1//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities for loops with run-time
11// trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12// trip counts.
13//
14// The functions in this file are used to generate extra code when the
15// run-time trip count modulo the unroll factor is not 0.  When this is the
16// case, we need to generate code to execute these 'left over' iterations.
17//
18// The current strategy generates an if-then-else sequence prior to the
19// unrolled loop to execute the 'left over' iterations.  Other strategies
20// include generate a loop before or after the unrolled loop.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/Utils/UnrollLoop.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/LoopIterator.h"
28#include "llvm/Analysis/LoopPass.h"
29#include "llvm/Analysis/ScalarEvolution.h"
30#include "llvm/Analysis/ScalarEvolutionExpander.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/Metadata.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include "llvm/Transforms/Utils/Cloning.h"
40#include <algorithm>
41
42using namespace llvm;
43
44#define DEBUG_TYPE "loop-unroll"
45
46STATISTIC(NumRuntimeUnrolled,
47          "Number of loops unrolled with run-time trip counts");
48
49/// Connect the unrolling prolog code to the original loop.
50/// The unrolling prolog code contains code to execute the
51/// 'extra' iterations if the run-time trip count modulo the
52/// unroll count is non-zero.
53///
54/// This function performs the following:
55/// - Create PHI nodes at prolog end block to combine values
56///   that exit the prolog code and jump around the prolog.
57/// - Add a PHI operand to a PHI node at the loop exit block
58///   for values that exit the prolog and go around the loop.
59/// - Branch around the original loop if the trip count is less
60///   than the unroll factor.
61///
62static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
63                          BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
64                          BasicBlock *OrigPH, BasicBlock *NewPH,
65                          ValueToValueMapTy &VMap, DominatorTree *DT,
66                          LoopInfo *LI, bool PreserveLCSSA) {
67  BasicBlock *Latch = L->getLoopLatch();
68  assert(Latch && "Loop must have a latch");
69
70  // Create a PHI node for each outgoing value from the original loop
71  // (which means it is an outgoing value from the prolog code too).
72  // The new PHI node is inserted in the prolog end basic block.
73  // The new PHI name is added as an operand of a PHI node in either
74  // the loop header or the loop exit block.
75  for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
76       SBI != SBE; ++SBI) {
77    for (BasicBlock::iterator BBI = (*SBI)->begin();
78         PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
79
80      // Add a new PHI node to the prolog end block and add the
81      // appropriate incoming values.
82      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
83                                       PrologEnd->getTerminator());
84      // Adding a value to the new PHI node from the original loop preheader.
85      // This is the value that skips all the prolog code.
86      if (L->contains(PN)) {
87        NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
88      } else {
89        NewPN->addIncoming(UndefValue::get(PN->getType()), OrigPH);
90      }
91
92      Value *V = PN->getIncomingValueForBlock(Latch);
93      if (Instruction *I = dyn_cast<Instruction>(V)) {
94        if (L->contains(I)) {
95          V = VMap[I];
96        }
97      }
98      // Adding a value to the new PHI node from the last prolog block
99      // that was created.
100      NewPN->addIncoming(V, LastPrologBB);
101
102      // Update the existing PHI node operand with the value from the
103      // new PHI node.  How this is done depends on if the existing
104      // PHI node is in the original loop block, or the exit block.
105      if (L->contains(PN)) {
106        PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
107      } else {
108        PN->addIncoming(NewPN, PrologEnd);
109      }
110    }
111  }
112
113  // Create a branch around the orignal loop, which is taken if there are no
114  // iterations remaining to be executed after running the prologue.
115  Instruction *InsertPt = PrologEnd->getTerminator();
116  IRBuilder<> B(InsertPt);
117
118  assert(Count != 0 && "nonsensical Count!");
119
120  // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1)
121  // (since Count is a power of 2).  This means %xtraiter is (BECount + 1) and
122  // and all of the iterations of this loop were executed by the prologue.  Note
123  // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow.
124  Value *BrLoopExit =
125      B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
126  BasicBlock *Exit = L->getUniqueExitBlock();
127  assert(Exit && "Loop must have a single exit block only");
128  // Split the exit to maintain loop canonicalization guarantees
129  SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
130  SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
131                         PreserveLCSSA);
132  // Add the branch to the exit block (around the unrolled loop)
133  B.CreateCondBr(BrLoopExit, Exit, NewPH);
134  InsertPt->eraseFromParent();
135}
136
137/// Create a clone of the blocks in a loop and connect them together.
138/// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
139/// loop will be created including all cloned blocks, and the iterator of it
140/// switches to count NewIter down to 0.
