PPCInstrInfo.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the PowerPC implementation of the TargetInstrInfo class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "PPCInstrInfo.h" 15#include "MCTargetDesc/PPCPredicates.h" 16#include "PPC.h" 17#include "PPCHazardRecognizers.h" 18#include "PPCInstrBuilder.h" 19#include "PPCMachineFunctionInfo.h" 20#include "PPCTargetMachine.h" 21#include "llvm/ADT/STLExtras.h" 22#include "llvm/ADT/Statistic.h" 23#include "llvm/CodeGen/LiveIntervalAnalysis.h" 24#include "llvm/CodeGen/MachineFrameInfo.h" 25#include "llvm/CodeGen/MachineFunctionPass.h" 26#include "llvm/CodeGen/MachineInstrBuilder.h" 27#include "llvm/CodeGen/MachineMemOperand.h" 28#include "llvm/CodeGen/MachineRegisterInfo.h" 29#include "llvm/CodeGen/PseudoSourceValue.h" 30#include "llvm/CodeGen/SlotIndexes.h" 31#include "llvm/MC/MCAsmInfo.h" 32#include "llvm/Support/CommandLine.h" 33#include "llvm/Support/Debug.h" 34#include "llvm/Support/ErrorHandling.h" 35#include "llvm/Support/TargetRegistry.h" 36#include "llvm/Support/raw_ostream.h" 37 38using namespace llvm; 39 40#define DEBUG_TYPE "ppc-instr-info" 41 42#define GET_INSTRMAP_INFO 43#define GET_INSTRINFO_CTOR_DTOR 44#include "PPCGenInstrInfo.inc" 45 46static cl:: 47opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 48 cl::desc("Disable analysis for CTR loops")); 49 50static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 51cl::desc("Disable compare instruction optimization"), cl::Hidden); 52 53static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation", 54cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden); 55 56static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy", 57cl::desc("Causes the backend to crash instead of generating a nop VSX copy"), 58cl::Hidden); 59 60// Pin the vtable to this file. 61void PPCInstrInfo::anchor() {} 62 63PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) 64 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 65 TM(tm), RI(*TM.getSubtargetImpl()) {} 66 67/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 68/// this target when scheduling the DAG. 69ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer( 70 const TargetMachine *TM, 71 const ScheduleDAG *DAG) const { 72 unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective(); 73 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 74 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 75 const InstrItineraryData *II = TM->getInstrItineraryData(); 76 return new ScoreboardHazardRecognizer(II, DAG); 77 } 78 79 return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG); 80} 81 82/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 83/// to use for this target when scheduling the DAG. 84ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 85 const InstrItineraryData *II, 86 const ScheduleDAG *DAG) const { 87 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 88 89 if (Directive == PPC::DIR_PWR7) 90 return new PPCDispatchGroupSBHazardRecognizer(II, DAG); 91 92 // Most subtargets use a PPC970 recognizer. 93 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 94 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 95 assert(TM.getInstrInfo() && "No InstrInfo?"); 96 97 return new PPCHazardRecognizer970(TM); 98 } 99 100 return new ScoreboardHazardRecognizer(II, DAG); 101} 102 103 104int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 105 const MachineInstr *DefMI, unsigned DefIdx, 106 const MachineInstr *UseMI, 107 unsigned UseIdx) const { 108 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx, 109 UseMI, UseIdx); 110 111 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 112 unsigned Reg = DefMO.getReg(); 113 114 const TargetRegisterInfo *TRI = &getRegisterInfo(); 115 bool IsRegCR; 116 if (TRI->isVirtualRegister(Reg)) { 117 const MachineRegisterInfo *MRI = 118 &DefMI->getParent()->getParent()->getRegInfo(); 119 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) || 120 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass); 121 } else { 122 IsRegCR = PPC::CRRCRegClass.contains(Reg) || 123 PPC::CRBITRCRegClass.contains(Reg); 124 } 125 126 if (UseMI->isBranch() && IsRegCR) { 127 if (Latency < 0) 128 Latency = getInstrLatency(ItinData, DefMI); 129 130 // On some cores, there is an additional delay between writing to a condition 131 // register, and using it from a branch. 132 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 133 switch (Directive) { 134 default: break; 135 case PPC::DIR_7400: 136 case PPC::DIR_750: 137 case PPC::DIR_970: 138 case PPC::DIR_E5500: 139 case PPC::DIR_PWR4: 140 case PPC::DIR_PWR5: 141 case PPC::DIR_PWR5X: 142 case PPC::DIR_PWR6: 143 case PPC::DIR_PWR6X: 144 case PPC::DIR_PWR7: 145 Latency += 2; 146 break; 147 } 148 } 149 150 return Latency; 151} 152 153// Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 154bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 155 unsigned &SrcReg, unsigned &DstReg, 156 unsigned &SubIdx) const { 157 switch (MI.getOpcode()) { 158 default: return false; 159 case PPC::EXTSW: 160 case PPC::EXTSW_32_64: 161 SrcReg = MI.getOperand(1).getReg(); 162 DstReg = MI.getOperand(0).getReg(); 163 SubIdx = PPC::sub_32; 164 return true; 165 } 166} 167 168unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 169 int &FrameIndex) const { 170 // Note: This list must be kept consistent with LoadRegFromStackSlot. 171 switch (MI->getOpcode()) { 172 default: break; 173 case PPC::LD: 174 case PPC::LWZ: 175 case PPC::LFS: 176 case PPC::LFD: 177 case PPC::RESTORE_CR: 178 case PPC::RESTORE_CRBIT: 179 case PPC::LVX: 180 case PPC::LXVD2X: 181 case PPC::RESTORE_VRSAVE: 182 // Check for the operands added by addFrameReference (the immediate is the 183 // offset which defaults to 0). 184 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 185 MI->getOperand(2).isFI()) { 186 FrameIndex = MI->getOperand(2).getIndex(); 187 return MI->getOperand(0).getReg(); 188 } 189 break; 190 } 191 return 0; 192} 193 194unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 195 int &FrameIndex) const { 196 // Note: This list must be kept consistent with StoreRegToStackSlot. 197 switch (MI->getOpcode()) { 198 default: break; 199 case PPC::STD: 200 case PPC::STW: 201 case PPC::STFS: 202 case PPC::STFD: 203 case PPC::SPILL_CR: 204 case PPC::SPILL_CRBIT: 205 case PPC::STVX: 206 case PPC::STXVD2X: 207 case PPC::SPILL_VRSAVE: 208 // Check for the operands added by addFrameReference (the immediate is the 209 // offset which defaults to 0). 210 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 211 MI->getOperand(2).isFI()) { 212 FrameIndex = MI->getOperand(2).getIndex(); 213 return MI->getOperand(0).getReg(); 214 } 215 break; 216 } 217 return 0; 218} 219 220// commuteInstruction - We can commute rlwimi instructions, but only if the 221// rotate amt is zero. We also have to munge the immediates a bit. 222MachineInstr * 223PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 224 MachineFunction &MF = *MI->getParent()->getParent(); 225 226 // Normal instructions can be commuted the obvious way. 227 if (MI->getOpcode() != PPC::RLWIMI && 228 MI->getOpcode() != PPC::RLWIMIo && 229 MI->getOpcode() != PPC::RLWIMI8 && 230 MI->getOpcode() != PPC::RLWIMI8o) 231 return TargetInstrInfo::commuteInstruction(MI, NewMI); 232 233 // Cannot commute if it has a non-zero rotate count. 234 if (MI->getOperand(3).getImm() != 0) 235 return nullptr; 236 237 // If we have a zero rotate count, we have: 238 // M = mask(MB,ME) 239 // Op0 = (Op1 & ~M) | (Op2 & M) 240 // Change this to: 241 // M = mask((ME+1)&31, (MB-1)&31) 242 // Op0 = (Op2 & ~M) | (Op1 & M) 243 244 // Swap op1/op2 245 unsigned Reg0 = MI->getOperand(0).getReg(); 246 unsigned Reg1 = MI->getOperand(1).getReg(); 247 unsigned Reg2 = MI->getOperand(2).getReg(); 248 unsigned SubReg1 = MI->getOperand(1).getSubReg(); 249 unsigned SubReg2 = MI->getOperand(2).getSubReg(); 250 bool Reg1IsKill = MI->getOperand(1).isKill(); 251 bool Reg2IsKill = MI->getOperand(2).isKill(); 252 bool ChangeReg0 = false; 253 // If machine instrs are no longer in two-address forms, update 254 // destination register as well. 255 if (Reg0 == Reg1) { 256 // Must be two address instruction! 257 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 258 "Expecting a two-address instruction!"); 259 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch"); 260 Reg2IsKill = false; 261 ChangeReg0 = true; 262 } 263 264 // Masks. 265 unsigned MB = MI->getOperand(4).getImm(); 266 unsigned ME = MI->getOperand(5).getImm(); 267 268 if (NewMI) { 269 // Create a new instruction. 270 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 271 bool Reg0IsDead = MI->getOperand(0).isDead(); 272 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 273 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 274 .addReg(Reg2, getKillRegState(Reg2IsKill)) 275 .addReg(Reg1, getKillRegState(Reg1IsKill)) 276 .addImm((ME+1) & 31) 277 .addImm((MB-1) & 31); 278 } 279 280 if (ChangeReg0) { 281 MI->getOperand(0).setReg(Reg2); 282 MI->getOperand(0).setSubReg(SubReg2); 283 } 284 MI->getOperand(2).setReg(Reg1); 285 MI->getOperand(1).setReg(Reg2); 286 MI->getOperand(2).setSubReg(SubReg1); 287 MI->getOperand(1).setSubReg(SubReg2); 288 MI->getOperand(2).setIsKill(Reg1IsKill); 289 MI->getOperand(1).setIsKill(Reg2IsKill); 290 291 // Swap the mask around. 292 MI->getOperand(4).setImm((ME+1) & 31); 293 MI->getOperand(5).setImm((MB-1) & 31); 294 return MI; 295} 296 297bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, 298 unsigned &SrcOpIdx2) const { 299 // For VSX A-Type FMA instructions, it is the first two operands that can be 300 // commuted, however, because the non-encoded tied input operand is listed 301 // first, the operands to swap are actually the second and third. 