1/************************************************************************** 2 * 3 * Copyright 2006 Tungsten Graphics, Inc., Cedar Park, Texas. 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28#include <GL/gl.h> 29#include <GL/internal/dri_interface.h> 30 31#include "intel_batchbuffer.h" 32#include "intel_context.h" 33#include "intel_mipmap_tree.h" 34#include "intel_regions.h" 35#include "intel_resolve_map.h" 36#include "intel_span.h" 37#include "intel_tex_layout.h" 38#include "intel_tex.h" 39#include "intel_blit.h" 40 41#ifndef I915 42#include "brw_blorp.h" 43#endif 44 45#include "main/enums.h" 46#include "main/formats.h" 47#include "main/glformats.h" 48#include "main/texcompress_etc.h" 49#include "main/teximage.h" 50 51#define FILE_DEBUG_FLAG DEBUG_MIPTREE 52 53static GLenum 54target_to_target(GLenum target) 55{ 56 switch (target) { 57 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB: 58 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB: 59 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB: 60 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB: 61 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB: 62 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB: 63 return GL_TEXTURE_CUBE_MAP_ARB; 64 default: 65 return target; 66 } 67} 68 69/** 70 * @param for_region Indicates that the caller is 71 * intel_miptree_create_for_region(). If true, then do not create 72 * \c stencil_mt. 73 */ 74static struct intel_mipmap_tree * 75intel_miptree_create_internal(struct intel_context *intel, 76 GLenum target, 77 gl_format format, 78 GLuint first_level, 79 GLuint last_level, 80 GLuint width0, 81 GLuint height0, 82 GLuint depth0, 83 bool for_region, 84 GLuint num_samples, 85 enum intel_msaa_layout msaa_layout) 86{ 87 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1); 88 int compress_byte = 0; 89 90 DBG("%s target %s format %s level %d..%d <-- %p\n", __FUNCTION__, 91 _mesa_lookup_enum_by_nr(target), 92 _mesa_get_format_name(format), 93 first_level, last_level, mt); 94 95 if (_mesa_is_format_compressed(format)) 96 compress_byte = intel_compressed_num_bytes(format); 97 98 mt->target = target_to_target(target); 99 mt->format = format; 100 mt->first_level = first_level; 101 mt->last_level = last_level; 102 mt->width0 = width0; 103 mt->height0 = height0; 104 mt->cpp = compress_byte ? compress_byte : _mesa_get_format_bytes(mt->format); 105 mt->num_samples = num_samples; 106 mt->compressed = compress_byte ? 1 : 0; 107 mt->msaa_layout = msaa_layout; 108 mt->refcount = 1; 109 110 /* array_spacing_lod0 is only used for non-IMS MSAA surfaces. TODO: can we 111 * use it elsewhere? 112 */ 113 switch (msaa_layout) { 114 case INTEL_MSAA_LAYOUT_NONE: 115 case INTEL_MSAA_LAYOUT_IMS: 116 mt->array_spacing_lod0 = false; 117 break; 118 case INTEL_MSAA_LAYOUT_UMS: 119 case INTEL_MSAA_LAYOUT_CMS: 120 mt->array_spacing_lod0 = true; 121 break; 122 } 123 124 if (target == GL_TEXTURE_CUBE_MAP) { 125 assert(depth0 == 1); 126 mt->depth0 = 6; 127 } else { 128 mt->depth0 = depth0; 129 } 130 131 if (!for_region && 132 _mesa_is_depthstencil_format(_mesa_get_format_base_format(format)) && 133 (intel->must_use_separate_stencil || 134 (intel->has_separate_stencil && 135 intel->vtbl.is_hiz_depth_format(intel, format)))) { 136 /* MSAA stencil surfaces always use IMS layout. */ 137 enum intel_msaa_layout msaa_layout = 138 num_samples > 1 ? INTEL_MSAA_LAYOUT_IMS : INTEL_MSAA_LAYOUT_NONE; 139 mt->stencil_mt = intel_miptree_create(intel, 140 mt->target, 141 MESA_FORMAT_S8, 142 mt->first_level, 143 mt->last_level, 144 mt->width0, 145 mt->height0, 146 mt->depth0, 147 true, 148 num_samples, 149 msaa_layout); 150 if (!mt->stencil_mt) { 151 intel_miptree_release(&mt); 152 return NULL; 153 } 154 155 /* Fix up the Z miptree format for how we're splitting out separate 156 * stencil. Gen7 expects there to be no stencil bits in its depth buffer. 157 */ 158 if (mt->format == MESA_FORMAT_S8_Z24) { 159 mt->format = MESA_FORMAT_X8_Z24; 160 } else if (mt->format == MESA_FORMAT_Z32_FLOAT_X24S8) { 161 mt->format = MESA_FORMAT_Z32_FLOAT; 162 mt->cpp = 4; 163 } else { 164 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n", 165 _mesa_get_format_name(mt->format)); 166 } 167 } 168 169 intel_get_texture_alignment_unit(intel, mt->format, 170 &mt->align_w, &mt->align_h); 171 172#ifdef I915 173 (void) intel; 174 if (intel->is_945) 175 i945_miptree_layout(mt); 176 else 177 i915_miptree_layout(mt); 178#else 179 brw_miptree_layout(intel, mt); 180#endif 181 182 return mt; 183} 184 185 186struct intel_mipmap_tree * 187intel_miptree_create(struct intel_context *intel, 188 GLenum target, 189 gl_format format, 190 GLuint first_level, 191 GLuint last_level, 192 GLuint width0, 193 GLuint height0, 194 GLuint depth0, 195 bool expect_accelerated_upload, 196 GLuint num_samples, 197 enum intel_msaa_layout msaa_layout) 198{ 199 struct intel_mipmap_tree *mt; 200 uint32_t tiling = I915_TILING_NONE; 201 GLenum base_format; 202 bool wraps_etc1 = false; 203 GLuint total_width, total_height; 204 205 if (format == MESA_FORMAT_ETC1_RGB8) { 206 format = MESA_FORMAT_RGBX8888_REV; 207 wraps_etc1 = true; 208 } 209 210 base_format = _mesa_get_format_base_format(format); 211 212 if (intel->use_texture_tiling && !