141///
142static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
143                            BasicBlock *InsertTop, BasicBlock *InsertBot,
144                            std::vector<BasicBlock *> &NewBlocks,
145                            LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
146                            LoopInfo *LI) {
147  BasicBlock *Preheader = L->getLoopPreheader();
148  BasicBlock *Header = L->getHeader();
149  BasicBlock *Latch = L->getLoopLatch();
150  Function *F = Header->getParent();
151  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
152  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
153  Loop *NewLoop = nullptr;
154  Loop *ParentLoop = L->getParentLoop();
155  if (!UnrollProlog) {
156    NewLoop = new Loop();
157    if (ParentLoop)
158      ParentLoop->addChildLoop(NewLoop);
159    else
160      LI->addTopLevelLoop(NewLoop);
161  }
162
163  // For each block in the original loop, create a new copy,
164  // and update the value map with the newly created values.
165  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
166    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
167    NewBlocks.push_back(NewBB);
168
169    if (NewLoop)
170      NewLoop->addBasicBlockToLoop(NewBB, *LI);
171    else if (ParentLoop)
172      ParentLoop->addBasicBlockToLoop(NewBB, *LI);
173
174    VMap[*BB] = NewBB;
175    if (Header == *BB) {
176      // For the first block, add a CFG connection to this newly
177      // created block.
178      InsertTop->getTerminator()->setSuccessor(0, NewBB);
179
180    }
181    if (Latch == *BB) {
182      // For the last block, if UnrollProlog is true, create a direct jump to
183      // InsertBot. If not, create a loop back to cloned head.
184      VMap.erase((*BB)->getTerminator());
185      BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
186      BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
187      IRBuilder<> Builder(LatchBR);
188      if (UnrollProlog) {
189        Builder.CreateBr(InsertBot);
190      } else {
191        PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
192                                          FirstLoopBB->getFirstNonPHI());
193        Value *IdxSub =
194            Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
195                              NewIdx->getName() + ".sub");
196        Value *IdxCmp =
197            Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
198        Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
199        NewIdx->addIncoming(NewIter, InsertTop);
200        NewIdx->addIncoming(IdxSub, NewBB);
201      }
202      LatchBR->eraseFromParent();
203    }
204  }
205
206  // Change the incoming values to the ones defined in the preheader or
207  // cloned loop.
208  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
209    PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
210    if (UnrollProlog) {
211      VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
212      cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
213    } else {
214      unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
215      NewPHI->setIncomingBlock(idx, InsertTop);
216      BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
217      idx = NewPHI->getBasicBlockIndex(Latch);
218      Value *InVal = NewPHI->getIncomingValue(idx);
219      NewPHI->setIncomingBlock(idx, NewLatch);
220      if (VMap[InVal])
221        NewPHI->setIncomingValue(idx, VMap[InVal]);
222    }
223  }
224  if (NewLoop) {
225    // Add unroll disable metadata to disable future unrolling for this loop.
226    SmallVector<Metadata *, 4> MDs;
227    // Reserve first location for self reference to the LoopID metadata node.
228    MDs.push_back(nullptr);
229    MDNode *LoopID = NewLoop->getLoopID();
230    if (LoopID) {
231      // First remove any existing loop unrolling metadata.
232      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
233        bool IsUnrollMetadata = false;
234        MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
235        if (MD) {
236          const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
237          IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
238        }
239        if (!IsUnrollMetadata)
240          MDs.push_back(LoopID->getOperand(i));
241      }
242    }
243
244    LLVMContext &Context = NewLoop->getHeader()->getContext();
245    SmallVector<Metadata *, 1> DisableOperands;
246    DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
247    MDNode *DisableNode = MDNode::get(Context, DisableOperands);
248    MDs.push_back(DisableNode);
249
250    MDNode *NewLoopID = MDNode::get(Context, MDs);
251    // Set operand 0 to refer to the loop id itself.
252    NewLoopID->replaceOperandWith(0, NewLoopID);
253    NewLoop->setLoopID(NewLoopID);
254  }
255}
256
257/// Insert code in the prolog code when unrolling a loop with a
258/// run-time trip-count.
259///
260/// This method assumes that the loop unroll factor is total number
261/// of loop bodes in the loop after unrolling. (Some folks refer
262/// to the unroll factor as the number of *extra* copies added).
263/// We assume also that the loop unroll factor is a power-of-two. So, after
264/// unrolling the loop, the number of loop bodies executed is 2,
265/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
266/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
267/// the switch instruction is generated.
268///
269///        extraiters = tripcount % loopfactor
270///        if (extraiters == 0) jump Loop:
271///        else jump Prol
272/// Prol:  LoopBody;
273///        extraiters -= 1                 // Omitted if unroll factor is 2.
274///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
275///        if (tripcount < loopfactor) jump End
276/// Loop:
277/// ...
