1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass transforms loops by placing phi nodes at the end of the loops for 11// all values that are live across the loop boundary. For example, it turns 12// the left into the right code: 13// 14// for (...) for (...) 15// if (c) if (c) 16// X1 = ... X1 = ... 17// else else 18// X2 = ... X2 = ... 19// X3 = phi(X1, X2) X3 = phi(X1, X2) 20// ... = X3 + 4 X4 = phi(X3) 21// ... = X4 + 4 22// 23// This is still valid LLVM; the extra phi nodes are purely redundant, and will 24// be trivially eliminated by InstCombine. The major benefit of this 25// transformation is that it makes many other loop optimizations, such as 26// LoopUnswitching, simpler. 27// 28//===----------------------------------------------------------------------===// 29 30#include "llvm/Transforms/Scalar.h" 31#include "llvm/ADT/STLExtras.h" 32#include "llvm/ADT/Statistic.h" 33#include "llvm/Analysis/AliasAnalysis.h" 34#include "llvm/Analysis/GlobalsModRef.h" 35#include "llvm/Analysis/LoopPass.h" 36#include "llvm/Analysis/ScalarEvolution.h" 37#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 38#include "llvm/IR/Constants.h" 39#include "llvm/IR/Dominators.h" 40#include "llvm/IR/Function.h" 41#include "llvm/IR/Instructions.h" 42#include "llvm/IR/PredIteratorCache.h" 43#include "llvm/Pass.h" 44#include "llvm/Transforms/Utils/LoopUtils.h" 45#include "llvm/Transforms/Utils/SSAUpdater.h" 46using namespace llvm; 47 48#define DEBUG_TYPE "lcssa" 49 50STATISTIC(NumLCSSA, "Number of live out of a loop variables"); 51 52/// Return true if the specified block is in the list. 53static bool isExitBlock(BasicBlock *BB, 54 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 55 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 56 if (ExitBlocks[i] == BB) 57 return true; 58 return false; 59} 60 61/// Given an instruction in the loop, check to see if it has any uses that are 62/// outside the current loop. If so, insert LCSSA PHI nodes and rewrite the 63/// uses. 64static bool processInstruction(Loop &L, Instruction &Inst, DominatorTree &DT, 65 const SmallVectorImpl<BasicBlock *> &ExitBlocks, 66 PredIteratorCache &PredCache, LoopInfo *LI) { 67 SmallVector<Use *, 16> UsesToRewrite; 68 69 // Tokens cannot be used in PHI nodes, so we skip over them. 70 // We can run into tokens which are live out of a loop with catchswitch 71 // instructions in Windows EH if the catchswitch has one catchpad which 72 // is inside the loop and another which is not. 73 if (Inst.getType()->isTokenTy()) 74 return false; 75 76 BasicBlock *InstBB = Inst.getParent(); 77 78 for (Use &U : Inst.uses()) { 79 Instruction *User = cast<Instruction>(U.getUser()); 80 BasicBlock *UserBB = User->getParent(); 81 if (PHINode *PN = dyn_cast<PHINode>(User)) 82 UserBB = PN->getIncomingBlock(U); 83 84 if (InstBB != UserBB && !L.contains(UserBB)) 85 UsesToRewrite.push_back(&U); 86 } 87 88 // If there are no uses outside the loop, exit with no change. 89 if (UsesToRewrite.empty()) 90 return false; 91 92 ++NumLCSSA; // We are applying the transformation 93 94 // Invoke instructions are special in that their result value is not available 95 // along their unwind edge. The code below tests to see whether DomBB 96 // dominates the value, so adjust DomBB to the normal destination block, 97 // which is effectively where the value is first usable. 