfo();
115  bool IsRegCR;
116  if (TRI->isVirtualRegister(Reg)) {
117    const MachineRegisterInfo *MRI =
118      &DefMI->getParent()->getParent()->getRegInfo();
119    IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
120              MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
121  } else {
122    IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
123              PPC::CRBITRCRegClass.contains(Reg);
124  }
125
126  if (UseMI->isBranch() && IsRegCR) {
127    if (Latency < 0)
128      Latency = getInstrLatency(ItinData, DefMI);
129
130    // On some cores, there is an additional delay between writing to a condition
131    // register, and using it from a branch.
132    unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
133    switch (Directive) {
134    default: break;
135    case PPC::DIR_7400:
136    case PPC::DIR_750:
137    case PPC::DIR_970:
138    case PPC::DIR_E5500:
139    case PPC::DIR_PWR4:
140    case PPC::DIR_PWR5:
141    case PPC::DIR_PWR5X:
142    case PPC::DIR_PWR6:
143    case PPC::DIR_PWR6X:
144    case PPC::DIR_PWR7:
145      Latency += 2;
146      break;
147    }
148  }
149
150  return Latency;
151}
152
153// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
154bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
155                                         unsigned &SrcReg, unsigned &DstReg,
156                                         unsigned &SubIdx) const {
157  switch (MI.getOpcode()) {
158  default: return false;
159  case PPC::EXTSW:
160  case PPC::EXTSW_32_64:
161    SrcReg = MI.getOperand(1).getReg();
162    DstReg = MI.getOperand(0).getReg();
163    SubIdx = PPC::sub_32;
164    return true;
165  }
166}
167
168unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
169                                           int &FrameIndex) const {
170  // Note: This list must be kept consistent with LoadRegFromStackSlot.
171  switch (MI->getOpcode()) {
172  default: break;
173  case PPC::LD:
174  case PPC::LWZ:
175  case PPC::LFS:
176  case PPC::LFD:
177  case PPC::RESTORE_CR:
178  case PPC::RESTORE_CRBIT:
179  case PPC::LVX:
180  case PPC::LXVD2X:
181  case PPC::RESTORE_VRSAVE:
182    // Check for the operands added by addFrameReference (the immediate is the
183    // offset which defaults to 0).
184    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
185        MI->getOperand(2).isFI()) {
186      FrameIndex = MI->getOperand(2).getIndex();
187      return MI->getOperand(0).getReg();
188    }
189    break;
190  }
191  return 0;
192}
193
194unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
195                                          int &FrameIndex) const {
196  // Note: This list must be kept consistent with StoreRegToStackSlot.
197  switch (MI->getOpcode()) {
198  default: break;
199  case PPC::STD:
200  case PPC::STW:
201  case PPC::STFS:
202  case PPC::STFD:
203  case PPC::SPILL_CR:
204  case PPC::SPILL_CRBIT:
205  case PPC::STVX:
206  case PPC::STXVD2X:
207  case PPC::SPILL_VRSAVE:
208    // Check for the operands added by addFrameReference (the immediate is the
209    // offset which defaults to 0).
210    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
211        MI->getOperand(2).isFI()) {
212      FrameIndex = MI->getOperand(2).getIndex();
213      return MI->getOperand(0).getReg();
214    }
215    break;
216  }
217  return 0;
218}
219
220// commuteInstruction - We can commute rlwimi instructions, but only if the
221// rotate amt is zero.  We also have to munge the immediates a bit.
222MachineInstr *
223PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
224  MachineFunction &MF = *MI->getParent()->getParent();
225
226  // Normal instructions can be commuted the obvious way.
227  if (MI->getOpcode() != PPC::RLWIMI &&
228      MI->getOpcode() != PPC::RLWIMIo &&
229      MI->getOpcode() != PPC::RLWIMI8 &&
230      MI->getOpcode() != PPC::RLWIMI8o)
231    return TargetInstrInfo::commuteInstruction(MI, NewMI);
232
233  // Cannot commute if it has a non-zero rotate count.
234  if (MI->getOperand(3).getImm() != 0)
235    return nullptr;
236
237  // If we have a zero rotate count, we have:
238  //   M = mask(MB,ME)
239  //   Op0 = (Op1 & ~M) | (Op2 & M)
240  // Change this to:
241  //   M = mask((ME+1)&31, (MB-1)&31)
242  //   Op0 = (Op2 & ~M) | (Op1 & M)
243
244  // Swap op1/op2
245  unsigned Reg0 = MI->getOperand(0).getReg();
246  unsigned Reg1 = MI->getOperand(1).getReg();
247  unsigned Reg2 = MI->getOperand(2).getReg();
248  unsigned SubReg1 = MI->getOperand(1).getSubReg();
249  unsigned SubReg2 = MI->getOperand(2).getSubReg();
250  bool Reg1IsKill = MI->getOperand(1).isKill();
251  bool Reg2IsKill = MI->getOperand(2).isKill();
252  bool ChangeReg0 = false;
253  // If machine instrs are no longer in two-address forms, update
254  // destination register as well.
255  if (Reg0 == Reg1) {
256    // Must be two address instruction!
257    assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
258           "Expecting a two-address instruction!");
259    assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
260    Reg2IsKill = false;
261    ChangeReg0 = true;
262  }
263
264  // Masks.
265  unsigned MB = MI->getOperand(4).getImm();
266  unsigned ME = MI->getOperand(5).getImm();
267
268  if (NewMI) {
269    // Create a new instruction.
270    unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
271    bool Reg0IsDead = MI->getOperand(0).isDead();
272    return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
273      .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
274      .addReg(Reg2, getKillRegState(Reg2IsKill))
275      .addReg(Reg1, getKillRegState(Reg1IsKill))
276      .addImm((ME+1) & 31)
277      .addImm((MB-1) & 31);
278  }
279
280  if (ChangeReg0) {
281    MI->getOperand(0).setReg(Reg2);
282    MI->getOperand(0).setSubReg(SubReg2);
283  }
284  MI->getOperand(2).setReg(Reg1);
285  MI->getOperand(1).setReg(Reg2);
286  MI->getOperand(2).setSubReg(SubReg1);
287  MI->getOperand(1).setSubReg(SubReg2);
288  MI->getOperand(2).setIsKill(Reg1IsKill);
289  MI->getOperand(1).setIsKill(Reg2IsKill);
290
291  // Swap the mask around.
292  MI->getOperand(4).setImm((ME+1) & 31);
293  MI->getOperand(5).setImm((MB-1) & 31);
294  return MI;
295}
296
297bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
298                                         unsigned &SrcOpIdx2) const {
299  // For VSX A-Type FMA instructions, it is the first two operands that can be
300  // commuted, however, because the non-encoded tied input operand is listed
301  // first, the operands to swap are actually the second and third.
302
303  int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
304  if (AltOpc == -1)
305    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
306
307  SrcOpIdx1 = 2;
308  SrcOpIdx2 = 3;
309  return true;
310}
311
312void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
313                              MachineBasicBlock::iterator MI) const {
314  // This function is used for scheduling, and the nop wanted here is the type
315  // that terminates dispatch groups on the POWER cores.
316  unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
317  unsigned Opcode;
318  switch (Directive) {
319  default:            Opcode = PPC::NOP; break;
320  case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
321  case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
322  }
323
324  DebugLoc DL;
325  BuildMI(MBB, MI, DL, get(Opcode));
326}
327
328// Branch analysis.
329// Note: If the condition register is set to CTR or CTR8 then this is a
330// BDNZ (imm == 1) or BDZ (imm == 0) branch.
331bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
332                                 MachineBasicBlock *&FBB,
333                                 SmallVectorImpl<MachineOperand> &Cond,
334                                 bool AllowModify) const {
335  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
336
337  // If the block has no terminators, it just falls into the block after it.
338  MachineBasicBlock::iterator I = MBB.end();
339  if (I == MBB.begin())
340    return false;
341  --I;
342  while (I->isDebugValue()) {
343    if (I == MBB.begin())
344      return false;
345    --I;
346  }
347  if (!isUnpredicatedTerminator(I))
348    return false;
349
350  // Get the last instruction in the block.
351  MachineInstr *LastInst = I;
352
353  // If there is only one terminator instruction, process it.
354  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
355    if (LastInst->getOpcode() == PPC::B) {
356      if (!LastInst->getOperand(0).isMBB())
357        return true;
358      TBB = LastInst->getOperand(0).getMBB();
359      return false;
360    } else if (LastInst->getOpcode() == PPC::BCC) {
361      if (!LastInst->getOperand(2).isMBB())
362        return true;
363      // Block ends with fall-through condbranch.