_mesa_is_format_compressed(format)) { 213 if (intel->gen >= 4 && 214 (base_format == GL_DEPTH_COMPONENT || 215 base_format == GL_DEPTH_STENCIL_EXT)) 216 tiling = I915_TILING_Y; 217 else if (msaa_layout != INTEL_MSAA_LAYOUT_NONE) { 218 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled 219 * Surface"): 220 * 221 * [DevSNB+]: For multi-sample render targets, this field must be 222 * 1. MSRTs can only be tiled. 223 * 224 * Our usual reason for preferring X tiling (fast blits using the 225 * blitting engine) doesn't apply to MSAA, since we'll generally be 226 * downsampling or upsampling when blitting between the MSAA buffer 227 * and another buffer, and the blitting engine doesn't support that. 228 * So use Y tiling, since it makes better use of the cache. 229 */ 230 tiling = I915_TILING_Y; 231 } else if (width0 >= 64) 232 tiling = I915_TILING_X; 233 } 234 235 mt = intel_miptree_create_internal(intel, target, format, 236 first_level, last_level, width0, 237 height0, depth0, 238 false, num_samples, msaa_layout); 239 /* 240 * pitch == 0 || height == 0 indicates the null texture 241 */ 242 if (!mt || !mt->total_width || !mt->total_height) { 243 intel_miptree_release(&mt); 244 return NULL; 245 } 246 247 total_width = mt->total_width; 248 total_height = mt->total_height; 249 250 if (format == MESA_FORMAT_S8) { 251 /* The stencil buffer is W tiled. However, we request from the kernel a 252 * non-tiled buffer because the GTT is incapable of W fencing. So round 253 * up the width and height to match the size of W tiles (64x64). 254 */ 255 tiling = I915_TILING_NONE; 256 total_width = ALIGN(total_width, 64); 257 total_height = ALIGN(total_height, 64); 258 } 259 260 mt->wraps_etc1 = wraps_etc1; 261 mt->region = intel_region_alloc(intel->intelScreen, 262 tiling, 263 mt->cpp, 264 total_width, 265 total_height, 266 expect_accelerated_upload); 267 mt->offset = 0; 268 269 if (!mt->region) { 270 intel_miptree_release(&mt); 271 return NULL; 272 } 273 274 return mt; 275} 276 277 278struct intel_mipmap_tree * 279intel_miptree_create_for_region(struct intel_context *intel, 280 GLenum target, 281 gl_format format, 282 struct intel_region *region) 283{ 284 struct intel_mipmap_tree *mt; 285 286 mt = intel_miptree_create_internal(intel, target, format, 287 0, 0, 288 region->width, region->height, 1, 289 true, 0 /* num_samples */, 290 INTEL_MSAA_LAYOUT_NONE); 291 if (!mt) 292 return mt; 293 294 intel_region_reference(&mt->region, region); 295 296 return mt; 297} 298 299/** 300 * Determine which MSAA layout should be used by the MSAA surface being 301 * created, based on the chip generation and the surface type. 302 */ 303static enum intel_msaa_layout 304compute_msaa_layout(struct intel_context *intel, gl_format format) 305{ 306 /* Prior to Gen7, all MSAA surfaces used IMS layout. */ 307 if (intel->gen < 7) 308 return INTEL_MSAA_LAYOUT_IMS; 309 310 /* In Gen7, IMS layout is only used for depth and stencil buffers. */ 311 switch (_mesa_get_format_base_format(format)) { 312 case GL_DEPTH_COMPONENT: 313 case GL_STENCIL_INDEX: 314 case GL_DEPTH_STENCIL: 315 return INTEL_MSAA_LAYOUT_IMS; 316 default: 317 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"): 318 * 319 * This field must be set to 0 for all SINT MSRTs when all RT channels 320 * are not written 321 * 322 * In practice this means that we have to disable MCS for all signed 323 * integer MSAA buffers. The alternative, to disable MCS only when one 324 * of the render target channels is disabled, is impractical because it 325 * would require converting between CMS and UMS MSAA layouts on the fly, 326 * which is expensive. 327 */ 328 if (_mesa_get_format_datatype(format) == GL_INT) { 329 /* TODO: is this workaround needed for future chipsets? */ 330 assert(intel->gen == 7); 331 return INTEL_MSAA_LAYOUT_UMS; 332 } else { 333 return INTEL_MSAA_LAYOUT_CMS; 334 } 335 } 336} 337 338/** 339 * For a singlesample DRI2 buffer, this simply wraps the given region with a miptree. 340 * 341 * For a multisample DRI2 buffer, this wraps the given region with 342 * a singlesample miptree, then creates a multisample miptree into which the 343 * singlesample miptree is embedded as a child. 344 */ 345struct intel_mipmap_tree* 346intel_miptree_create_for_dri2_buffer(struct intel_context *intel, 347 unsigned dri_attachment, 348 gl_format format, 349 uint32_t num_samples, 350 struct intel_region *region) 351{ 352 struct intel_mipmap_tree *singlesample_mt = NULL; 353 struct intel_mipmap_tree *multisample_mt = NULL; 354 GLenum base_format = _mesa_get_format_base_format(format); 355 356 /* Only the front and back buffers, which are color buffers, are shared 357 * through DRI2. 