302 303 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 304 if (AltOpc == -1) 305 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 306 307 SrcOpIdx1 = 2; 308 SrcOpIdx2 = 3; 309 return true; 310} 311 312void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 313 MachineBasicBlock::iterator MI) const { 314 // This function is used for scheduling, and the nop wanted here is the type 315 // that terminates dispatch groups on the POWER cores. 316 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 317 unsigned Opcode; 318 switch (Directive) { 319 default: Opcode = PPC::NOP; break; 320 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; 321 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; 322 } 323 324 DebugLoc DL; 325 BuildMI(MBB, MI, DL, get(Opcode)); 326} 327 328// Branch analysis. 329// Note: If the condition register is set to CTR or CTR8 then this is a 330// BDNZ (imm == 1) or BDZ (imm == 0) branch. 331bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 332 MachineBasicBlock *&FBB, 333 SmallVectorImpl<MachineOperand> &Cond, 334 bool AllowModify) const { 335 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 336 337 // If the block has no terminators, it just falls into the block after it. 338 MachineBasicBlock::iterator I = MBB.end(); 339 if (I == MBB.begin()) 340 return false; 341 --I; 342 while (I->isDebugValue()) { 343 if (I == MBB.begin()) 344 return false; 345 --I; 346 } 347 if (!isUnpredicatedTerminator(I)) 348 return false; 349 350 // Get the last instruction in the block. 351 MachineInstr *LastInst = I; 352 353 // If there is only one terminator instruction, process it. 354 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 355 if (LastInst->getOpcode() == PPC::B) { 356 if (!LastInst->getOperand(0).isMBB()) 357 return true; 358 TBB = LastInst->getOperand(0).getMBB(); 359 return false; 360 } else if (LastInst->getOpcode() == PPC::BCC) { 361 if (!LastInst->getOperand(2).isMBB()) 362 return true; 363 // Block ends with fall-through condbranch. 364 TBB = LastInst->getOperand(2).getMBB(); 365 Cond.push_back(LastInst->getOperand(0)); 366 Cond.push_back(LastInst->getOperand(1)); 367 return false; 368 } else if (LastInst->getOpcode() == PPC::BC) { 369 if (!LastInst->getOperand(1).isMBB()) 370 return true; 371 // Block ends with fall-through condbranch. 372 TBB = LastInst->getOperand(1).getMBB(); 373 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 374 Cond.push_back(LastInst->getOperand(0)); 375 return false; 376 } else if (LastInst->getOpcode() == PPC::BCn) { 377 if (!LastInst->getOperand(1).isMBB()) 378 return true; 379 // Block ends with fall-through condbranch. 380 TBB = LastInst->getOperand(1).getMBB(); 381 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 382 Cond.push_back(LastInst->getOperand(0)); 383 return false; 384 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 385 LastInst->getOpcode() == PPC::BDNZ) { 386 if (!LastInst->getOperand(0).isMBB()) 387 return true; 388 if (DisableCTRLoopAnal) 389 return true; 390 TBB = LastInst->getOperand(0).getMBB(); 391 Cond.push_back(MachineOperand::CreateImm(1)); 392 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 393 true)); 394 return false; 395 } else if (LastInst->getOpcode() == PPC::BDZ8 || 396 LastInst->getOpcode() == PPC::BDZ) { 397 if (!LastInst->getOperand(0).isMBB()) 398 return true; 399 if (DisableCTRLoopAnal) 400 return true; 401 TBB = LastInst->getOperand(0).getMBB(); 402 Cond.push_back(MachineOperand::CreateImm(0)); 403 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 404 true)); 405 return false; 406 } 407 408 // Otherwise, don't know what this is. 409 return true; 410 } 411 412 // Get the instruction before it if it's a terminator. 413 MachineInstr *SecondLastInst = I; 414 415 // If there are three terminators, we don't know what sort of block this is. 416 if (SecondLastInst && I != MBB.begin() && 417 isUnpredicatedTerminator(--I)) 418 return true; 419 420 // If the block ends with PPC::B and PPC:BCC, handle it. 421 if (SecondLastInst->getOpcode() == PPC::BCC && 422 LastInst->getOpcode() == PPC::B) { 423 if (!SecondLastInst->getOperand(2).isMBB() || 424 !LastInst->getOperand(0).isMBB()) 425 return true; 426 TBB = SecondLastInst->getOperand(2).getMBB(); 427 Cond.push_back(SecondLastInst->getOperand(0)); 428 Cond.push_back(SecondLastInst->getOperand(1)); 429 FBB = LastInst->getOperand(0).getMBB(); 430 return false; 431 } else if (SecondLastInst->getOpcode() == PPC::BC && 432 LastInst->getOpcode() == PPC::B) { 433 if (!SecondLastInst->getOperand(1).isMBB() || 434 !LastInst->getOperand(0).isMBB()) 435 return true; 436 TBB = SecondLastInst->getOperand(1).getMBB(); 437 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 438 Cond.push_back(SecondLastInst->getOperand(0)); 439 FBB = LastInst->getOperand(0).getMBB(); 440 return false; 441 } else if (SecondLastInst->getOpcode() == PPC::BCn && 442 LastInst->getOpcode() == PPC::B) { 443 if (!SecondLastInst->getOperand(1).isMBB() || 444 !LastInst->getOperand(0).isMBB()) 445 return true; 446 TBB = SecondLastInst->getOperand(1).getMBB(); 447 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET)); 448 Cond.push_back(SecondLastInst->getOperand(0)); 449 FBB = LastInst->getOperand(0).getMBB(); 450 return false; 451 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 452 SecondLastInst->getOpcode() == PPC::BDNZ) && 453 LastInst->getOpcode() == PPC::B) { 454 if (!SecondLastInst->getOperand(0).isMBB() || 455 !LastInst->getOperand(0).isMBB()) 456 return true; 457 if (DisableCTRLoopAnal) 458 return true; 459 TBB = SecondLastInst->getOperand(0).getMBB(); 460 Cond.push_back(MachineOperand::CreateImm(1)); 461 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 462 true)); 463 FBB = LastInst->getOperand(0).getMBB(); 464 return false; 465 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 466 SecondLastInst->getOpcode() == PPC::BDZ) && 467 LastInst->getOpcode() == PPC::B) { 468 if (!SecondLastInst->getOperand(0).isMBB() || 469 !LastInst->getOperand(0).isMBB()) 470 return true; 471 if (DisableCTRLoopAnal) 472 return true; 473 TBB = SecondLastInst->getOperand(0).getMBB(); 474 Cond.push_back(MachineOperand::CreateImm(0)); 475 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 476 true)); 477 FBB = LastInst->getOperand(0).getMBB(); 478 return false; 479 } 480 481 // If the block ends with two PPC:Bs, handle it. The second one is not 482 // executed, so remove it. 483 if (SecondLastInst->getOpcode() == PPC::B && 484 LastInst->getOpcode() == PPC::B) { 485 if (!SecondLastInst->getOperand(0).isMBB()) 486 return true; 487 TBB = SecondLastInst->getOperand(0).getMBB(); 488 I = LastInst; 489 if (AllowModify) 490 I->eraseFromParent(); 491 return false; 492 } 493 494 // Otherwise, can't handle this. 495 return true; 496} 497 498unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 499 MachineBasicBlock::iterator I = MBB.end(); 500 if (I == MBB.begin()) return 0; 501 --I; 502 while (I->isDebugValue()) { 503 if (I == MBB.begin()) 504 return 0; 505 --I; 506 } 507 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 508 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 509 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 510 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 511 return 0; 512 513 // Remove the branch. 514 I->eraseFromParent(); 515 516 I = MBB.end(); 517 518 if (I == MBB.begin()) return 1; 519 --I; 520 if (I->getOpcode() != PPC::BCC && 521 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && 522 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 523 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 524 return 1; 525 526 // Remove the branch. 527 I->eraseFromParent(); 528 return 2; 529} 530 531unsigned 532PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 533 MachineBasicBlock *FBB, 534 const SmallVectorImpl<MachineOperand> &Cond, 535 DebugLoc DL) const { 536 // Shouldn't be a fall through. 537 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 538 assert((Cond.size() == 2 || Cond.size() == 0) && 539 "PPC branch conditions have two components!"); 540 541 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 542 543 // One-way branch. 544 if (!FBB) { 545 if (Cond.empty()) // Unconditional branch 546 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 547 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 548 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 549 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 550 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 551 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 552 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 553 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 554 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 555 else // Conditional branch 556 BuildMI(&MBB, DL, get(PPC::BCC)) 557 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 558 return 1; 559 } 560 561 // Two-way Conditional Branch. 562 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 563 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 564 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 565 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 566 else if (Cond[0].getImm() == PPC::PRED_BIT_SET) 567 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB); 568 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) 569 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB); 570 else 571 BuildMI(&MBB, DL, get(PPC::BCC)) 572 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB); 573 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 574 return 2; 575} 576 577// Select analysis. 578bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 579 const SmallVectorImpl<MachineOperand> &Cond, 580 unsigned TrueReg, unsigned FalseReg, 581 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 582 if (!TM.getSubtargetImpl()->hasISEL()) 583 return false; 584 585 if (Cond.size() != 2) 586 return false; 587 588 // If this is really a bdnz-like condition, then it cannot be turned into a 589 // select. 590 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 591 return false; 592 593 // Check register classes. 594 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 595 const TargetRegisterClass *RC = 596 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 597 if (!RC) 598 return false; 599 600 // isel is for regular integer GPRs only. 601 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 602 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 603 !PPC::G8RCRegClass.hasSubClassEq(RC) && 604 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 605 return false; 606 607 // FIXME: These numbers are for the A2, how well they work for other cores is 608 // an open question. On the A2, the isel instruction has a 2-cycle latency 609 // but single-cycle throughput. These numbers are used in combination with 610 // the MispredictPenalty setting from the active SchedMachineModel. 611 CondCycles = 1; 612 TrueCycles = 1; 613 FalseCycles = 1; 614 615 return true; 616} 617 618void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 619 MachineBasicBlock::iterator MI, DebugLoc dl, 620 unsigned DestReg, 621 const SmallVectorImpl<MachineOperand> &Cond, 622 unsigned TrueReg, unsigned FalseReg) const { 623 assert(Cond.size() == 2 && 624 "PPC branch conditions have two components!"); 625 626 assert(TM.getSubtargetImpl()->hasISEL() && 627 "Cannot insert select on target without ISEL support"); 628 629 // Get the register classes. 630 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 631 const TargetRegisterClass *RC = 632 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 633 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 634 635 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 636 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 637 assert((Is64Bit || 638 PPC::GPRCRegClass.hasSubClassEq(RC) || 639 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 640 "isel is for regular integer GPRs only"); 641 642 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 643 unsigned SelectPred = Cond[0].getImm(); 644 645 unsigned SubIdx; 646 bool SwapOps; 647 switch (SelectPred) { 648 default: llvm_unreachable("invalid predicate for isel"); 649 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 650 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 651 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 652 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 653 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 654 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 655 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 656 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 657 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; 658 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; 659 } 660 661 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 662 SecondReg = SwapOps ? TrueReg : FalseReg; 663 664 // The first input register of isel cannot be r0. If it is a member 665 // of a register class that can be r0, then copy it first (the 666 // register allocator should eliminate the copy). 667 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 668 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 669 const TargetRegisterClass *FirstRC = 670 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 671 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 672 unsigned OldFirstReg = FirstReg; 673 FirstReg = MRI.createVirtualRegister(FirstRC); 674 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 675 .addReg(OldFirstReg); 676 } 677 678 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 679 .addReg(FirstReg).addReg(SecondReg) 680 .addReg(Cond[1].getReg(), 0, SubIdx); 681} 682 683void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 684 MachineBasicBlock::iterator I, DebugLoc DL, 685 unsigned DestReg, unsigned SrcReg, 686 bool KillSrc) const { 687 // We can end up with self copies and similar things as a result of VSX copy 688 // legalization. Promote them here. 689 const TargetRegisterInfo *TRI = &getRegisterInfo(); 690 if (PPC::F8RCRegClass.contains(DestReg) && 691 PPC::VSLRCRegClass.contains(SrcReg)) { 692 unsigned SuperReg = 693 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass); 694 695 if (VSXSelfCopyCrash && SrcReg == SuperReg) 696 llvm_unreachable("nop VSX copy"); 697 698 DestReg = SuperReg; 699 } else if (PPC::VRRCRegClass.contains(DestReg) && 700 PPC::VSHRCRegClass.contains(SrcReg)) { 701 unsigned SuperReg = 702 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass); 703 704 if (VSXSelfCopyCrash && SrcReg == SuperReg) 705 llvm_unreachable("nop VSX copy"); 706 707 DestReg = SuperReg; 708 } else if (PPC::F8RCRegClass.contains(SrcReg) && 709 PPC::VSLRCRegClass.contains(DestReg)) { 710 unsigned SuperReg = 711 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass); 712 713 if (VSXSelfCopyCrash && DestReg == SuperReg) 714 llvm_unreachable("nop VSX copy"); 715 716 SrcReg = SuperReg; 717 } else if (PPC::VRRCRegClass.contains(SrcReg) && 718 PPC::VSHRCRegClass.contains(DestReg)) { 719 unsigned SuperReg = 720 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass); 721 722 if (VSXSelfCopyCrash && DestReg == SuperReg) 723 llvm_unreachable("nop VSX copy"); 724 725 SrcReg = SuperReg; 726 } 727 728 unsigned Opc; 729 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 730 Opc = PPC::OR; 731 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 732 Opc = PPC::OR8; 733 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 734 Opc = PPC::FMR; 735 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 736 Opc = PPC::MCRF; 737 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 738 Opc = PPC::VOR; 739 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg)) 740 // There are two different ways this can be done: 741 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only 742 // issue in VSU pipeline 0. 743 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but 744 // can go to either pipeline. 745 // We'll always use xxlor here, because in practically all cases where 746 // copies are generated, they are close enough to some use that the 747 // lower-latency form is preferable. 748 Opc = PPC::XXLOR; 749 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg)) 750 Opc = PPC::XXLORf; 751 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 752 Opc = PPC::CROR; 753 else 754 llvm_unreachable("Impossible reg-to-reg copy"); 755 756 const MCInstrDesc &MCID = get(Opc); 757 if (MCID.getNumOperands() == 3) 758 BuildMI(MBB, I, DL, MCID, DestReg) 759 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 760 else 761 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 762} 763 764// This function returns true if a CR spill is necessary and false otherwise. 765bool 766PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 767 unsigned SrcReg, bool isKill, 768 int FrameIdx, 769 const TargetRegisterClass *RC, 770 SmallVectorImpl<MachineInstr*> &NewMIs, 771 bool &NonRI, bool &SpillsVRS) const{ 772 // Note: If additional store instructions are added here, 773 // update isStoreToStackSlot. 774 775 DebugLoc DL; 776 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 777 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 778 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 779 .addReg(SrcReg, 780 getKillRegState(isKill)), 781 FrameIdx)); 782 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 783 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 784 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 785 .addReg(SrcReg, 786 getKillRegState(isKill)), 787 FrameIdx)); 788 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 789 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 790 .addReg(SrcReg, 791 getKillRegState(isKill)), 792 FrameIdx)); 793 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 794 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 795 .addReg(SrcReg, 796 getKillRegState(isKill)), 797 FrameIdx)); 798 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 799 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 800 .addReg(SrcReg, 801 getKillRegState(isKill)), 802 FrameIdx)); 803 return true; 804 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 805 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT)) 806 .addReg(SrcReg, 807 getKillRegState(isKill)), 808 FrameIdx)); 809 return true; 810 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 811 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 812 .addReg(SrcReg, 813 getKillRegState(isKill)), 814 FrameIdx)); 815 NonRI = true; 816 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 817 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X)) 818 .addReg(SrcReg, 819 getKillRegState(isKill)), 820 FrameIdx)); 821 NonRI = true; 822 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 823 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX)) 824 .addReg(SrcReg, 825 getKillRegState(isKill)), 826 FrameIdx)); 827 NonRI = true; 828 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 829 assert(TM.getSubtargetImpl()->isDarwin() && 830 "VRSAVE only needs spill/restore on Darwin"); 831 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 832 .addReg(SrcReg, 