364      TBB = LastInst->getOperand(2).getMBB();
365      Cond.push_back(LastInst->getOperand(0));
366      Cond.push_back(LastInst->getOperand(1));
367      return false;
368    } else if (LastInst->getOpcode() == PPC::BC) {
369      if (!LastInst->getOperand(1).isMBB())
370        return true;
371      // Block ends with fall-through condbranch.
372      TBB = LastInst->getOperand(1).getMBB();
373      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
374      Cond.push_back(LastInst->getOperand(0));
375      return false;
376    } else if (LastInst->getOpcode() == PPC::BCn) {
377      if (!LastInst->getOperand(1).isMBB())
378        return true;
379      // Block ends with fall-through condbranch.
380      TBB = LastInst->getOperand(1).getMBB();
381      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
382      Cond.push_back(LastInst->getOperand(0));
383      return false;
384    } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
385               LastInst->getOpcode() == PPC::BDNZ) {
386      if (!LastInst->getOperand(0).isMBB())
387        return true;
388      if (DisableCTRLoopAnal)
389        return true;
390      TBB = LastInst->getOperand(0).getMBB();
391      Cond.push_back(MachineOperand::CreateImm(1));
392      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
393                                               true));
394      return false;
395    } else if (LastInst->getOpcode() == PPC::BDZ8 ||
396               LastInst->getOpcode() == PPC::BDZ) {
397      if (!LastInst->getOperand(0).isMBB())
398        return true;
399      if (DisableCTRLoopAnal)
400        return true;
401      TBB = LastInst->getOperand(0).getMBB();
402      Cond.push_back(MachineOperand::CreateImm(0));
403      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
404                                               true));
405      return false;
406    }
407
408    // Otherwise, don't know what this is.
409    return true;
410  }
411
412  // Get the instruction before it if it's a terminator.
413  MachineInstr *SecondLastInst = I;
414
415  // If there are three terminators, we don't know what sort of block this is.
416  if (SecondLastInst && I != MBB.begin() &&
417      isUnpredicatedTerminator(--I))
418    return true;
419
420  // If the block ends with PPC::B and PPC:BCC, handle it.
421  if (SecondLastInst->getOpcode() == PPC::BCC &&
422      LastInst->getOpcode() == PPC::B) {
423    if (!SecondLastInst->getOperand(2).isMBB() ||
424        !LastInst->getOperand(0).isMBB())
425      return true;
426    TBB =  SecondLastInst->getOperand(2).getMBB();
427    Cond.push_back(SecondLastInst->getOperand(0));
428    Cond.push_back(SecondLastInst->getOperand(1));
429    FBB = LastInst->getOperand(0).getMBB();
430    return false;
431  } else if (SecondLastInst->getOpcode() == PPC::BC &&
432      LastInst->getOpcode() == PPC::B) {
433    if (!SecondLastInst->getOperand(1).isMBB() ||
434        !LastInst->getOperand(0).isMBB())
435      return true;
436    TBB =  SecondLastInst->getOperand(1).getMBB();
437    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
438    Cond.push_back(SecondLastInst->getOperand(0));
439    FBB = LastInst->getOperand(0).getMBB();
440    return false;
441  } else if (SecondLastInst->getOpcode() == PPC::BCn &&
442      LastInst->getOpcode() == PPC::B) {
443    if (!SecondLastInst->getOperand(1).isMBB() ||
444        !LastInst->getOperand(0).isMBB())
445      return true;
446    TBB =  SecondLastInst->getOperand(1).getMBB();
447    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
448    Cond.push_back(SecondLastInst->getOperand(0));
449    FBB = LastInst->getOperand(0).getMBB();
450    return false;
451  } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
452              SecondLastInst->getOpcode() == PPC::BDNZ) &&
453      LastInst->getOpcode() == PPC::B) {
454    if (!SecondLastInst->getOperand(0).isMBB() ||
455        !LastInst->getOperand(0).isMBB())
456      return true;
457    if (DisableCTRLoopAnal)
458      return true;
459    TBB = SecondLastInst->getOperand(0).getMBB();
460    Cond.push_back(MachineOperand::CreateImm(1));
461    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
462                                             true));
463    FBB = LastInst->getOperand(0).getMBB();
464    return false;
465  } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
466              SecondLastInst->getOpcode() == PPC::BDZ) &&
467      LastInst->getOpcode() == PPC::B) {
468    if (!SecondLastInst->getOperand(0).isMBB() ||
469        !LastInst->getOperand(0).isMBB())
470      return true;
471    if (DisableCTRLoopAnal)
472      return true;
473    TBB = SecondLastInst->getOperand(0).getMBB();
474    Cond.push_back(MachineOperand::CreateImm(0));
475    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
476                                             true));
477    FBB = LastInst->getOperand(0).getMBB();
478    return false;
479  }
480
481  // If the block ends with two PPC:Bs, handle it.  The second one is not
482  // executed, so remove it.
483  if (SecondLastInst->getOpcode() == PPC::B &&
484      LastInst->getOpcode() == PPC::B) {
485    if (!SecondLastInst->getOperand(0).isMBB())
486      return true;
487    TBB = SecondLastInst->getOperand(0).getMBB();
488    I = LastInst;
489    if (AllowModify)
490      I->eraseFromParent();
491    return false;
492  }
493
494  // Otherwise, can't handle this.
495  return true;
496}
497
498unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
499  MachineBasicBlock::iterator I = MBB.end();
500  if (I == MBB.begin()) return 0;
501  --I;
502  while (I->isDebugValue()) {
503    if (I == MBB.begin())
504      return 0;
505    --I;
506  }
507  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
508      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
509      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
510      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
511    return 0;
512
513  // Remove the branch.
514  I->eraseFromParent();
515
516  I = MBB.end();
517
518  if (I == MBB.begin()) return 1;
519  --I;
520  if (I->getOpcode() != PPC::BCC &&
521      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
522      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
523      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
524    return 1;
525
526  // Remove the branch.
527  I->eraseFromParent();
528  return 2;
529}
530
531unsigned
532PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
533                           MachineBasicBlock *FBB,
534                           const SmallVectorImpl<MachineOperand> &Cond,
535                           DebugLoc DL) const {
536  // Shouldn't be a fall through.
537  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
538  assert((Cond.size() == 2 || Cond.size() == 0) &&
539         "PPC branch conditions have two components!");
540
541  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
542
543  // One-way branch.
544  if (!FBB) {
545    if (Cond.empty())   // Unconditional branch
546      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
547    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
548      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
549                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
550                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
551    else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
552      BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
553    else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
554      BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
555    else                // Conditional branch
556      BuildMI(&MBB, DL, get(PPC::BCC))
557        .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
558    return 1;
559  }
560
561  // Two-way Conditional Branch.
562  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
563    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
564                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
565                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
566  else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
567    BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
568  else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
569    BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
570  else
571    BuildMI(&MBB, DL, get(PPC::BCC))
572      .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
573  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
574  return 2;
575}
576
577// Select analysis.
578bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
579                const SmallVectorImpl<MachineOperand> &Cond,
580                unsigned TrueReg, unsigned FalseReg,
581                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
582  if (!TM.getSubtargetImpl()->hasISEL())
583    return false;
584
585  if (Cond.size() != 2)
586    return false;
587
588  // If this is really a bdnz-like condition, then it cannot be turned into a
589  // select.
590  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
591    return false;
592
593  // Check register classes.
594  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
595  const TargetRegisterClass *RC =
596    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
597  if (!RC)
598    return false;
599
600  // isel is for regular integer GPRs only.
601  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
602      !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
603      !PPC::G8RCRegClass.hasSubClassEq(RC) &&
604      !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
605    return false;
606
607  // FIXME: These numbers are for the A2, how well they work for other cores is
608  // an open question. On the A2, the isel instruction has a 2-cycle latency
609  // but single-cycle throughput. These numbers are used in combination with
610  // the MispredictPenalty setting from the active SchedMachineModel.
611  CondCycles = 1;
612  TrueCycles = 1;
613  FalseCycles = 1;
614
615  return true;
616}
617
618void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
619                                MachineBasicBlock::iterator MI, DebugLoc dl,
620                                unsigned DestReg,
621                                const SmallVectorImpl<MachineOperand> &Cond,
622                                unsigned TrueReg, unsigned FalseReg) const {
623  assert(Cond.size() == 2 &&
624         "PPC branch conditions have two components!");
625
626  assert(TM.getSubtargetImpl()->hasISEL() &&
627         "Cannot insert select on target without ISEL support");
628
629  // Get the register classes.