98 BasicBlock *DomBB = Inst.getParent(); 99 if (InvokeInst *Inv = dyn_cast<InvokeInst>(&Inst)) 100 DomBB = Inv->getNormalDest(); 101 102 DomTreeNode *DomNode = DT.getNode(DomBB); 103 104 SmallVector<PHINode *, 16> AddedPHIs; 105 SmallVector<PHINode *, 8> PostProcessPHIs; 106 107 SSAUpdater SSAUpdate; 108 SSAUpdate.Initialize(Inst.getType(), Inst.getName()); 109 110 // Insert the LCSSA phi's into all of the exit blocks dominated by the 111 // value, and add them to the Phi's map. 112 for (BasicBlock *ExitBB : ExitBlocks) { 113 if (!DT.dominates(DomNode, DT.getNode(ExitBB))) 114 continue; 115 116 // If we already inserted something for this BB, don't reprocess it. 117 if (SSAUpdate.HasValueForBlock(ExitBB)) 118 continue; 119 120 PHINode *PN = PHINode::Create(Inst.getType(), PredCache.size(ExitBB), 121 Inst.getName() + ".lcssa", &ExitBB->front()); 122 123 // Add inputs from inside the loop for this PHI. 124 for (BasicBlock *Pred : PredCache.get(ExitBB)) { 125 PN->addIncoming(&Inst, Pred); 126 127 // If the exit block has a predecessor not within the loop, arrange for 128 // the incoming value use corresponding to that predecessor to be 129 // rewritten in terms of a different LCSSA PHI. 130 if (!L.contains(Pred)) 131 UsesToRewrite.push_back( 132 &PN->getOperandUse(PN->getOperandNumForIncomingValue( 133 PN->getNumIncomingValues() - 1))); 134 } 135 136 AddedPHIs.push_back(PN); 137 138 // Remember that this phi makes the value alive in this block. 139 SSAUpdate.AddAvailableValue(ExitBB, PN); 140 141 // LoopSimplify might fail to simplify some loops (e.g. when indirect 142 // branches are involved). In such situations, it might happen that an exit 143 // for Loop L1 is the header of a disjoint Loop L2. Thus, when we create 144 // PHIs in such an exit block, we are also inserting PHIs into L2's header. 145 // This could break LCSSA form for L2 because these inserted PHIs can also 146 // have uses outside of L2. Remember all PHIs in such situation as to 147 // revisit than later on. FIXME: Remove this if indirectbr support into 148 // LoopSimplify gets improved. 149 if (auto *OtherLoop = LI->getLoopFor(ExitBB)) 150 if (!L.contains(OtherLoop)) 151 PostProcessPHIs.push_back(PN); 152 } 153 154 // Rewrite all uses outside the loop in terms of the new PHIs we just 155 // inserted. 156 for (Use *UseToRewrite : UsesToRewrite) { 157 // If this use is in an exit block, rewrite to use the newly inserted PHI. 158 // This is required for correctness because SSAUpdate doesn't handle uses in 159 // the same block. It assumes the PHI we inserted is at the end of the 160 // block. 161 Instruction *User = cast<Instruction>(UseToRewrite->getUser()); 162 BasicBlock *UserBB = User->getParent(); 163 if (PHINode *PN = dyn_cast<PHINode>(User)) 164 UserBB = PN->getIncomingBlock(*UseToRewrite); 165 166 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { 167 // Tell the VHs that the uses changed. This updates SCEV's caches. 168 if (UseToRewrite->get()->hasValueHandle()) 169 ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front()); 170 UseToRewrite->set(&UserBB->front()); 171 continue; 172 } 173 174 // Otherwise, do full PHI insertion. 175 SSAUpdate.RewriteUse(*UseToRewrite); 176 } 177 178 // Post process PHI instructions that were inserted into another disjoint loop 179 // and update their exits properly. 180 for (auto *I : PostProcessPHIs) { 181 if (I->use_empty()) 182 continue; 183 184 BasicBlock *PHIBB = I->getParent(); 185 Loop *OtherLoop = LI->getLoopFor(PHIBB); 186 SmallVector<BasicBlock *, 8> EBs; 187 OtherLoop->getExitBlocks(EBs); 188 if (EBs.empty()) 189 continue; 190 191 // Recurse and re-process each PHI instruction. FIXME: we should really 192 // convert this entire thing to a worklist approach where we process a 193 // vector of instructions... 194 processInstruction(*OtherLoop, *I, DT, EBs, PredCache, LI); 195 } 196 197 // Remove PHI nodes that did not have any uses rewritten. 198 for (PHINode *PN : AddedPHIs) 199 if (PN->use_empty()) 200 PN->eraseFromParent(); 201 202 return true; 203} 204 205/// Return true if the specified block dominates at least 206/// one of the blocks in the specified list. 207static bool 208blockDominatesAnExit(BasicBlock *BB, 209 DominatorTree &DT, 210 const SmallVectorImpl<BasicBlock *> &ExitBlocks) { 211 DomTreeNode *DomNode = DT.getNode(BB); 212 for (BasicBlock *ExitBB : ExitBlocks) 213 if (DT.dominates(DomNode, DT.getNode(ExitBB))) 214 return true; 215 216 return false; 217} 218 219bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, 220 ScalarEvolution *SE) { 221 bool Changed = false; 222 223 // Get the set of exiting blocks. 