833 getKillRegState(isKill)), 834 FrameIdx)); 835 SpillsVRS = true; 836 } else { 837 llvm_unreachable("Unknown regclass!"); 838 } 839 840 return false; 841} 842 843void 844PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 845 MachineBasicBlock::iterator MI, 846 unsigned SrcReg, bool isKill, int FrameIdx, 847 const TargetRegisterClass *RC, 848 const TargetRegisterInfo *TRI) const { 849 MachineFunction &MF = *MBB.getParent(); 850 SmallVector<MachineInstr*, 4> NewMIs; 851 852 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 853 FuncInfo->setHasSpills(); 854 855 bool NonRI = false, SpillsVRS = false; 856 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 857 NonRI, SpillsVRS)) 858 FuncInfo->setSpillsCR(); 859 860 if (SpillsVRS) 861 FuncInfo->setSpillsVRSAVE(); 862 863 if (NonRI) 864 FuncInfo->setHasNonRISpills(); 865 866 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 867 MBB.insert(MI, NewMIs[i]); 868 869 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 870 MachineMemOperand *MMO = 871 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 872 MachineMemOperand::MOStore, 873 MFI.getObjectSize(FrameIdx), 874 MFI.getObjectAlignment(FrameIdx)); 875 NewMIs.back()->addMemOperand(MF, MMO); 876} 877 878bool 879PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 880 unsigned DestReg, int FrameIdx, 881 const TargetRegisterClass *RC, 882 SmallVectorImpl<MachineInstr*> &NewMIs, 883 bool &NonRI, bool &SpillsVRS) const{ 884 // Note: If additional load instructions are added here, 885 // update isLoadFromStackSlot. 886 887 if (PPC::GPRCRegClass.hasSubClassEq(RC) || 888 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { 889 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 890 DestReg), FrameIdx)); 891 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || 892 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { 893 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 894 FrameIdx)); 895 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 896 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 897 FrameIdx)); 898 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 899 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 900 FrameIdx)); 901 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 902 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 903 get(PPC::RESTORE_CR), DestReg), 904 FrameIdx)); 905 return true; 906 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 907 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 908 get(PPC::RESTORE_CRBIT), DestReg), 909 FrameIdx)); 910 return true; 911 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 912 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 913 FrameIdx)); 914 NonRI = true; 915 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { 916 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg), 917 FrameIdx)); 918 NonRI = true; 919 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { 920 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg), 921 FrameIdx)); 922 NonRI = true; 923 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 924 assert(TM.getSubtargetImpl()->isDarwin() && 925 "VRSAVE only needs spill/restore on Darwin"); 926 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 927 get(PPC::RESTORE_VRSAVE), 928 DestReg), 929 FrameIdx)); 930 SpillsVRS = true; 931 } else { 932 llvm_unreachable("Unknown regclass!"); 933 } 934 935 return false; 936} 937 938void 939PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 940 MachineBasicBlock::iterator MI, 941 unsigned DestReg, int FrameIdx, 942 const TargetRegisterClass *RC, 943 const TargetRegisterInfo *TRI) const { 944 MachineFunction &MF = *MBB.getParent(); 945 SmallVector<MachineInstr*, 4> NewMIs; 946 DebugLoc DL; 947 if (MI != MBB.end()) DL = MI->getDebugLoc(); 948 949 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 950 FuncInfo->setHasSpills(); 951 952 bool NonRI = false, SpillsVRS = false; 953 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 954 NonRI, SpillsVRS)) 955 FuncInfo->setSpillsCR(); 956 957 if (SpillsVRS) 958 FuncInfo->setSpillsVRSAVE(); 959 960 if (NonRI) 961 FuncInfo->setHasNonRISpills(); 962 963 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 964 MBB.insert(MI, NewMIs[i]); 965 966 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 967 MachineMemOperand *MMO = 968 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 969 MachineMemOperand::MOLoad, 970 MFI.getObjectSize(FrameIdx), 971 MFI.getObjectAlignment(FrameIdx)); 972 NewMIs.back()->addMemOperand(MF, MMO); 973} 974 975bool PPCInstrInfo:: 976ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 977 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 978 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 979 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 980 else 981 // Leave the CR# the same, but invert the condition. 982 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 983 return false; 984} 985 986bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 987 unsigned Reg, MachineRegisterInfo *MRI) const { 988 // For some instructions, it is legal to fold ZERO into the RA register field. 989 // A zero immediate should always be loaded with a single li. 990 unsigned DefOpc = DefMI->getOpcode(); 991 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 992 return false; 993 if (!DefMI->getOperand(1).isImm()) 994 return false; 995 if (DefMI->getOperand(1).getImm() != 0) 996 return false; 997 998 // Note that we cannot here invert the arguments of an isel in order to fold 999 // a ZERO into what is presented as the second argument. All we have here 1000 // is the condition bit, and that might come from a CR-logical bit operation. 1001 1002 const MCInstrDesc &UseMCID = UseMI->getDesc(); 1003 1004 // Only fold into real machine instructions. 1005 if (UseMCID.isPseudo()) 1006 return false; 1007 1008 unsigned UseIdx; 1009 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 1010 if (UseMI->getOperand(UseIdx).isReg() && 1011 UseMI->getOperand(UseIdx).getReg() == Reg) 1012 break; 1013 1014 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 1015 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 1016 1017 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 1018 1019 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 1020 // register (which might also be specified as a pointer class kind). 1021 if (UseInfo->isLookupPtrRegClass()) { 1022 if (UseInfo->RegClass /* Kind */ != 1) 1023 return false; 1024 } else { 1025 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 1026 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 1027 return false; 1028 } 1029 1030 // Make sure this is not tied to an output register (or otherwise 1031 // constrained). This is true for ST?UX registers, for example, which 1032 // are tied to their output registers. 1033 if (UseInfo->Constraints != 0) 1034 return false; 1035 1036 unsigned ZeroReg; 1037 if (UseInfo->isLookupPtrRegClass()) { 1038 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1039 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 1040 } else { 1041 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 1042 PPC::ZERO8 : PPC::ZERO; 1043 } 1044 1045 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1046 UseMI->getOperand(UseIdx).setReg(ZeroReg); 1047 1048 if (DeleteDef) 1049 DefMI->eraseFromParent(); 1050 1051 return true; 1052} 1053 1054static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 1055 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1056 I != IE; ++I) 1057 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 1058 return true; 1059 return false; 1060} 1061 1062// We should make sure that, if we're going to predicate both sides of a 1063// condition (a diamond), that both sides don't define the counter register. We 1064// can predicate counter-decrement-based branches, but while that predicates 1065// the branching, it does not predicate the counter decrement. If we tried to 1066// merge the triangle into one predicated block, we'd decrement the counter 1067// twice. 1068bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 1069 unsigned NumT, unsigned ExtraT, 1070 MachineBasicBlock &FMBB, 1071 unsigned NumF, unsigned ExtraF, 1072 const BranchProbability &Probability) const { 1073 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 1074} 1075 1076 1077bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 1078 // The predicated branches are identified by their type, not really by the 1079 // explicit presence of a predicate. Furthermore, some of them can be 1080 // predicated more than once. Because if conversion won't try to predicate 1081 // any instruction which already claims to be predicated (by returning true 1082 // here), always return false. In doing so, we let isPredicable() be the 1083 // final word on whether not the instruction can be (further) predicated. 1084 1085 return false; 1086} 1087 1088bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 1089 if (!MI->isTerminator()) 1090 return false; 1091 1092 // Conditional branch is a special case. 1093 if (MI->isBranch() && !MI->isBarrier()) 1094 return true; 1095 1096 return !isPredicated(MI); 1097} 1098 1099bool PPCInstrInfo::PredicateInstruction( 1100 MachineInstr *MI, 1101 const SmallVectorImpl<MachineOperand> &Pred) const { 1102 unsigned OpC = MI->getOpcode(); 1103 if (OpC == PPC::BLR) { 1104 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1105 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1106 MI->setDesc(get(Pred[0].getImm() ? 