630  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
631  const TargetRegisterClass *RC =
632    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
633  assert(RC && "TrueReg and FalseReg must have overlapping register classes");
634
635  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
636                 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
637  assert((Is64Bit ||
638          PPC::GPRCRegClass.hasSubClassEq(RC) ||
639          PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
640         "isel is for regular integer GPRs only");
641
642  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
643  unsigned SelectPred = Cond[0].getImm();
644
645  unsigned SubIdx;
646  bool SwapOps;
647  switch (SelectPred) {
648  default: llvm_unreachable("invalid predicate for isel");
649  case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
650  case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
651  case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
652  case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
653  case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
654  case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
655  case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
656  case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
657  case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
658  case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
659  }
660
661  unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
662           SecondReg = SwapOps ? TrueReg  : FalseReg;
663
664  // The first input register of isel cannot be r0. If it is a member
665  // of a register class that can be r0, then copy it first (the
666  // register allocator should eliminate the copy).
667  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
668      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
669    const TargetRegisterClass *FirstRC =
670      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
671        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
672    unsigned OldFirstReg = FirstReg;
673    FirstReg = MRI.createVirtualRegister(FirstRC);
674    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
675      .addReg(OldFirstReg);
676  }
677
678  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
679    .addReg(FirstReg).addReg(SecondReg)
680    .addReg(Cond[1].getReg(), 0, SubIdx);
681}
682
683void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
684                               MachineBasicBlock::iterator I, DebugLoc DL,
685                               unsigned DestReg, unsigned SrcReg,
686                               bool KillSrc) const {
687  // We can end up with self copies and similar things as a result of VSX copy
688  // legalization. Promote them here.
689  const TargetRegisterInfo *TRI = &getRegisterInfo();
690  if (PPC::F8RCRegClass.contains(DestReg) &&
691      PPC::VSLRCRegClass.contains(SrcReg)) {
692    unsigned SuperReg =
693      TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
694
695    if (VSXSelfCopyCrash && SrcReg == SuperReg)
696      llvm_unreachable("nop VSX copy");
697
698    DestReg = SuperReg;
699  } else if (PPC::VRRCRegClass.contains(DestReg) &&
700             PPC::VSHRCRegClass.contains(SrcReg)) {
701    unsigned SuperReg =
702      TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
703
704    if (VSXSelfCopyCrash && SrcReg == SuperReg)
705      llvm_unreachable("nop VSX copy");
706
707    DestReg = SuperReg;
708  } else if (PPC::F8RCRegClass.contains(SrcReg) &&
709             PPC::VSLRCRegClass.contains(DestReg)) {
710    unsigned SuperReg =
711      TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
712
713    if (VSXSelfCopyCrash && DestReg == SuperReg)
714      llvm_unreachable("nop VSX copy");
715
716    SrcReg = SuperReg;
717  } else if (PPC::VRRCRegClass.contains(SrcReg) &&
718             PPC::VSHRCRegClass.contains(DestReg)) {
719    unsigned SuperReg =
720      TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
721
722    if (VSXSelfCopyCrash && DestReg == SuperReg)
723      llvm_unreachable("nop VSX copy");
724
725    SrcReg = SuperReg;
726  }
727
728  unsigned Opc;
729  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
730    Opc = PPC::OR;
731  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
732    Opc = PPC::OR8;
733  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
734    Opc = PPC::FMR;
735  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
736    Opc = PPC::MCRF;
737  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
738    Opc = PPC::VOR;
739  else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
740    // There are two different ways this can be done:
741    //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
742    //      issue in VSU pipeline 0.
743    //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
744    //      can go to either pipeline.
745    // We'll always use xxlor here, because in practically all cases where
746    // copies are generated, they are close enough to some use that the
747    // lower-latency form is preferable.
748    Opc = PPC::XXLOR;
749  else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg))
750    Opc = PPC::XXLORf;
751  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
752    Opc = PPC::CROR;
753  else
754    llvm_unreachable("Impossible reg-to-reg copy");
755
756  const MCInstrDesc &MCID = get(Opc);
757  if (MCID.getNumOperands() == 3)
758    BuildMI(MBB, I, DL, MCID, DestReg)
759      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
760  else
761    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
762}
763
764// This function returns true if a CR spill is necessary and false otherwise.
765bool
766PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
767                                  unsigned SrcReg, bool isKill,
768                                  int FrameIdx,
769                                  const TargetRegisterClass *RC,
770                                  SmallVectorImpl<MachineInstr*> &NewMIs,
771                                  bool &NonRI, bool &SpillsVRS) const{
772  // Note: If additional store instructions are added here,
773  // update isStoreToStackSlot.
774
775  DebugLoc DL;
776  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
777      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
778    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
779                                       .addReg(SrcReg,
780                                               getKillRegState(isKill)),
781                                       FrameIdx));
782  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
783             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
784    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
785                                       .addReg(SrcReg,
786                                               getKillRegState(isKill)),
787                                       FrameIdx));
788  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
789    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
790                                       .addReg(SrcReg,
791                                               getKillRegState(isKill)),
792                                       FrameIdx));
793  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
794    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
795                                       .addReg(SrcReg,
796                                               getKillRegState(isKill)),
797                                       FrameIdx));
798  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
799    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
800                                       .addReg(SrcReg,
801                                               getKillRegState(isKill)),
802                                       FrameIdx));
803    return true;
804  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
805    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
806                                       .addReg(SrcReg,
807                                               getKillRegState(isKill)),
808                                       FrameIdx));
809    return true;
810  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
811    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
812                                       .addReg(SrcReg,
813                                               getKillRegState(isKill)),
814                                       FrameIdx));
815    NonRI = true;
816  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
817    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
818                                       .addReg(SrcReg,
819                                               getKillRegState(isKill)),
820                                       FrameIdx));
821    NonRI = true;
822  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
823    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
824                                       .addReg(SrcReg,
825                                               getKillRegState(isKill)),
826                                       FrameIdx));
827    NonRI = true;
828  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
829    assert(TM.getSubtargetImpl()->isDarwin() &&
830           "VRSAVE only needs spill/restore on Darwin");
831    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
832                                       .addReg(SrcReg,
833                                               getKillRegState(isKill)),
834                                       FrameIdx));
835    SpillsVRS = true;
836  } else {
837    llvm_unreachable("Unknown regclass!");
838  }
839
840  return false;
841}
842
843void
844PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
845                                  MachineBasicBlock::iterator MI,
846                                  unsigned SrcReg, bool isKill, int FrameIdx,
847                                  const TargetRegisterClass *RC,
848                                  const TargetRegisterInfo *TRI) const {
849  MachineFunction &MF = *MBB.getParent();
850  SmallVector<MachineInstr*, 4> NewMIs;
851
852  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
853  FuncInfo->setHasSpills();
854
855  bool NonRI = false, SpillsVRS = false;
856  if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
857                          NonRI, SpillsVRS))
858    FuncInfo->setSpillsCR();
859
860  if (SpillsVRS)
861    FuncInfo->setSpillsVRSAVE();
862
863  if (NonRI)
864    FuncInfo->setHasNonRISpills();
865
866  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
867    MBB.insert(MI, NewMIs[i]);
868
869  const MachineFrameInfo &MFI = *MF.getFrameInfo();
870  MachineMemOperand *MMO =
871    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
872                            MachineMemOperand::MOStore,
873                            MFI.getObjectSize(FrameIdx),
874                            MFI.getObjectAlignment(FrameIdx));
875  NewMIs.back()->addMemOperand(MF, MMO);
876}
877
878bool
879PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
880                                   unsigned DestReg, int FrameIdx,
881                                   const TargetRegisterClass *RC,
882                                   SmallVectorImpl<MachineInstr*> &NewMIs,
883                                   bool &NonRI, bool &SpillsVRS) const{
884  // Note: If additional load instructions are added here,
885  // update isLoadFromStackSlot.
