1//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11// Details of the algorithm:
12//  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Instrumentation.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/DepthFirstIterator.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/ADT/Triple.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/DIBuilder.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/Dominators.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/IRBuilder.h"
37#include "llvm/IR/InlineAsm.h"
38#include "llvm/IR/InstVisitor.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/MDBuilder.h"
42#include "llvm/IR/Module.h"
43#include "llvm/IR/Type.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/DataTypes.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Endian.h"
49#include "llvm/Support/SwapByteOrder.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Transforms/Scalar.h"
52#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
53#include "llvm/Transforms/Utils/BasicBlockUtils.h"
54#include "llvm/Transforms/Utils/Cloning.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/ModuleUtils.h"
57#include "llvm/Transforms/Utils/PromoteMemToReg.h"
58#include <algorithm>
59#include <string>
60#include <system_error>
61
62using namespace llvm;
63
64#define DEBUG_TYPE "asan"
65
66static const uint64_t kDefaultShadowScale = 3;
67static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
68static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
69static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
70static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
71static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
72static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
73static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
74static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
75static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
76static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
77static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
78static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
79
80static const size_t kMinStackMallocSize = 1 << 6;   // 64B
81static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
82static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
83static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
84
85static const char *const kAsanModuleCtorName = "asan.module_ctor";
86static const char *const kAsanModuleDtorName = "asan.module_dtor";
87static const uint64_t kAsanCtorAndDtorPriority = 1;
88static const char *const kAsanReportErrorTemplate = "__asan_report_";
89static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
90static const char *const kAsanUnregisterGlobalsName =
91    "__asan_unregister_globals";
92static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
93static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
94static const char *const kAsanInitName = "__asan_init";
95static const char *const kAsanVersionCheckName =
96    "__asan_version_mismatch_check_v6";
97static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
98static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
99static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
100static const int kMaxAsanStackMallocSizeClass = 10;
101static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
102static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
103static const char *const kAsanGenPrefix = "__asan_gen_";
104static const char *const kSanCovGenPrefix = "__sancov_gen_";
105static const char *const kAsanPoisonStackMemoryName =
106    "__asan_poison_stack_memory";
107static const char *const kAsanUnpoisonStackMemoryName =
108    "__asan_unpoison_stack_memory";
109
110static const char *const kAsanOptionDetectUAR =
111    "__asan_option_detect_stack_use_after_return";
112
113static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
114static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
115
116// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
117static const size_t kNumberOfAccessSizes = 5;
118
119static const unsigned kAllocaRzSize = 32;
120
121// Command-line flags.
122static cl::opt<bool> ClEnableKasan(
123    "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
124    cl::Hidden, cl::init(false));
125static cl::opt<bool> ClRecover(
126    "asan-recover",
127    cl::desc("Enable recovery mode (continue-after-error)."),
128    cl::Hidden, cl::init(false));
129
130// This flag may need to be replaced with -f[no-]asan-reads.
131static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
132                                       cl::desc("instrument read instructions"),
133                                       cl::Hidden, cl::init(true));
134static cl::opt<bool> ClInstrumentWrites(
135    "asan-instrument-writes", cl::desc("instrument write instructions"),
136    cl::Hidden, cl::init(true));
137static cl::opt<bool> ClInstrumentAtomics(
138    "asan-instrument-atomics",
139    cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
140    cl::init(true));
141static cl::opt<bool> ClAlwaysSlowPath(
142    "asan-always-slow-path",
143    cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
144    cl::init(false));
145// This flag limits the number of instructions to be instrumented
146// in any given BB. Normally, this should be set to unlimited (INT_MAX),
147// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
148// set it to 10000.
149static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
150    "asan-max-ins-per-bb", cl::init(10000),
151    cl::desc("maximal number of instructions to instrument in any given BB"),
152    cl::Hidden);
153// This flag may need to be replaced with -f[no]asan-stack.
154static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
155                             cl::Hidden, cl::init(true));
156static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
157                                      cl::desc("Check return-after-free"),
158                                      cl::Hidden, cl::init(true));
159// This flag may need to be replaced with -f[no]asan-globals.
160static cl::opt<bool> ClGlobals("asan-globals",
161                               cl::desc("Handle global objects"), cl::Hidden,
162                               cl::init(true));
163static cl::opt<bool> ClInitializers("asan-initialization-order",
164                                    cl::desc("Handle C++ initializer order"),
165                                    cl::Hidden, cl::init(true));
166static cl::opt<bool> ClInvalidPointerPairs(
167    "asan-detect-invalid-pointer-pair",
168    cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
169    cl::init(false));
170static cl::opt<unsigned> ClRealignStack(
171    "asan-realign-stack",
172    cl::desc("Realign stack to the value of this flag (power of two)"),
173    cl::Hidden, cl::init(32));
174static cl::opt<int> ClInstrumentationWithCallsThreshold(
175    "asan-instrumentation-with-call-threshold",
176    cl::desc(
177        "If the function being instrumented contains more than "
178        "this number of memory accesses, use callbacks instead of "
179        "inline checks (-1 means never use callbacks)."),
180    cl::Hidden, cl::init(7000));
181static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
182    "asan-memory-access-callback-prefix",
183    cl::desc("Prefix for memory access callbacks"), cl::Hidden,
184    cl::init("__asan_"));
185static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
186                                         cl::desc("instrument dynamic allocas"),
187                                         cl::Hidden, cl::init(true));
188static cl::opt<bool> ClSkipPromotableAllocas(
189    "asan-skip-promotable-allocas",
190    cl::desc("Do not instrument promotable allocas"), cl::Hidden,
191    cl::init(true));
192
193// These flags allow to change the shadow mapping.
194// The shadow mapping looks like
195//    Shadow = (Mem >> scale) + (1 << offset_log)
196static cl::opt<int> ClMappingScale("asan-mapping-scale",
197                                   cl::desc("scale of asan shadow mapping"),
198                                   cl::Hidden, cl::init(0));
199
200// Optimization flags. Not user visible, used mostly for testing
201// and benchmarking the tool.
202static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
203                           cl::Hidden, cl::init(true));
204static cl::opt<bool> ClOptSameTemp(
205    "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
206    cl::Hidden, cl::init(true));
207static cl::opt<bool> ClOptGlobals("asan-opt-globals",
208                                  cl::desc("Don't instrument scalar globals"),
209                                  cl::Hidden, cl::init(true));
210static cl::opt<bool> ClOptStack(
211    "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
212    cl::Hidden, cl::init(false));
213
214static cl::opt<bool> ClCheckLifetime(
215    "asan-check-lifetime",
216    cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), cl::Hidden,
217    cl::init(false));
218
219static cl::opt<bool> ClDynamicAllocaStack(
220    "asan-stack-dynamic-alloca",
221    cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
222    cl::init(true));
223
224static cl::opt<uint32_t> ClForceExperiment(
225    "asan-force-experiment",
226    cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
227    cl::init(0));
228
229// Debug flags.
230static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
231                            cl::init(0));
232static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
233                                 cl::Hidden, cl::init(0));
234static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
235                                        cl::desc("Debug func"));
236static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
237                               cl::Hidden, cl::init(-1));
238static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
239                               cl::Hidden, cl::init(-1));
240
241STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
242STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
243STATISTIC(NumOptimizedAccessesToGlobalVar,
244          "Number of optimized accesses to global vars");
245STATISTIC(NumOptimizedAccessesToStackVar,
246          "Number of optimized accesses to stack vars");
247
248namespace {
249/// Frontend-provided metadata for source location.
250struct LocationMetadata {
251  StringRef Filename;
252  int LineNo;
253  int ColumnNo;
254
255  LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
256
257  bool empty() const { return Filename.empty(); }
258
259  void parse(MDNode *MDN) {
260    assert(MDN->getNumOperands() == 3);
261    MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
262    Filename = DIFilename->getString();
263    LineNo =
264        mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
265    ColumnNo =
266        mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
267  }
268};
269
270/// Frontend-provided metadata for global variables.
271class GlobalsMetadata {
272 public:
273  struct Entry {
274    Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
275    LocationMetadata SourceLoc;
276    StringRef Name;
277    bool IsDynInit;
278    bool IsBlacklisted;
279  };
280
281  GlobalsMetadata() : inited_(false) {}
282
283  void reset() {
284    inited_ = false;
285    Entries.clear();
286  }
287
288  void init(Module &M) {
289    assert(!inited_);
290    inited_ = true;
291    NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
292    if (!Globals) return;
293    for (auto MDN : Globals->operands()) {
294      // Metadata node contains the global and the fields of "Entry".
295      assert(MDN->getNumOperands() == 5);
296      auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
297      // The optimizer may optimize away a global entirely.
298      if (!GV) continue;
299      // We can already have an entry for GV if it was merged with another
300      // global.
