1/*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "brw_vec4.h"
25extern "C" {
26#include "main/macros.h"
27#include "program/prog_parameter.h"
28}
29
30#define MAX_INSTRUCTION (1 << 30)
31
32namespace brw {
33
34/**
35 * Common helper for constructing swizzles.  When only a subset of
36 * channels of a vec4 are used, we don't want to reference the other
37 * channels, as that will tell optimization passes that those other
38 * channels are used.
39 */
40unsigned
41swizzle_for_size(int size)
42{
43   static const unsigned size_swizzles[4] = {
44      BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
45      BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
46      BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
47      BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
48   };
49
50   assert((size >= 1) && (size <= 4));
51   return size_swizzles[size - 1];
52}
53
54void
55src_reg::init()
56{
57   memset(this, 0, sizeof(*this));
58
59   this->file = BAD_FILE;
60}
61
62src_reg::src_reg(register_file file, int reg, const glsl_type *type)
63{
64   init();
65
66   this->file = file;
67   this->reg = reg;
68   if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
69      this->swizzle = swizzle_for_size(type->vector_elements);
70   else
71      this->swizzle = SWIZZLE_XYZW;
72}
73
74/** Generic unset register constructor. */
75src_reg::src_reg()
76{
77   init();
78}
79
80src_reg::src_reg(float f)
81{
82   init();
83
84   this->file = IMM;
85   this->type = BRW_REGISTER_TYPE_F;
86   this->imm.f = f;
87}
88
89src_reg::src_reg(uint32_t u)
90{
91   init();
92
93   this->file = IMM;
94   this->type = BRW_REGISTER_TYPE_UD;
95   this->imm.u = u;
96}
97
98src_reg::src_reg(int32_t i)
99{
100   init();
101
102   this->file = IMM;
103   this->type = BRW_REGISTER_TYPE_D;
104   this->imm.i = i;
105}
106
107src_reg::src_reg(dst_reg reg)
108{
109   init();
110
111   this->file = reg.file;
112   this->reg = reg.reg;
113   this->reg_offset = reg.reg_offset;
114   this->type = reg.type;
115   this->reladdr = reg.reladdr;
116   this->fixed_hw_reg = reg.fixed_hw_reg;
117
118   int swizzles[4];
119   int next_chan = 0;
120   int last = 0;
121
122   for (int i = 0; i < 4; i++) {
123      if (!(reg.writemask & (1 << i)))
124         continue;
125
126      swizzles[next_chan++] = last = i;
127   }
128
129   for (; next_chan < 4; next_chan++) {
130      swizzles[next_chan] = last;
131   }
132
133   this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
134                                swizzles[2], swizzles[3]);
135}
136
137bool
138vec4_instruction::is_tex()
139{
140   return (opcode == SHADER_OPCODE_TEX ||
141	   opcode == SHADER_OPCODE_TXD ||
142	   opcode == SHADER_OPCODE_TXF ||
143	   opcode == SHADER_OPCODE_TXL ||
144	   opcode == SHADER_OPCODE_TXS);
145}
146
147void
148dst_reg::init()
149{
150   memset(this, 0, sizeof(*this));
151   this->file = BAD_FILE;
152   this->writemask = WRITEMASK_XYZW;
153}
154
155dst_reg::dst_reg()
156{
157   init();
158}
159
160dst_reg::dst_reg(register_file file, int reg)
161{
162   init();
163
164   this->file = file;
165   this->reg = reg;
166}
167
168dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
169                 int writemask)
170{
171   init();
172
173   this->file = file;
174   this->reg = reg;
175   this->type = brw_type_for_base_type(type);
176   this->writemask = writemask;
177}
178
179dst_reg::dst_reg(struct brw_reg reg)
180{
181   init();
182
183   this->file = HW_REG;
184   this->fixed_hw_reg = reg;
185}
186
187dst_reg::dst_reg(src_reg reg)
188{
189   init();
190
191   this->file = reg.file;
192   this->reg = reg.reg;
193   this->reg_offset = reg.reg_offset;
194   this->type = reg.type;
195   this->writemask = WRITEMASK_XYZW;
196   this->reladdr = reg.reladdr;
197   this->fixed_hw_reg = reg.fixed_hw_reg;
198}
199
200bool
201vec4_instruction::is_math()
202{
203   return (opcode == SHADER_OPCODE_RCP ||
204	   opcode == SHADER_OPCODE_RSQ ||
205	   opcode == SHADER_OPCODE_SQRT ||
206	   opcode == SHADER_OPCODE_EXP2 ||
207	   opcode == SHADER_OPCODE_LOG2 ||
208	   opcode == SHADER_OPCODE_SIN ||
209	   opcode == SHADER_OPCODE_COS ||
210	   opcode == SHADER_OPCODE_INT_QUOTIENT ||
211	   opcode == SHADER_OPCODE_INT_REMAINDER ||
212	   opcode == SHADER_OPCODE_POW);
213}
214/**
215 * Returns how many MRFs an opcode will write over.