886
887  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
888      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
889    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
890                                               DestReg), FrameIdx));
891  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
892             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
893    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
894                                       FrameIdx));
895  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
896    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
897                                       FrameIdx));
898  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
899    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
900                                       FrameIdx));
901  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
902    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
903                                               get(PPC::RESTORE_CR), DestReg),
904                                       FrameIdx));
905    return true;
906  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
907    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
908                                               get(PPC::RESTORE_CRBIT), DestReg),
909                                       FrameIdx));
910    return true;
911  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
912    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
913                                       FrameIdx));
914    NonRI = true;
915  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
916    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
917                                       FrameIdx));
918    NonRI = true;
919  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
920    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
921                                       FrameIdx));
922    NonRI = true;
923  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
924    assert(TM.getSubtargetImpl()->isDarwin() &&
925           "VRSAVE only needs spill/restore on Darwin");
926    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
927                                               get(PPC::RESTORE_VRSAVE),
928                                               DestReg),
929                                       FrameIdx));
930    SpillsVRS = true;
931  } else {
932    llvm_unreachable("Unknown regclass!");
933  }
934
935  return false;
936}
937
938void
939PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
940                                   MachineBasicBlock::iterator MI,
941                                   unsigned DestReg, int FrameIdx,
942                                   const TargetRegisterClass *RC,
943                                   const TargetRegisterInfo *TRI) const {
944  MachineFunction &MF = *MBB.getParent();
945  SmallVector<MachineInstr*, 4> NewMIs;
946  DebugLoc DL;
947  if (MI != MBB.end()) DL = MI->getDebugLoc();
948
949  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
950  FuncInfo->setHasSpills();
951
952  bool NonRI = false, SpillsVRS = false;
953  if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
954                           NonRI, SpillsVRS))
955    FuncInfo->setSpillsCR();
956
957  if (SpillsVRS)
958    FuncInfo->setSpillsVRSAVE();
959
960  if (NonRI)
961    FuncInfo->setHasNonRISpills();
962
963  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
964    MBB.insert(MI, NewMIs[i]);
965
966  const MachineFrameInfo &MFI = *MF.getFrameInfo();
967  MachineMemOperand *MMO =
968    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
969                            MachineMemOperand::MOLoad,
970                            MFI.getObjectSize(FrameIdx),
971                            MFI.getObjectAlignment(FrameIdx));
972  NewMIs.back()->addMemOperand(MF, MMO);
973}
974
975bool PPCInstrInfo::
976ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
977  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
978  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
979    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
980  else
981    // Leave the CR# the same, but invert the condition.
982    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
983  return false;
984}
985
986bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
987                             unsigned Reg, MachineRegisterInfo *MRI) const {
988  // For some instructions, it is legal to fold ZERO into the RA register field.
989  // A zero immediate should always be loaded with a single li.
990  unsigned DefOpc = DefMI->getOpcode();
991  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
992    return false;
993  if (!DefMI->getOperand(1).isImm())
994    return false;
995  if (DefMI->getOperand(1).getImm() != 0)
996    return false;
997
998  // Note that we cannot here invert the arguments of an isel in order to fold
999  // a ZERO into what is presented as the second argument. All we have here
1000  // is the condition bit, and that might come from a CR-logical bit operation.
1001
1002  const MCInstrDesc &UseMCID = UseMI->getDesc();
1003
1004  // Only fold into real machine instructions.
1005  if (UseMCID.isPseudo())
1006    return false;
1007
1008  unsigned UseIdx;
1009  for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1010    if (UseMI->getOperand(UseIdx).isReg() &&
1011        UseMI->getOperand(UseIdx).getReg() == Reg)
1012      break;
1013
1014  assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1015  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1016
1017  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1018
1019  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1020  // register (which might also be specified as a pointer class kind).
1021  if (UseInfo->isLookupPtrRegClass()) {
1022    if (UseInfo->RegClass /* Kind */ != 1)
1023      return false;
1024  } else {
1025    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1026        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1027      return false;
1028  }
1029
1030  // Make sure this is not tied to an output register (or otherwise
1031  // constrained). This is true for ST?UX registers, for example, which
1032  // are tied to their output registers.
1033  if (UseInfo->Constraints != 0)
1034    return false;
1035
1036  unsigned ZeroReg;
1037  if (UseInfo->isLookupPtrRegClass()) {
1038    bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1039    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1040  } else {
1041    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1042              PPC::ZERO8 : PPC::ZERO;
1043  }
1044
1045  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1046  UseMI->getOperand(UseIdx).setReg(ZeroReg);
1047
1048  if (DeleteDef)
1049    DefMI->eraseFromParent();
1050
1051  return true;
1052}
1053
1054static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1055  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1056       I != IE; ++I)
1057    if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1058      return true;
1059  return false;
1060}
1061
1062// We should make sure that, if we're going to predicate both sides of a
1063// condition (a diamond), that both sides don't define the counter register. We
1064// can predicate counter-decrement-based branches, but while that predicates
1065// the branching, it does not predicate the counter decrement. If we tried to
1066// merge the triangle into one predicated block, we'd decrement the counter
1067// twice.
1068bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1069                     unsigned NumT, unsigned ExtraT,
1070                     MachineBasicBlock &FMBB,
1071                     unsigned NumF, unsigned ExtraF,
1072                     const BranchProbability &Probability) const {
1073  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1074}
1075
1076
1077bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
1078  // The predicated branches are identified by their type, not really by the
1079  // explicit presence of a predicate. Furthermore, some of them can be
1080  // predicated more than once. Because if conversion won't try to predicate
1081  // any instruction which already claims to be predicated (by returning true
1082  // here), always return false. In doing so, we let isPredicable() be the
1083  // final word on whether not the instruction can be (further) predicated.
1084
1085  return false;
1086}
1087
1088bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1089  if (!MI->isTerminator())
1090    return false;
1091
1092  // Conditional branch is a special case.
1093  if (MI->isBranch() && !MI->isBarrier())
1094    return true;
1095
1096  return !isPredicated(MI);
1097}
1098
1099bool PPCInstrInfo::PredicateInstruction(
1100                     MachineInstr *MI,
1101                     const SmallVectorImpl<MachineOperand> &Pred) const {
1102  unsigned OpC = MI->getOpcode();
1103  if (OpC == PPC::BLR) {
1104    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1105      bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1106      MI->setDesc(get(Pred[0].getImm() ?
1107                      (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
1108                      (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
1109    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1110      MI->setDesc(get(PPC::BCLR));
1111      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1112        .addReg(Pred[1].getReg());
1113    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1114      MI->setDesc(get(PPC::BCLRn));
1115      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1116        .addReg(Pred[1].getReg());
1117    } else {
1118      MI->setDesc(get(PPC::BCCLR));
1119      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1120        .addImm(Pred[0].getImm())
1121        .addReg(Pred[1].getReg());
1122    }
1123
1124    return true;
1125  } else if (OpC == PPC::B) {
1126    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1127      bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1128      MI->setDesc(get(Pred[0].getImm() ?
1129                      (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1130                      (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
1131    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1132      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1133      MI->RemoveOperand(0);
1134
1135      MI->setDesc(get(PPC::BC));
1136      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1137        .addReg(Pred[1].getReg())
1138        .addMBB(MBB);
1139    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1140      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1141      MI->RemoveOperand(0);
1142
1143      MI->setDesc(get(PPC::BCn));
1144      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1145        .addReg(Pred[1].getReg())
1146        .addMBB(MBB);
1147    } else {
1148      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1149      MI->RemoveOperand(0);
1150
1151      MI->setDesc(get(PPC::BCC));
1152      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1153        .addImm(Pred[0].getImm())
1154        .addReg(Pred[1].getReg())
1155        .addMBB(MBB);
1156    }
1157
1158    return true;
1159  } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1160             OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1161    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1162      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1163
1164    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1165    bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1166
1167    if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1168      MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
1169                                (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
1170      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1171        .addReg(Pred[1].getReg());
1172      return true;
1173    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1174      MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
1175                                (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
1176      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1177        .addReg(Pred[1].getReg());
1178      return true;
1179    }
1180
1181    MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
1182                              (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
1183    MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1184      .addImm(Pred[0].getImm())
1185      .addReg(Pred[1].getReg());
1186    return true;
1187  }
1188
1189  return false;
1190}
1191
1192bool PPCInstrInfo::SubsumesPredicate(
1193                     const SmallVectorImpl<MachineOperand> &Pred1,
1194                     const SmallVectorImpl<MachineOperand> &Pred2) const {
1195  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1196  assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1197
1198  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1199    return false;
1200  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1201    return false;
1202
1203  // P1 can only subsume P2 if they test the same condition register.
1204  if (Pred1[1].getReg() != Pred2[1].getReg())
1205    return false;
1206
1207  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1208  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1209
1210  if (P1 == P2)
1211    return true;
1212
1213  // Does P1 subsume P2, e.g. GE subsumes GT.