301      Entry &E = Entries[GV];
302      if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
303        E.SourceLoc.parse(Loc);
304      if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
305        E.Name = Name->getString();
306      ConstantInt *IsDynInit =
307          mdconst::extract<ConstantInt>(MDN->getOperand(3));
308      E.IsDynInit |= IsDynInit->isOne();
309      ConstantInt *IsBlacklisted =
310          mdconst::extract<ConstantInt>(MDN->getOperand(4));
311      E.IsBlacklisted |= IsBlacklisted->isOne();
312    }
313  }
314
315  /// Returns metadata entry for a given global.
316  Entry get(GlobalVariable *G) const {
317    auto Pos = Entries.find(G);
318    return (Pos != Entries.end()) ? Pos->second : Entry();
319  }
320
321 private:
322  bool inited_;
323  DenseMap<GlobalVariable *, Entry> Entries;
324};
325
326/// This struct defines the shadow mapping using the rule:
327///   shadow = (mem >> Scale) ADD-or-OR Offset.
328struct ShadowMapping {
329  int Scale;
330  uint64_t Offset;
331  bool OrShadowOffset;
332};
333
334static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
335                                      bool IsKasan) {
336  bool IsAndroid = TargetTriple.isAndroid();
337  bool IsIOS = TargetTriple.isiOS();
338  bool IsFreeBSD = TargetTriple.isOSFreeBSD();
339  bool IsLinux = TargetTriple.isOSLinux();
340  bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
341                 TargetTriple.getArch() == llvm::Triple::ppc64le;
342  bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
343  bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
344                  TargetTriple.getArch() == llvm::Triple::mipsel;
345  bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
346                  TargetTriple.getArch() == llvm::Triple::mips64el;
347  bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
348  bool IsWindows = TargetTriple.isOSWindows();
349
350  ShadowMapping Mapping;
351
352  if (LongSize == 32) {
353    // Android is always PIE, which means that the beginning of the address
354    // space is always available.
355    if (IsAndroid)
356      Mapping.Offset = 0;
357    else if (IsMIPS32)
358      Mapping.Offset = kMIPS32_ShadowOffset32;
359    else if (IsFreeBSD)
360      Mapping.Offset = kFreeBSD_ShadowOffset32;
361    else if (IsIOS)
362      Mapping.Offset = kIOSShadowOffset32;
363    else if (IsWindows)
364      Mapping.Offset = kWindowsShadowOffset32;
365    else
366      Mapping.Offset = kDefaultShadowOffset32;
367  } else {  // LongSize == 64
368    if (IsPPC64)
369      Mapping.Offset = kPPC64_ShadowOffset64;
370    else if (IsFreeBSD)
371      Mapping.Offset = kFreeBSD_ShadowOffset64;
372    else if (IsLinux && IsX86_64) {
373      if (IsKasan)
374        Mapping.Offset = kLinuxKasan_ShadowOffset64;
375      else
376        Mapping.Offset = kSmallX86_64ShadowOffset;
377    } else if (IsMIPS64)
378      Mapping.Offset = kMIPS64_ShadowOffset64;
379    else if (IsAArch64)
380      Mapping.Offset = kAArch64_ShadowOffset64;
381    else
382      Mapping.Offset = kDefaultShadowOffset64;
383  }
384
385  Mapping.Scale = kDefaultShadowScale;
386  if (ClMappingScale) {
387    Mapping.Scale = ClMappingScale;
388  }
389
390  // OR-ing shadow offset if more efficient (at least on x86) if the offset
391  // is a power of two, but on ppc64 we have to use add since the shadow
392  // offset is not necessary 1/8-th of the address space.
393  Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64
394                           && !(Mapping.Offset & (Mapping.Offset - 1));
395
396  return Mapping;
397}
398
399static size_t RedzoneSizeForScale(int MappingScale) {
400  // Redzone used for stack and globals is at least 32 bytes.
401  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
402  return std::max(32U, 1U << MappingScale);
403}
404
405/// AddressSanitizer: instrument the code in module to find memory bugs.
406struct AddressSanitizer : public FunctionPass {
407  explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false)
408      : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan),
409        Recover(Recover || ClRecover) {
410    initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
411  }
412  const char *getPassName() const override {
413    return "AddressSanitizerFunctionPass";
414  }
415  void getAnalysisUsage(AnalysisUsage &AU) const override {
416    AU.addRequired<DominatorTreeWrapperPass>();
417    AU.addRequired<TargetLibraryInfoWrapperPass>();
418  }
419  uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
420    Type *Ty = AI->getAllocatedType();
421    uint64_t SizeInBytes =
422        AI->getModule()->getDataLayout().getTypeAllocSize(Ty);
423    return SizeInBytes;
424  }
425  /// Check if we want (and can) handle this alloca.
426  bool isInterestingAlloca(AllocaInst &AI);
427
428  // Check if we have dynamic alloca.
429  bool isDynamicAlloca(AllocaInst &AI) const {
430    return AI.isArrayAllocation() || !AI.isStaticAlloca();
431  }
432
433  /// If it is an interesting memory access, return the PointerOperand
434  /// and set IsWrite/Alignment. Otherwise return nullptr.
435  Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
436                                   uint64_t *TypeSize, unsigned *Alignment);
437  void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
438                     bool UseCalls, const DataLayout &DL);
439  void instrumentPointerComparisonOrSubtraction(Instruction *I);
440  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
441                         Value *Addr, uint32_t TypeSize, bool IsWrite,
442                         Value *SizeArgument, bool UseCalls, uint32_t Exp);
443  void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr,
444                                        uint32_t TypeSize, bool IsWrite,
445                                        Value *SizeArgument, bool UseCalls,
446                                        uint32_t Exp);
447  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
448                           Value *ShadowValue, uint32_t TypeSize);
449  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
450                                 bool IsWrite, size_t AccessSizeIndex,
451                                 Value *SizeArgument, uint32_t Exp);
452  void instrumentMemIntrinsic(MemIntrinsic *MI);
453  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
454  bool runOnFunction(Function &F) override;
455  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
456  void markEscapedLocalAllocas(Function &F);
457  bool doInitialization(Module &M) override;
458  bool doFinalization(Module &M) override;
459  static char ID;  // Pass identification, replacement for typeid
460
461  DominatorTree &getDominatorTree() const { return *DT; }
462
463 private:
464  void initializeCallbacks(Module &M);
465
466  bool LooksLikeCodeInBug11395(Instruction *I);
467  bool GlobalIsLinkerInitialized(GlobalVariable *G);
468  bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
469                    uint64_t TypeSize) const;
470
471  /// Helper to cleanup per-function state.
472  struct FunctionStateRAII {
473    AddressSanitizer *Pass;
474    FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
475      assert(Pass->ProcessedAllocas.empty() &&
476             "last pass forgot to clear cache");
477    }
478    ~FunctionStateRAII() { Pass->ProcessedAllocas.clear(); }
479  };
480
481  LLVMContext *C;
482  Triple TargetTriple;
483  int LongSize;
484  bool CompileKernel;
485  bool Recover;
486  Type *IntptrTy;
487  ShadowMapping Mapping;
488  DominatorTree *DT;
489  Function *AsanCtorFunction = nullptr;
490  Function *AsanInitFunction = nullptr;
491  Function *AsanHandleNoReturnFunc;
492  Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
493  // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
494  Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
495  Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
496  // This array is indexed by AccessIsWrite and Experiment.
497  Function *AsanErrorCallbackSized[2][2];
498  Function *AsanMemoryAccessCallbackSized[2][2];
499  Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
500  InlineAsm *EmptyAsm;
501  GlobalsMetadata GlobalsMD;
502  DenseMap<AllocaInst *, bool> ProcessedAllocas;
503
504  friend struct FunctionStackPoisoner;
505};
506
507class AddressSanitizerModule : public ModulePass {
508 public:
509  explicit AddressSanitizerModule(bool CompileKernel = false,
510                                  bool Recover = false)
511      : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan),
512        Recover(Recover || ClRecover) {}
513  bool runOnModule(Module &M) override;
514  static char ID;  // Pass identification, replacement for typeid
515  const char *getPassName() const override { return "AddressSanitizerModule"; }
516
517 private:
518  void initializeCallbacks(Module &M);
519
520  bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
521  bool ShouldInstrumentGlobal(GlobalVariable *G);
522  void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
523  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
524  size_t MinRedzoneSizeForGlobal() const {
525    return RedzoneSizeForScale(Mapping.Scale);
526  }
527
528  GlobalsMetadata GlobalsMD;
529  bool CompileKernel;
530  bool Recover;
531  Type *IntptrTy;
532  LLVMContext *C;
533  Triple TargetTriple;
534  ShadowMapping Mapping;
535  Function *AsanPoisonGlobals;
536  Function *AsanUnpoisonGlobals;
537  Function *AsanRegisterGlobals;
538  Function *AsanUnregisterGlobals;
539};
540
541// Stack poisoning does not play well with exception handling.