216 *
217 * Note that this is not the 0 or 1 implied writes in an actual gen
218 * instruction -- the generate_* functions generate additional MOVs
219 * for setup.
220 */
221int
222vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
223{
224   if (inst->mlen == 0)
225      return 0;
226
227   switch (inst->opcode) {
228   case SHADER_OPCODE_RCP:
229   case SHADER_OPCODE_RSQ:
230   case SHADER_OPCODE_SQRT:
231   case SHADER_OPCODE_EXP2:
232   case SHADER_OPCODE_LOG2:
233   case SHADER_OPCODE_SIN:
234   case SHADER_OPCODE_COS:
235      return 1;
236   case SHADER_OPCODE_POW:
237      return 2;
238   case VS_OPCODE_URB_WRITE:
239      return 1;
240   case VS_OPCODE_PULL_CONSTANT_LOAD:
241      return 2;
242   case VS_OPCODE_SCRATCH_READ:
243      return 2;
244   case VS_OPCODE_SCRATCH_WRITE:
245      return 3;
246   default:
247      assert(!"not reached");
248      return inst->mlen;
249   }
250}
251
252bool
253src_reg::equals(src_reg *r)
254{
255   return (file == r->file &&
256	   reg == r->reg &&
257	   reg_offset == r->reg_offset &&
258	   type == r->type &&
259	   negate == r->negate &&
260	   abs == r->abs &&
261	   swizzle == r->swizzle &&
262	   !reladdr && !r->reladdr &&
263	   memcmp(&fixed_hw_reg, &r->fixed_hw_reg,
264		  sizeof(fixed_hw_reg)) == 0 &&
265	   imm.u == r->imm.u);
266}
267
268void
269vec4_visitor::calculate_live_intervals()
270{
271   int *def = ralloc_array(mem_ctx, int, virtual_grf_count);
272   int *use = ralloc_array(mem_ctx, int, virtual_grf_count);
273   int loop_depth = 0;
274   int loop_start = 0;
275
276   if (this->live_intervals_valid)
277      return;
278
279   for (int i = 0; i < virtual_grf_count; i++) {
280      def[i] = MAX_INSTRUCTION;
281      use[i] = -1;
282   }
283
284   int ip = 0;
285   foreach_list(node, &this->instructions) {
286      vec4_instruction *inst = (vec4_instruction *)node;
287
288      if (inst->opcode == BRW_OPCODE_DO) {
289	 if (loop_depth++ == 0)
290	    loop_start = ip;
291      } else if (inst->opcode == BRW_OPCODE_WHILE) {
292	 loop_depth--;
293
294	 if (loop_depth == 0) {
295	    /* Patches up the use of vars marked for being live across
296	     * the whole loop.
297	     */
298	    for (int i = 0; i < virtual_grf_count; i++) {
299	       if (use[i] == loop_start) {
300		  use[i] = ip;
301	       }
302	    }
303	 }
304      } else {
305	 for (unsigned int i = 0; i < 3; i++) {
306	    if (inst->src[i].file == GRF) {
307	       int reg = inst->src[i].reg;
308
309	       if (!loop_depth) {
310		  use[reg] = ip;
311	       } else {
312		  def[reg] = MIN2(loop_start, def[reg]);
313		  use[reg] = loop_start;
314
315		  /* Nobody else is going to go smash our start to
316		   * later in the loop now, because def[reg] now
317		   * points before the bb header.