1214  if (P1 == PPC::PRED_LE &&
1215      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1216    return true;
1217  if (P1 == PPC::PRED_GE &&
1218      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1219    return true;
1220
1221  return false;
1222}
1223
1224bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
1225                                    std::vector<MachineOperand> &Pred) const {
1226  // Note: At the present time, the contents of Pred from this function is
1227  // unused by IfConversion. This implementation follows ARM by pushing the
1228  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1229  // predicate, instructions defining CTR or CTR8 are also included as
1230  // predicate-defining instructions.
1231
1232  const TargetRegisterClass *RCs[] =
1233    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1234      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1235
1236  bool Found = false;
1237  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1238    const MachineOperand &MO = MI->getOperand(i);
1239    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1240      const TargetRegisterClass *RC = RCs[c];
1241      if (MO.isReg()) {
1242        if (MO.isDef() && RC->contains(MO.getReg())) {
1243          Pred.push_back(MO);
1244          Found = true;
1245        }
1246      } else if (MO.isRegMask()) {
1247        for (TargetRegisterClass::iterator I = RC->begin(),
1248             IE = RC->end(); I != IE; ++I)
1249          if (MO.clobbersPhysReg(*I)) {
1250            Pred.push_back(MO);
1251            Found = true;
1252          }
1253      }
1254    }
1255  }
1256
1257  return Found;
1258}
1259
1260bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
1261  unsigned OpC = MI->getOpcode();
1262  switch (OpC) {
1263  default:
1264    return false;
1265  case PPC::B:
1266  case PPC::BLR:
1267  case PPC::BCTR:
1268  case PPC::BCTR8:
1269  case PPC::BCTRL:
1270  case PPC::BCTRL8:
1271    return true;
1272  }
1273}
1274
1275bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1276                                  unsigned &SrcReg, unsigned &SrcReg2,
1277                                  int &Mask, int &Value) const {
1278  unsigned Opc = MI->getOpcode();
1279
1280  switch (Opc) {
1281  default: return false;
1282  case PPC::CMPWI:
1283  case PPC::CMPLWI:
1284  case PPC::CMPDI:
1285  case PPC::CMPLDI:
1286    SrcReg = MI->getOperand(1).getReg();
1287    SrcReg2 = 0;
1288    Value = MI->getOperand(2).getImm();
1289    Mask = 0xFFFF;
1290    return true;
1291  case PPC::CMPW:
1292  case PPC::CMPLW:
1293  case PPC::CMPD:
1294  case PPC::CMPLD:
1295  case PPC::FCMPUS:
1296  case PPC::FCMPUD:
1297    SrcReg = MI->getOperand(1).getReg();
1298    SrcReg2 = MI->getOperand(2).getReg();
1299    return true;
1300  }
1301}
1302
1303bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1304                                        unsigned SrcReg, unsigned SrcReg2,
1305                                        int Mask, int Value,
1306                                        const MachineRegisterInfo *MRI) const {
1307  if (DisableCmpOpt)
1308    return false;
1309
1310  int OpC = CmpInstr->getOpcode();
1311  unsigned CRReg = CmpInstr->getOperand(0).getReg();
1312
1313  // FP record forms set CR1 based on the execption status bits, not a
1314  // comparison with zero.
1315  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1316    return false;
1317
1318  // The record forms set the condition register based on a signed comparison
1319  // with zero (so says the ISA manual). This is not as straightforward as it
1320  // seems, however, because this is always a 64-bit comparison on PPC64, even
1321  // for instructions that are 32-bit in nature (like slw for example).
1322  // So, on PPC32, for unsigned comparisons, we can use the record forms only
1323  // for equality checks (as those don't depend on the sign). On PPC64,
1324  // we are restricted to equality for unsigned 64-bit comparisons and for
1325  // signed 32-bit comparisons the applicability is more restricted.
1326  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1327  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1328  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1329  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1330
1331  // Get the unique definition of SrcReg.
1332  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1333  if (!MI) return false;
1334  int MIOpC = MI->getOpcode();
1335
1336  bool equalityOnly = false;
1337  bool noSub = false;
1338  if (isPPC64) {
1339    if (is32BitSignedCompare) {
1340      // We can perform this optimization only if MI is sign-extending.
1341      if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1342          MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1343          MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1344          MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1345          MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1346        noSub = true;
1347      } else
1348        return false;
1349    } else if (is32BitUnsignedCompare) {
1350      // We can perform this optimization, equality only, if MI is
1351      // zero-extending.
1352      if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1353          MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1354          MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
1355        noSub = true;
1356        equalityOnly = true;
1357      } else
1358        return false;
1359    } else
1360      equalityOnly = is64BitUnsignedCompare;
1361  } else
1362    equalityOnly = is32BitUnsignedCompare;
1363
1364  if (equalityOnly) {
1365    // We need to check the uses of the condition register in order to reject
1366    // non-equality comparisons.
1367    for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1368         IE = MRI->use_instr_end(); I != IE; ++I) {
1369      MachineInstr *UseMI = &*I;
1370      if (UseMI->getOpcode() == PPC::BCC) {
1371        unsigned Pred = UseMI->getOperand(0).getImm();
1372        if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1373          return false;
1374      } else if (UseMI->getOpcode() == PPC::ISEL ||
1375                 UseMI->getOpcode() == PPC::ISEL8) {
1376        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1377        if (SubIdx != PPC::sub_eq)
1378          return false;
1379      } else
1380        return false;
1381    }
1382  }
1383
1384  MachineBasicBlock::iterator I = CmpInstr;
1385
1386  // Scan forward to find the first use of the compare.
1387  for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1388       I != EL; ++I) {
1389    bool FoundUse = false;
1390    for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1391         JE = MRI->use_instr_end(); J != JE; ++J)
1392      if (&*J == &*I) {
1393        FoundUse = true;
1394        break;
1395      }
1396
1397    if (FoundUse)
1398      break;
1399  }
1400
1401  // There are two possible candidates which can be changed to set CR[01].
1402  // One is MI, the other is a SUB instruction.
1403  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1404  MachineInstr *Sub = nullptr;
1405  if (SrcReg2 != 0)
1406    // MI is not a candidate for CMPrr.
1407    MI = nullptr;
1408  // FIXME: Conservatively refuse to convert an instruction which isn't in the
1409  // same BB as the comparison. This is to allow the check below to avoid calls
1410  // (and other explicit clobbers); instead we should really check for these
1411  // more explicitly (in at least a few predecessors).
1412  else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1413    // PPC does not have a record-form SUBri.
1414    return false;
1415  }
1416
1417  // Search for Sub.
1418  const TargetRegisterInfo *TRI = &getRegisterInfo();
1419  --I;
1420
1421  // Get ready to iterate backward from CmpInstr.
1422  MachineBasicBlock::iterator E = MI,
1423                              B = CmpInstr->getParent()->begin();
1424
1425  for (; I != E && !noSub; --I) {
1426    const MachineInstr &Instr = *I;
1427    unsigned IOpC = Instr.getOpcode();
1428
1429    if (&*I != CmpInstr && (
1430        Instr.modifiesRegister(PPC::CR0, TRI) ||
1431        Instr.readsRegister(PPC::CR0, TRI)))
1432      // This instruction modifies or uses the record condition register after
1433      // the one we want to change. While we could do this transformation, it
1434      // would likely not be profitable. This transformation removes one
1435      // instruction, and so even forcing RA to generate one move probably
1436      // makes it unprofitable.
1437      return false;
1438
1439    // Check whether CmpInstr can be made redundant by the current instruction.
1440    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1441         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1442        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1443        ((Instr.getOperand(1).getReg() == SrcReg &&
1444          Instr.getOperand(2).getReg() == SrcReg2) ||
1445        (Instr.getOperand(1).getReg() == SrcReg2 &&
1446         Instr.getOperand(2).getReg() == SrcReg))) {
1447      Sub = &*I;
1448      break;
1449    }
1450
1451    if (I == B)
1452      // The 'and' is below the comparison instruction.
1453      return false;
1454  }
1455
1456  // Return false if no candidates exist.
1457  if (!MI && !Sub)
1458    return false;
1459
1460  // The single candidate is called MI.
1461  if (!MI) MI = Sub;
1462
1463  int NewOpC = -1;
1464  MIOpC = MI->getOpcode();
1465  if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1466    NewOpC = MIOpC;
1467  else {
1468    NewOpC = PPC::getRecordFormOpcode(MIOpC);
1469    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1470      NewOpC = MIOpC;
1471  }
1472
1473  // FIXME: On the non-embedded POWER architectures, only some of the record
1474  // forms are fast, and we should use only the fast ones.