1107 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 1108 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 1109 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1110 MI->setDesc(get(PPC::BCLR)); 1111 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1112 .addReg(Pred[1].getReg()); 1113 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1114 MI->setDesc(get(PPC::BCLRn)); 1115 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1116 .addReg(Pred[1].getReg()); 1117 } else { 1118 MI->setDesc(get(PPC::BCCLR)); 1119 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1120 .addImm(Pred[0].getImm()) 1121 .addReg(Pred[1].getReg()); 1122 } 1123 1124 return true; 1125 } else if (OpC == PPC::B) { 1126 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 1127 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1128 MI->setDesc(get(Pred[0].getImm() ? 1129 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 1130 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 1131 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1132 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1133 MI->RemoveOperand(0); 1134 1135 MI->setDesc(get(PPC::BC)); 1136 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1137 .addReg(Pred[1].getReg()) 1138 .addMBB(MBB); 1139 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1140 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1141 MI->RemoveOperand(0); 1142 1143 MI->setDesc(get(PPC::BCn)); 1144 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1145 .addReg(Pred[1].getReg()) 1146 .addMBB(MBB); 1147 } else { 1148 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 1149 MI->RemoveOperand(0); 1150 1151 MI->setDesc(get(PPC::BCC)); 1152 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1153 .addImm(Pred[0].getImm()) 1154 .addReg(Pred[1].getReg()) 1155 .addMBB(MBB); 1156 } 1157 1158 return true; 1159 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 1160 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 1161 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 1162 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 1163 1164 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 1165 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1166 1167 if (Pred[0].getImm() == PPC::PRED_BIT_SET) { 1168 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 1169 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 1170 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1171 .addReg(Pred[1].getReg()); 1172 return true; 1173 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { 1174 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) : 1175 (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); 1176 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1177 .addReg(Pred[1].getReg()); 1178 return true; 1179 } 1180 1181 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) : 1182 (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); 1183 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 1184 .addImm(Pred[0].getImm()) 1185 .addReg(Pred[1].getReg()); 1186 return true; 1187 } 1188 1189 return false; 1190} 1191 1192bool PPCInstrInfo::SubsumesPredicate( 1193 const SmallVectorImpl<MachineOperand> &Pred1, 1194 const SmallVectorImpl<MachineOperand> &Pred2) const { 1195 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 1196 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 1197 1198 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 1199 return false; 1200 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 1201 return false; 1202 1203 // P1 can only subsume P2 if they test the same condition register. 1204 if (Pred1[1].getReg() != Pred2[1].getReg()) 1205 return false; 1206 1207 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 1208 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 1209 1210 if (P1 == P2) 1211 return true; 1212 1213 // Does P1 subsume P2, e.g. GE subsumes GT. 1214 if (P1 == PPC::PRED_LE && 1215 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 1216 return true; 1217 if (P1 == PPC::PRED_GE && 1218 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1219 return true; 1220 1221 return false; 1222} 1223 1224bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1225 std::vector<MachineOperand> &Pred) const { 1226 // Note: At the present time, the contents of Pred from this function is 1227 // unused by IfConversion. This implementation follows ARM by pushing the 1228 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1229 // predicate, instructions defining CTR or CTR8 are also included as 1230 // predicate-defining instructions. 1231 1232 const TargetRegisterClass *RCs[] = 1233 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1234 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1235 1236 bool Found = false; 1237 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1238 const MachineOperand &MO = MI->getOperand(i); 1239 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1240 const TargetRegisterClass *RC = RCs[c]; 1241 if (MO.isReg()) { 1242 if (MO.isDef() && RC->contains(MO.getReg())) { 1243 Pred.push_back(MO); 1244 Found = true; 1245 } 1246 } else if (MO.isRegMask()) { 1247 for (TargetRegisterClass::iterator I = RC->begin(), 1248 IE = RC->end(); I != IE; ++I) 1249 if (MO.clobbersPhysReg(*I)) { 1250 Pred.push_back(MO); 1251 Found = true; 1252 } 1253 } 1254 } 1255 } 1256 1257 return Found; 1258} 1259 1260bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1261 unsigned OpC = MI->getOpcode(); 1262 switch (OpC) { 1263 default: 1264 return false; 1265 case PPC::B: 1266 case PPC::BLR: 1267 case PPC::BCTR: 1268 case PPC::BCTR8: 1269 case PPC::BCTRL: 1270 case PPC::BCTRL8: 1271 return true; 1272 } 1273} 1274 1275bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1276 unsigned &SrcReg, unsigned &SrcReg2, 1277 int &Mask, int &Value) const { 1278 unsigned Opc = MI->getOpcode(); 1279 1280 switch (Opc) { 1281 default: return false; 1282 case PPC::CMPWI: 1283 case PPC::CMPLWI: 1284 case PPC::CMPDI: 1285 case PPC::CMPLDI: 1286 SrcReg = MI->getOperand(1).getReg(); 1287 SrcReg2 = 0; 1288 Value = MI->getOperand(2).getImm(); 1289 Mask = 0xFFFF; 1290 return true; 1291 case PPC::CMPW: 1292 case PPC::CMPLW: 1293 case PPC::CMPD: 1294 case PPC::CMPLD: 1295 case PPC::FCMPUS: 1296 case PPC::FCMPUD: 1297 SrcReg = MI->getOperand(1).getReg(); 1298 SrcReg2 = MI->getOperand(2).getReg(); 1299 return true; 1300 } 1301} 1302 1303bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1304 unsigned SrcReg, unsigned SrcReg2, 1305 int Mask, int Value, 1306 const MachineRegisterInfo *MRI) const { 1307 if (DisableCmpOpt) 1308 return false; 1309 1310 int OpC = CmpInstr->getOpcode(); 1311 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1312 1313 // FP record forms set CR1 based on the execption status bits, not a 1314 // comparison with zero. 1315 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1316 return false; 1317 1318 // The record forms set the condition register based on a signed comparison 1319 // with zero (so says the ISA manual). This is not as straightforward as it 1320 // seems, however, because this is always a 64-bit comparison on PPC64, even 1321 // for instructions that are 32-bit in nature (like slw for example). 1322 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1323 // for equality checks (as those don't depend on the sign). On PPC64, 1324 // we are restricted to equality for unsigned 64-bit comparisons and for 1325 // signed 32-bit comparisons the applicability is more restricted. 1326 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1327 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1328 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1329 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1330 1331 // Get the unique definition of SrcReg. 1332 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1333 if (!MI) return false; 1334 int MIOpC = MI->getOpcode(); 1335 1336 bool equalityOnly = false; 1337 bool noSub = false; 1338 if (isPPC64) { 1339 if (is32BitSignedCompare) { 1340 // We can perform this optimization only if MI is sign-extending. 1341 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1342 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1343 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1344 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1345 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1346 noSub = true; 1347 } else 1348 return false; 1349 } else if (is32BitUnsignedCompare) { 1350 // We can perform this optimization, equality only, if MI is 1351 // zero-extending. 1352 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1353 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1354 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1355 noSub = true; 1356 equalityOnly = true; 1357 } else 1358 return false; 1359 } else 1360 equalityOnly = is64BitUnsignedCompare; 1361 } else 1362 equalityOnly = is32BitUnsignedCompare; 1363 1364 if (equalityOnly) { 1365 // We need to check the uses of the condition register in order to reject 1366 // non-equality comparisons. 1367 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg), 1368 IE = MRI->use_instr_end(); I != IE; ++I) { 1369 MachineInstr *UseMI = &*I; 1370 if (UseMI->getOpcode() == PPC::BCC) { 1371 unsigned Pred = UseMI->getOperand(0).getImm(); 1372 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1373 return false; 1374 } else if (UseMI->getOpcode() == PPC::ISEL || 1375 UseMI->getOpcode() == PPC::ISEL8) { 1376 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1377 if (SubIdx != PPC::sub_eq) 1378 return false; 1379 } else 1380 return false; 1381 } 1382 } 1383 1384 MachineBasicBlock::iterator I = CmpInstr; 1385 1386 // Scan forward to find the first use of the compare. 