542// When an exception is thrown, we essentially bypass the code
543// that unpoisones the stack. This is why the run-time library has
544// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
545// stack in the interceptor. This however does not work inside the
546// actual function which catches the exception. Most likely because the
547// compiler hoists the load of the shadow value somewhere too high.
548// This causes asan to report a non-existing bug on 453.povray.
549// It sounds like an LLVM bug.
550struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
551  Function &F;
552  AddressSanitizer &ASan;
553  DIBuilder DIB;
554  LLVMContext *C;
555  Type *IntptrTy;
556  Type *IntptrPtrTy;
557  ShadowMapping Mapping;
558
559  SmallVector<AllocaInst *, 16> AllocaVec;
560  SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec;
561  SmallVector<Instruction *, 8> RetVec;
562  unsigned StackAlignment;
563
564  Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
565      *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
566  Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
567  Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
568
569  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
570  struct AllocaPoisonCall {
571    IntrinsicInst *InsBefore;
572    AllocaInst *AI;
573    uint64_t Size;
574    bool DoPoison;
575  };
576  SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
577
578  SmallVector<AllocaInst *, 1> DynamicAllocaVec;
579  SmallVector<IntrinsicInst *, 1> StackRestoreVec;
580  AllocaInst *DynamicAllocaLayout = nullptr;
581  IntrinsicInst *LocalEscapeCall = nullptr;
582
583  // Maps Value to an AllocaInst from which the Value is originated.
584  typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
585  AllocaForValueMapTy AllocaForValue;
586
587  bool HasNonEmptyInlineAsm = false;
588  bool HasReturnsTwiceCall = false;
589  std::unique_ptr<CallInst> EmptyInlineAsm;
590
591  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
592      : F(F),
593        ASan(ASan),
594        DIB(*F.getParent(), /*AllowUnresolved*/ false),
595        C(ASan.C),
596        IntptrTy(ASan.IntptrTy),
597        IntptrPtrTy(PointerType::get(IntptrTy, 0)),
598        Mapping(ASan.Mapping),
599        StackAlignment(1 << Mapping.Scale),
600        EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
601
602  bool runOnFunction() {
603    if (!ClStack) return false;
604    // Collect alloca, ret, lifetime instructions etc.
605    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
606
607    if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
608
609    initializeCallbacks(*F.getParent());
610
611    poisonStack();
612
613    if (ClDebugStack) {
614      DEBUG(dbgs() << F);
615    }
616    return true;
617  }
618
619  // Finds all Alloca instructions and puts
620  // poisoned red zones around all of them.
621  // Then unpoison everything back before the function returns.
622  void poisonStack();
623
624  void createDynamicAllocasInitStorage();
625
626  // ----------------------- Visitors.
627  /// \brief Collect all Ret instructions.
628  void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
629
630  void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
631                                        Value *SavedStack) {
632    IRBuilder<> IRB(InstBefore);
633    Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
634    // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
635    // need to adjust extracted SP to compute the address of the most recent
636    // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
637    // this purpose.
638    if (!isa<ReturnInst>(InstBefore)) {
639      Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
640          InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
641          {IntptrTy});
642
643      Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
644
645      DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
646                                     DynamicAreaOffset);
647    }
648
649    IRB.CreateCall(AsanAllocasUnpoisonFunc,
650                   {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
651  }
652
653  // Unpoison dynamic allocas redzones.
654  void unpoisonDynamicAllocas() {
655    for (auto &Ret : RetVec)
656      unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
657
658    for (auto &StackRestoreInst : StackRestoreVec)
659      unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
660                                       StackRestoreInst->getOperand(0));
661  }
662
663  // Deploy and poison redzones around dynamic alloca call. To do this, we
664  // should replace this call with another one with changed parameters and
665  // replace all its uses with new address, so
666  //   addr = alloca type, old_size, align
667  // is replaced by
668  //   new_size = (old_size + additional_size) * sizeof(type)
669  //   tmp = alloca i8, new_size, max(align, 32)
670  //   addr = tmp + 32 (first 32 bytes are for the left redzone).
671  // Additional_size is added to make new memory allocation contain not only
672  // requested memory, but also left, partial and right redzones.
673  void handleDynamicAllocaCall(AllocaInst *AI);
674
675  /// \brief Collect Alloca instructions we want (and can) handle.
676  void visitAllocaInst(AllocaInst &AI) {
677    if (!ASan.isInterestingAlloca(AI)) {
678      if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI);
679      return;
680    }
681
682    StackAlignment = std::max(StackAlignment, AI.getAlignment());
683    if (ASan.isDynamicAlloca(AI))
684      DynamicAllocaVec.push_back(&AI);
685    else
686      AllocaVec.push_back(&AI);
687  }
688
689  /// \brief Collect lifetime intrinsic calls to check for use-after-scope
690  /// errors.
691  void visitIntrinsicInst(IntrinsicInst &II) {
692    Intrinsic::ID ID = II.getIntrinsicID();
693    if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
694    if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
695    if (!ClCheckLifetime) return;
696    if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
697      return;
698    // Found lifetime intrinsic, add ASan instrumentation if necessary.
699    ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
700    // If size argument is undefined, don't do anything.
701    if (Size->isMinusOne()) return;
702    // Check that size doesn't saturate uint64_t and can
703    // be stored in IntptrTy.
704    const uint64_t SizeValue = Size->getValue().getLimitedValue();
705    if (SizeValue == ~0ULL ||
706        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
707      return;
708    // Find alloca instruction that corresponds to llvm.lifetime argument.
709    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
710    if (!AI) return;
711    bool DoPoison = (ID == Intrinsic::lifetime_end);
712    AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
713    AllocaPoisonCallVec.push_back(APC);
714  }
715
716  void visitCallSite(CallSite CS) {
717    Instruction *I = CS.getInstruction();
718    if (CallInst *CI = dyn_cast<CallInst>(I)) {
719      HasNonEmptyInlineAsm |=
720          CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get());
721      HasReturnsTwiceCall |= CI->canReturnTwice();
722    }
723  }
724
725  // ---------------------- Helpers.
726  void initializeCallbacks(Module &M);
727
728  bool doesDominateAllExits(const Instruction *I) const {
729    for (auto Ret : RetVec) {
730      if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
731    }
732    return true;
733  }
734
735  /// Finds alloca where the value comes from.
736  AllocaInst *findAllocaForValue(Value *V);
737  void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
738                      Value *ShadowBase, bool DoPoison);
739  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
740
741  void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
742                                          int Size);
743  Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
744                               bool Dynamic);
745  PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
746                     Instruction *ThenTerm, Value *ValueIfFalse);
747};
748
749} // anonymous namespace
750
751char AddressSanitizer::ID = 0;
752INITIALIZE_PASS_BEGIN(
753    AddressSanitizer, "asan",
754    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
755    false)
756INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
757INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
758INITIALIZE_PASS_END(
759    AddressSanitizer, "asan",
760    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
761    false)
762FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
763                                                       bool Recover) {
764  assert(!CompileKernel || Recover);
765  return new AddressSanitizer(CompileKernel, Recover);
766}
767
768char AddressSanitizerModule::ID = 0;
769INITIALIZE_PASS(
770    AddressSanitizerModule, "asan-module",
771    "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
772    "ModulePass",
773    false, false)
774ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
775                                                   bool Recover) {
776  assert(!CompileKernel || Recover);
777  return new AddressSanitizerModule(CompileKernel, Recover);
778}
779
780static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
781  size_t Res = countTrailingZeros(TypeSize / 8);
782  assert(Res < kNumberOfAccessSizes);
783  return Res;
784}
785
786// \brief Create a constant for Str so that we can pass it to the run-time lib.
787static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
788                                                    bool AllowMerging) {
789  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
790  // We use private linkage for module-local strings. If they can be merged
791  // with another one, we set the unnamed_addr attribute.
792  GlobalVariable *GV =
793      new GlobalVariable(M, StrConst->getType(), true,
794                         GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
795  if (AllowMerging) GV->setUnnamedAddr(true);
796  GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
797  return GV;
798}
799
800/// \brief Create a global describing a source location.
801static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
802                                                       LocationMetadata MD) {
803  Constant *LocData[] = {
804      createPrivateGlobalForString(M, MD.Filename, true),
805      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
806      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
807  };
808  auto LocStruct = ConstantStruct::getAnon(LocData);
809  auto GV = new GlobalVariable(M, LocStruct->getType(), true,
810                               GlobalValue::PrivateLinkage, LocStruct,
811                               kAsanGenPrefix);
812  GV->setUnnamedAddr(true);
813  return GV;
814}
815
816static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
817  return G->getName().find(kAsanGenPrefix) == 0 ||
818         G->getName().find(kSanCovGenPrefix) == 0;
819}
820
821Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
822  // Shadow >> scale
823  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
824  if (Mapping.Offset == 0) return Shadow;
825  // (Shadow >> scale) | offset
826  if (Mapping.OrShadowOffset)
827    return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
828  else
829    return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
830}
831
832// Instrument memset/memmove/memcpy
833void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
834  IRBuilder<> IRB(MI);
835  if (isa<MemTransferInst>(MI)) {
836    IRB.CreateCall(
837        isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
838        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
839         IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
840         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
841  } else if (isa<MemSetInst>(MI)) {
842    IRB.CreateCall(
843        AsanMemset,
844        {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
845         IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
846         IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
847  }
848  MI->eraseFromParent();
849}
850
851/// Check if we want (and can) handle this alloca.
852bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) {
853  auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
854
855  if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
856    return PreviouslySeenAllocaInfo->getSecond();
857
858  bool IsInteresting =
859      (AI.getAllocatedType()->isSized() &&
860       // alloca() may be called with 0 size, ignore it.
861       getAllocaSizeInBytes(&AI) > 0 &&
862       // We are only interested in allocas not promotable to registers.
863       // Promotable allocas are common under -O0.
864       (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
865       // inalloca allocas are not treated as static, and we don't want
866       // dynamic alloca instrumentation for them as well.
867       !AI.isUsedWithInAlloca());
868
869  ProcessedAllocas[&AI] = IsInteresting;
870  return IsInteresting;
871}
872
873/// If I is an interesting memory access, return the PointerOperand
874/// and set IsWrite/Alignment. Otherwise return nullptr.
875Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
876                                                   bool *IsWrite,
877                                                   uint64_t *TypeSize,
878                                                   unsigned *Alignment) {
879  // Skip memory accesses inserted by another instrumentation.
880  if (I->getMetadata("nosanitize")) return nullptr;
881
882  Value *PtrOperand = nullptr;
883  const DataLayout &DL = I->getModule()->getDataLayout();
884  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
885    if (!ClInstrumentReads) return nullptr;
886    *IsWrite = false;
887    *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
888    *Alignment = LI->getAlignment();
889    PtrOperand = LI->getPointerOperand();
890  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
891    if (!ClInstrumentWrites) return nullptr;
892    *IsWrite = true;
893    *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
894    *Alignment = SI->getAlignment();
895    PtrOperand = SI->getPointerOperand();
896  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
897    if (!ClInstrumentAtomics) return nullptr;
898    *IsWrite = true;
899    *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
900    *Alignment = 0;
901    PtrOperand = RMW->getPointerOperand();
902  } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
903    if (!ClInstrumentAtomics) return nullptr;
904    *IsWrite = true;
905    *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
906    *Alignment = 0;
907    PtrOperand = XCHG->getPointerOperand();
908  }
909
910  // Treat memory accesses to promotable allocas as non-interesting since they
911  // will not cause memory violations. This greatly speeds up the instrumented
912  // executable at -O0.
913  if (ClSkipPromotableAllocas)
914    if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
915      return isInterestingAlloca(*AI) ? AI : nullptr;
916
917  return PtrOperand;
918}
919
920static bool isPointerOperand(Value *V) {
921  return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
922}
923
924// This is a rough heuristic; it may cause both false positives and
925// false negatives. The proper implementation requires cooperation with
926// the frontend.
927static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
928  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
929    if (!Cmp->isRelational()) return false;
930  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
931    if (BO->getOpcode() != Instruction::Sub) return false;
932  } else {
933    return false;
934  }
935  return isPointerOperand(I->getOperand(0)) &&
936         isPointerOperand(I->getOperand(1));
937}
938
939bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
940  // If a global variable does not have dynamic initialization we don't
941  // have to instrument it.  However, if a global does not have initializer
942  // at all, we assume it has dynamic initializer (in other TU).
943  return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
944}
945
946void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
947    Instruction *I) {
948  IRBuilder<> IRB(I);
949  Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
950  Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
951  for (int i = 0; i < 2; i++) {
952    if (Param[i]->getType()->isPointerTy())
953      Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy);
954  }
955  IRB.CreateCall(F, Param);
956}
957
958void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
959                                     Instruction *I, bool UseCalls,
960                                     const DataLayout &DL) {
961  bool IsWrite = false;
962  unsigned Alignment = 0;
963  uint64_t TypeSize = 0;
964  Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment);
965  assert(Addr);
966
967  // Optimization experiments.
968  // The experiments can be used to evaluate potential optimizations that remove
969  // instrumentation (assess false negatives). Instead of completely removing
970  // some instrumentation, you set Exp to a non-zero value (mask of optimization
971  // experiments that want to remove instrumentation of this instruction).
972  // If Exp is non-zero, this pass will emit special calls into runtime
973  // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
974  // make runtime terminate the program in a special way (with a different
975  // exit status). Then you run the new compiler on a buggy corpus, collect
976  // the special terminations (ideally, you don't see them at all -- no false
977  // negatives) and make the decision on the optimization.
978  uint32_t Exp = ClForceExperiment;
979
980  if (ClOpt && ClOptGlobals) {
981    // If initialization order checking is disabled, a simple access to a
982    // dynamically initialized global is always valid.
983    GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
984    if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
985        isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
986      NumOptimizedAccessesToGlobalVar++;
987      return;
988    }
989  }
990
991  if (ClOpt && ClOptStack) {
992    // A direct inbounds access to a stack variable is always valid.
993    if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
994        isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
995      NumOptimizedAccessesToStackVar++;
996      return;
997    }
998  }
999
1000  if (IsWrite)
1001    NumInstrumentedWrites++;
1002  else
1003    NumInstrumentedReads++;
1004
1005  unsigned Granularity = 1 << Mapping.Scale;
1006  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1007  // if the data is properly aligned.
1008  if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1009       TypeSize == 128) &&
1010      (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1011    return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls,
1012                             Exp);
1013  instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr,
1014                                   UseCalls, Exp);
1015}
1016
1017Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1018                                                 Value *Addr, bool IsWrite,
1019                                                 size_t AccessSizeIndex,
1020                                                 Value *SizeArgument,
1021                                                 uint32_t Exp) {
1022  IRBuilder<> IRB(InsertBefore);
1023  Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1024  CallInst *Call = nullptr;
1025  if (SizeArgument) {
1026    if (Exp == 0)
1027      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1028                            {Addr, SizeArgument});
1029    else
1030      Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1031                            {Addr, SizeArgument, ExpVal});
1032  } else {
1033    if (Exp == 0)
1034      Call =
1035          IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1036    else
1037      Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1038                            {Addr, ExpVal});
1039  }
1040
1041  // We don't do Call->setDoesNotReturn() because the BB already has
1042  // UnreachableInst at the end.
1043  // This EmptyAsm is required to avoid callback merge.
1044  IRB.CreateCall(EmptyAsm, {});
1045  return Call;
1046}
1047
1048Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1049                                           Value *ShadowValue,
1050                                           uint32_t TypeSize) {
1051  size_t Granularity = 1 << Mapping.Scale;
1052  // Addr & (Granularity - 1)
1053  Value *LastAccessedByte =
1054      IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1055  // (Addr & (Granularity - 1)) + size - 1
1056  if (TypeSize / 8 > 1)
1057    LastAccessedByte = IRB.CreateAdd(
1058        LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1059  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1060  LastAccessedByte =
1061      IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1062  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1063  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1064}
1065
1066void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1067                                         Instruction *InsertBefore, Value *Addr,
1068                                         uint32_t TypeSize, bool IsWrite,
1069                                         Value *SizeArgument, bool UseCalls,
1070                                         uint32_t Exp) {
1071  IRBuilder<> IRB(InsertBefore);
1072  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1073  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1074
1075  if (UseCalls) {
1076    if (Exp == 0)
1077      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1078                     AddrLong);
1079    else
1080      IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1081                     {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1082    return;
1083  }
1084
1085  Type *ShadowTy =
1086      IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1087  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1088  Value *ShadowPtr = memToShadow(AddrLong, IRB);
1089  Value *CmpVal = Constant::getNullValue(ShadowTy);
1090  Value *ShadowValue =
1091      IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1092
1093  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1094  size_t Granularity = 1 << Mapping.Scale;
1095  TerminatorInst *CrashTerm = nullptr;
1096
1097  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1098    // We use branch weights for the slow path check, to indicate that the slow
1099    // path is rarely taken. This seems to be the case for SPEC benchmarks.
1100    TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
1101        Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1102    assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1103    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1104    IRB.SetInsertPoint(CheckTerm);
1105    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1106    if (Recover) {
1107      CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1108    } else {
1109      BasicBlock *CrashBlock =
1110        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1111      CrashTerm = new UnreachableInst(*C, CrashBlock);
1112      BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1113      ReplaceInstWithInst(CheckTerm, NewTerm);
1114    }
1115  } else {
1116    CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1117  }
1118
1119  Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1120                                         AccessSizeIndex, SizeArgument, Exp);
1121  Crash->setDebugLoc(OrigIns->getDebugLoc());
1122}
1123
1124// Instrument unusual size or unusual alignment.
1125// We can not do it with a single check, so we do 1-byte check for the first
1126// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1127// to report the actual access size.