1475
1476  // The defining instruction has a record form (or is already a record
1477  // form). It is possible, however, that we'll need to reverse the condition
1478  // code of the users.
1479  if (NewOpC == -1)
1480    return false;
1481
1482  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1483  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1484
1485  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1486  // needs to be updated to be based on SUB.  Push the condition code
1487  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1488  // condition code of these operands will be modified.
1489  bool ShouldSwap = false;
1490  if (Sub) {
1491    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1492      Sub->getOperand(2).getReg() == SrcReg;
1493
1494    // The operands to subf are the opposite of sub, so only in the fixed-point
1495    // case, invert the order.
1496    ShouldSwap = !ShouldSwap;
1497  }
1498
1499  if (ShouldSwap)
1500    for (MachineRegisterInfo::use_instr_iterator
1501         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1502         I != IE; ++I) {
1503      MachineInstr *UseMI = &*I;
1504      if (UseMI->getOpcode() == PPC::BCC) {
1505        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1506        assert((!equalityOnly ||
1507                Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1508               "Invalid predicate for equality-only optimization");
1509        PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1510                                PPC::getSwappedPredicate(Pred)));
1511      } else if (UseMI->getOpcode() == PPC::ISEL ||
1512                 UseMI->getOpcode() == PPC::ISEL8) {
1513        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1514        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1515               "Invalid CR bit for equality-only optimization");
1516
1517        if (NewSubReg == PPC::sub_lt)
1518          NewSubReg = PPC::sub_gt;
1519        else if (NewSubReg == PPC::sub_gt)
1520          NewSubReg = PPC::sub_lt;
1521
1522        SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1523                                                 NewSubReg));
1524      } else // We need to abort on a user we don't understand.
1525        return false;
1526    }
1527
1528  // Create a new virtual register to hold the value of the CR set by the
1529  // record-form instruction. If the instruction was not previously in
1530  // record form, then set the kill flag on the CR.
1531  CmpInstr->eraseFromParent();
1532
1533  MachineBasicBlock::iterator MII = MI;
1534  BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1535          get(TargetOpcode::COPY), CRReg)
1536    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1537
1538  if (MIOpC != NewOpC) {
1539    // We need to be careful here: we're replacing one instruction with
1540    // another, and we need to make sure that we get all of the right
1541    // implicit uses and defs. On the other hand, the caller may be holding
1542    // an iterator to this instruction, and so we can't delete it (this is
1543    // specifically the case if this is the instruction directly after the
1544    // compare).
1545
1546    const MCInstrDesc &NewDesc = get(NewOpC);
1547    MI->setDesc(NewDesc);
1548
1549    if (NewDesc.ImplicitDefs)
1550      for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
1551           *ImpDefs; ++ImpDefs)
1552        if (!MI->definesRegister(*ImpDefs))
1553          MI->addOperand(*MI->getParent()->getParent(),
1554                         MachineOperand::CreateReg(*ImpDefs, true, true));
1555    if (NewDesc.ImplicitUses)
1556      for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
1557           *ImpUses; ++ImpUses)
1558        if (!MI->readsRegister(*ImpUses))
1559          MI->addOperand(*MI->getParent()->getParent(),
1560                         MachineOperand::CreateReg(*ImpUses, false, true));
1561  }
1562
1563  // Modify the condition code of operands in OperandsToUpdate.
1564  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1565  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1566  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1567    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1568
1569  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1570    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1571
1572  return true;
1573}
1574
1575/// GetInstSize - Return the number of bytes of code the specified
1576/// instruction may be.  This returns the maximum number of bytes.
1577///
1578unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1579  unsigned Opcode = MI->getOpcode();
1580
1581  if (Opcode == PPC::INLINEASM) {
1582    const MachineFunction *MF = MI->getParent()->getParent();
1583    const char *AsmStr = MI->getOperand(0).getSymbolName();
1584    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1585  } else {
1586    const MCInstrDesc &Desc = get(Opcode);
1587    return Desc.getSize();
1588  }
1589}
1590
1591#undef DEBUG_TYPE
1592#define DEBUG_TYPE "ppc-vsx-fma-mutate"
1593
1594namespace {
1595  // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
1596  // (Altivec and scalar floating-point registers), we need to transform the
1597  // copies into subregister copies with other restrictions.
1598  struct PPCVSXFMAMutate : public MachineFunctionPass {
1599    static char ID;
1600    PPCVSXFMAMutate() : MachineFunctionPass(ID) {
1601      initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
1602    }
1603
1604    LiveIntervals *LIS;
1605
1606    const PPCTargetMachine *TM;
1607    const PPCInstrInfo *TII;
1608
1609protected:
1610    bool processBlock(MachineBasicBlock &MBB) {
1611      bool Changed = false;
1612
1613      MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1614      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1615           I != IE; ++I) {
1616        MachineInstr *MI = I;
1617
1618        // The default (A-type) VSX FMA form kills the addend (it is taken from
1619        // the target register, which is then updated to reflect the result of
1620        // the FMA). If the instruction, however, kills one of the registers
1621        // used for the product, then we can use the M-form instruction (which
1622        // will take that value from the to-be-defined register).
1623
1624        int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
1625        if (AltOpc == -1)
1626          continue;
1627
1628        // This pass is run after register coalescing, and so we're looking for
1629        // a situation like this:
1630        //   ...
1631        //   %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
1632        //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
1633        //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
1634        //   ...
1635        //   %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
1636        //                         %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
1637        //   ...
1638        // Where we can eliminate the copy by changing from the A-type to the
1639        // M-type instruction. Specifically, for this example, this means:
1640        //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
1641        //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
1642        // is replaced by:
1643        //   %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
1644        //                         %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
1645        // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
1646
1647        SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
1648
1649        VNInfo *AddendValNo =
1650          LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();
1651        MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
1652
1653        // The addend and this instruction must be in the same block.
1654
1655        if (!AddendMI || AddendMI->getParent() != MI->getParent())
1656          continue;
1657
1658        // The addend must be a full copy within the same register class.
1659
1660        if (!AddendMI->isFullCopy())
1661          continue;
1662
1663        unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
1664        if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
1665          if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
1666              MRI.getRegClass(AddendSrcReg))
1667            continue;
1668        } else {
1669          // If AddendSrcReg is a physical register, make sure the destination
1670          // register class contains it.
1671          if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
1672                ->contains(AddendSrcReg))
1673            continue;
1674        }
1675
1676        // In theory, there could be other uses of the addend copy before this
1677        // fma.  We could deal with this, but that would require additional
1678        // logic below and I suspect it will not occur in any relevant
1679        // situations.
1680        bool OtherUsers = false;
1681        for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
1682             J != JE; --J)
1683          if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
1684            OtherUsers = true;
1685            break;
1686          }
1687
1688        if (OtherUsers)
1689          continue;
1690
1691        // Find one of the product operands that is killed by this instruction.
1692
1693        unsigned KilledProdOp = 0, OtherProdOp = 0;
1694        if (LIS->getInterval(MI->getOperand(2).getReg())
1695                     .Query(FMAIdx).isKill()) {
1696          KilledProdOp = 2;
1697          OtherProdOp  = 3;
1698        } else if (LIS->getInterval(MI->getOperand(3).getReg())
1699                     .Query(FMAIdx).isKill()) {
1700          KilledProdOp = 3;
1701          OtherProdOp  = 2;
1702        }
1703
1704        // If there are no killed product operands, then this transformation is
1705        // likely not profitable.
1706        if (!KilledProdOp)
1707          continue;
1708
1709        // In order to replace the addend here with the source of the copy,
1710        // it must still be live here.
