1//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements straight-line strength reduction (SLSR). Unlike loop
11// strength reduction, this algorithm is designed to reduce arithmetic
12// redundancy in straight-line code instead of loops. It has proven to be
13// effective in simplifying arithmetic statements derived from an unrolled loop.
14// It can also simplify the logic of SeparateConstOffsetFromGEP.
15//
16// There are many optimizations we can perform in the domain of SLSR. This file
17// for now contains only an initial step. Specifically, we look for strength
18// reduction candidates in the following forms:
19//
20// Form 1: B + i * S
21// Form 2: (B + i) * S
22// Form 3: &B[i * S]
23//
24// where S is an integer variable, and i is a constant integer. If we found two
25// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26// in a simpler way with respect to S1. For example,
27//
28// S1: X = B + i * S
29// S2: Y = B + i' * S   => X + (i' - i) * S
30//
31// S1: X = (B + i) * S
32// S2: Y = (B + i') * S => X + (i' - i) * S
33//
34// S1: X = &B[i * S]
35// S2: Y = &B[i' * S]   => &X[(i' - i) * S]
36//
37// Note: (i' - i) * S is folded to the extent possible.
38//
39// This rewriting is in general a good idea. The code patterns we focus on
40// usually come from loop unrolling, so (i' - i) * S is likely the same
41// across iterations and can be reused. When that happens, the optimized form
42// takes only one add starting from the second iteration.
43//
44// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45// multiple bases, we choose to rewrite S2 with respect to its "immediate"
46// basis, the basis that is the closest ancestor in the dominator tree.
47//
48// TODO:
49//
50// - Floating point arithmetics when fast math is enabled.
51//
52// - SLSR may decrease ILP at the architecture level. Targets that are very
53//   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54//   left as future work.
55//
56// - When (i' - i) is constant but i and i' are not, we could still perform
57//   SLSR.
58#include <vector>
59
60#include "llvm/ADT/DenseSet.h"
61#include "llvm/ADT/FoldingSet.h"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/Analysis/TargetTransformInfo.h"
64#include "llvm/Analysis/ValueTracking.h"
65#include "llvm/IR/DataLayout.h"
66#include "llvm/IR/Dominators.h"
67#include "llvm/IR/IRBuilder.h"
68#include "llvm/IR/Module.h"
69#include "llvm/IR/PatternMatch.h"
70#include "llvm/Support/raw_ostream.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Transforms/Utils/Local.h"
73
74using namespace llvm;
75using namespace PatternMatch;
76
77namespace {
78
79class StraightLineStrengthReduce : public FunctionPass {
80public:
81  // SLSR candidate. Such a candidate must be in one of the forms described in
82  // the header comments.
83  struct Candidate : public ilist_node<Candidate> {
84    enum Kind {
85      Invalid, // reserved for the default constructor
86      Add,     // B + i * S
87      Mul,     // (B + i) * S
88      GEP,     // &B[..][i * S][..]
89    };
90
91    Candidate()
92        : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
93          Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
94    Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
95              Instruction *I)
96        : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
97          Basis(nullptr) {}
98    Kind CandidateKind;
99    const SCEV *Base;
100    // Note that Index and Stride of a GEP candidate do not necessarily have the
101    // same integer type. In that case, during rewriting, Stride will be
102    // sign-extended or truncated to Index's type.
103    ConstantInt *Index;
104    Value *Stride;
105    // The instruction this candidate corresponds to. It helps us to rewrite a
106    // candidate with respect to its immediate basis. Note that one instruction
107    // can correspond to multiple candidates depending on how you associate the
108    // expression. For instance,
109    //
110    // (a + 1) * (b + 2)
111    //
112    // can be treated as
113    //
114    // <Base: a, Index: 1, Stride: b + 2>
115    //
116    // or
117    //
118    // <Base: b, Index: 2, Stride: a + 1>
119    Instruction *Ins;
120    // Points to the immediate basis of this candidate, or nullptr if we cannot
121    // find any basis for this candidate.