318		   */
319	       }
320	    }
321	 }
322	 if (inst->dst.file == GRF) {
323	    int reg = inst->dst.reg;
324
325	    if (!loop_depth) {
326	       def[reg] = MIN2(def[reg], ip);
327	    } else {
328	       def[reg] = MIN2(def[reg], loop_start);
329	    }
330	 }
331      }
332
333      ip++;
334   }
335
336   ralloc_free(this->virtual_grf_def);
337   ralloc_free(this->virtual_grf_use);
338   this->virtual_grf_def = def;
339   this->virtual_grf_use = use;
340
341   this->live_intervals_valid = true;
342}
343
344bool
345vec4_visitor::virtual_grf_interferes(int a, int b)
346{
347   int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
348   int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
349
350   /* We can't handle dead register writes here, without iterating
351    * over the whole instruction stream to find every single dead
352    * write to that register to compare to the live interval of the
353    * other register.  Just assert that dead_code_eliminate() has been
354    * called.
355    */
356   assert((this->virtual_grf_use[a] != -1 ||
357	   this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
358	  (this->virtual_grf_use[b] != -1 ||
359	   this->virtual_grf_def[b] == MAX_INSTRUCTION));
360
361   return start < end;
362}
363
364/**
365 * Must be called after calculate_live_intervales() to remove unused
366 * writes to registers -- register allocation will fail otherwise
367 * because something deffed but not used won't be considered to
368 * interfere with other regs.
369 */
370bool
371vec4_visitor::dead_code_eliminate()
372{
373   bool progress = false;
374   int pc = 0;
375
376   calculate_live_intervals();
377
378   foreach_list_safe(node, &this->instructions) {
379      vec4_instruction *inst = (vec4_instruction *)node;
380
381      if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
382	 inst->remove();
383	 progress = true;
384      }
385
386      pc++;
387   }
388
389   if (progress)
390      live_intervals_valid = false;
391
392   return progress;
393}
394
395void
396vec4_visitor::split_uniform_registers()
397{
398   /* Prior to this, uniforms have been in an array sized according to
399    * the number of vector uniforms present, sparsely filled (so an
400    * aggregate results in reg indices being skipped over).  Now we're
401    * going to cut those aggregates up so each .reg index is one
402    * vector.  The goal is to make elimination of unused uniform
403    * components easier later.
404    */
405   foreach_list(node, &this->instructions) {
406      vec4_instruction *inst = (vec4_instruction *)node;
407
408      for (int i = 0 ; i < 3; i++) {
409	 if (inst->src[i].file != UNIFORM)
410	    continue;
411
412	 assert(!inst->src[i].reladdr);
413
414	 inst->src[i].reg += inst->src[i].reg_offset;
415	 inst->src[i].reg_offset = 0;
416      }
417   }
418
419   /* Update that everything is now vector-sized. */
420   for (int i = 0; i < this->uniforms; i++) {
421      this->uniform_size[i] = 1;
422   }
423}
424
425void
426vec4_visitor::pack_uniform_registers()
427{
428   bool uniform_used[this->uniforms];
429   int new_loc[this->uniforms];
430   int new_chan[this->uniforms];
431
432   memset(uniform_used, 0, sizeof(uniform_used));
433   memset(new_loc, 0, sizeof(new_loc));
434   memset(new_chan, 0, sizeof(new_chan));
435
436   /* Find which uniform vectors are actually used by the program.  We
437    * expect unused vector elements when we've moved array access out
438    * to pull constants, and from some GLSL code generators like wine.
439    */
440   foreach_list(node, &this->instructions) {
441      vec4_instruction *inst = (vec4_instruction *)node;
442
443      for (int i = 0 ; i < 3; i++) {
444	 if (inst->src[i].file != UNIFORM)
445	    continue;
446
447	 uniform_used[inst->src[i].reg] = true;
448      }
449   }
450
451   int new_uniform_count = 0;
452
453   /* Now, figure out a packing of the live uniform vectors into our
454    * push constants.