1128void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1129    Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite,
1130    Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1131  IRBuilder<> IRB(I);
1132  Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1133  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1134  if (UseCalls) {
1135    if (Exp == 0)
1136      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1137                     {AddrLong, Size});
1138    else
1139      IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1140                     {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1141  } else {
1142    Value *LastByte = IRB.CreateIntToPtr(
1143        IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1144        Addr->getType());
1145    instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp);
1146    instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp);
1147  }
1148}
1149
1150void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
1151                                                  GlobalValue *ModuleName) {
1152  // Set up the arguments to our poison/unpoison functions.
1153  IRBuilder<> IRB(&GlobalInit.front(),
1154                  GlobalInit.front().getFirstInsertionPt());
1155
1156  // Add a call to poison all external globals before the given function starts.
1157  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1158  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1159
1160  // Add calls to unpoison all globals before each return instruction.
1161  for (auto &BB : GlobalInit.getBasicBlockList())
1162    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1163      CallInst::Create(AsanUnpoisonGlobals, "", RI);
1164}
1165
1166void AddressSanitizerModule::createInitializerPoisonCalls(
1167    Module &M, GlobalValue *ModuleName) {
1168  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1169
1170  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1171  for (Use &OP : CA->operands()) {
1172    if (isa<ConstantAggregateZero>(OP)) continue;
1173    ConstantStruct *CS = cast<ConstantStruct>(OP);
1174
1175    // Must have a function or null ptr.
1176    if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1177      if (F->getName() == kAsanModuleCtorName) continue;
1178      ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1179      // Don't instrument CTORs that will run before asan.module_ctor.
1180      if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
1181      poisonOneInitializer(*F, ModuleName);
1182    }
1183  }
1184}
1185
1186bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
1187  Type *Ty = cast<PointerType>(G->getType())->getElementType();
1188  DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1189
1190  if (GlobalsMD.get(G).IsBlacklisted) return false;
1191  if (!Ty->isSized()) return false;
1192  if (!G->hasInitializer()) return false;
1193  if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global.
1194  // Touch only those globals that will not be defined in other modules.
1195  // Don't handle ODR linkage types and COMDATs since other modules may be built
1196  // without ASan.
1197  if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
1198      G->getLinkage() != GlobalVariable::PrivateLinkage &&
1199      G->getLinkage() != GlobalVariable::InternalLinkage)
1200    return false;
1201  if (G->hasComdat()) return false;
1202  // Two problems with thread-locals:
1203  //   - The address of the main thread's copy can't be computed at link-time.
1204  //   - Need to poison all copies, not just the main thread's one.
1205  if (G->isThreadLocal()) return false;
1206  // For now, just ignore this Global if the alignment is large.
1207  if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1208
1209  if (G->hasSection()) {
1210    StringRef Section(G->getSection());
1211
1212    // Globals from llvm.metadata aren't emitted, do not instrument them.
1213    if (Section == "llvm.metadata") return false;
1214    // Do not instrument globals from special LLVM sections.
1215    if (Section.find("__llvm") != StringRef::npos) return false;
1216
1217    // Do not instrument function pointers to initialization and termination
1218    // routines: dynamic linker will not properly handle redzones.
1219    if (Section.startswith(".preinit_array") ||
1220        Section.startswith(".init_array") ||
1221        Section.startswith(".fini_array")) {
1222      return false;
1223    }
1224
1225    // Callbacks put into the CRT initializer/terminator sections
1226    // should not be instrumented.
1227    // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
1228    // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1229    if (Section.startswith(".CRT")) {
1230      DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
1231      return false;
1232    }
1233
1234    if (TargetTriple.isOSBinFormatMachO()) {
1235      StringRef ParsedSegment, ParsedSection;
1236      unsigned TAA = 0, StubSize = 0;
1237      bool TAAParsed;
1238      std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1239          Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1240      assert(ErrorCode.empty() && "Invalid section specifier.");
1241
1242      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1243      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1244      // them.
1245      if (ParsedSegment == "__OBJC" ||
1246          (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1247        DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1248        return false;
1249      }
1250      // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
1251      // Constant CFString instances are compiled in the following way:
1252      //  -- the string buffer is emitted into
1253      //     __TEXT,__cstring,cstring_literals
1254      //  -- the constant NSConstantString structure referencing that buffer
1255      //     is placed into __DATA,__cfstring
1256      // Therefore there's no point in placing redzones into __DATA,__cfstring.
1257      // Moreover, it causes the linker to crash on OS X 10.7
1258      if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1259        DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1260        return false;
1261      }
1262      // The linker merges the contents of cstring_literals and removes the
1263      // trailing zeroes.
1264      if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1265        DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1266        return false;
1267      }
1268    }
1269  }
1270
1271  return true;
1272}
1273
1274void AddressSanitizerModule::initializeCallbacks(Module &M) {
1275  IRBuilder<> IRB(*C);
1276  // Declare our poisoning and unpoisoning functions.
1277  AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1278      kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
1279  AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
1280  AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1281      kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
1282  AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
1283  // Declare functions that register/unregister globals.
1284  AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1285      kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1286  AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
1287  AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
1288      M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
1289                            IntptrTy, IntptrTy, nullptr));
1290  AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
1291}
1292
1293// This function replaces all global variables with new variables that have
1294// trailing redzones. It also creates a function that poisons
1295// redzones and inserts this function into llvm.global_ctors.
1296bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
1297  GlobalsMD.init(M);
1298
1299  SmallVector<GlobalVariable *, 16> GlobalsToChange;
1300
1301  for (auto &G : M.globals()) {
1302    if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
1303  }
1304
1305  size_t n = GlobalsToChange.size();
1306  if (n == 0) return false;
1307
1308  // A global is described by a structure
1309  //   size_t beg;
1310  //   size_t size;
1311  //   size_t size_with_redzone;
1312  //   const char *name;
1313  //   const char *module_name;
1314  //   size_t has_dynamic_init;
1315  //   void *source_location;
1316  // We initialize an array of such structures and pass it to a run-time call.
1317  StructType *GlobalStructTy =
1318      StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
1319                      IntptrTy, IntptrTy, nullptr);
1320  SmallVector<Constant *, 16> Initializers(n);
1321
1322  bool HasDynamicallyInitializedGlobals = false;
1323
1324  // We shouldn't merge same module names, as this string serves as unique
1325  // module ID in runtime.
1326  GlobalVariable *ModuleName = createPrivateGlobalForString(
1327      M, M.getModuleIdentifier(), /*AllowMerging*/ false);
1328
1329  auto &DL = M.getDataLayout();
1330  for (size_t i = 0; i < n; i++) {
1331    static const uint64_t kMaxGlobalRedzone = 1 << 18;
1332    GlobalVariable *G = GlobalsToChange[i];
1333
1334    auto MD = GlobalsMD.get(G);
1335    // Create string holding the global name (use global name from metadata
1336    // if it's available, otherwise just write the name of global variable).
1337    GlobalVariable *Name = createPrivateGlobalForString(
1338        M, MD.Name.empty() ? G->getName() : MD.Name,
1339        /*AllowMerging*/ true);
1340
1341    PointerType *PtrTy = cast<PointerType>(G->getType());
1342    Type *Ty = PtrTy->getElementType();
1343    uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
1344    uint64_t MinRZ = MinRedzoneSizeForGlobal();
1345    // MinRZ <= RZ <= kMaxGlobalRedzone
1346    // and trying to make RZ to be ~ 1/4 of SizeInBytes.
1347    uint64_t RZ = std::max(
1348        MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
1349    uint64_t RightRedzoneSize = RZ;
1350    // Round up to MinRZ
1351    if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
1352    assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
1353    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
1354
1355    StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
1356    Constant *NewInitializer =
1357        ConstantStruct::get(NewTy, G->getInitializer(),
1358                            Constant::getNullValue(RightRedZoneTy), nullptr);
1359
1360    // Create a new global variable with enough space for a redzone.
1361    GlobalValue::LinkageTypes Linkage = G->getLinkage();
1362    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
1363      Linkage = GlobalValue::InternalLinkage;
1364    GlobalVariable *NewGlobal =
1365        new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
1366                           "", G, G->getThreadLocalMode());
1367    NewGlobal->copyAttributesFrom(G);
1368    NewGlobal->setAlignment(MinRZ);
1369
1370    Value *Indices2[2];
1371    Indices2[0] = IRB.getInt32(0);
1372    Indices2[1] = IRB.getInt32(0);
1373
1374    G->replaceAllUsesWith(
1375        ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
1376    NewGlobal->takeName(G);
1377    G->eraseFromParent();
1378
1379    Constant *SourceLoc;
1380    if (!MD.SourceLoc.empty()) {
1381      auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
1382      SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
1383    } else {
1384      SourceLoc = ConstantInt::get(IntptrTy, 0);
1385    }
1386
1387    Initializers[i] = ConstantStruct::get(
1388        GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
1389        ConstantInt::get(IntptrTy, SizeInBytes),
1390        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
1391        ConstantExpr::getPointerCast(Name, IntptrTy),
1392        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
1393        ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr);
1394
1395    if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
1396
1397    DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
1398  }
1399
1400  ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
1401  GlobalVariable *AllGlobals = new GlobalVariable(
1402      M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
1403      ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
1404
1405  // Create calls for poisoning before initializers run and unpoisoning after.