358 */ 359 assert(dri_attachment == __DRI_BUFFER_BACK_LEFT || 360 dri_attachment == __DRI_BUFFER_FRONT_LEFT || 361 dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT); 362 assert(base_format == GL_RGB || base_format == GL_RGBA); 363 364 singlesample_mt = intel_miptree_create_for_region(intel, GL_TEXTURE_2D, 365 format, region); 366 if (!singlesample_mt) 367 return NULL; 368 369 if (num_samples == 0) 370 return singlesample_mt; 371 372 multisample_mt = intel_miptree_create_for_renderbuffer(intel, 373 format, 374 region->width, 375 region->height, 376 num_samples); 377 if (!multisample_mt) { 378 intel_miptree_release(&singlesample_mt); 379 return NULL; 380 } 381 382 multisample_mt->singlesample_mt = singlesample_mt; 383 multisample_mt->need_downsample = false; 384 385 if (intel->is_front_buffer_rendering && 386 (dri_attachment == __DRI_BUFFER_FRONT_LEFT || 387 dri_attachment == __DRI_BUFFER_FAKE_FRONT_LEFT)) { 388 intel_miptree_upsample(intel, multisample_mt); 389 } 390 391 return multisample_mt; 392} 393 394struct intel_mipmap_tree* 395intel_miptree_create_for_renderbuffer(struct intel_context *intel, 396 gl_format format, 397 uint32_t width, 398 uint32_t height, 399 uint32_t num_samples) 400{ 401 struct intel_mipmap_tree *mt; 402 uint32_t depth = 1; 403 enum intel_msaa_layout msaa_layout = INTEL_MSAA_LAYOUT_NONE; 404 const uint32_t singlesample_width = width; 405 const uint32_t singlesample_height = height; 406 bool ok; 407 408 if (num_samples > 1) { 409 /* Adjust width/height/depth for MSAA */ 410 msaa_layout = compute_msaa_layout(intel, format); 411 if (msaa_layout == INTEL_MSAA_LAYOUT_IMS) { 412 /* In the Sandy Bridge PRM, volume 4, part 1, page 31, it says: 413 * 414 * "Any of the other messages (sample*, LOD, load4) used with a 415 * (4x) multisampled surface will in-effect sample a surface with 416 * double the height and width as that indicated in the surface 417 * state. Each pixel position on the original-sized surface is 418 * replaced with a 2x2 of samples with the following arrangement: 419 * 420 * sample 0 sample 2 421 * sample 1 sample 3" 422 * 423 * Thus, when sampling from a multisampled texture, it behaves as 424 * though the layout in memory for (x,y,sample) is: 425 * 426 * (0,0,0) (0,0,2) (1,0,0) (1,0,2) 427 * (0,0,1) (0,0,3) (1,0,1) (1,0,3) 428 * 429 * (0,1,0) (0,1,2) (1,1,0) (1,1,2) 430 * (0,1,1) (0,1,3) (1,1,1) (1,1,3) 431 * 432 * However, the actual layout of multisampled data in memory is: 433 * 434 * (0,0,0) (1,0,0) (0,0,1) (1,0,1) 435 * (0,1,0) (1,1,0) (0,1,1) (1,1,1) 436 * 437 * (0,0,2) (1,0,2) (0,0,3) (1,0,3) 438 * (0,1,2) (1,1,2) (0,1,3) (1,1,3) 439 * 440 * This pattern repeats for each 2x2 pixel block. 441 * 442 * As a result, when calculating the size of our 4-sample buffer for 443 * an odd width or height, we have to align before scaling up because 444 * sample 3 is in that bottom right 2x2 block. 445 */ 446 switch (num_samples) { 447 case 4: 448 width = ALIGN(width, 2) * 2; 449 height = ALIGN(height, 2) * 2; 450 break; 451 case 8: 452 width = ALIGN(width, 2) * 4; 453 height = ALIGN(height, 2) * 2; 454 break; 455 default: 456 /* num_samples should already have been quantized to 0, 1, 4, or 457 * 8. 458 */ 459 assert(false); 460 } 461 } else { 462 /* Non-interleaved */ 463 depth = num_samples; 464 } 465 } 466 467 mt = intel_miptree_create(intel, GL_TEXTURE_2D, format, 0, 0, 468 width, height, depth, true, num_samples, 469 msaa_layout); 470 if (!mt) 471 goto fail; 472 473 if (intel->vtbl.is_hiz_depth_format(intel, format)) { 474 ok = intel_miptree_alloc_hiz(intel, mt, num_samples); 475 if (!ok) 476 goto fail; 477 } 478 479 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) { 480 ok = intel_miptree_alloc_mcs(intel, mt, num_samples); 481 if (!ok) 482 goto fail; 483 } 484 485 mt->singlesample_width0 = singlesample_width; 486 mt->singlesample_height0 = singlesample_height; 487 488 return mt; 489 490fail: 491 intel_miptree_release(&mt); 492 return NULL; 493} 494 495void 496intel_miptree_reference(struct intel_mipmap_tree **dst, 497 struct intel_mipmap_tree *src) 498{ 499 if (*dst == src) 500 return; 501 502 intel_miptree_release(dst); 503 504 if (src) { 505 src->refcount++; 506 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount); 507 } 508 509 *dst = src; 510} 511 512 513void 514intel_miptree_release(struct intel_mipmap_tree **mt) 515{ 516 if (!*mt) 517 return; 518 519 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1); 520 if (--(*mt)->refcount <= 0) { 521 GLuint i; 522 523 DBG("%s deleting %p\n", __FUNCTION__, *mt); 524 525 intel_region_release(&((*mt)->region)); 526 intel_miptree_release(&(*mt)->stencil_mt); 527 intel_miptree_release(&(*mt)->hiz_mt); 528 intel_miptree_release(&(*mt)->mcs_mt); 529 intel_miptree_release(&(*mt)->singlesample_mt); 530 intel_resolve_map_clear(&(*mt)->hiz_map); 531 532 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) { 533 free((*mt)->level[i].slice); 534 } 535 536 free(*mt); 537 } 538 *mt = NULL; 539} 540 541void 542intel_miptree_get_dimensions_for_image(struct gl_texture_image *image, 543 int *width, int *height, int *depth) 544{ 545 switch (image->TexObject->Target) { 546 case GL_TEXTURE_1D_ARRAY: 547 *width = image->Width; 548 *height = 1; 549 *depth = image->Height; 550 break; 551 default: 552 *width = image->Width; 553 *height = image->Height; 554 *depth = image->Depth; 555 break; 556 } 557} 558 559/** 560 * Can the image be pulled into a unified mipmap tree? This mirrors 561 * the completeness test in a lot of ways. 562 * 563 * Not sure whether I want to pass gl_texture_image here. 564 */ 565bool 566intel_miptree_match_image(struct intel_mipmap_tree *mt, 567 struct gl_texture_image *image) 568{ 569 struct intel_texture_image *intelImage = intel_texture_image(image); 570 GLuint level = intelImage->base.Base.Level; 571 int width, height, depth; 572 573 if (target_to_target(image->TexObject->Target) != mt->target) 574 return false; 575 576 if (image->TexFormat != mt->format && 577 !