455    */
456   for (int src = 0; src < uniforms; src++) {
457      int size = this->uniform_vector_size[src];
458
459      if (!uniform_used[src]) {
460	 this->uniform_vector_size[src] = 0;
461	 continue;
462      }
463
464      int dst;
465      /* Find the lowest place we can slot this uniform in. */
466      for (dst = 0; dst < src; dst++) {
467	 if (this->uniform_vector_size[dst] + size <= 4)
468	    break;
469      }
470
471      if (src == dst) {
472	 new_loc[src] = dst;
473	 new_chan[src] = 0;
474      } else {
475	 new_loc[src] = dst;
476	 new_chan[src] = this->uniform_vector_size[dst];
477
478	 /* Move the references to the data */
479	 for (int j = 0; j < size; j++) {
480	    c->prog_data.param[dst * 4 + new_chan[src] + j] =
481	       c->prog_data.param[src * 4 + j];
482	 }
483
484	 this->uniform_vector_size[dst] += size;
485	 this->uniform_vector_size[src] = 0;
486      }
487
488      new_uniform_count = MAX2(new_uniform_count, dst + 1);
489   }
490
491   this->uniforms = new_uniform_count;
492
493   /* Now, update the instructions for our repacked uniforms. */
494   foreach_list(node, &this->instructions) {
495      vec4_instruction *inst = (vec4_instruction *)node;
496
497      for (int i = 0 ; i < 3; i++) {
498	 int src = inst->src[i].reg;
499
500	 if (inst->src[i].file != UNIFORM)
501	    continue;
502
503	 inst->src[i].reg = new_loc[src];
504
505	 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
506	 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
507	 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
508	 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
509	 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
510      }
511   }
512}
513
514bool
515src_reg::is_zero() const
516{
517   if (file != IMM)
518      return false;
519
520   if (type == BRW_REGISTER_TYPE_F) {
521      return imm.f == 0.0;
522   } else {
523      return imm.i == 0;
524   }
525}
526
527bool
528src_reg::is_one() const
529{
530   if (file != IMM)
531      return false;
532
533   if (type == BRW_REGISTER_TYPE_F) {
534      return imm.f == 1.0;
535   } else {
536      return imm.i == 1;
537   }
538}
539
540/**
541 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
542 *
543 * While GLSL IR also performs this optimization, we end up with it in
544 * our instruction stream for a couple of reasons.  One is that we
545 * sometimes generate silly instructions, for example in array access
546 * where we'll generate "ADD offset, index, base" even if base is 0.
547 * The other is that GLSL IR's constant propagation doesn't track the
548 * components of aggregates, so some VS patterns (initialize matrix to
549 * 0, accumulate in vertex blending factors) end up breaking down to
550 * instructions involving 0.
551 */
552bool
553vec4_visitor::opt_algebraic()
554{
555   bool progress = false;
556
557   foreach_list(node, &this->instructions) {
558      vec4_instruction *inst = (vec4_instruction *)node;
559
560      switch (inst->opcode) {
561      case BRW_OPCODE_ADD:
562	 if (inst->src[1].is_zero()) {
563	    inst->opcode = BRW_OPCODE_MOV;
564	    inst->src[1] = src_reg();
565	    progress = true;
566	 }
567	 break;
568
569      case BRW_OPCODE_MUL:
570	 if (inst->src[1].is_zero()) {
571	    inst->opcode = BRW_OPCODE_MOV;
572	    switch (inst->src[0].type) {
573	    case BRW_REGISTER_TYPE_F:
574	       inst->src[0] = src_reg(0.0f);
575	       break;
576	    case BRW_REGISTER_TYPE_D:
577	       inst->src[0] = src_reg(0);
578	       break;
579	    case BRW_REGISTER_TYPE_UD:
580	       inst->src[0] = src_reg(0u);
581	       break;
582	    default:
583	       assert(!"not reached");
584	       inst->src[0] = src_reg(0.0f);
585	       break;
586	    }
587	    inst->src[1] = src_reg();
588	    progress = true;
589	 } else if (inst->src[1].is_one()) {
590	    inst->opcode = BRW_OPCODE_MOV;
591	    inst->src[1] = src_reg();
592	    progress = true;
593	 }
594	 break;
595      default:
596	 break;
597      }
598   }
599
600   if (progress)
601      this->live_intervals_valid = false;
602
603   return progress;
604}
605
606/**
607 * Only a limited number of hardware registers may be used for push
608 * constants, so this turns access to the overflowed constants into
609 * pull constants.