1387 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1388 I != EL; ++I) { 1389 bool FoundUse = false; 1390 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg), 1391 JE = MRI->use_instr_end(); J != JE; ++J) 1392 if (&*J == &*I) { 1393 FoundUse = true; 1394 break; 1395 } 1396 1397 if (FoundUse) 1398 break; 1399 } 1400 1401 // There are two possible candidates which can be changed to set CR[01]. 1402 // One is MI, the other is a SUB instruction. 1403 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1404 MachineInstr *Sub = nullptr; 1405 if (SrcReg2 != 0) 1406 // MI is not a candidate for CMPrr. 1407 MI = nullptr; 1408 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1409 // same BB as the comparison. This is to allow the check below to avoid calls 1410 // (and other explicit clobbers); instead we should really check for these 1411 // more explicitly (in at least a few predecessors). 1412 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1413 // PPC does not have a record-form SUBri. 1414 return false; 1415 } 1416 1417 // Search for Sub. 1418 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1419 --I; 1420 1421 // Get ready to iterate backward from CmpInstr. 1422 MachineBasicBlock::iterator E = MI, 1423 B = CmpInstr->getParent()->begin(); 1424 1425 for (; I != E && !noSub; --I) { 1426 const MachineInstr &Instr = *I; 1427 unsigned IOpC = Instr.getOpcode(); 1428 1429 if (&*I != CmpInstr && ( 1430 Instr.modifiesRegister(PPC::CR0, TRI) || 1431 Instr.readsRegister(PPC::CR0, TRI))) 1432 // This instruction modifies or uses the record condition register after 1433 // the one we want to change. While we could do this transformation, it 1434 // would likely not be profitable. This transformation removes one 1435 // instruction, and so even forcing RA to generate one move probably 1436 // makes it unprofitable. 1437 return false; 1438 1439 // Check whether CmpInstr can be made redundant by the current instruction. 1440 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1441 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1442 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1443 ((Instr.getOperand(1).getReg() == SrcReg && 1444 Instr.getOperand(2).getReg() == SrcReg2) || 1445 (Instr.getOperand(1).getReg() == SrcReg2 && 1446 Instr.getOperand(2).getReg() == SrcReg))) { 1447 Sub = &*I; 1448 break; 1449 } 1450 1451 if (I == B) 1452 // The 'and' is below the comparison instruction. 1453 return false; 1454 } 1455 1456 // Return false if no candidates exist. 1457 if (!MI && !Sub) 1458 return false; 1459 1460 // The single candidate is called MI. 1461 if (!MI) MI = Sub; 1462 1463 int NewOpC = -1; 1464 MIOpC = MI->getOpcode(); 1465 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1466 NewOpC = MIOpC; 1467 else { 1468 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1469 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1470 NewOpC = MIOpC; 1471 } 1472 1473 // FIXME: On the non-embedded POWER architectures, only some of the record 1474 // forms are fast, and we should use only the fast ones. 1475 1476 // The defining instruction has a record form (or is already a record 1477 // form). It is possible, however, that we'll need to reverse the condition 1478 // code of the users. 1479 if (NewOpC == -1) 1480 return false; 1481 1482 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1483 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1484 1485 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1486 // needs to be updated to be based on SUB. Push the condition code 1487 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1488 // condition code of these operands will be modified. 1489 bool ShouldSwap = false; 1490 if (Sub) { 1491 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1492 Sub->getOperand(2).getReg() == SrcReg; 1493 1494 // The operands to subf are the opposite of sub, so only in the fixed-point 1495 // case, invert the order. 1496 ShouldSwap = !ShouldSwap; 1497 } 1498 1499 if (ShouldSwap) 1500 for (MachineRegisterInfo::use_instr_iterator 1501 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end(); 1502 I != IE; ++I) { 1503 MachineInstr *UseMI = &*I; 1504 if (UseMI->getOpcode() == PPC::BCC) { 1505 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1506 assert((!equalityOnly || 1507 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1508 "Invalid predicate for equality-only optimization"); 1509 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), 1510 PPC::getSwappedPredicate(Pred))); 1511 } else if (UseMI->getOpcode() == PPC::ISEL || 1512 UseMI->getOpcode() == PPC::ISEL8) { 1513 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1514 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1515 "Invalid CR bit for equality-only optimization"); 1516 1517 if (NewSubReg == PPC::sub_lt) 1518 NewSubReg = PPC::sub_gt; 1519 else if (NewSubReg == PPC::sub_gt) 1520 NewSubReg = PPC::sub_lt; 1521 1522 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)), 1523 NewSubReg)); 1524 } else // We need to abort on a user we don't understand. 1525 return false; 1526 } 1527 1528 // Create a new virtual register to hold the value of the CR set by the 1529 // record-form instruction. If the instruction was not previously in 1530 // record form, then set the kill flag on the CR. 1531 CmpInstr->eraseFromParent(); 1532 1533 MachineBasicBlock::iterator MII = MI; 1534 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(), 1535 get(TargetOpcode::COPY), CRReg) 1536 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1537 1538 if (MIOpC != NewOpC) { 1539 // We need to be careful here: we're replacing one instruction with 1540 // another, and we need to make sure that we get all of the right 1541 // implicit uses and defs. On the other hand, the caller may be holding 1542 // an iterator to this instruction, and so we can't delete it (this is 1543 // specifically the case if this is the instruction directly after the 1544 // compare). 1545 1546 const MCInstrDesc &NewDesc = get(NewOpC); 1547 MI->setDesc(NewDesc); 1548 1549 if (NewDesc.ImplicitDefs) 1550 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1551 *ImpDefs; ++ImpDefs) 1552 if (!MI->definesRegister(*ImpDefs)) 1553 MI->addOperand(*MI->getParent()->getParent(), 1554 MachineOperand::CreateReg(*ImpDefs, true, true)); 1555 if (NewDesc.ImplicitUses) 1556 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1557 *ImpUses; ++ImpUses) 1558 if (!MI->readsRegister(*ImpUses)) 1559 MI->addOperand(*MI->getParent()->getParent(), 1560 MachineOperand::CreateReg(*ImpUses, false, true)); 1561 } 1562 1563 // Modify the condition code of operands in OperandsToUpdate. 1564 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1565 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1566 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1567 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1568 1569 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1570 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1571 1572 return true; 1573} 1574 1575/// GetInstSize - Return the number of bytes of code the specified 1576/// instruction may be. This returns the maximum number of bytes. 1577/// 1578unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1579 unsigned Opcode = MI->getOpcode(); 1580 1581 if (Opcode == PPC::INLINEASM) { 1582 const MachineFunction *MF = MI->getParent()->getParent(); 1583 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1584 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1585 } else { 1586 const MCInstrDesc &Desc = get(Opcode); 1587 return Desc.getSize(); 1588 } 1589} 1590 1591#undef DEBUG_TYPE 1592#define DEBUG_TYPE "ppc-vsx-fma-mutate" 1593 1594namespace { 1595 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers 1596 // (Altivec and scalar floating-point registers), we need to transform the 1597 // copies into subregister copies with other restrictions. 1598 struct PPCVSXFMAMutate : public MachineFunctionPass { 1599 static char ID; 1600 PPCVSXFMAMutate() : MachineFunctionPass(ID) { 1601 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); 1602 } 1603 1604 LiveIntervals *LIS; 1605 1606 const PPCTargetMachine *TM; 1607 const PPCInstrInfo *TII; 1608 1609protected: 1610 bool processBlock(MachineBasicBlock &MBB) { 1611 bool Changed = false; 1612 1613 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1614 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1615 I != IE; ++I) { 1616 MachineInstr *MI = I; 1617 1618 // The default (A-type) VSX FMA form kills the addend (it is taken from 1619 // the target register, which is then updated to reflect the result of 1620 // the FMA). If the instruction, however, kills one of the registers 1621 // used for the product, then we can use the M-form instruction (which 1622 // will take that value from the to-be-defined register). 1623 1624 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); 1625 if (AltOpc == -1) 1626 continue; 1627 1628 // This pass is run after register coalescing, and so we're looking for 1629 // a situation like this: 1630 // ... 1631 // %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1632 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1633 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1634 // ... 1635 // %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19, 1636 // %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19 1637 // ... 