1406  if (HasDynamicallyInitializedGlobals)
1407    createInitializerPoisonCalls(M, ModuleName);
1408  IRB.CreateCall(AsanRegisterGlobals,
1409                 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1410                  ConstantInt::get(IntptrTy, n)});
1411
1412  // We also need to unregister globals at the end, e.g. when a shared library
1413  // gets closed.
1414  Function *AsanDtorFunction =
1415      Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
1416                       GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
1417  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
1418  IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
1419  IRB_Dtor.CreateCall(AsanUnregisterGlobals,
1420                      {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1421                       ConstantInt::get(IntptrTy, n)});
1422  appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
1423
1424  DEBUG(dbgs() << M);
1425  return true;
1426}
1427
1428bool AddressSanitizerModule::runOnModule(Module &M) {
1429  C = &(M.getContext());
1430  int LongSize = M.getDataLayout().getPointerSizeInBits();
1431  IntptrTy = Type::getIntNTy(*C, LongSize);
1432  TargetTriple = Triple(M.getTargetTriple());
1433  Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
1434  initializeCallbacks(M);
1435
1436  bool Changed = false;
1437
1438  // TODO(glider): temporarily disabled globals instrumentation for KASan.
1439  if (ClGlobals && !CompileKernel) {
1440    Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
1441    assert(CtorFunc);
1442    IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
1443    Changed |= InstrumentGlobals(IRB, M);
1444  }
1445
1446  return Changed;
1447}
1448
1449void AddressSanitizer::initializeCallbacks(Module &M) {
1450  IRBuilder<> IRB(*C);
1451  // Create __asan_report* callbacks.
1452  // IsWrite, TypeSize and Exp are encoded in the function name.
1453  for (int Exp = 0; Exp < 2; Exp++) {
1454    for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
1455      const std::string TypeStr = AccessIsWrite ? "store" : "load";
1456      const std::string ExpStr = Exp ? "exp_" : "";
1457      const std::string SuffixStr = CompileKernel ? "N" : "_n";
1458      const std::string EndingStr = Recover ? "_noabort" : "";
1459      Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr;
1460      AsanErrorCallbackSized[AccessIsWrite][Exp] =
1461          checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1462              kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr,
1463              IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1464      AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
1465          checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1466              ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
1467              IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1468      for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
1469           AccessSizeIndex++) {
1470        const std::string Suffix = TypeStr + itostr(1 << AccessSizeIndex);
1471        AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1472            checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1473                kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
1474                IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1475        AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1476            checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1477                ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
1478                IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1479      }
1480    }
1481  }
1482
1483  const std::string MemIntrinCallbackPrefix =
1484      CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
1485  AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1486      MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
1487      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1488  AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1489      MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
1490      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1491  AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1492      MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
1493      IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
1494
1495  AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
1496      M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
1497
1498  AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1499      kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1500  AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1501      kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1502  // We insert an empty inline asm after __asan_report* to avoid callback merge.
1503  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
1504                            StringRef(""), StringRef(""),
1505                            /*hasSideEffects=*/true);
1506}
1507
1508// virtual
1509bool AddressSanitizer::doInitialization(Module &M) {
1510  // Initialize the private fields. No one has accessed them before.
1511
1512  GlobalsMD.init(M);
1513
1514  C = &(M.getContext());
1515  LongSize = M.getDataLayout().getPointerSizeInBits();
1516  IntptrTy = Type::getIntNTy(*C, LongSize);
1517  TargetTriple = Triple(M.getTargetTriple());
1518
1519  if (!CompileKernel) {
1520    std::tie(AsanCtorFunction, AsanInitFunction) =
1521        createSanitizerCtorAndInitFunctions(
1522            M, kAsanModuleCtorName, kAsanInitName,
1523            /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName);
1524    appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
1525  }
1526  Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
1527  return true;
1528}
1529
1530bool AddressSanitizer::doFinalization(Module &M) {
1531  GlobalsMD.reset();
1532  return false;
1533}
1534
1535bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
1536  // For each NSObject descendant having a +load method, this method is invoked
1537  // by the ObjC runtime before any of the static constructors is called.
1538  // Therefore we need to instrument such methods with a call to __asan_init
1539  // at the beginning in order to initialize our runtime before any access to
1540  // the shadow memory.
1541  // We cannot just ignore these methods, because they may call other
1542  // instrumented functions.
1543  if (F.getName().find(" load]") != std::string::npos) {
1544    IRBuilder<> IRB(&F.front(), F.front().begin());
1545    IRB.CreateCall(AsanInitFunction, {});
1546    return true;
1547  }
1548  return false;
1549}
1550
1551void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
1552  // Find the one possible call to llvm.localescape and pre-mark allocas passed
1553  // to it as uninteresting. This assumes we haven't started processing allocas
1554  // yet. This check is done up front because iterating the use list in
1555  // isInterestingAlloca would be algorithmically slower.
1556  assert(ProcessedAllocas.empty() && "must process localescape before allocas");
1557
1558  // Try to get the declaration of llvm.localescape. If it's not in the module,
1559  // we can exit early.
1560  if (!F.getParent()->getFunction("llvm.localescape")) return;
1561
1562  // Look for a call to llvm.localescape call in the entry block. It can't be in
1563  // any other block.
1564  for (Instruction &I : F.getEntryBlock()) {
1565    IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
1566    if (II && II->getIntrinsicID() == Intrinsic::localescape) {
1567      // We found a call. Mark all the allocas passed in as uninteresting.
1568      for (Value *Arg : II->arg_operands()) {
1569        AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
1570        assert(AI && AI->isStaticAlloca() &&
1571               "non-static alloca arg to localescape");
1572        ProcessedAllocas[AI] = false;
1573      }
1574      break;
1575    }
1576  }
1577}
1578
1579bool AddressSanitizer::runOnFunction(Function &F) {
1580  if (&F == AsanCtorFunction) return false;
1581  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
1582  DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
1583  initializeCallbacks(*F.getParent());
1584
1585  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1586
1587  // If needed, insert __asan_init before checking for SanitizeAddress attr.
1588  maybeInsertAsanInitAtFunctionEntry(F);
1589
1590  if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false;
1591
1592  if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false;
1593
1594  FunctionStateRAII CleanupObj(this);
1595
1596  // We can't instrument allocas used with llvm.localescape. Only static allocas
1597  // can be passed to that intrinsic.
1598  markEscapedLocalAllocas(F);
1599
1600  // We want to instrument every address only once per basic block (unless there
1601  // are calls between uses).
1602  SmallSet<Value *, 16> TempsToInstrument;
1603  SmallVector<Instruction *, 16> ToInstrument;
1604  SmallVector<Instruction *, 8> NoReturnCalls;
1605  SmallVector<BasicBlock *, 16> AllBlocks;
1606  SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
1607  int NumAllocas = 0;
1608  bool IsWrite;
1609  unsigned Alignment;
1610  uint64_t TypeSize;
1611
1612  // Fill the set of memory operations to instrument.
1613  for (auto &BB : F) {
1614    AllBlocks.push_back(&BB);
1615    TempsToInstrument.clear();
1616    int NumInsnsPerBB = 0;
1617    for (auto &Inst : BB) {
1618      if (LooksLikeCodeInBug11395(&Inst)) return false;
1619      if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
1620                                                  &Alignment)) {
1621        if (ClOpt && ClOptSameTemp) {
1622          if (!TempsToInstrument.insert(Addr).second)
1623            continue;  // We've seen this temp in the current BB.
1624        }
1625      } else if (ClInvalidPointerPairs &&
1626                 isInterestingPointerComparisonOrSubtraction(&Inst)) {
1627        PointerComparisonsOrSubtracts.push_back(&Inst);
1628        continue;
1629      } else if (isa<MemIntrinsic>(Inst)) {
1630        // ok, take it.
1631      } else {
1632        if (isa<AllocaInst>(Inst)) NumAllocas++;
1633        CallSite CS(&Inst);
1634        if (CS) {
1635          // A call inside BB.
1636          TempsToInstrument.clear();
1637          if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
1638        }
1639        continue;
1640      }
1641      ToInstrument.push_back(&Inst);
1642      NumInsnsPerBB++;
1643      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
1644    }
1645  }
1646
1647  bool UseCalls =
1648      CompileKernel ||
1649      (ClInstrumentationWithCallsThreshold >= 0 &&
1650       ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
1651  const TargetLibraryInfo *TLI =
1652      &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1653  const DataLayout &DL = F.getParent()->getDataLayout();
1654  ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
1655                                     /*RoundToAlign=*/true);
1656
1657  // Instrument.
