1//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#include "PPCTargetTransformInfo.h" 11#include "llvm/Analysis/TargetTransformInfo.h" 12#include "llvm/CodeGen/BasicTTIImpl.h" 13#include "llvm/Support/CommandLine.h" 14#include "llvm/Support/Debug.h" 15#include "llvm/Target/CostTable.h" 16#include "llvm/Target/TargetLowering.h" 17using namespace llvm; 18 19#define DEBUG_TYPE "ppctti" 20 21static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", 22cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); 23 24//===----------------------------------------------------------------------===// 25// 26// PPC cost model. 27// 28//===----------------------------------------------------------------------===// 29 30TargetTransformInfo::PopcntSupportKind 31PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { 32 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 33 if (ST->hasPOPCNTD() && TyWidth <= 64) 34 return TTI::PSK_FastHardware; 35 return TTI::PSK_Software; 36} 37 38int PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 39 if (DisablePPCConstHoist) 40 return BaseT::getIntImmCost(Imm, Ty); 41 42 assert(Ty->isIntegerTy()); 43 44 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 45 if (BitSize == 0) 46 return ~0U; 47 48 if (Imm == 0) 49 return TTI::TCC_Free; 50 51 if (Imm.getBitWidth() <= 64) { 52 if (isInt<16>(Imm.getSExtValue())) 53 return TTI::TCC_Basic; 54 55 if (isInt<32>(Imm.getSExtValue())) { 56 // A constant that can be materialized using lis. 57 if ((Imm.getZExtValue() & 0xFFFF) == 0) 58 return TTI::TCC_Basic; 59 60 return 2 * TTI::TCC_Basic; 61 } 62 } 63 64 return 4 * TTI::TCC_Basic; 65} 66 67int PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 68 Type *Ty) { 69 if (DisablePPCConstHoist) 70 return BaseT::getIntImmCost(IID, Idx, Imm, Ty); 71 72 assert(Ty->isIntegerTy()); 73 74 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 75 if (BitSize == 0) 76 return ~0U; 77 78 switch (IID) { 79 default: 80 return TTI::TCC_Free; 81 case Intrinsic::sadd_with_overflow: 82 case Intrinsic::uadd_with_overflow: 83 case Intrinsic::ssub_with_overflow: 84 case Intrinsic::usub_with_overflow: 85 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) 86 return TTI::TCC_Free; 87 break; 88 case Intrinsic::experimental_stackmap: 89 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 90 return TTI::TCC_Free; 91 break; 92 case Intrinsic::experimental_patchpoint_void: 93 case Intrinsic::experimental_patchpoint_i64: 94 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 95 return TTI::TCC_Free; 96 break; 97 } 98 return PPCTTIImpl::getIntImmCost(Imm, Ty); 99} 100 101int PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, 102 Type *Ty) { 103 if (DisablePPCConstHoist) 104 return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); 105 106 assert(Ty->isIntegerTy()); 107 108 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 109 if (BitSize == 0) 110 return ~0U; 111 112 unsigned ImmIdx = ~0U; 113 bool ShiftedFree = false, RunFree = false, UnsignedFree = false, 114 ZeroFree = false; 115 switch (Opcode) { 116 default: 117 return TTI::TCC_Free; 118 case Instruction::GetElementPtr: 119 // Always hoist the base address of a GetElementPtr. This prevents the 120 // creation of new constants for every base constant that gets constant 121 // folded with the offset. 122 if (Idx == 0) 123 return 2 * TTI::TCC_Basic; 124 return TTI::TCC_Free; 125 case Instruction::And: 126 RunFree = true; // (for the rotate-and-mask instructions) 127 // Fallthrough... 128 case Instruction::Add: 129 case Instruction::Or: 130 case Instruction::Xor: 131 ShiftedFree = true; 132 // Fallthrough... 133 case Instruction::Sub: 134 case Instruction::Mul: 135 case Instruction::Shl: 136 case Instruction::LShr: 137 case Instruction::AShr: 138 ImmIdx = 1; 139 break; 140 case Instruction::ICmp: 141 UnsignedFree = true; 142 ImmIdx = 1; 143 // Fallthrough... (zero comparisons can use record-form instructions) 144 case Instruction::Select: 145 ZeroFree = true; 146 break; 147 case Instruction::PHI: 148 case Instruction::Call: 149 case Instruction::Ret: 150 case Instruction::Load: 151 case Instruction::Store: 152 break; 153 } 154 155 if (ZeroFree && Imm == 0) 156 return TTI::TCC_Free; 157 158 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { 159 if (isInt<16>(Imm.getSExtValue())) 160 return TTI::TCC_Free; 161 162 if (RunFree) { 163 if (Imm.getBitWidth() <= 32 && 164 (isShiftedMask_32(Imm.getZExtValue()) || 165 isShiftedMask_32(~Imm.getZExtValue()))) 166 return TTI::TCC_Free; 167 168 if (ST->isPPC64() && 169 (isShiftedMask_64(Imm.getZExtValue()) || 170 isShiftedMask_64(~Imm.getZExtValue()))) 171 return TTI::TCC_Free; 172 } 173 174 if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) 175 return TTI::TCC_Free; 176 177 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) 178 return TTI::TCC_Free; 179 } 180 181 return PPCTTIImpl::getIntImmCost(Imm, Ty); 182} 183 184void PPCTTIImpl::getUnrollingPreferences(Loop *L, 185 TTI::UnrollingPreferences &UP) { 186 if (ST->getDarwinDirective() == PPC::DIR_A2) { 187 // The A2 is in-order with a deep pipeline, and concatenation unrolling 188 // helps expose latency-hiding opportunities to the instruction scheduler. 