1711        if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx))
1712          continue;
1713
1714        // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
1715
1716        unsigned AddReg = AddendMI->getOperand(1).getReg();
1717        unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
1718        unsigned OtherProdReg  = MI->getOperand(OtherProdOp).getReg();
1719
1720        unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
1721        unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
1722        unsigned OtherProdSubReg  = MI->getOperand(OtherProdOp).getSubReg();
1723
1724        bool AddRegKill = AddendMI->getOperand(1).isKill();
1725        bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
1726        bool OtherProdRegKill  = MI->getOperand(OtherProdOp).isKill();
1727
1728        bool AddRegUndef = AddendMI->getOperand(1).isUndef();
1729        bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
1730        bool OtherProdRegUndef  = MI->getOperand(OtherProdOp).isUndef();
1731
1732        unsigned OldFMAReg = MI->getOperand(0).getReg();
1733
1734        assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
1735               "Addend copy not tied to old FMA output!");
1736
1737        DEBUG(dbgs() << "VSX FMA Mutation:\n    " << *MI;);
1738
1739        MI->getOperand(0).setReg(KilledProdReg);
1740        MI->getOperand(1).setReg(KilledProdReg);
1741        MI->getOperand(3).setReg(AddReg);
1742        MI->getOperand(2).setReg(OtherProdReg);
1743
1744        MI->getOperand(0).setSubReg(KilledProdSubReg);
1745        MI->getOperand(1).setSubReg(KilledProdSubReg);
1746        MI->getOperand(3).setSubReg(AddSubReg);
1747        MI->getOperand(2).setSubReg(OtherProdSubReg);
1748
1749        MI->getOperand(1).setIsKill(KilledProdRegKill);
1750        MI->getOperand(3).setIsKill(AddRegKill);
1751        MI->getOperand(2).setIsKill(OtherProdRegKill);
1752
1753        MI->getOperand(1).setIsUndef(KilledProdRegUndef);
1754        MI->getOperand(3).setIsUndef(AddRegUndef);
1755        MI->getOperand(2).setIsUndef(OtherProdRegUndef);
1756
1757        MI->setDesc(TII->get(AltOpc));
1758
1759        DEBUG(dbgs() << " -> " << *MI);
1760
1761        // The killed product operand was killed here, so we can reuse it now
1762        // for the result of the fma.
1763
1764        LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
1765        VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
1766        for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
1767             UI != UE;) {
1768          MachineOperand &UseMO = *UI;
1769          MachineInstr *UseMI = UseMO.getParent();
1770          ++UI;
1771
1772          // Don't replace the result register of the copy we're about to erase.
1773          if (UseMI == AddendMI)
1774            continue;
1775
1776          UseMO.setReg(KilledProdReg);
1777          UseMO.setSubReg(KilledProdSubReg);
1778        }
1779
1780        // Extend the live intervals of the killed product operand to hold the
1781        // fma result.
1782
1783        LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
1784        for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
1785             AI != AE; ++AI) {
1786          // Don't add the segment that corresponds to the original copy.
1787          if (AI->valno == AddendValNo)
1788            continue;
1789
1790          VNInfo *NewFMAValNo =
1791            NewFMAInt.getNextValue(AI->start,
1792                                   LIS->getVNInfoAllocator());
1793
1794          NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
1795                                                     NewFMAValNo));
1796        }
1797        DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
1798
1799        FMAInt.removeValNo(FMAValNo);
1800        DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
1801
1802        // Remove the (now unused) copy.
1803
1804        DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
1805        LIS->RemoveMachineInstrFromMaps(AddendMI);
1806        AddendMI->eraseFromParent();
1807
1808        Changed = true;
1809      }
1810
1811      return Changed;
1812    }
1813
1814public:
1815    bool runOnMachineFunction(MachineFunction &MF) override {
1816      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1817      // If we don't have VSX then go ahead and return without doing
1818      // anything.
1819      if (!TM->getSubtargetImpl()->hasVSX())
1820        return false;
1821
1822      LIS = &getAnalysis<LiveIntervals>();
1823
1824      TII = TM->getInstrInfo();
1825
1826      bool Changed = false;
1827
1828      if (DisableVSXFMAMutate)
1829        return Changed;
1830
1831      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1832        MachineBasicBlock &B = *I++;
1833        if (processBlock(B))
1834          Changed = true;
1835      }
1836
1837      return Changed;
1838    }
1839
1840    void getAnalysisUsage(AnalysisUsage &AU) const override {
1841      AU.addRequired<LiveIntervals>();
1842      AU.addPreserved<LiveIntervals>();
1843      AU.addRequired<SlotIndexes>();
1844      AU.addPreserved<SlotIndexes>();
1845      MachineFunctionPass::getAnalysisUsage(AU);
1846    }
1847  };
1848}
1849
1850INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
1851                      "PowerPC VSX FMA Mutation", false, false)
1852INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
1853INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
1854INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
1855                    "PowerPC VSX FMA Mutation", false, false)
1856
1857char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
1858
1859char PPCVSXFMAMutate::ID = 0;
1860FunctionPass*
1861llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); }
1862
1863#undef DEBUG_TYPE
1864#define DEBUG_TYPE "ppc-vsx-copy"
1865
1866namespace llvm {
1867  void initializePPCVSXCopyPass(PassRegistry&);
1868}
1869
1870namespace {
1871  // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers
1872  // (Altivec and scalar floating-point registers), we need to transform the
1873  // copies into subregister copies with other restrictions.
1874  struct PPCVSXCopy : public MachineFunctionPass {
1875    static char ID;
1876    PPCVSXCopy() : MachineFunctionPass(ID) {
1877      initializePPCVSXCopyPass(*PassRegistry::getPassRegistry());
1878    }
1879
1880    const PPCTargetMachine *TM;
1881    const PPCInstrInfo *TII;
1882
1883    bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC,
1884                      MachineRegisterInfo &MRI) {
1885      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1886        return RC->hasSubClassEq(MRI.getRegClass(Reg));
1887      } else if (RC->contains(Reg)) {
1888        return true;
1889      }
1890
1891      return false;
1892    }
1893
1894    bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) {
1895      return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI);
1896    }
1897
1898    bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) {
1899      return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI);
1900    }
1901
1902    bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) {
1903      return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI);
1904    }
1905
1906protected:
1907    bool processBlock(MachineBasicBlock &MBB) {
1908      bool Changed = false;
1909
1910      MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1911      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1912           I != IE; ++I) {
1913        MachineInstr *MI = I;
1914        if (!MI->isFullCopy())
1915          continue;
1916
1917        MachineOperand &DstMO = MI->getOperand(0);
1918        MachineOperand &SrcMO = MI->getOperand(1);
1919
1920        if ( IsVSReg(DstMO.getReg(), MRI) &&
1921            !IsVSReg(SrcMO.getReg(), MRI)) {
1922          // This is a copy *to* a VSX register from a non-VSX register.
1923          Changed = true;
1924
1925          const TargetRegisterClass *SrcRC =
1926            IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
1927                                           &PPC::VSLRCRegClass;
1928          assert((IsF8Reg(SrcMO.getReg(), MRI) ||
1929                  IsVRReg(SrcMO.getReg(), MRI)) &&
1930                 "Unknown source for a VSX copy");
1931
1932          unsigned NewVReg = MRI.createVirtualRegister(SrcRC);
1933          BuildMI(MBB, MI, MI->getDebugLoc(),
1934                  TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg)
1935            .addImm(1) // add 1, not 0, because there is no implicit clearing
1936                       // of the high bits.
1937            .addOperand(SrcMO)
1938            .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 :
1939                                                   PPC::sub_64);
1940
1941          // The source of the original copy is now the new virtual register.
1942          SrcMO.setReg(NewVReg);
1943        } else if (!IsVSReg(DstMO.getReg(), MRI) &&
1944                    IsVSReg(SrcMO.getReg(), MRI)) {
1945          // This is a copy *from* a VSX register to a non-VSX register.
1946          Changed = true;
1947
1948          const TargetRegisterClass *DstRC =
1949            IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
1950                                           &PPC::VSLRCRegClass;
1951          assert((IsF8Reg(DstMO.getReg(), MRI) ||
1952                  IsVRReg(DstMO.getReg(), MRI)) &&
1953                 "Unknown destination for a VSX copy");
1954
1955          // Copy the VSX value into a new VSX register of the correct subclass.
1956          unsigned NewVReg = MRI.createVirtualRegister(DstRC);
1957          BuildMI(MBB, MI, MI->getDebugLoc(),
1958                  TII->get(TargetOpcode::COPY), NewVReg)
1959            .addOperand(SrcMO);
1960
1961          // Transform the original copy into a subregister extraction copy.
1962          SrcMO.setReg(NewVReg);
1963          SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 :
1964                                                         PPC::sub_64);
1965        }
1966      }
1967
1968      return Changed;
1969    }
1970
1971public:
1972    bool runOnMachineFunction(MachineFunction &MF) override {
1973      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1974      // If we don't have VSX on the subtarget, don't do anything.