278/// End:
279///
280bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
281                                   bool AllowExpensiveTripCount, LoopInfo *LI,
282                                   ScalarEvolution *SE, DominatorTree *DT,
283                                   bool PreserveLCSSA) {
284  // for now, only unroll loops that contain a single exit
285  if (!L->getExitingBlock())
286    return false;
287
288  // Make sure the loop is in canonical form, and there is a single
289  // exit block only.
290  if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
291    return false;
292
293  // Use Scalar Evolution to compute the trip count.  This allows more
294  // loops to be unrolled than relying on induction var simplification
295  if (!SE)
296    return false;
297
298  // Only unroll loops with a computable trip count and the trip count needs
299  // to be an int value (allowing a pointer type is a TODO item)
300  const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
301  if (isa<SCEVCouldNotCompute>(BECountSC) ||
302      !BECountSC->getType()->isIntegerTy())
303    return false;
304
305  unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
306
307  // Add 1 since the backedge count doesn't include the first loop iteration
308  const SCEV *TripCountSC =
309      SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
310  if (isa<SCEVCouldNotCompute>(TripCountSC))
311    return false;
312
313  BasicBlock *Header = L->getHeader();
314  const DataLayout &DL = Header->getModule()->getDataLayout();
315  SCEVExpander Expander(*SE, DL, "loop-unroll");
316  if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
317    return false;
318
319  // We only handle cases when the unroll factor is a power of 2.
320  // Count is the loop unroll factor, the number of extra copies added + 1.
321  if (!isPowerOf2_32(Count))
322    return false;
323
324  // This constraint lets us deal with an overflowing trip count easily; see the
325  // comment on ModVal below.
326  if (Log2_32(Count) > BEWidth)
327    return false;
328
329  // If this loop is nested, then the loop unroller changes the code in
330  // parent loop, so the Scalar Evolution pass needs to be run again
331  if (Loop *ParentLoop = L->getParentLoop())
332    SE->forgetLoop(ParentLoop);
333
334  BasicBlock *PH = L->getLoopPreheader();
335  BasicBlock *Latch = L->getLoopLatch();
336  // It helps to splits the original preheader twice, one for the end of the
337  // prolog code and one for a new loop preheader
338  BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
339  BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
340  BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
341
342  // Compute the number of extra iterations required, which is:
343  //  extra iterations = run-time trip count % (loop unroll factor + 1)
344  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
345                                            PreHeaderBR);
346  Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
347                                          PreHeaderBR);
348
349  IRBuilder<> B(PreHeaderBR);
350  Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
351
352  // If ModVal is zero, we know that either
353  //  1. there are no iteration to be run in the prologue loop
354  // OR
355  //  2. the addition computing TripCount overflowed
356  //
357  // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
358  // number of iterations that remain to be run in the original loop is a
359  // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
360  // explicitly check this above).
361
362  Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");
363
364  // Branch to either the extra iterations or the cloned/unrolled loop
365  // We will fix up the true branch label when adding loop body copies
366  B.CreateCondBr(BranchVal, PEnd, PEnd);
367  assert(PreHeaderBR->isUnconditional() &&
368         PreHeaderBR->getSuccessor(0) == PEnd &&
369         "CFG edges in Preheader are not correct");
370  PreHeaderBR->eraseFromParent();
371  Function *F = Header->getParent();
372  // Get an ordered list of blocks in the loop to help with the ordering of the
373  // cloned blocks in the prolog code
374  LoopBlocksDFS LoopBlocks(L);
375  LoopBlocks.perform(LI);
376
377  //
378  // For each extra loop iteration, create a copy of the loop's basic blocks
379  // and generate a condition that branches to the copy depending on the
380  // number of 'left over' iterations.
381  //
382  std::vector<BasicBlock *> NewBlocks;
383  ValueToValueMapTy VMap;
384
385  bool UnrollPrologue = Count == 2;
386
387  // Clone all the basic blocks in the loop. If Count is 2, we don't clone
388  // the loop, otherwise we create a cloned loop to execute the extra
389  // iterations. This function adds the appropriate CFG connections.
390  CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
391                  VMap, LI);
392
393  // Insert the cloned blocks into function just before the original loop
394  F->getBasicBlockList().splice(PEnd->getIterator(), F->getBasicBlockList(),
395                                NewBlocks[0]->getIterator(), F->end());
396
397  // Rewrite the cloned instruction operands to use the values
398  // created when the clone is created.
399  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
400    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
401                              E = NewBlocks[i]->end();
402         I != E; ++I) {
403      RemapInstruction(&*I, VMap,
404                       RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
405    }
406  }
407
408  // Connect the prolog code to the original loop and update the
409  // PHI functions.
410  BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
411  ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, DT, LI,
412                PreserveLCSSA);
413  NumRuntimeUnrolled++;
414  return true;
415}
416