(image->TexFormat == MESA_FORMAT_S8_Z24 && 578 mt->format == MESA_FORMAT_X8_Z24 && 579 mt->stencil_mt)) { 580 return false; 581 } 582 583 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth); 584 585 if (mt->target == GL_TEXTURE_CUBE_MAP) 586 depth = 6; 587 588 /* Test image dimensions against the base level image adjusted for 589 * minification. This will also catch images not present in the 590 * tree, changed targets, etc. 591 */ 592 if (width != mt->level[level].width || 593 height != mt->level[level].height || 594 depth != mt->level[level].depth) 595 return false; 596 597 return true; 598} 599 600 601void 602intel_miptree_set_level_info(struct intel_mipmap_tree *mt, 603 GLuint level, 604 GLuint x, GLuint y, 605 GLuint w, GLuint h, GLuint d) 606{ 607 mt->level[level].width = w; 608 mt->level[level].height = h; 609 mt->level[level].depth = d; 610 mt->level[level].level_x = x; 611 mt->level[level].level_y = y; 612 613 DBG("%s level %d size: %d,%d,%d offset %d,%d\n", __FUNCTION__, 614 level, w, h, d, x, y); 615 616 assert(mt->level[level].slice == NULL); 617 618 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice)); 619 mt->level[level].slice[0].x_offset = mt->level[level].level_x; 620 mt->level[level].slice[0].y_offset = mt->level[level].level_y; 621} 622 623 624void 625intel_miptree_set_image_offset(struct intel_mipmap_tree *mt, 626 GLuint level, GLuint img, 627 GLuint x, GLuint y) 628{ 629 if (img == 0 && level == 0) 630 assert(x == 0 && y == 0); 631 632 assert(img < mt->level[level].depth); 633 634 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x; 635 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y; 636 637 DBG("%s level %d img %d pos %d,%d\n", 638 __FUNCTION__, level, img, 639 mt->level[level].slice[img].x_offset, 640 mt->level[level].slice[img].y_offset); 641} 642 643 644/** 645 * For cube map textures, either the \c face parameter can be used, of course, 646 * or the cube face can be interpreted as a depth layer and the \c layer 647 * parameter used. 648 */ 649void 650intel_miptree_get_image_offset(struct intel_mipmap_tree *mt, 651 GLuint level, GLuint face, GLuint layer, 652 GLuint *x, GLuint *y) 653{ 654 int slice; 655 656 if (face > 0) { 657 assert(mt->target == GL_TEXTURE_CUBE_MAP); 658 assert(face < 6); 659 assert(layer == 0); 660 slice = face; 661 } else { 662 /* This branch may be taken even if the texture target is a cube map. In 663 * that case, the caller chose to interpret each cube face as a layer. 664 */ 665 assert(face == 0); 666 slice = layer; 667 } 668 669 *x = mt->level[level].slice[slice].x_offset; 670 *y = mt->level[level].slice[slice].y_offset; 671} 672 673static void 674intel_miptree_copy_slice(struct intel_context *intel, 675 struct intel_mipmap_tree *dst_mt, 676 struct intel_mipmap_tree *src_mt, 677 int level, 678 int face, 679 int depth) 680 681{ 682 gl_format format = src_mt->format; 683 uint32_t width = src_mt->level[level].width; 684 uint32_t height = src_mt->level[level].height; 685 686 assert(depth < src_mt->level[level].depth); 687 688 if (dst_mt->compressed) { 689 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h; 690 width = ALIGN(width, dst_mt->align_w); 691 } 692 693 uint32_t dst_x, dst_y, src_x, src_y; 694 intel_miptree_get_image_offset(dst_mt, level, face, depth, 695 &dst_x, &dst_y); 696 intel_miptree_get_image_offset(src_mt, level, face, depth, 697 &src_x, &src_y); 698 699 DBG("validate blit mt %p %d,%d/%d -> mt %p %d,%d/%d (%dx%d)\n", 700 src_mt, src_x, src_y, src_mt->region->pitch * src_mt->region->cpp, 701 dst_mt, dst_x, dst_y, dst_mt->region->pitch * dst_mt->region->cpp, 702 width, height); 703 704 if (!intelEmitCopyBlit(intel, 705 dst_mt->region->cpp, 706 src_mt->region->pitch, src_mt->region->bo, 707 0, src_mt->region->tiling, 708 dst_mt->region->pitch, dst_mt->region->bo, 709 0, dst_mt->region->tiling, 710 src_x, src_y, 711 dst_x, dst_y, 712 width, height, 713 GL_COPY)) { 714 715 fallback_debug("miptree validate blit for %s failed\n", 716 _mesa_get_format_name(format)); 717 void *dst = intel_region_map(intel, dst_mt->region, GL_MAP_WRITE_BIT); 718 void *src = intel_region_map(intel, src_mt->region, GL_MAP_READ_BIT); 719 720 _mesa_copy_rect(dst, 721 dst_mt->cpp, 722 dst_mt->region->pitch, 723 dst_x, dst_y, 724 width, height, 725 src, src_mt->region->pitch, 726 src_x, src_y); 727 728 intel_region_unmap(intel, dst_mt->region); 729 intel_region_unmap(intel, src_mt->region); 730 } 731 732 if (src_mt->stencil_mt) { 733 intel_miptree_copy_slice(intel, 734 dst_mt->stencil_mt, src_mt->stencil_mt, 735 level, face, depth); 736 } 737} 738 739/** 740 * Copies the image's current data to the given miptree, and associates that 741 * miptree with the image. 