122    Candidate *Basis;
123  };
124
125  static char ID;
126
127  StraightLineStrengthReduce()
128      : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
129    initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
130  }
131
132  void getAnalysisUsage(AnalysisUsage &AU) const override {
133    AU.addRequired<DominatorTreeWrapperPass>();
134    AU.addRequired<ScalarEvolutionWrapperPass>();
135    AU.addRequired<TargetTransformInfoWrapperPass>();
136    // We do not modify the shape of the CFG.
137    AU.setPreservesCFG();
138  }
139
140  bool doInitialization(Module &M) override {
141    DL = &M.getDataLayout();
142    return false;
143  }
144
145  bool runOnFunction(Function &F) override;
146
147private:
148  // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
149  // share the same base and stride.
150  bool isBasisFor(const Candidate &Basis, const Candidate &C);
151  // Returns whether the candidate can be folded into an addressing mode.
152  bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
153                  const DataLayout *DL);
154  // Returns true if C is already in a simplest form and not worth being
155  // rewritten.
156  bool isSimplestForm(const Candidate &C);
157  // Checks whether I is in a candidate form. If so, adds all the matching forms
158  // to Candidates, and tries to find the immediate basis for each of them.
159  void allocateCandidatesAndFindBasis(Instruction *I);
160  // Allocate candidates and find bases for Add instructions.
161  void allocateCandidatesAndFindBasisForAdd(Instruction *I);
162  // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
163  // candidate.
164  void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
165                                            Instruction *I);
166  // Allocate candidates and find bases for Mul instructions.
167  void allocateCandidatesAndFindBasisForMul(Instruction *I);
168  // Splits LHS into Base + Index and, if succeeds, calls
169  // allocateCandidatesAndFindBasis.
170  void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
171                                            Instruction *I);
172  // Allocate candidates and find bases for GetElementPtr instructions.
173  void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
174  // A helper function that scales Idx with ElementSize before invoking
175  // allocateCandidatesAndFindBasis.
176  void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
177                                            Value *S, uint64_t ElementSize,
178                                            Instruction *I);
179  // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
180  // basis.
181  void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
182                                      ConstantInt *Idx, Value *S,
183                                      Instruction *I);
184  // Rewrites candidate C with respect to Basis.
185  void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
186  // A helper function that factors ArrayIdx to a product of a stride and a
187  // constant index, and invokes allocateCandidatesAndFindBasis with the
188  // factorings.
189  void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
190                        GetElementPtrInst *GEP);
191  // Emit code that computes the "bump" from Basis to C. If the candidate is a
192  // GEP and the bump is not divisible by the element size of the GEP, this
193  // function sets the BumpWithUglyGEP flag to notify its caller to bump the
194  // basis using an ugly GEP.
195  static Value *emitBump(const Candidate &Basis, const Candidate &C,
196                         IRBuilder<> &Builder, const DataLayout *DL,
197                         bool &BumpWithUglyGEP);
198
199  const DataLayout *DL;
200  DominatorTree *DT;
201  ScalarEvolution *SE;
202  TargetTransformInfo *TTI;
203  ilist<Candidate> Candidates;
204  // Temporarily holds all instructions that are unlinked (but not deleted) by
205  // rewriteCandidateWithBasis. These instructions will be actually removed
206  // after all rewriting finishes.
207  std::vector<Instruction *> UnlinkedInstructions;
208};
209}  // anonymous namespace
210
211char StraightLineStrengthReduce::ID = 0;
212INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
213                      "Straight line strength reduction", false, false)
214INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
215INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
216INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
217INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
218                    "Straight line strength reduction", false, false)
219
220FunctionPass *llvm::createStraightLineStrengthReducePass() {
221  return new StraightLineStrengthReduce();
222}
223
224bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
225                                            const Candidate &C) {
226  return (Basis.Ins != C.Ins && // skip the same instruction
227          // They must have the same type too. Basis.Base == C.Base doesn't
228          // guarantee their types are the same (PR23975).