1658  int NumInstrumented = 0;
1659  for (auto Inst : ToInstrument) {
1660    if (ClDebugMin < 0 || ClDebugMax < 0 ||
1661        (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
1662      if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
1663        instrumentMop(ObjSizeVis, Inst, UseCalls,
1664                      F.getParent()->getDataLayout());
1665      else
1666        instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
1667    }
1668    NumInstrumented++;
1669  }
1670
1671  FunctionStackPoisoner FSP(F, *this);
1672  bool ChangedStack = FSP.runOnFunction();
1673
1674  // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
1675  // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
1676  for (auto CI : NoReturnCalls) {
1677    IRBuilder<> IRB(CI);
1678    IRB.CreateCall(AsanHandleNoReturnFunc, {});
1679  }
1680
1681  for (auto Inst : PointerComparisonsOrSubtracts) {
1682    instrumentPointerComparisonOrSubtraction(Inst);
1683    NumInstrumented++;
1684  }
1685
1686  bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
1687
1688  DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
1689
1690  return res;
1691}
1692
1693// Workaround for bug 11395: we don't want to instrument stack in functions
1694// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
1695// FIXME: remove once the bug 11395 is fixed.
1696bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
1697  if (LongSize != 32) return false;
1698  CallInst *CI = dyn_cast<CallInst>(I);
1699  if (!CI || !CI->isInlineAsm()) return false;
1700  if (CI->getNumArgOperands() <= 5) return false;
1701  // We have inline assembly with quite a few arguments.
1702  return true;
1703}
1704
1705void FunctionStackPoisoner::initializeCallbacks(Module &M) {
1706  IRBuilder<> IRB(*C);
1707  for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
1708    std::string Suffix = itostr(i);
1709    AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
1710        M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
1711                              IntptrTy, nullptr));
1712    AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
1713        M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
1714                              IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1715  }
1716  AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
1717      M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
1718                            IntptrTy, IntptrTy, nullptr));
1719  AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
1720      M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
1721                            IntptrTy, IntptrTy, nullptr));
1722  AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1723      kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1724  AsanAllocasUnpoisonFunc =
1725      checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1726          kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1727}
1728
1729void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
1730                                           IRBuilder<> &IRB, Value *ShadowBase,
1731                                           bool DoPoison) {
1732  size_t n = ShadowBytes.size();
1733  size_t i = 0;
1734  // We need to (un)poison n bytes of stack shadow. Poison as many as we can
1735  // using 64-bit stores (if we are on 64-bit arch), then poison the rest
1736  // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
1737  for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
1738       LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
1739    for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
1740      uint64_t Val = 0;
1741      for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
1742        if (F.getParent()->getDataLayout().isLittleEndian())
1743          Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
1744        else
1745          Val = (Val << 8) | ShadowBytes[i + j];
1746      }
1747      if (!Val) continue;
1748      Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
1749      Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
1750      Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
1751      IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
1752    }
1753  }
1754}
1755
1756// Fake stack allocator (asan_fake_stack.h) has 11 size classes
1757// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
1758static int StackMallocSizeClass(uint64_t LocalStackSize) {
1759  assert(LocalStackSize <= kMaxStackMallocSize);
1760  uint64_t MaxSize = kMinStackMallocSize;
1761  for (int i = 0;; i++, MaxSize *= 2)
1762    if (LocalStackSize <= MaxSize) return i;
1763  llvm_unreachable("impossible LocalStackSize");
1764}
1765
1766// Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
1767// We can not use MemSet intrinsic because it may end up calling the actual
1768// memset. Size is a multiple of 8.
1769// Currently this generates 8-byte stores on x86_64; it may be better to
1770// generate wider stores.
1771void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
1772    IRBuilder<> &IRB, Value *ShadowBase, int Size) {
1773  assert(!(Size % 8));
1774
1775  // kAsanStackAfterReturnMagic is 0xf5.
1776  const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL;
1777
1778  for (int i = 0; i < Size; i += 8) {
1779    Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
1780    IRB.CreateStore(
1781        ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64),
1782        IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
1783  }
1784}
1785
1786PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
1787                                          Value *ValueIfTrue,
1788                                          Instruction *ThenTerm,
1789                                          Value *ValueIfFalse) {
1790  PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
1791  BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
1792  PHI->addIncoming(ValueIfFalse, CondBlock);
1793  BasicBlock *ThenBlock = ThenTerm->getParent();
1794  PHI->addIncoming(ValueIfTrue, ThenBlock);
1795  return PHI;
1796}
1797
1798Value *FunctionStackPoisoner::createAllocaForLayout(
1799    IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
1800  AllocaInst *Alloca;
1801  if (Dynamic) {
1802    Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
1803                              ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
1804                              "MyAlloca");
1805  } else {
1806    Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
1807                              nullptr, "MyAlloca");
1808    assert(Alloca->isStaticAlloca());
1809  }
1810  assert((ClRealignStack & (ClRealignStack - 1)) == 0);
1811  size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
1812  Alloca->setAlignment(FrameAlignment);
1813  return IRB.CreatePointerCast(Alloca, IntptrTy);
1814}
1815
1816void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
1817  BasicBlock &FirstBB = *F.begin();
1818  IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
1819  DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
1820  IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
1821  DynamicAllocaLayout->setAlignment(32);
1822}
1823
1824void FunctionStackPoisoner::poisonStack() {
1825  assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);
1826
1827  // Insert poison calls for lifetime intrinsics for alloca.
1828  bool HavePoisonedAllocas = false;
1829  for (const auto &APC : AllocaPoisonCallVec) {
1830    assert(APC.InsBefore);
1831    assert(APC.AI);
1832    IRBuilder<> IRB(APC.InsBefore);
1833    poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
1834    HavePoisonedAllocas |= APC.DoPoison;
1835  }
1836
1837  if (ClInstrumentAllocas && DynamicAllocaVec.size() > 0) {
1838    // Handle dynamic allocas.
1839    createDynamicAllocasInitStorage();
1840    for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI);
1841
1842    unpoisonDynamicAllocas();
1843  }
1844
1845  if (AllocaVec.empty()) return;
1846
1847  int StackMallocIdx = -1;
1848  DebugLoc EntryDebugLocation;
1849  if (auto SP = getDISubprogram(&F))
1850    EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
1851
1852  Instruction *InsBefore = AllocaVec[0];
1853  IRBuilder<> IRB(InsBefore);
1854  IRB.SetCurrentDebugLocation(EntryDebugLocation);
1855
1856  // Make sure non-instrumented allocas stay in the entry block. Otherwise,
1857  // debug info is broken, because only entry-block allocas are treated as
1858  // regular stack slots.
1859  auto InsBeforeB = InsBefore->getParent();
1860  assert(InsBeforeB == &F.getEntryBlock());
1861  for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I)
1862    if (auto *AI = dyn_cast<AllocaInst>(I))
1863      if (NonInstrumentedStaticAllocaVec.count(AI) > 0)
1864        AI->moveBefore(InsBefore);
1865
1866  // If we have a call to llvm.localescape, keep it in the entry block.
1867  if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
1868
1869  SmallVector<ASanStackVariableDescription, 16> SVD;
1870  SVD.reserve(AllocaVec.size());
1871  for (AllocaInst *AI : AllocaVec) {
1872    ASanStackVariableDescription D = {AI->getName().data(),
1873                                      ASan.getAllocaSizeInBytes(AI),
1874                                      AI->getAlignment(), AI, 0};
1875    SVD.push_back(D);
1876  }
1877  // Minimal header size (left redzone) is 4 pointers,
1878  // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
1879  size_t MinHeaderSize = ASan.LongSize / 2;
1880  ASanStackFrameLayout L;
1881  ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L);
1882  DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
1883  uint64_t LocalStackSize = L.FrameSize;
1884  bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
1885                       LocalStackSize <= kMaxStackMallocSize;
1886  bool DoDynamicAlloca = ClDynamicAllocaStack;
1887  // Don't do dynamic alloca or stack malloc if:
1888  // 1) There is inline asm: too often it makes assumptions on which registers
1889  //    are available.
1890  // 2) There is a returns_twice call (typically setjmp), which is
1891  //    optimization-hostile, and doesn't play well with introduced indirect
1892  //    register-relative calculation of local variable addresses.