742 */ 743void 744intel_miptree_copy_teximage(struct intel_context *intel, 745 struct intel_texture_image *intelImage, 746 struct intel_mipmap_tree *dst_mt) 747{ 748 struct intel_mipmap_tree *src_mt = intelImage->mt; 749 int level = intelImage->base.Base.Level; 750 int face = intelImage->base.Base.Face; 751 GLuint depth = intelImage->base.Base.Depth; 752 753 for (int slice = 0; slice < depth; slice++) { 754 intel_miptree_copy_slice(intel, dst_mt, src_mt, level, face, slice); 755 } 756 757 intel_miptree_reference(&intelImage->mt, dst_mt); 758} 759 760bool 761intel_miptree_alloc_mcs(struct intel_context *intel, 762 struct intel_mipmap_tree *mt, 763 GLuint num_samples) 764{ 765 assert(mt->mcs_mt == NULL); 766 assert(intel->gen >= 7); /* MCS only used on Gen7+ */ 767 768 /* Choose the correct format for the MCS buffer. All that really matters 769 * is that we allocate the right buffer size, since we'll always be 770 * accessing this miptree using MCS-specific hardware mechanisms, which 771 * infer the correct format based on num_samples. 772 */ 773 gl_format format; 774 switch (num_samples) { 775 case 4: 776 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for 777 * each sample). 778 */ 779 format = MESA_FORMAT_R8; 780 break; 781 case 8: 782 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits 783 * for each sample, plus 8 padding bits). 784 */ 785 format = MESA_FORMAT_R_UINT32; 786 break; 787 default: 788 assert(!"Unrecognized sample count in intel_miptree_alloc_mcs"); 789 break; 790 }; 791 792 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address": 793 * 794 * "The MCS surface must be stored as Tile Y." 795 * 796 * We set msaa_format to INTEL_MSAA_LAYOUT_CMS to force 797 * intel_miptree_create() to use Y tiling. msaa_format is otherwise 798 * ignored for the MCS miptree. 799 */ 800 mt->mcs_mt = intel_miptree_create(intel, 801 mt->target, 802 format, 803 mt->first_level, 804 mt->last_level, 805 mt->width0, 806 mt->height0, 807 mt->depth0, 808 true, 809 0 /* num_samples */, 810 INTEL_MSAA_LAYOUT_CMS); 811 812 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326: 813 * 814 * When MCS buffer is enabled and bound to MSRT, it is required that it 815 * is cleared prior to any rendering. 816 * 817 * Since we don't use the MCS buffer for any purpose other than rendering, 818 * it makes sense to just clear it immediately upon allocation. 819 * 820 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff. 821 */ 822 void *data = intel_region_map(intel, mt->mcs_mt->region, 0); 823 memset(data, 0xff, mt->mcs_mt->region->bo->size); 824 intel_region_unmap(intel, mt->mcs_mt->region); 825 826 return mt->mcs_mt; 827} 828 829bool 830intel_miptree_alloc_hiz(struct intel_context *intel, 831 struct intel_mipmap_tree *mt, 832 GLuint num_samples) 833{ 834 assert(mt->hiz_mt == NULL); 835 /* MSAA HiZ surfaces always use IMS layout. */ 836 mt->hiz_mt = intel_miptree_create(intel, 837 mt->target, 838 MESA_FORMAT_X8_Z24, 839 mt->first_level, 840 mt->last_level, 841 mt->width0, 842 mt->height0, 843 mt->depth0, 844 true, 845 num_samples, 846 INTEL_MSAA_LAYOUT_IMS); 847 848 if (!mt->hiz_mt) 849 return false; 850 851 /* Mark that all slices need a HiZ resolve. */ 852 struct intel_resolve_map *head = &mt->hiz_map; 853 for (int level = mt->first_level; level <= mt->last_level; ++level) { 854 for (int layer = 0; layer < mt->level[level].depth; ++layer) { 855 head->next = malloc(sizeof(*head->next)); 856 head->next->prev = head; 857 head->next->next = NULL; 858 head = head->next; 859 860 head->level = level; 861 head->layer = layer; 862 head->need = GEN6_HIZ_OP_HIZ_RESOLVE; 863 } 864 } 865 866 return true; 867} 868 869void 870intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt, 871 uint32_t level, 872 uint32_t layer) 873{ 874 intel_miptree_check_level_layer(mt, level, layer); 875 876 if (!mt->hiz_mt) 877 return; 878 879 intel_resolve_map_set(&mt->hiz_map, 880 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE); 881} 882 883 884void 885intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt, 886 uint32_t level, 887 uint32_t layer) 888{ 889 intel_miptree_check_level_layer(mt, level, layer); 890 891 if (!mt->hiz_mt) 892 return; 893 894 intel_resolve_map_set(&mt->hiz_map, 895 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE); 896} 897 898static bool 899intel_miptree_slice_resolve(struct intel_context *intel, 900 struct intel_mipmap_tree *mt, 901 uint32_t level, 902 uint32_t layer, 903 enum gen6_hiz_op need) 904{ 905 intel_miptree_check_level_layer(mt, level, layer); 906 907 struct intel_resolve_map *item = 908 intel_resolve_map_get(&mt->hiz_map, level, layer); 909 910 if (!item || item->need != need) 911 return false; 912 913 intel_hiz_exec(intel, mt, level, layer, need); 914 intel_resolve_map_remove(item); 915 return true; 916} 917 918bool 919intel_miptree_slice_resolve_hiz(struct intel_context *intel, 920 struct intel_mipmap_tree *mt, 921 uint32_t level, 922 uint32_t layer) 923{ 924 return intel_miptree_slice_resolve(intel, mt, level, layer, 925 