229          Basis.Ins->getType() == C.Ins->getType() &&
230          // Basis must dominate C in order to rewrite C with respect to Basis.
231          DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
232          // They share the same base, stride, and candidate kind.
233          Basis.Base == C.Base && Basis.Stride == C.Stride &&
234          Basis.CandidateKind == C.CandidateKind);
235}
236
237// TODO: use TTI->getGEPCost.
238static bool isGEPFoldable(GetElementPtrInst *GEP,
239                          const TargetTransformInfo *TTI,
240                          const DataLayout *DL) {
241  GlobalVariable *BaseGV = nullptr;
242  int64_t BaseOffset = 0;
243  bool HasBaseReg = false;
244  int64_t Scale = 0;
245
246  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
247    BaseGV = GV;
248  else
249    HasBaseReg = true;
250
251  gep_type_iterator GTI = gep_type_begin(GEP);
252  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
253    if (isa<SequentialType>(*GTI)) {
254      int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
255      if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
256        BaseOffset += ConstIdx->getSExtValue() * ElementSize;
257      } else {
258        // Needs scale register.
259        if (Scale != 0) {
260          // No addressing mode takes two scale registers.
261          return false;
262        }
263        Scale = ElementSize;
264      }
265    } else {
266      StructType *STy = cast<StructType>(*GTI);
267      uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
268      BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
269    }
270  }
271
272  unsigned AddrSpace = GEP->getPointerAddressSpace();
273  return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
274                                    BaseOffset, HasBaseReg, Scale, AddrSpace);
275}
276
277// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
278static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
279                          TargetTransformInfo *TTI) {
280  return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
281                                    Index->getSExtValue());
282}
283
284bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
285                                            TargetTransformInfo *TTI,
286                                            const DataLayout *DL) {
287  if (C.CandidateKind == Candidate::Add)
288    return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
289  if (C.CandidateKind == Candidate::GEP)
290    return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
291  return false;
292}
293
294// Returns true if GEP has zero or one non-zero index.
295static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
296  unsigned NumNonZeroIndices = 0;
297  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
298    ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
299    if (ConstIdx == nullptr || !ConstIdx->isZero())
300      ++NumNonZeroIndices;
301  }
302  return NumNonZeroIndices <= 1;
303}
304
305bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
306  if (C.CandidateKind == Candidate::Add) {
307    // B + 1 * S or B + (-1) * S
308    return C.Index->isOne() || C.Index->isMinusOne();
309  }
310  if (C.CandidateKind == Candidate::Mul) {
311    // (B + 0) * S
312    return C.Index->isZero();
313  }
314  if (C.CandidateKind == Candidate::GEP) {
315    // (char*)B + S or (char*)B - S
316    return ((C.Index->isOne() || C.Index->isMinusOne()) &&
317            hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
318  }
319  return false;
320}
321
322// TODO: We currently implement an algorithm whose time complexity is linear in
323// the number of existing candidates. However, we could do better by using
324// ScopedHashTable. Specifically, while traversing the dominator tree, we could
325// maintain all the candidates that dominate the basic block being traversed in
326// a ScopedHashTable. This hash table is indexed by the base and the stride of
327// a candidate. Therefore, finding the immediate basis of a candidate boils down
328// to one hash-table look up.
329void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
330    Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
331    Instruction *I) {
332  Candidate C(CT, B, Idx, S, I);
333  // SLSR can complicate an instruction in two cases:
334  //
335  // 1. If we can fold I into an addressing mode, computing I is likely free or
336  // takes only one instruction.
337  //
338  // 2. I is already in a simplest form. For example, when
339  //      X = B + 8 * S
340  //      Y = B + S,
341  //    rewriting Y to X - 7 * S is probably a bad idea.
342  //
343  // In the above cases, we still add I to the candidate list so that I can be
344  // the basis of other candidates, but we leave I's basis blank so that I
345  // won't be rewritten.
346  if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
347    // Try to compute the immediate basis of C.
348    unsigned NumIterations = 0;
349    // Limit the scan radius to avoid running in quadratice time.