610 */
611void
612vec4_visitor::move_push_constants_to_pull_constants()
613{
614   int pull_constant_loc[this->uniforms];
615
616   /* Only allow 32 registers (256 uniform components) as push constants,
617    * which is the limit on gen6.
618    */
619   int max_uniform_components = 32 * 8;
620   if (this->uniforms * 4 <= max_uniform_components)
621      return;
622
623   /* Make some sort of choice as to which uniforms get sent to pull
624    * constants.  We could potentially do something clever here like
625    * look for the most infrequently used uniform vec4s, but leave
626    * that for later.
627    */
628   for (int i = 0; i < this->uniforms * 4; i += 4) {
629      pull_constant_loc[i / 4] = -1;
630
631      if (i >= max_uniform_components) {
632	 const float **values = &prog_data->param[i];
633
634	 /* Try to find an existing copy of this uniform in the pull
635	  * constants if it was part of an array access already.
636	  */
637	 for (unsigned int j = 0; j < prog_data->nr_pull_params; j += 4) {
638	    int matches;
639
640	    for (matches = 0; matches < 4; matches++) {
641	       if (prog_data->pull_param[j + matches] != values[matches])
642		  break;
643	    }
644
645	    if (matches == 4) {
646	       pull_constant_loc[i / 4] = j / 4;
647	       break;
648	    }
649	 }
650
651	 if (pull_constant_loc[i / 4] == -1) {
652	    assert(prog_data->nr_pull_params % 4 == 0);
653	    pull_constant_loc[i / 4] = prog_data->nr_pull_params / 4;
654
655	    for (int j = 0; j < 4; j++) {
656	       prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
657	    }
658	 }
659      }
660   }
661
662   /* Now actually rewrite usage of the things we've moved to pull
663    * constants.
664    */
665   foreach_list_safe(node, &this->instructions) {
666      vec4_instruction *inst = (vec4_instruction *)node;
667
668      for (int i = 0 ; i < 3; i++) {
669	 if (inst->src[i].file != UNIFORM ||
670	     pull_constant_loc[inst->src[i].reg] == -1)
671	    continue;
672
673	 int uniform = inst->src[i].reg;
674
675	 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
676
677	 emit_pull_constant_load(inst, temp, inst->src[i],
678				 pull_constant_loc[uniform]);
679
680	 inst->src[i].file = temp.file;
681	 inst->src[i].reg = temp.reg;
682	 inst->src[i].reg_offset = temp.reg_offset;
683	 inst->src[i].reladdr = NULL;
684      }
685   }
686
687   /* Repack push constants to remove the now-unused ones. */
688   pack_uniform_registers();
689}
690
691/*
692 * Tries to reduce extra MOV instructions by taking GRFs that get just
693 * written and then MOVed into an MRF and making the original write of
694 * the GRF write directly to the MRF instead.
695 */
696bool
697vec4_visitor::opt_compute_to_mrf()
698{
699   bool progress = false;
700   int next_ip = 0;
701
702   calculate_live_intervals();
703
704   foreach_list_safe(node, &this->instructions) {
705      vec4_instruction *inst = (vec4_instruction *)node;
706
707      int ip = next_ip;
708      next_ip++;
709
710      if (inst->opcode != BRW_OPCODE_MOV ||
711	  inst->predicate ||
712	  inst->dst.file != MRF || inst->src[0].file != GRF ||
713	  inst->dst.type != inst->src[0].type ||
714	  inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
715	 continue;
716
717      int mrf = inst->dst.reg;
718
719      /* Can't compute-to-MRF this GRF if someone else was going to
720       * read it later.
721       */
722      if (this->virtual_grf_use[inst->src[0].reg] > ip)
723	 continue;
724
725      /* We need to check interference with the MRF between this
726       * instruction and the earliest instruction involved in writing
727       * the GRF we're eliminating.  To do that, keep track of which
728       * of our source channels we've seen initialized.
729       */
730      bool chans_needed[4] = {false, false, false, false};
731      int chans_remaining = 0;
732      for (int i = 0; i < 4; i++) {
733	 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
734
735	 if (!(inst->dst.writemask & (1 << i)))
736	    continue;
737
738	 /* We don't handle compute-to-MRF across a swizzle.  We would
739	  * need to be able to rewrite instructions above to output
740	  * results to different channels.