GEN6_HIZ_OP_HIZ_RESOLVE); 926} 927 928bool 929intel_miptree_slice_resolve_depth(struct intel_context *intel, 930 struct intel_mipmap_tree *mt, 931 uint32_t level, 932 uint32_t layer) 933{ 934 return intel_miptree_slice_resolve(intel, mt, level, layer, 935 GEN6_HIZ_OP_DEPTH_RESOLVE); 936} 937 938static bool 939intel_miptree_all_slices_resolve(struct intel_context *intel, 940 struct intel_mipmap_tree *mt, 941 enum gen6_hiz_op need) 942{ 943 bool did_resolve = false; 944 struct intel_resolve_map *i, *next; 945 946 for (i = mt->hiz_map.next; i; i = next) { 947 next = i->next; 948 if (i->need != need) 949 continue; 950 951 intel_hiz_exec(intel, mt, i->level, i->layer, need); 952 intel_resolve_map_remove(i); 953 did_resolve = true; 954 } 955 956 return did_resolve; 957} 958 959bool 960intel_miptree_all_slices_resolve_hiz(struct intel_context *intel, 961 struct intel_mipmap_tree *mt) 962{ 963 return intel_miptree_all_slices_resolve(intel, mt, 964 GEN6_HIZ_OP_HIZ_RESOLVE); 965} 966 967bool 968intel_miptree_all_slices_resolve_depth(struct intel_context *intel, 969 struct intel_mipmap_tree *mt) 970{ 971 return intel_miptree_all_slices_resolve(intel, mt, 972 GEN6_HIZ_OP_DEPTH_RESOLVE); 973} 974 975static void 976intel_miptree_updownsample(struct intel_context *intel, 977 struct intel_mipmap_tree *src, 978 struct intel_mipmap_tree *dst, 979 unsigned width, 980 unsigned height) 981{ 982#ifndef I915 983 int src_x0 = 0; 984 int src_y0 = 0; 985 int dst_x0 = 0; 986 int dst_y0 = 0; 987 988 intel_miptree_slice_resolve_depth(intel, src, 0, 0); 989 intel_miptree_slice_resolve_depth(intel, dst, 0, 0); 990 991 brw_blorp_blit_miptrees(intel, 992 src, 0 /* level */, 0 /* layer */, 993 dst, 0 /* level */, 0 /* layer */, 994 src_x0, src_y0, 995 dst_x0, dst_y0, 996 width, height, 997 false, false /*mirror x, y*/); 998 999 if (src->stencil_mt) { 1000 brw_blorp_blit_miptrees(intel, 1001 src->stencil_mt, 0 /* level */, 0 /* layer */, 1002 dst->stencil_mt, 0 /* level */, 0 /* layer */, 1003 src_x0, src_y0, 1004 dst_x0, dst_y0, 1005 width, height, 1006 false, false /*mirror x, y*/); 1007 } 1008#endif /* I915 */ 1009} 1010 1011static void 1012assert_is_flat(struct intel_mipmap_tree *mt) 1013{ 1014 assert(mt->target == GL_TEXTURE_2D); 1015 assert(mt->first_level == 0); 1016 assert(mt->last_level == 0); 1017} 1018 1019/** 1020 * \brief Downsample from mt to mt->singlesample_mt. 1021 * 1022 * If the miptree needs no downsample, then skip. 1023 */ 1024void 1025intel_miptree_downsample(struct intel_context *intel, 1026 struct intel_mipmap_tree *mt) 1027{ 1028 /* Only flat, renderbuffer-like miptrees are supported. */ 1029 assert_is_flat(mt); 1030 1031 if (!mt->need_downsample) 1032 return; 1033 intel_miptree_updownsample(intel, 1034 mt, mt->singlesample_mt, 1035 mt->singlesample_mt->width0, 1036 mt->singlesample_mt->height0); 1037 mt->need_downsample = false; 1038 1039 /* Strictly speaking, after a downsample on a depth miptree, a hiz 1040 * resolve is needed on the singlesample miptree. However, since the 1041 * singlesample miptree is never rendered to, the hiz resolve will never 1042 * occur. Therefore we do not mark the needed hiz resolve after 1043 * downsampling. 1044 */ 1045} 1046 1047/** 1048 * \brief Upsample from mt->singlesample_mt to mt. 1049 * 1050 * The upsample is done unconditionally. 1051 */ 1052void 1053intel_miptree_upsample(struct intel_context *intel, 1054 struct intel_mipmap_tree *mt) 1055{ 1056 /* Only flat, renderbuffer-like miptrees are supported. */ 1057 assert_is_flat(mt); 1058 assert(!mt->need_downsample); 1059 1060 intel_miptree_updownsample(intel, 1061 mt->singlesample_mt, mt, 1062 mt->singlesample_mt->width0, 1063 mt->singlesample_mt->height0); 1064 intel_miptree_slice_set_needs_hiz_resolve(mt, 0, 0); 1065} 1066 1067static void 1068intel_miptree_map_gtt(struct intel_context *intel, 1069 struct intel_mipmap_tree *mt, 1070 struct intel_miptree_map *map, 1071 unsigned int level, unsigned int slice) 1072{ 1073 unsigned int bw, bh; 1074 void *base; 1075 unsigned int image_x, image_y; 1076 int x = map->x; 1077 int y = map->y; 1078 1079 /* For compressed formats, the stride is the number of bytes per 1080 * row of blocks. intel_miptree_get_image_offset() already does 1081 * the divide. 1082 */ 1083 _mesa_get_format_block_size(mt->format, &bw, &bh); 1084 assert(y % bh == 0); 1085 y /= bh; 1086 1087 base = intel_region_map(intel, mt->region, map->mode); 1088 1089 if (base == NULL) 1090 map->ptr = NULL; 1091 else { 1092 /* Note that in the case of cube maps, the caller must have passed the 1093 * slice number referencing the face. 1094 */ 1095 intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); 1096 x += image_x; 1097 y += image_y; 1098 1099 map->stride = mt->region->pitch * mt->cpp; 1100 map->ptr = base + y * map->stride + x * mt->cpp; 1101 } 1102 1103 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__, 1104 map->x, map->y, map->w, map->h, 1105 mt, _mesa_get_format_name(mt->format), 1106 x, y, map->ptr, map->stride); 1107} 1108 1109static void 1110intel_miptree_unmap_gtt(struct intel_context *intel, 1111 struct intel_mipmap_tree *mt, 1112 struct