350    static const unsigned MaxNumIterations = 50;
351    for (auto Basis = Candidates.rbegin();
352         Basis != Candidates.rend() && NumIterations < MaxNumIterations;
353         ++Basis, ++NumIterations) {
354      if (isBasisFor(*Basis, C)) {
355        C.Basis = &(*Basis);
356        break;
357      }
358    }
359  }
360  // Regardless of whether we find a basis for C, we need to push C to the
361  // candidate list so that it can be the basis of other candidates.
362  Candidates.push_back(C);
363}
364
365void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
366    Instruction *I) {
367  switch (I->getOpcode()) {
368  case Instruction::Add:
369    allocateCandidatesAndFindBasisForAdd(I);
370    break;
371  case Instruction::Mul:
372    allocateCandidatesAndFindBasisForMul(I);
373    break;
374  case Instruction::GetElementPtr:
375    allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
376    break;
377  }
378}
379
380void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
381    Instruction *I) {
382  // Try matching B + i * S.
383  if (!isa<IntegerType>(I->getType()))
384    return;
385
386  assert(I->getNumOperands() == 2 && "isn't I an add?");
387  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
388  allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
389  if (LHS != RHS)
390    allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
391}
392
393void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
394    Value *LHS, Value *RHS, Instruction *I) {
395  Value *S = nullptr;
396  ConstantInt *Idx = nullptr;
397  if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
398    // I = LHS + RHS = LHS + Idx * S
399    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
400  } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
401    // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
402    APInt One(Idx->getBitWidth(), 1);
403    Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
404    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
405  } else {
406    // At least, I = LHS + 1 * RHS
407    ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
408    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
409                                   I);
410  }
411}
412
413// Returns true if A matches B + C where C is constant.
414static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
415  return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
416          match(A, m_Add(m_ConstantInt(C), m_Value(B))));
417}
418
419// Returns true if A matches B | C where C is constant.
420static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
421  return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
422          match(A, m_Or(m_ConstantInt(C), m_Value(B))));
423}
424
425void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
426    Value *LHS, Value *RHS, Instruction *I) {
427  Value *B = nullptr;
428  ConstantInt *Idx = nullptr;
429  if (matchesAdd(LHS, B, Idx)) {
430    // If LHS is in the form of "Base + Index", then I is in the form of
431    // "(Base + Index) * RHS".
432    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
433  } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
434    // If LHS is in the form of "Base | Index" and Base and Index have no common
435    // bits set, then
436    //   Base | Index = Base + Index
437    // and I is thus in the form of "(Base + Index) * RHS".
438    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
439  } else {
440    // Otherwise, at least try the form (LHS + 0) * RHS.
441    ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
442    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
443                                   I);
444  }
445}
446
447void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
448    Instruction *I) {
449  // Try matching (B + i) * S.
450  // TODO: we could extend SLSR to float and vector types.
451  if (!isa<IntegerType>(I->getType()))
452    return;
453
454  assert(I->getNumOperands() == 2 && "isn't I a mul?");
455  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
456  allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
457  if (LHS != RHS) {
458    // Symmetrically, try to split RHS to Base + Index.
459    allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
460  }
461}
462
463void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
464    const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
465    Instruction *I) {
466  // I = B + sext(Idx *nsw S) * ElementSize
467  //   = B + (sext(Idx) * sext(S)) * ElementSize
468  //   = B + (sext(Idx) * ElementSize) * sext(S)
469  // Casting to IntegerType is safe because we skipped vector GEPs.
470  IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
471  ConstantInt *ScaledIdx = ConstantInt::get(
472      IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
473  allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
474}
475
476void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
477                                                  const SCEV *Base,
478                                                  uint64_t ElementSize,
479                                                  GetElementPtrInst *GEP) {
480  // At least, ArrayIdx = ArrayIdx *nsw 1.