189 UP.Partial = UP.Runtime = true; 190 191 // We unroll a lot on the A2 (hundreds of instructions), and the benefits 192 // often outweigh the cost of a division to compute the trip count. 193 UP.AllowExpensiveTripCount = true; 194 } 195 196 BaseT::getUnrollingPreferences(L, UP); 197} 198 199bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { 200 // On the A2, always unroll aggressively. For QPX unaligned loads, we depend 201 // on combining the loads generated for consecutive accesses, and failure to 202 // do so is particularly expensive. This makes it much more likely (compared 203 // to only using concatenation unrolling). 204 if (ST->getDarwinDirective() == PPC::DIR_A2) 205 return true; 206 207 return LoopHasReductions; 208} 209 210bool PPCTTIImpl::enableInterleavedAccessVectorization() { 211 return true; 212} 213 214unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { 215 if (Vector && !ST->hasAltivec() && !ST->hasQPX()) 216 return 0; 217 return ST->hasVSX() ? 64 : 32; 218} 219 220unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) { 221 if (Vector) { 222 if (ST->hasQPX()) return 256; 223 if (ST->hasAltivec()) return 128; 224 return 0; 225 } 226 227 if (ST->isPPC64()) 228 return 64; 229 return 32; 230 231} 232 233unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { 234 unsigned Directive = ST->getDarwinDirective(); 235 // The 440 has no SIMD support, but floating-point instructions 236 // have a 5-cycle latency, so unroll by 5x for latency hiding. 237 if (Directive == PPC::DIR_440) 238 return 5; 239 240 // The A2 has no SIMD support, but floating-point instructions 241 // have a 6-cycle latency, so unroll by 6x for latency hiding. 242 if (Directive == PPC::DIR_A2) 243 return 6; 244 245 // FIXME: For lack of any better information, do no harm... 246 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) 247 return 1; 248 249 // For P7 and P8, floating-point instructions have a 6-cycle latency and 250 // there are two execution units, so unroll by 12x for latency hiding. 251 if (Directive == PPC::DIR_PWR7 || 252 Directive == PPC::DIR_PWR8) 253 return 12; 254 255 // For most things, modern systems have two execution units (and 256 // out-of-order execution). 257 return 2; 258} 259 260int PPCTTIImpl::getArithmeticInstrCost( 261 unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, 262 TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, 263 TTI::OperandValueProperties Opd2PropInfo) { 264 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 265 266 // Fallback to the default implementation. 267 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, 268 Opd1PropInfo, Opd2PropInfo); 269} 270 271int PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, 272 Type *SubTp) { 273 // Legalize the type. 274 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 275 276 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 277 // (at least in the sense that there need only be one non-loop-invariant 278 // instruction). We need one such shuffle instruction for each actual 279 // register (this is not true for arbitrary shuffles, but is true for the 280 // structured types of shuffles covered by TTI::ShuffleKind). 281 return LT.first; 282} 283 284int PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { 285 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); 286 287 return BaseT::getCastInstrCost(Opcode, Dst, Src); 288} 289 290int PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { 291 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); 292} 293 294int PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { 295 assert(Val->isVectorTy() && "This must be a vector type"); 296 297 int ISD = TLI->InstructionOpcodeToISD(Opcode); 298 assert(ISD && "Invalid opcode"); 299 300 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { 301 // Double-precision scalars are already located in index #0. 