intel_miptree_map *map, 1113 unsigned int level, 1114 unsigned int slice) 1115{ 1116 intel_region_unmap(intel, mt->region); 1117} 1118 1119static void 1120intel_miptree_map_blit(struct intel_context *intel, 1121 struct intel_mipmap_tree *mt, 1122 struct intel_miptree_map *map, 1123 unsigned int level, unsigned int slice) 1124{ 1125 unsigned int image_x, image_y; 1126 int x = map->x; 1127 int y = map->y; 1128 int ret; 1129 1130 /* The blitter requires the pitch to be aligned to 4. */ 1131 map->stride = ALIGN(map->w * mt->region->cpp, 4); 1132 1133 map->bo = drm_intel_bo_alloc(intel->bufmgr, "intel_miptree_map_blit() temp", 1134 map->stride * map->h, 4096); 1135 if (!map->bo) { 1136 fprintf(stderr, "Failed to allocate blit temporary\n"); 1137 goto fail; 1138 } 1139 1140 intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); 1141 x += image_x; 1142 y += image_y; 1143 1144 if (!intelEmitCopyBlit(intel, 1145 mt->region->cpp, 1146 mt->region->pitch, mt->region->bo, 1147 0, mt->region->tiling, 1148 map->stride / mt->region->cpp, map->bo, 1149 0, I915_TILING_NONE, 1150 x, y, 1151 0, 0, 1152 map->w, map->h, 1153 GL_COPY)) { 1154 fprintf(stderr, "Failed to blit\n"); 1155 goto fail; 1156 } 1157 1158 intel_batchbuffer_flush(intel); 1159 ret = drm_intel_bo_map(map->bo, (map->mode & GL_MAP_WRITE_BIT) != 0); 1160 if (ret) { 1161 fprintf(stderr, "Failed to map blit temporary\n"); 1162 goto fail; 1163 } 1164 1165 map->ptr = map->bo->virtual; 1166 1167 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__, 1168 map->x, map->y, map->w, map->h, 1169 mt, _mesa_get_format_name(mt->format), 1170 x, y, map->ptr, map->stride); 1171 1172 return; 1173 1174fail: 1175 drm_intel_bo_unreference(map->bo); 1176 map->ptr = NULL; 1177 map->stride = 0; 1178} 1179 1180static void 1181intel_miptree_unmap_blit(struct intel_context *intel, 1182 struct intel_mipmap_tree *mt, 1183 struct intel_miptree_map *map, 1184 unsigned int level, 1185 unsigned int slice) 1186{ 1187 assert(!(map->mode & GL_MAP_WRITE_BIT)); 1188 1189 drm_intel_bo_unmap(map->bo); 1190 drm_intel_bo_unreference(map->bo); 1191} 1192 1193static void 1194intel_miptree_map_s8(struct intel_context *intel, 1195 struct intel_mipmap_tree *mt, 1196 struct intel_miptree_map *map, 1197 unsigned int level, unsigned int slice) 1198{ 1199 map->stride = map->w; 1200 map->buffer = map->ptr = malloc(map->stride * map->h); 1201 if (!map->buffer) 1202 return; 1203 1204 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no 1205 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless 1206 * invalidate is set, since we'll be writing the whole rectangle from our 1207 * temporary buffer back out. 1208 */ 1209 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { 1210 uint8_t *untiled_s8_map = map->ptr; 1211 uint8_t *tiled_s8_map = intel_region_map(intel, mt->region, 1212 GL_MAP_READ_BIT); 1213 unsigned int image_x, image_y; 1214 1215 intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); 1216 1217 for (uint32_t y = 0; y < map->h; y++) { 1218 for (uint32_t x = 0; x < map->w; x++) { 1219 ptrdiff_t offset = intel_offset_S8(mt->region->pitch, 1220 x + image_x + map->x, 1221 y + image_y + map->y, 1222 intel->has_swizzling); 1223 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset]; 1224 } 1225 } 1226 1227 intel_region_unmap(intel, mt->region); 1228 1229 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__, 1230 map->x, map->y, map->w, map->h, 1231 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride); 1232 } else { 1233 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__, 1234 map->x, map->y, map->w, map->h, 1235 mt, map->ptr, map->stride); 1236 } 1237} 1238 1239static void 1240intel_miptree_unmap_s8(struct intel_context *intel, 1241 struct intel_mipmap_tree *mt, 1242 struct intel_miptree_map *map, 1243 unsigned int level, 1244 unsigned int slice) 1245{ 1246 if (map->mode & GL_MAP_WRITE_BIT) { 1247 unsigned int image_x, image_y; 1248 uint8_t *untiled_s8_map = map->ptr; 1249 uint8_t *tiled_s8_map = intel_region_map(intel, mt->region, map->mode); 1250 1251 intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); 1252 1253 for (uint32_t y = 0; y < map->h; y++) { 1254 for (uint32_t x = 0; x < map->w; x++) { 1255 ptrdiff_t offset = intel_offset_S8(mt->region->pitch, 1256 x + map->x, 1257 y + map->y, 1258 intel->has_swizzling); 1259 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x]; 1260 } 1261 } 1262 1263 intel_region_unmap(intel, mt->region); 1264 } 1265 1266 free(map->buffer); 1267} 1268 1269static void 1270intel_miptree_map_etc1(struct intel_context *intel, 1271 struct intel_mipmap_tree *mt, 1272 struct intel_miptree_map *map, 1273 unsigned int level, 1274 unsigned int slice) 1275{ 1276 /* For justification of these invariants, 1277 * see intel_mipmap_tree:wraps_etc1. 