481  allocateCandidatesAndFindBasisForGEP(
482      Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
483      ArrayIdx, ElementSize, GEP);
484  Value *LHS = nullptr;
485  ConstantInt *RHS = nullptr;
486  // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
487  // itself. This would allow us to handle the shl case for free. However,
488  // matching SCEVs has two issues:
489  //
490  // 1. this would complicate rewriting because the rewriting procedure
491  // would have to translate SCEVs back to IR instructions. This translation
492  // is difficult when LHS is further evaluated to a composite SCEV.
493  //
494  // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
495  // to strip nsw/nuw flags which are critical for SLSR to trace into
496  // sext'ed multiplication.
497  if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
498    // SLSR is currently unsafe if i * S may overflow.
499    // GEP = Base + sext(LHS *nsw RHS) * ElementSize
500    allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
501  } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
502    // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
503    //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
504    APInt One(RHS->getBitWidth(), 1);
505    ConstantInt *PowerOf2 =
506        ConstantInt::get(RHS->getContext(), One << RHS->getValue());
507    allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
508  }
509}
510
511void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
512    GetElementPtrInst *GEP) {
513  // TODO: handle vector GEPs
514  if (GEP->getType()->isVectorTy())
515    return;
516
517  SmallVector<const SCEV *, 4> IndexExprs;
518  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
519    IndexExprs.push_back(SE->getSCEV(*I));
520
521  gep_type_iterator GTI = gep_type_begin(GEP);
522  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
523    if (!isa<SequentialType>(*GTI++))
524      continue;
525
526    const SCEV *OrigIndexExpr = IndexExprs[I - 1];
527    IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
528
529    // The base of this candidate is GEP's base plus the offsets of all
530    // indices except this current one.
531    const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(),
532                                          SE->getSCEV(GEP->getPointerOperand()),
533                                          IndexExprs, GEP->isInBounds());
534    Value *ArrayIdx = GEP->getOperand(I);
535    uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
536    factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
537    // When ArrayIdx is the sext of a value, we try to factor that value as
538    // well.  Handling this case is important because array indices are
539    // typically sign-extended to the pointer size.
540    Value *TruncatedArrayIdx = nullptr;
541    if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
542      factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
543
544    IndexExprs[I - 1] = OrigIndexExpr;
545  }
546}
547
548// A helper function that unifies the bitwidth of A and B.
549static void unifyBitWidth(APInt &A, APInt &B) {
550  if (A.getBitWidth() < B.getBitWidth())
551    A = A.sext(B.getBitWidth());
552  else if (A.getBitWidth() > B.getBitWidth())
553    B = B.sext(A.getBitWidth());
554}
555
556Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
557                                            const Candidate &C,
558                                            IRBuilder<> &Builder,
559                                            const DataLayout *DL,
560                                            bool &BumpWithUglyGEP) {
561  APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
562  unifyBitWidth(Idx, BasisIdx);
563  APInt IndexOffset = Idx - BasisIdx;
564
565  BumpWithUglyGEP = false;
566  if (Basis.CandidateKind == Candidate::GEP) {
567    APInt ElementSize(
568        IndexOffset.getBitWidth(),
569        DL->getTypeAllocSize(
570            cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
571    APInt Q, R;
572    APInt::sdivrem(IndexOffset, ElementSize, Q, R);
573    if (R.getSExtValue() == 0)
574      IndexOffset = Q;
575    else
576      BumpWithUglyGEP = true;
577  }
578
579  // Compute Bump = C - Basis = (i' - i) * S.
580  // Common case 1: if (i' - i) is 1, Bump = S.
581  if (IndexOffset.getSExtValue() == 1)
582    return C.Stride;
583  // Common case 2: if (i' - i) is -1, Bump = -S.
584  if (IndexOffset.getSExtValue() == -1)
585    return Builder.CreateNeg(C.Stride);
586
587  // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
588  // have different bit widths.