1638 // Where we can eliminate the copy by changing from the A-type to the 1639 // M-type instruction. Specifically, for this example, this means: 1640 // %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, 1641 // %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 1642 // is replaced by: 1643 // %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9, 1644 // %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9 1645 // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 1646 1647 SlotIndex FMAIdx = LIS->getInstructionIndex(MI); 1648 1649 VNInfo *AddendValNo = 1650 LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn(); 1651 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); 1652 1653 // The addend and this instruction must be in the same block. 1654 1655 if (!AddendMI || AddendMI->getParent() != MI->getParent()) 1656 continue; 1657 1658 // The addend must be a full copy within the same register class. 1659 1660 if (!AddendMI->isFullCopy()) 1661 continue; 1662 1663 unsigned AddendSrcReg = AddendMI->getOperand(1).getReg(); 1664 if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) { 1665 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != 1666 MRI.getRegClass(AddendSrcReg)) 1667 continue; 1668 } else { 1669 // If AddendSrcReg is a physical register, make sure the destination 1670 // register class contains it. 1671 if (!MRI.getRegClass(AddendMI->getOperand(0).getReg()) 1672 ->contains(AddendSrcReg)) 1673 continue; 1674 } 1675 1676 // In theory, there could be other uses of the addend copy before this 1677 // fma. We could deal with this, but that would require additional 1678 // logic below and I suspect it will not occur in any relevant 1679 // situations. 1680 bool OtherUsers = false; 1681 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); 1682 J != JE; --J) 1683 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { 1684 OtherUsers = true; 1685 break; 1686 } 1687 1688 if (OtherUsers) 1689 continue; 1690 1691 // Find one of the product operands that is killed by this instruction. 1692 1693 unsigned KilledProdOp = 0, OtherProdOp = 0; 1694 if (LIS->getInterval(MI->getOperand(2).getReg()) 1695 .Query(FMAIdx).isKill()) { 1696 KilledProdOp = 2; 1697 OtherProdOp = 3; 1698 } else if (LIS->getInterval(MI->getOperand(3).getReg()) 1699 .Query(FMAIdx).isKill()) { 1700 KilledProdOp = 3; 1701 OtherProdOp = 2; 1702 } 1703 1704 // If there are no killed product operands, then this transformation is 1705 // likely not profitable. 1706 if (!KilledProdOp) 1707 continue; 1708 1709 // In order to replace the addend here with the source of the copy, 1710 // it must still be live here. 1711 if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx)) 1712 continue; 1713 1714 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. 1715 1716 unsigned AddReg = AddendMI->getOperand(1).getReg(); 1717 unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg(); 1718 unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg(); 1719 1720 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); 1721 unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg(); 1722 unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg(); 1723 1724 bool AddRegKill = AddendMI->getOperand(1).isKill(); 1725 bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill(); 1726 bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill(); 1727 1728 bool AddRegUndef = AddendMI->getOperand(1).isUndef(); 1729 bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef(); 1730 bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef(); 1731 1732 unsigned OldFMAReg = MI->getOperand(0).getReg(); 1733 1734 assert(OldFMAReg == AddendMI->getOperand(0).getReg() && 1735 "Addend copy not tied to old FMA output!"); 1736 1737 DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;); 1738 1739 MI->getOperand(0).setReg(KilledProdReg); 1740 MI->getOperand(1).setReg(KilledProdReg); 1741 MI->getOperand(3).setReg(AddReg); 1742 MI->getOperand(2).setReg(OtherProdReg); 1743 1744 MI->getOperand(0).setSubReg(KilledProdSubReg); 1745 MI->getOperand(1).setSubReg(KilledProdSubReg); 1746 MI->getOperand(3).setSubReg(AddSubReg); 1747 MI->getOperand(2).setSubReg(OtherProdSubReg); 1748 1749 MI->getOperand(1).setIsKill(KilledProdRegKill); 1750 MI->getOperand(3).setIsKill(AddRegKill); 1751 MI->getOperand(2).setIsKill(OtherProdRegKill); 1752 1753 MI->getOperand(1).setIsUndef(KilledProdRegUndef); 1754 MI->getOperand(3).setIsUndef(AddRegUndef); 1755 MI->getOperand(2).setIsUndef(OtherProdRegUndef); 1756 1757 MI->setDesc(TII->get(AltOpc)); 1758 1759 DEBUG(dbgs() << " -> " << *MI); 1760 1761 // The killed product operand was killed here, so we can reuse it now 1762 // for the result of the fma. 1763 1764 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); 1765 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); 1766 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); 1767 UI != UE;) { 1768 MachineOperand &UseMO = *UI; 1769 MachineInstr *UseMI = UseMO.getParent(); 1770 ++UI; 1771 1772 // Don't replace the result register of the copy we're about to erase. 1773 if (UseMI == AddendMI) 1774 continue; 1775 1776 UseMO.setReg(KilledProdReg); 1777 UseMO.setSubReg(KilledProdSubReg); 1778 } 1779 1780 // Extend the live intervals of the killed product operand to hold the 1781 // fma result. 1782 1783 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); 1784 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); 1785 AI != AE; ++AI) { 1786 // Don't add the segment that corresponds to the original copy. 1787 if (AI->valno == AddendValNo) 1788 continue; 1789 1790 VNInfo *NewFMAValNo = 1791 NewFMAInt.getNextValue(AI->start, 1792 LIS->getVNInfoAllocator()); 1793 1794 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, 1795 NewFMAValNo)); 1796 } 1797 DEBUG(dbgs() << " extended: " << NewFMAInt << '\n'); 1798 1799 FMAInt.removeValNo(FMAValNo); 1800 DEBUG(dbgs() << " trimmed: " << FMAInt << '\n'); 1801 1802 // Remove the (now unused) copy. 1803 1804 DEBUG(dbgs() << " removing: " << *AddendMI << '\n'); 1805 LIS->RemoveMachineInstrFromMaps(AddendMI); 1806 AddendMI->eraseFromParent(); 1807 1808 Changed = true; 1809 } 1810 1811 return Changed; 1812 } 1813 1814public: 1815 bool runOnMachineFunction(MachineFunction &MF) override { 1816 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1817 // If we don't have VSX then go ahead and return without doing 1818 // anything. 1819 if (!TM->getSubtargetImpl()->hasVSX()) 1820 return false; 1821 1822 LIS = &getAnalysis<LiveIntervals>(); 1823 1824 TII = TM->getInstrInfo(); 1825 1826 bool Changed = false; 1827 1828 if (DisableVSXFMAMutate) 1829 return Changed; 1830 1831 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1832 MachineBasicBlock &B = *I++; 1833 if (processBlock(B)) 1834 Changed = true; 1835 } 1836 1837 return Changed; 1838 } 1839 1840 void getAnalysisUsage(AnalysisUsage &AU) const override { 1841 AU.addRequired<LiveIntervals>(); 1842 AU.addPreserved<LiveIntervals>(); 1843 AU.addRequired<SlotIndexes>(); 1844 AU.addPreserved<SlotIndexes>(); 1845 MachineFunctionPass::getAnalysisUsage(AU); 1846 } 1847 }; 1848} 1849 1850INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, 1851 "PowerPC VSX FMA Mutation", false, false) 1852INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 1853INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 1854INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, 1855 "PowerPC VSX FMA Mutation", false, false) 1856 1857char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; 1858 1859char PPCVSXFMAMutate::ID = 0; 1860FunctionPass* 1861llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); } 1862 1863#undef DEBUG_TYPE 1864#define DEBUG_TYPE "ppc-vsx-copy" 1865 1866namespace llvm { 1867 void initializePPCVSXCopyPass(PassRegistry&); 1868} 1869 1870namespace { 1871 // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers 1872 // (Altivec and scalar floating-point registers), we need to transform the 1873 // copies into subregister copies with other restrictions. 1874 struct PPCVSXCopy : public MachineFunctionPass { 1875 static char ID; 1876 PPCVSXCopy() : MachineFunctionPass(ID) { 1877 initializePPCVSXCopyPass(*PassRegistry::getPassRegistry()); 1878 } 1879 1880 const PPCTargetMachine *TM; 1881 const PPCInstrInfo *TII; 1882 1883 bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC, 1884 MachineRegisterInfo &MRI) { 1885 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1886 return RC->hasSubClassEq(MRI.getRegClass(Reg)); 1887 } else if (RC->contains(Reg)) { 1888 return true; 1889 } 1890 1891 return false; 1892 } 1893 1894 bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) { 1895 return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI); 1896 } 1897 1898 bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) { 1899 return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI); 1900 } 1901 1902 bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) { 1903 return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI); 1904 } 1905 1906protected: 1907 bool processBlock(MachineBasicBlock &MBB) { 1908 bool Changed = false; 1909 1910 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1911 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 1912 I != IE; ++I) { 1913 MachineInstr *MI = I; 1914 if (!MI->isFullCopy()) 1915 continue; 1916 1917 MachineOperand &DstMO = MI->getOperand(0); 1918 MachineOperand &SrcMO = MI->getOperand(1); 1919 1920 if ( IsVSReg(DstMO.getReg(), MRI) && 1921 !IsVSReg(SrcMO.getReg(), MRI)) { 1922 // This is a copy *to* a VSX register from a non-VSX register. 1923 Changed = true; 1924 1925 const TargetRegisterClass *SrcRC = 1926 IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1927 &PPC::VSLRCRegClass; 1928 assert((IsF8Reg(SrcMO.getReg(), MRI) || 1929 IsVRReg(SrcMO.getReg(), MRI)) && 1930 "Unknown source for a VSX copy"); 1931 1932 unsigned NewVReg = MRI.createVirtualRegister(SrcRC); 1933 BuildMI(MBB, MI, MI->getDebugLoc(), 1934 TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg) 1935 .addImm(1) // add 1, not 0, because there is no implicit clearing 1936 // of the high bits. 1937 .addOperand(SrcMO) 1938 .