1975      if (!TM->getSubtargetImpl()->hasVSX())
1976        return false;
1977      TII = TM->getInstrInfo();
1978
1979      bool Changed = false;
1980
1981      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1982        MachineBasicBlock &B = *I++;
1983        if (processBlock(B))
1984          Changed = true;
1985      }
1986
1987      return Changed;
1988    }
1989
1990    void getAnalysisUsage(AnalysisUsage &AU) const override {
1991      MachineFunctionPass::getAnalysisUsage(AU);
1992    }
1993  };
1994}
1995
1996INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE,
1997                "PowerPC VSX Copy Legalization", false, false)
1998
1999char PPCVSXCopy::ID = 0;
2000FunctionPass*
2001llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); }
2002
2003#undef DEBUG_TYPE
2004#define DEBUG_TYPE "ppc-vsx-copy-cleanup"
2005
2006namespace llvm {
2007  void initializePPCVSXCopyCleanupPass(PassRegistry&);
2008}
2009
2010namespace {
2011  // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX
2012  // registers (mostly because the ABI code still places all values into the
2013  // "traditional" floating-point and vector registers). Remove them here.
2014  struct PPCVSXCopyCleanup : public MachineFunctionPass {
2015    static char ID;
2016    PPCVSXCopyCleanup() : MachineFunctionPass(ID) {
2017      initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry());
2018    }
2019
2020    const PPCTargetMachine *TM;
2021    const PPCInstrInfo *TII;
2022
2023protected:
2024    bool processBlock(MachineBasicBlock &MBB) {
2025      bool Changed = false;
2026
2027      SmallVector<MachineInstr *, 4> ToDelete;
2028      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
2029           I != IE; ++I) {
2030        MachineInstr *MI = I;
2031        if (MI->getOpcode() == PPC::XXLOR &&
2032            MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
2033            MI->getOperand(0).getReg() == MI->getOperand(2).getReg())
2034          ToDelete.push_back(MI);
2035      }
2036
2037      if (!ToDelete.empty())
2038        Changed = true;
2039
2040      for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) {
2041        DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]);
2042        ToDelete[i]->eraseFromParent();
2043      }
2044
2045      return Changed;
2046    }
2047
2048public:
2049    bool runOnMachineFunction(MachineFunction &MF) override {
2050      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
2051      // If we don't have VSX don't bother doing anything here.
2052      if (!TM->getSubtargetImpl()->hasVSX())
2053        return false;
2054      TII = TM->getInstrInfo();
2055
2056      bool Changed = false;
2057
2058      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
2059        MachineBasicBlock &B = *I++;
2060        if (processBlock(B))
2061          Changed = true;
2062      }
2063
2064      return Changed;
2065    }
2066
2067    void getAnalysisUsage(AnalysisUsage &AU) const override {
2068      MachineFunctionPass::getAnalysisUsage(AU);
2069    }
2070  };
2071}
2072
2073INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE,
2074                "PowerPC VSX Copy Cleanup", false, false)
2075
2076char PPCVSXCopyCleanup::ID = 0;
2077FunctionPass*
2078llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); }
2079
2080#undef DEBUG_TYPE
2081#define DEBUG_TYPE "ppc-early-ret"
2082STATISTIC(NumBCLR, "Number of early conditional returns");
2083STATISTIC(NumBLR,  "Number of early returns");
2084
2085namespace llvm {
2086  void initializePPCEarlyReturnPass(PassRegistry&);
2087}
2088
2089namespace {
2090  // PPCEarlyReturn pass - For simple functions without epilogue code, move
2091  // returns up, and create conditional returns, to avoid unnecessary
2092  // branch-to-blr sequences.
2093  struct PPCEarlyReturn : public MachineFunctionPass {
2094    static char ID;
2095    PPCEarlyReturn() : MachineFunctionPass(ID) {
2096      initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry());
2097    }
2098
2099    const PPCTargetMachine *TM;
2100    const PPCInstrInfo *TII;
2101
2102protected:
2103    bool processBlock(MachineBasicBlock &ReturnMBB) {
2104      bool Changed = false;
2105
2106      MachineBasicBlock::iterator I = ReturnMBB.begin();
2107      I = ReturnMBB.SkipPHIsAndLabels(I);
2108
2109      // The block must be essentially empty except for the blr.
2110      if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
2111          I != ReturnMBB.getLastNonDebugInstr())
2112        return Changed;
2113
2114      SmallVector<MachineBasicBlock*, 8> PredToRemove;
2115      for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
2116           PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
2117        bool OtherReference = false, BlockChanged = false;
2118        for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
2119          if (J->getOpcode() == PPC::B) {
2120            if (J->getOperand(0).getMBB() == &ReturnMBB) {
2121              // This is an unconditional branch to the return. Replace the
2122              // branch with a blr.
2123              BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
2124              MachineBasicBlock::iterator K = J--;
2125              K->eraseFromParent();
2126              BlockChanged = true;
2127              ++NumBLR;
2128              continue;
2129            }
2130          } else if (J->getOpcode() == PPC::BCC) {
2131            if (J->getOperand(2).getMBB() == &ReturnMBB) {
2132              // This is a conditional branch to the return. Replace the branch
2133              // with a bclr.
2134              BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR))
2135                .addImm(J->getOperand(0).getImm())
2136                .addReg(J->getOperand(1).getReg());
2137              MachineBasicBlock::iterator K = J--;
2138              K->eraseFromParent();
2139              BlockChanged = true;
2140              ++NumBCLR;
2141              continue;
2142            }
2143          } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) {
2144            if (J->getOperand(1).getMBB() == &ReturnMBB) {
2145              // This is a conditional branch to the return. Replace the branch
2146              // with a bclr.
2147              BuildMI(**PI, J, J->getDebugLoc(),
2148                      TII->get(J->getOpcode() == PPC::BC ?
2149                               PPC::BCLR : PPC::BCLRn))
2150                .addReg(J->getOperand(0).getReg());
2151              MachineBasicBlock::iterator K = J--;
2152              K->eraseFromParent();
2153              BlockChanged = true;
2154              ++NumBCLR;
2155              continue;
2156            }
2157          } else if (J->isBranch()) {
2158            if (J->isIndirectBranch()) {
2159              if (ReturnMBB.hasAddressTaken())
2160                OtherReference = true;
2161            } else
2162              for (unsigned i = 0; i < J->getNumOperands(); ++i)
2163                if (J->getOperand(i).isMBB() &&
2164                    J->getOperand(i).getMBB() == &ReturnMBB)
2165                  OtherReference = true;
2166          } else if (!J->isTerminator() && !J->isDebugValue())
2167            break;
2168
2169          if (J == (*PI)->begin())
2170            break;
2171
2172          --J;
2173        }
2174
2175        if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
2176          OtherReference = true;
2177
2178        // Predecessors are stored in a vector and can't be removed here.
2179        if (!OtherReference && BlockChanged) {
2180          PredToRemove.push_back(*PI);
2181        }
2182
2183        if (BlockChanged)
2184          Changed = true;
2185      }
2186
2187      for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
2188        PredToRemove[i]->removeSuccessor(&ReturnMBB);
2189
2190      if (Changed && !ReturnMBB.hasAddressTaken()) {
2191        // We now might be able to merge this blr-only block into its
2192        // by-layout predecessor.
2193        if (ReturnMBB.pred_size() == 1 &&
2194            (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
2195          // Move the blr into the preceding block.
2196          MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
2197          PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
2198          PrevMBB.removeSuccessor(&ReturnMBB);
2199        }
2200
2201        if (ReturnMBB.pred_empty())
2202          ReturnMBB.eraseFromParent();
2203      }
2204
2205      return Changed;
2206    }
2207
2208public:
2209    bool runOnMachineFunction(MachineFunction &MF) override {
2210      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
2211      TII = TM->getInstrInfo();
2212
2213      bool Changed = false;
2214
2215      // If the function does not have at least two blocks, then there is
2216      // nothing to do.
2217      if (MF.size() < 2)
2218        return Changed;
2219
2220      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
2221        MachineBasicBlock &B = *I++;
2222        if (processBlock(B))
2223          Changed = true;
2224      }
2225
2226      return Changed;
2227    }
2228
2229    void getAnalysisUsage(AnalysisUsage &AU) const override {
2230      MachineFunctionPass::getAnalysisUsage(AU);
2231    }
2232  };
2233}
2234
2235INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
2236                "PowerPC Early-Return Creation", false, false)
2237
2238char PPCEarlyReturn::ID = 0;
2239FunctionPass*
2240llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }
2241