224 SmallVector<BasicBlock *, 8> ExitBlocks; 225 L.getExitBlocks(ExitBlocks); 226 227 if (ExitBlocks.empty()) 228 return false; 229 230 PredIteratorCache PredCache; 231 232 // Look at all the instructions in the loop, checking to see if they have uses 233 // outside the loop. If so, rewrite those uses. 234 for (BasicBlock *BB : L.blocks()) { 235 // For large loops, avoid use-scanning by using dominance information: In 236 // particular, if a block does not dominate any of the loop exits, then none 237 // of the values defined in the block could be used outside the loop. 238 if (!blockDominatesAnExit(BB, DT, ExitBlocks)) 239 continue; 240 241 for (Instruction &I : *BB) { 242 // Reject two common cases fast: instructions with no uses (like stores) 243 // and instructions with one use that is in the same block as this. 244 if (I.use_empty() || 245 (I.hasOneUse() && I.user_back()->getParent() == BB && 246 !isa<PHINode>(I.user_back()))) 247 continue; 248 249 Changed |= processInstruction(L, I, DT, ExitBlocks, PredCache, LI); 250 } 251 } 252 253 // If we modified the code, remove any caches about the loop from SCEV to 254 // avoid dangling entries. 255 // FIXME: This is a big hammer, can we clear the cache more selectively? 256 if (SE && Changed) 257 SE->forgetLoop(&L); 258 259 assert(L.isLCSSAForm(DT)); 260 261 return Changed; 262} 263 264/// Process a loop nest depth first. 265bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI, 266 ScalarEvolution *SE) { 267 bool Changed = false; 268 269 // Recurse depth-first through inner loops. 270 for (Loop *SubLoop : L.getSubLoops()) 271 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); 272 273 Changed |= formLCSSA(L, DT, LI, SE); 274 return Changed; 275} 276 277namespace { 278struct LCSSA : public FunctionPass { 279 static char ID; // Pass identification, replacement for typeid 280 LCSSA() : FunctionPass(ID) { 281 initializeLCSSAPass(*PassRegistry::getPassRegistry()); 282 } 283 284 // Cached analysis information for the current function. 285 DominatorTree *DT; 286 LoopInfo *LI; 287 ScalarEvolution *SE; 288 289 bool runOnFunction(Function &F) override; 290 291 /// This transformation requires natural loop information & requires that 292 /// loop preheaders be inserted into the CFG. It maintains both of these, 293 /// as well as the CFG. It also requires dominator information. 294 void getAnalysisUsage(AnalysisUsage &AU) const override { 295 AU.setPreservesCFG(); 296 297 AU.addRequired<DominatorTreeWrapperPass>(); 298 AU.addRequired<LoopInfoWrapperPass>(); 299 AU.addPreservedID(LoopSimplifyID); 300 AU.addPreserved<AAResultsWrapperPass>(); 301 AU.addPreserved<GlobalsAAWrapperPass>(); 302 AU.addPreserved<ScalarEvolutionWrapperPass>(); 303 AU.addPreserved<SCEVAAWrapperPass>(); 304 } 305}; 306} 307 308char LCSSA::ID = 0; 309INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 310INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 311INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 312INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 313INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 314INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false) 315 316Pass *llvm::createLCSSAPass() { return new LCSSA(); } 317char &llvm::LCSSAID = LCSSA::ID; 318 319 320/// Process all loops in the function, inner-most out. 321bool LCSSA::runOnFunction(Function &F) { 322 bool Changed = false; 323 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 324 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 325 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 326 SE = SEWP ? &SEWP->getSE() : nullptr; 327 328 // Simplify each loop nest in the function. 329 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 330 Changed |= formLCSSARecursively(**I, *DT, LI, SE); 331 332 return Changed; 333} 334 335