1893  DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
1894  DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
1895
1896  Value *StaticAlloca =
1897      DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
1898
1899  Value *FakeStack;
1900  Value *LocalStackBase;
1901
1902  if (DoStackMalloc) {
1903    // void *FakeStack = __asan_option_detect_stack_use_after_return
1904    //     ? __asan_stack_malloc_N(LocalStackSize)
1905    //     : nullptr;
1906    // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
1907    Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
1908        kAsanOptionDetectUAR, IRB.getInt32Ty());
1909    Value *UARIsEnabled =
1910        IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
1911                         Constant::getNullValue(IRB.getInt32Ty()));
1912    Instruction *Term =
1913        SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false);
1914    IRBuilder<> IRBIf(Term);
1915    IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
1916    StackMallocIdx = StackMallocSizeClass(LocalStackSize);
1917    assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
1918    Value *FakeStackValue =
1919        IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
1920                         ConstantInt::get(IntptrTy, LocalStackSize));
1921    IRB.SetInsertPoint(InsBefore);
1922    IRB.SetCurrentDebugLocation(EntryDebugLocation);
1923    FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term,
1924                          ConstantInt::get(IntptrTy, 0));
1925
1926    Value *NoFakeStack =
1927        IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
1928    Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
1929    IRBIf.SetInsertPoint(Term);
1930    IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
1931    Value *AllocaValue =
1932        DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
1933    IRB.SetInsertPoint(InsBefore);
1934    IRB.SetCurrentDebugLocation(EntryDebugLocation);
1935    LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
1936  } else {
1937    // void *FakeStack = nullptr;
1938    // void *LocalStackBase = alloca(LocalStackSize);
1939    FakeStack = ConstantInt::get(IntptrTy, 0);
1940    LocalStackBase =
1941        DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
1942  }
1943
1944  // Replace Alloca instructions with base+offset.
1945  for (const auto &Desc : SVD) {
1946    AllocaInst *AI = Desc.AI;
1947    Value *NewAllocaPtr = IRB.CreateIntToPtr(
1948        IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
1949        AI->getType());
1950    replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
1951    AI->replaceAllUsesWith(NewAllocaPtr);
1952  }
1953
1954  // The left-most redzone has enough space for at least 4 pointers.
1955  // Write the Magic value to redzone[0].
1956  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
1957  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
1958                  BasePlus0);
1959  // Write the frame description constant to redzone[1].
1960  Value *BasePlus1 = IRB.CreateIntToPtr(
1961      IRB.CreateAdd(LocalStackBase,
1962                    ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
1963      IntptrPtrTy);
1964  GlobalVariable *StackDescriptionGlobal =
1965      createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
1966                                   /*AllowMerging*/ true);
1967  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
1968  IRB.CreateStore(Description, BasePlus1);
1969  // Write the PC to redzone[2].
1970  Value *BasePlus2 = IRB.CreateIntToPtr(
1971      IRB.CreateAdd(LocalStackBase,
1972                    ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
1973      IntptrPtrTy);
1974  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
1975
1976  // Poison the stack redzones at the entry.
1977  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
1978  poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
1979
1980  // (Un)poison the stack before all ret instructions.
1981  for (auto Ret : RetVec) {
1982    IRBuilder<> IRBRet(Ret);
1983    // Mark the current frame as retired.
1984    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
1985                       BasePlus0);
1986    if (DoStackMalloc) {
1987      assert(StackMallocIdx >= 0);
1988      // if FakeStack != 0  // LocalStackBase == FakeStack
1989      //     // In use-after-return mode, poison the whole stack frame.
1990      //     if StackMallocIdx <= 4
1991      //         // For small sizes inline the whole thing:
1992      //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
1993      //         **SavedFlagPtr(FakeStack) = 0
1994      //     else
1995      //         __asan_stack_free_N(FakeStack, LocalStackSize)
1996      // else
1997      //     <This is not a fake stack; unpoison the redzones>
1998      Value *Cmp =
1999          IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
2000      TerminatorInst *ThenTerm, *ElseTerm;
2001      SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
2002
2003      IRBuilder<> IRBPoison(ThenTerm);
2004      if (StackMallocIdx <= 4) {
2005        int ClassSize = kMinStackMallocSize << StackMallocIdx;
2006        SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
2007                                           ClassSize >> Mapping.Scale);
2008        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
2009            FakeStack,
2010            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
2011        Value *SavedFlagPtr = IRBPoison.CreateLoad(
2012            IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
2013        IRBPoison.CreateStore(
2014            Constant::getNullValue(IRBPoison.getInt8Ty()),
2015            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
2016      } else {
2017        // For larger frames call __asan_stack_free_*.
2018        IRBPoison.CreateCall(
2019            AsanStackFreeFunc[StackMallocIdx],
2020            {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
2021      }
2022
2023      IRBuilder<> IRBElse(ElseTerm);
2024      poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false);
2025    } else if (HavePoisonedAllocas) {
2026      // If we poisoned some allocas in llvm.lifetime analysis,
2027      // unpoison whole stack frame now.
2028      poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
2029    } else {
2030      poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false);
2031    }
2032  }
2033
2034  // We are done. Remove the old unused alloca instructions.
2035  for (auto AI : AllocaVec) AI->eraseFromParent();
2036}
2037
2038void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
2039                                         IRBuilder<> &IRB, bool DoPoison) {
2040  // For now just insert the call to ASan runtime.
2041  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
2042  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
2043  IRB.CreateCall(
2044      DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
2045      {AddrArg, SizeArg});
2046}
2047
2048// Handling llvm.lifetime intrinsics for a given %alloca:
2049// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
2050// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
2051//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
2052//     could be poisoned by previous llvm.lifetime.end instruction, as the
2053//     variable may go in and out of scope several times, e.g. in loops).
2054// (3) if we poisoned at least one %alloca in a function,
2055//     unpoison the whole stack frame at function exit.
2056
2057AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
2058  if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2059    // We're intested only in allocas we can handle.
2060    return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
2061  // See if we've already calculated (or started to calculate) alloca for a
2062  // given value.
2063  AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2064  if (I != AllocaForValue.end()) return I->second;
2065  // Store 0 while we're calculating alloca for value V to avoid
2066  // infinite recursion if the value references itself.
2067  AllocaForValue[V] = nullptr;
2068  AllocaInst *Res = nullptr;
2069  if (CastInst *CI = dyn_cast<CastInst>(V))
2070    Res = findAllocaForValue(CI->getOperand(0));
2071  else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2072    for (Value *IncValue : PN->incoming_values()) {
2073      // Allow self-referencing phi-nodes.
2074      if (IncValue == PN) continue;
2075      AllocaInst *IncValueAI = findAllocaForValue(IncValue);
2076      // AI for incoming values should exist and should all be equal.
2077      if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
2078        return nullptr;
2079      Res = IncValueAI;
2080    }
2081  }
2082  if (Res) AllocaForValue[V] = Res;
2083  return Res;
2084}
2085
2086void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
2087  IRBuilder<> IRB(AI);
2088
2089  const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
2090  const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
2091
2092  Value *Zero = Constant::getNullValue(IntptrTy);
2093  Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
2094  Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
2095
2096  // Since we need to extend alloca with additional memory to locate
2097  // redzones, and OldSize is number of allocated blocks with
2098  // ElementSize size, get allocated memory size in bytes by
2099  // OldSize * ElementSize.
2100  const unsigned ElementSize =
2101      F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
2102  Value *OldSize =
2103      IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
2104                    ConstantInt::get(IntptrTy, ElementSize));
2105
2106  // PartialSize = OldSize % 32
2107  Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
2108
2109  // Misalign = kAllocaRzSize - PartialSize;
2110  Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
2111
2112  // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
2113  Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
2114  Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
2115
2116  // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
2117  // Align is added to locate left redzone, PartialPadding for possible
2118  // partial redzone and kAllocaRzSize for right redzone respectively.
2119  Value *AdditionalChunkSize = IRB.CreateAdd(
2120      ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
2121
2122  Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
2123
2124  // Insert new alloca with new NewSize and Align params.
2125  AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
2126  NewAlloca->setAlignment(Align);
2127
2128  // NewAddress = Address + Align
2129  Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
2130                                    ConstantInt::get(IntptrTy, Align));
2131
2132  // Insert __asan_alloca_poison call for new created alloca.
2133  IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
2134
2135  // Store the last alloca's address to DynamicAllocaLayout. We'll need this
2136  // for unpoisoning stuff.
2137  IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
2138
2139  Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
2140
2141  // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
2142  AI->replaceAllUsesWith(NewAddressPtr);
2143
2144  // We are done. Erase old alloca from parent.
2145  AI->eraseFromParent();
2146}
2147
2148// isSafeAccess returns true if Addr is always inbounds with respect to its
2149// base object. For example, it is a field access or an array access with
2150// constant inbounds index.
2151bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
2152                                    Value *Addr, uint64_t TypeSize) const {
2153  SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
2154  if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
2155  uint64_t Size = SizeOffset.first.getZExtValue();
2156  int64_t Offset = SizeOffset.second.getSExtValue();
2157  // Three checks are required to ensure safety:
2158  // . Offset >= 0  (since the offset is given from the base ptr)
2159  // . Size >= Offset  (unsigned)
2160  // . Size - Offset >= NeededSize  (unsigned)
2161  return Offset >= 0 && Size >= uint64_t(Offset) &&
2162         Size - uint64_t(Offset) >= TypeSize / 8;
2163}
2164