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 : 1939 PPC::sub_64); 1940 1941 // The source of the original copy is now the new virtual register. 1942 SrcMO.setReg(NewVReg); 1943 } else if (!IsVSReg(DstMO.getReg(), MRI) && 1944 IsVSReg(SrcMO.getReg(), MRI)) { 1945 // This is a copy *from* a VSX register to a non-VSX register. 1946 Changed = true; 1947 1948 const TargetRegisterClass *DstRC = 1949 IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass : 1950 &PPC::VSLRCRegClass; 1951 assert((IsF8Reg(DstMO.getReg(), MRI) || 1952 IsVRReg(DstMO.getReg(), MRI)) && 1953 "Unknown destination for a VSX copy"); 1954 1955 // Copy the VSX value into a new VSX register of the correct subclass. 1956 unsigned NewVReg = MRI.createVirtualRegister(DstRC); 1957 BuildMI(MBB, MI, MI->getDebugLoc(), 1958 TII->get(TargetOpcode::COPY), NewVReg) 1959 .addOperand(SrcMO); 1960 1961 // Transform the original copy into a subregister extraction copy. 1962 SrcMO.setReg(NewVReg); 1963 SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 : 1964 PPC::sub_64); 1965 } 1966 } 1967 1968 return Changed; 1969 } 1970 1971public: 1972 bool runOnMachineFunction(MachineFunction &MF) override { 1973 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1974 // If we don't have VSX on the subtarget, don't do anything. 1975 if (!TM->getSubtargetImpl()->hasVSX()) 1976 return false; 1977 TII = TM->getInstrInfo(); 1978 1979 bool Changed = false; 1980 1981 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1982 MachineBasicBlock &B = *I++; 1983 if (processBlock(B)) 1984 Changed = true; 1985 } 1986 1987 return Changed; 1988 } 1989 1990 void getAnalysisUsage(AnalysisUsage &AU) const override { 1991 MachineFunctionPass::getAnalysisUsage(AU); 1992 } 1993 }; 1994} 1995 1996INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE, 1997 "PowerPC VSX Copy Legalization", false, false) 1998 1999char PPCVSXCopy::ID = 0; 2000FunctionPass* 2001llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); } 2002 2003#undef DEBUG_TYPE 2004#define DEBUG_TYPE "ppc-vsx-copy-cleanup" 2005 2006namespace llvm { 2007 void initializePPCVSXCopyCleanupPass(PassRegistry&); 2008} 2009 2010namespace { 2011 // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX 2012 // registers (mostly because the ABI code still places all values into the 2013 // "traditional" floating-point and vector registers). Remove them here. 2014 struct PPCVSXCopyCleanup : public MachineFunctionPass { 2015 static char ID; 2016 PPCVSXCopyCleanup() : MachineFunctionPass(ID) { 2017 initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry()); 2018 } 2019 2020 const PPCTargetMachine *TM; 2021 const PPCInstrInfo *TII; 2022 2023protected: 2024 bool processBlock(MachineBasicBlock &MBB) { 2025 bool Changed = false; 2026 2027 SmallVector<MachineInstr *, 4> ToDelete; 2028 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 2029 I != IE; ++I) { 2030 MachineInstr *MI = I; 2031 if (MI->getOpcode() == PPC::XXLOR && 2032 MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && 2033 MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) 2034 ToDelete.push_back(MI); 2035 } 2036 2037 if (!ToDelete.empty()) 2038 Changed = true; 2039 2040 for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) { 2041 DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]); 2042 ToDelete[i]->eraseFromParent(); 2043 } 2044 2045 return Changed; 2046 } 2047 2048public: 2049 bool runOnMachineFunction(MachineFunction &MF) override { 2050 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2051 // If we don't have VSX don't bother doing anything here. 2052 if (!TM->getSubtargetImpl()->hasVSX()) 2053 return false; 2054 TII = TM->getInstrInfo(); 2055 2056 bool Changed = false; 2057 2058 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2059 MachineBasicBlock &B = *I++; 2060 if (processBlock(B)) 2061 Changed = true; 2062 } 2063 2064 return Changed; 2065 } 2066 2067 void getAnalysisUsage(AnalysisUsage &AU) const override { 2068 MachineFunctionPass::getAnalysisUsage(AU); 2069 } 2070 }; 2071} 2072 2073INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE, 2074 "PowerPC VSX Copy Cleanup", false, false) 2075 2076char PPCVSXCopyCleanup::ID = 0; 2077FunctionPass* 2078llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); } 2079 2080#undef DEBUG_TYPE 2081#define DEBUG_TYPE "ppc-early-ret" 2082STATISTIC(NumBCLR, "Number of early conditional returns"); 2083STATISTIC(NumBLR, "Number of early returns"); 2084 2085namespace llvm { 2086 void initializePPCEarlyReturnPass(PassRegistry&); 2087} 2088 2089namespace { 2090 // PPCEarlyReturn pass - For simple functions without epilogue code, move 2091 // returns up, and create conditional returns, to avoid unnecessary 2092 // branch-to-blr sequences. 2093 struct PPCEarlyReturn : public MachineFunctionPass { 2094 static char ID; 2095 PPCEarlyReturn() : MachineFunctionPass(ID) { 2096 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 2097 } 2098 2099 const PPCTargetMachine *TM; 2100 const PPCInstrInfo *TII; 2101 2102protected: 2103 bool processBlock(MachineBasicBlock &ReturnMBB) { 2104 bool Changed = false; 2105 2106 MachineBasicBlock::iterator I = ReturnMBB.begin(); 2107 I = ReturnMBB.SkipPHIsAndLabels(I); 2108 2109 // The block must be essentially empty except for the blr. 2110 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 2111 I != ReturnMBB.getLastNonDebugInstr()) 2112 return Changed; 2113 2114 SmallVector<MachineBasicBlock*, 8> PredToRemove; 2115 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 2116 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 2117 bool OtherReference = false, BlockChanged = false; 2118 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 2119 if (J->getOpcode() == PPC::B) { 2120 if (J->getOperand(0).getMBB() == &ReturnMBB) { 2121 // This is an unconditional branch to the return. Replace the 2122 // branch with a blr. 2123 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 2124 MachineBasicBlock::iterator K = J--; 2125 K->eraseFromParent(); 2126 BlockChanged = true; 2127 ++NumBLR; 2128 continue; 2129 } 2130 } else if (J->getOpcode() == PPC::BCC) { 2131 if (J->getOperand(2).getMBB() == &ReturnMBB) { 2132 // This is a conditional branch to the return. Replace the branch 2133 // with a bclr. 2134 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR)) 2135 .addImm(J->getOperand(0).getImm()) 2136 .addReg(J->getOperand(1).getReg()); 2137 MachineBasicBlock::iterator K = J--; 2138 K->eraseFromParent(); 2139 BlockChanged = true; 2140 ++NumBCLR; 2141 continue; 2142 } 2143 } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) { 2144 if (J->getOperand(1).getMBB() == &ReturnMBB) { 2145 // This is a conditional branch to the return. Replace the branch 2146 // with a bclr. 2147 BuildMI(**PI, J, J->getDebugLoc(), 2148 TII->get(J->getOpcode() == PPC::BC ? 2149 PPC::BCLR : PPC::BCLRn)) 2150 .addReg(J->getOperand(0).getReg()); 2151 MachineBasicBlock::iterator K = J--; 2152 K->eraseFromParent(); 2153 BlockChanged = true; 2154 ++NumBCLR; 2155 continue; 2156 } 2157 } else if (J->isBranch()) { 2158 if (J->isIndirectBranch()) { 2159 if (ReturnMBB.hasAddressTaken()) 2160 OtherReference = true; 2161 } else 2162 for (unsigned i = 0; i < J->getNumOperands(); ++i) 2163 if (J->getOperand(i).isMBB() && 2164 J->getOperand(i).getMBB() == &ReturnMBB) 2165 OtherReference = true; 2166 } else if (!J->isTerminator() && !J->isDebugValue()) 2167 break; 2168 2169 if (J == (*PI)->begin()) 2170 break; 2171 2172 --J; 2173 } 2174 2175 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 2176 OtherReference = true; 2177 2178 // Predecessors are stored in a vector and can't be removed here. 2179 if (!OtherReference && BlockChanged) { 2180 PredToRemove.push_back(*PI); 2181 } 2182 2183 if (BlockChanged) 2184 Changed = true; 2185 } 2186 2187 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 2188 PredToRemove[i]->removeSuccessor(&ReturnMBB); 2189 2190 if (Changed && !ReturnMBB.hasAddressTaken()) { 2191 // We now might be able to merge this blr-only block into its 2192 // by-layout predecessor. 2193 if (ReturnMBB.pred_size() == 1 && 2194 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 2195 // Move the blr into the preceding block. 2196 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 2197 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 2198 PrevMBB.removeSuccessor(&ReturnMBB); 2199 } 2200 2201 if (ReturnMBB.pred_empty()) 2202 ReturnMBB.eraseFromParent(); 2203 } 2204 2205 return Changed; 2206 } 2207 2208public: 2209 bool runOnMachineFunction(MachineFunction &MF) override { 2210 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 2211 TII = TM->getInstrInfo(); 2212 2213 bool Changed = false; 2214 2215 // If the function does not have at least two blocks, then there is 2216 // nothing to do. 2217 if (MF.size() < 2) 2218 return Changed; 2219 2220 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 2221 MachineBasicBlock &B = *I++; 2222 if (processBlock(B)) 2223 Changed = true; 2224 } 2225 2226 return Changed; 2227 } 2228 2229 void getAnalysisUsage(AnalysisUsage &AU) const override { 2230 MachineFunctionPass::getAnalysisUsage(AU); 2231 } 2232 }; 2233} 2234 2235INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 2236 "PowerPC Early-Return Creation", false, false) 2237 2238char PPCEarlyReturn::ID = 0; 2239FunctionPass* 2240llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 2241