741	  */
742	 if (chan != i)
743	    chans_remaining = 5;
744
745	 if (!chans_needed[chan]) {
746	    chans_needed[chan] = true;
747	    chans_remaining++;
748	 }
749      }
750      if (chans_remaining > 4)
751	 continue;
752
753      /* Now walk up the instruction stream trying to see if we can
754       * rewrite everything writing to the GRF into the MRF instead.
755       */
756      vec4_instruction *scan_inst;
757      for (scan_inst = (vec4_instruction *)inst->prev;
758	   scan_inst->prev != NULL;
759	   scan_inst = (vec4_instruction *)scan_inst->prev) {
760	 if (scan_inst->dst.file == GRF &&
761	     scan_inst->dst.reg == inst->src[0].reg &&
762	     scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
763	    /* Found something writing to the reg we want to turn into
764	     * a compute-to-MRF.
765	     */
766
767	    /* SEND instructions can't have MRF as a destination. */
768	    if (scan_inst->mlen)
769	       break;
770
771	    if (intel->gen >= 6) {
772	       /* gen6 math instructions must have the destination be
773		* GRF, so no compute-to-MRF for them.
774		*/
775	       if (scan_inst->is_math()) {
776		  break;
777	       }
778	    }
779
780	    /* Mark which channels we found unconditional writes for. */
781	    if (!scan_inst->predicate) {
782	       for (int i = 0; i < 4; i++) {
783		  if (scan_inst->dst.writemask & (1 << i) &&
784		      chans_needed[i]) {
785		     chans_needed[i] = false;
786		     chans_remaining--;
787		  }
788	       }
789	    }
790
791	    if (chans_remaining == 0)
792	       break;
793	 }
794
795	 /* We don't handle flow control here.  Most computation of
796	  * values that end up in MRFs are shortly before the MRF
797	  * write anyway.
798	  */
799	 if (scan_inst->opcode == BRW_OPCODE_DO ||
800	     scan_inst->opcode == BRW_OPCODE_WHILE ||
801	     scan_inst->opcode == BRW_OPCODE_ELSE ||
802	     scan_inst->opcode == BRW_OPCODE_ENDIF) {
803	    break;
804	 }
805
806	 /* You can't read from an MRF, so if someone else reads our
807	  * MRF's source GRF that we wanted to rewrite, that stops us.
808	  */
809	 bool interfered = false;
810	 for (int i = 0; i < 3; i++) {
811	    if (scan_inst->src[i].file == GRF &&
812		scan_inst->src[i].reg == inst->src[0].reg &&
813		scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
814	       interfered = true;
815	    }
816	 }
817	 if (interfered)
818	    break;
819
820	 /* If somebody else writes our MRF here, we can't
821	  * compute-to-MRF before that.
822	  */
823	 if (scan_inst->dst.file == MRF && mrf == scan_inst->dst.reg)
824	    break;
825
826	 if (scan_inst->mlen > 0) {
827	    /* Found a SEND instruction, which means that there are
828	     * live values in MRFs from base_mrf to base_mrf +
829	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
830	     * above it.
831	     */
832	    if (mrf >= scan_inst->base_mrf &&
833		mrf < scan_inst->base_mrf + scan_inst->mlen) {
834	       break;
835	    }
836	 }
837      }
838
839      if (chans_remaining == 0) {
840	 /* If we've made it here, we have an inst we want to
841	  * compute-to-MRF, and a scan_inst pointing to the earliest
842	  * instruction involved in computing the value.  Now go
843	  * rewrite the instruction stream between the two.
844	  */
845
846	 while (scan_inst != inst) {
847	    if (scan_inst->dst.file == GRF &&
848		scan_inst->dst.reg == inst->src[0].reg &&
849		scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
850	       scan_inst->dst.file = MRF;
851	       scan_inst->dst.reg = mrf;
852	       scan_inst->dst.reg_offset = 0;
853	       scan_inst->dst.writemask &= inst->dst.writemask;
854	       scan_inst->saturate |= inst->saturate;
855	    }
856	    scan_inst = (vec4_instruction *)scan_inst->next;
857	 }
858	 inst->remove();
859	 progress = true;
860      }
861   }
862
863   if (progress)
864      live_intervals_valid = false;
865
866   return progress;
867}
868
869} /* namespace brw */
870