302 if (Index == 0) 303 return 0; 304 305 return BaseT::getVectorInstrCost(Opcode, Val, Index); 306 } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { 307 // Floating point scalars are already located in index #0. 308 if (Index == 0) 309 return 0; 310 311 return BaseT::getVectorInstrCost(Opcode, Val, Index); 312 } 313 314 // Estimated cost of a load-hit-store delay. This was obtained 315 // experimentally as a minimum needed to prevent unprofitable 316 // vectorization for the paq8p benchmark. It may need to be 317 // raised further if other unprofitable cases remain. 318 unsigned LHSPenalty = 2; 319 if (ISD == ISD::INSERT_VECTOR_ELT) 320 LHSPenalty += 7; 321 322 // Vector element insert/extract with Altivec is very expensive, 323 // because they require store and reload with the attendant 324 // processor stall for load-hit-store. Until VSX is available, 325 // these need to be estimated as very costly. 326 if (ISD == ISD::EXTRACT_VECTOR_ELT || 327 ISD == ISD::INSERT_VECTOR_ELT) 328 return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); 329 330 return BaseT::getVectorInstrCost(Opcode, Val, Index); 331} 332 333int PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 334 unsigned AddressSpace) { 335 // Legalize the type. 336 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); 337 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && 338 "Invalid Opcode"); 339 340 int Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 341 342 // Aligned loads and stores are easy. 343 unsigned SrcBytes = LT.second.getStoreSize(); 344 if (!SrcBytes || !Alignment || Alignment >= SrcBytes) 345 return Cost; 346 347 bool IsAltivecType = ST->hasAltivec() && 348 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || 349 LT.second == MVT::v4i32 || LT.second == MVT::v4f32); 350 bool IsVSXType = ST->hasVSX() && 351 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); 352 bool IsQPXType = ST->hasQPX() && 353 (LT.second == MVT::v4f64 || LT.second == MVT::v4f32); 354 355 // If we can use the permutation-based load sequence, then this is also 356 // relatively cheap (not counting loop-invariant instructions): one load plus 357 // one permute (the last load in a series has extra cost, but we're 358 // neglecting that here). Note that on the P7, we should do unaligned loads 359 // for Altivec types using the VSX instructions, but that's more expensive 360 // than using the permutation-based load sequence. On the P8, that's no 361 // longer true. 362 if (Opcode == Instruction::Load && 363 ((!ST->hasP8Vector() && IsAltivecType) || IsQPXType) && 364 Alignment >= LT.second.getScalarType().getStoreSize()) 365 return Cost + LT.first; // Add the cost of the permutations. 366 367 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the 368 // P7, unaligned vector loads are more expensive than the permutation-based 369 // load sequence, so that might be used instead, but regardless, the net cost 370 // is about the same (not counting loop-invariant instructions). 371 if (IsVSXType || (ST->hasVSX() && IsAltivecType)) 372 return Cost; 373 374 // PPC in general does not support unaligned loads and stores. They'll need 375 // to be decomposed based on the alignment factor. 376 377 // Add the cost of each scalar load or store. 378 Cost += LT.first*(SrcBytes/Alignment-1); 379 380 // For a vector type, there is also scalarization overhead (only for 381 // stores, loads are expanded using the vector-load + permutation sequence, 382 // which is much less expensive). 383 if (Src->isVectorTy() && Opcode == Instruction::Store) 384 for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) 385 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); 386 387 return Cost; 388} 389 390int PPCTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 391 unsigned Factor, 392 ArrayRef<unsigned> Indices, 393 unsigned Alignment, 394 unsigned AddressSpace) { 395 assert(isa<VectorType>(VecTy) && 396 "Expect a vector type for interleaved memory op"); 397 398 // Legalize the type. 399 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); 400 401 // Firstly, the cost of load/store operation. 402 int Cost = getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace); 403 404 // PPC, for both Altivec/VSX and QPX, support cheap arbitrary permutations 405 // (at least in the sense that there need only be one non-loop-invariant 406 // instruction). For each result vector, we need one shuffle per incoming 407 // vector (except that the first shuffle can take two incoming vectors 408 // because it does not need to take itself). 409 Cost += Factor*(LT.first-1); 410 411 return Cost; 412} 413 414