589  IntegerType *DeltaType =
590      IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
591  Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
592  if (IndexOffset.isPowerOf2()) {
593    // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
594    ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
595    return Builder.CreateShl(ExtendedStride, Exponent);
596  }
597  if ((-IndexOffset).isPowerOf2()) {
598    // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
599    ConstantInt *Exponent =
600        ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
601    return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
602  }
603  Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
604  return Builder.CreateMul(ExtendedStride, Delta);
605}
606
607void StraightLineStrengthReduce::rewriteCandidateWithBasis(
608    const Candidate &C, const Candidate &Basis) {
609  assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
610         C.Stride == Basis.Stride);
611  // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
612  // basis of a candidate cannot be unlinked before the candidate.
613  assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
614
615  // An instruction can correspond to multiple candidates. Therefore, instead of
616  // simply deleting an instruction when we rewrite it, we mark its parent as
617  // nullptr (i.e. unlink it) so that we can skip the candidates whose
618  // instruction is already rewritten.
619  if (!C.Ins->getParent())
620    return;
621
622  IRBuilder<> Builder(C.Ins);
623  bool BumpWithUglyGEP;
624  Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
625  Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
626  switch (C.CandidateKind) {
627  case Candidate::Add:
628  case Candidate::Mul:
629    // C = Basis + Bump
630    if (BinaryOperator::isNeg(Bump)) {
631      // If Bump is a neg instruction, emit C = Basis - (-Bump).
632      Reduced =
633          Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
634      // We only use the negative argument of Bump, and Bump itself may be
635      // trivially dead.
636      RecursivelyDeleteTriviallyDeadInstructions(Bump);
637    } else {
638      // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
639      // usually unsound, e.g.,
640      //
641      // X = (-2 +nsw 1) *nsw INT_MAX
642      // Y = (-2 +nsw 3) *nsw INT_MAX
643      //   =>
644      // Y = X + 2 * INT_MAX
645      //
646      // Neither + and * in the resultant expression are nsw.
647      Reduced = Builder.CreateAdd(Basis.Ins, Bump);
648    }
649    break;
650  case Candidate::GEP:
651    {
652      Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
653      bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
654      if (BumpWithUglyGEP) {
655        // C = (char *)Basis + Bump
656        unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
657        Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
658        Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
659        if (InBounds)
660          Reduced =
661              Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
662        else
663          Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
664        Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
665      } else {
666        // C = gep Basis, Bump
667        // Canonicalize bump to pointer size.
668        Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
669        if (InBounds)
670          Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
671        else
672          Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
673      }
674    }
675    break;
676  default:
677    llvm_unreachable("C.CandidateKind is invalid");
678  };
679  Reduced->takeName(C.Ins);
680  C.Ins->replaceAllUsesWith(Reduced);
681  // Unlink C.Ins so that we can skip other candidates also corresponding to
682  // C.Ins. The actual deletion is postponed to the end of runOnFunction.
683  C.Ins->removeFromParent();
684  UnlinkedInstructions.push_back(C.Ins);
685}
686
687bool StraightLineStrengthReduce::runOnFunction(Function &F) {
688  if (skipOptnoneFunction(F))
689    return false;
690
691  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
692  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
693  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
694  // Traverse the dominator tree in the depth-first order. This order makes sure
695  // all bases of a candidate are in Candidates when we process it.
696  for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
697       node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
698    for (auto &I : *node->getBlock())
699      allocateCandidatesAndFindBasis(&I);
700  }
701
702  // Rewrite candidates in the reverse depth-first order. This order makes sure
703  // a candidate being rewritten is not a basis for any other candidate.
704  while (!Candidates.empty()) {
705    const Candidate &C = Candidates.back();
706    if (C.Basis != nullptr) {
707      rewriteCandidateWithBasis(C, *C.Basis);
708    }
709    Candidates.pop_back();
710  }
711
712  // Delete all unlink instructions.
713  for (auto *UnlinkedInst : UnlinkedInstructions) {
714    for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
715      Value *Op = UnlinkedInst->getOperand(I);
716      UnlinkedInst->setOperand(I, nullptr);
717      RecursivelyDeleteTriviallyDeadInstructions(Op);
718    }
719    delete UnlinkedInst;
720  }
721  bool Ret = !UnlinkedInstructions.empty();
722  UnlinkedInstructions.clear();
723  return Ret;
724}
725