1278 */ 1279 assert(mt->wraps_etc1); 1280 assert(mt->format == MESA_FORMAT_RGBX8888_REV); 1281 1282 /* From the GL_OES_compressed_ETC1_RGB8_texture spec: 1283 * INVALID_OPERATION is generated by CompressedTexSubImage2D, 1284 * TexSubImage2D, or CopyTexSubImage2D if the texture image <level> 1285 * bound to <target> has internal format ETC1_RGB8_OES. 1286 * 1287 * This implies that intel_miptree_map_etc1() can only be called from 1288 * glCompressedTexImage2D, and hence the assertions below hold. 1289 */ 1290 assert(map->mode & GL_MAP_WRITE_BIT); 1291 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT); 1292 assert(map->x == 0); 1293 assert(map->y == 0); 1294 1295 /* Each ETC1 block contains 4x4 pixels in 8 bytes. */ 1296 map->stride = 2 * map->w; 1297 map->buffer = map->ptr = malloc(map->stride * map->h); 1298} 1299 1300static void 1301intel_miptree_unmap_etc1(struct intel_context *intel, 1302 struct intel_mipmap_tree *mt, 1303 struct intel_miptree_map *map, 1304 unsigned int level, 1305 unsigned int slice) 1306{ 1307 uint32_t image_x; 1308 uint32_t image_y; 1309 intel_miptree_get_image_offset(mt, level, 0, slice, &image_x, &image_y); 1310 1311 uint8_t *xbgr = intel_region_map(intel, mt->region, map->mode) 1312 + image_y * mt->region->pitch * mt->region->cpp 1313 + image_x * mt->region->cpp; 1314 1315 _mesa_etc1_unpack_rgba8888(xbgr, mt->region->pitch * mt->region->cpp, 1316 map->ptr, map->stride, 1317 map->w, map->h); 1318 1319 intel_region_unmap(intel, mt->region); 1320 free(map->buffer); 1321} 1322 1323/** 1324 * Mapping function for packed depth/stencil miptrees backed by real separate 1325 * miptrees for depth and stencil. 1326 * 1327 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer 1328 * separate from the depth buffer. Yet at the GL API level, we have to expose 1329 * packed depth/stencil textures and FBO attachments, and Mesa core expects to 1330 * be able to map that memory for texture storage and glReadPixels-type 1331 * operations. We give Mesa core that access by mallocing a temporary and 1332 * copying the data between the actual backing store and the temporary. 1333 */ 1334static void 1335intel_miptree_map_depthstencil(struct intel_context *intel, 1336 struct intel_mipmap_tree *mt, 1337 struct intel_miptree_map *map, 1338 unsigned int level, unsigned int slice) 1339{ 1340 struct intel_mipmap_tree *z_mt = mt; 1341 struct intel_mipmap_tree *s_mt = mt->stencil_mt; 1342 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT; 1343 int packed_bpp = map_z32f_x24s8 ? 8 : 4; 1344 1345 map->stride = map->w * packed_bpp; 1346 map->buffer = map->ptr = malloc(map->stride * map->h); 1347 if (!map->buffer) 1348 return; 1349 1350 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no 1351 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless 1352 * invalidate is set, since we'll be writing the whole rectangle from our 1353 * temporary buffer back out. 1354 */ 1355 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) { 1356 uint32_t *packed_map = map->ptr; 1357 uint8_t *s_map = intel_region_map(intel, s_mt->region, GL_MAP_READ_BIT); 1358 uint32_t *z_map = intel_region_map(intel, z_mt->region, GL_MAP_READ_BIT); 1359 unsigned int s_image_x, s_image_y; 1360 unsigned int z_image_x, z_image_y; 1361 1362 intel_miptree_get_image_offset(s_mt, level, 0, slice, 1363 &s_image_x, &s_image_y); 1364 intel_miptree_get_image_offset(z_mt, level, 0, slice, 1365 &z_image_x, &z_image_y); 1366 1367 for (uint32_t y = 0; y < map->h; y++) { 1368 for (uint32_t x = 0; x < map->w; x++) { 1369 int map_x = map->x + x, map_y = map->y + y; 1370 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch, 1371 map_x + s_image_x, 1372 map_y + s_image_y, 1373 intel->has_swizzling); 1374 ptrdiff_t z_offset = ((map_y + z_image_y) * z_mt->region->pitch + 1375 (map_x + z_image_x)); 1376 uint8_t s = s_map[s_offset]; 1377 uint32_t z = z_map[z_offset]; 1378 1379 if (map_z32f_x24s8) { 1380 packed_map[(y * map->w + x) * 2 + 0] = z; 1381 packed_map[(y * map->w + x) * 2 + 1] = s; 1382 } else { 1383 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff); 1384 } 1385 } 1386 } 1387 1388 intel_region_unmap(intel, s_mt->region); 1389 intel_region_unmap(intel, z_mt->region); 1390 1391 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n", 1392 __FUNCTION__, 1393 map->x, map->y, map->w, map->h, 1394 z_mt, map->x + z_image_x, map->y + z_image_y, 1395 s_mt, map->x + s_image_x, map->y + s_image_y, 1396 map->ptr, map->stride); 1397 } else { 1398 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__, 1399 map->x, map->y, map->w, map->h, 1400 mt, map->ptr, map->stride); 1401 } 1402} 1403 1404static void 1405intel_miptree_unmap_depthstencil(struct intel_context *intel, 1406 struct intel_mipmap_tree *mt, 1407 struct intel_miptree_map *map, 1408 unsigned int level, 1409 unsigned int slice) 1410{ 1411 struct intel_mipmap_tree *z_mt = mt; 1412 struct intel_mipmap_tree *s_mt = mt->stencil_mt; 1413 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z32_FLOAT; 1414 1415 if (map->mode & GL_MAP_WRITE_BIT) { 1416 uint32_t *packed_map = map->ptr; 1417 uint8_t *s_map = intel_region_map(intel, s_mt->region, map->mode); 1418 uint32_t *z_map = intel_region_map(intel, z_mt->region, map->mode); 1419 unsigned int s_image_x, s_image_y; 1420 unsigned int z_image_x, z_image_y; 1421 1422 intel_miptree_get_image_offset(s_mt, level, 0, slice, 1423 &s_image_x, &s_image_y); 1424 intel_miptree_get_image_offset(z_mt, level, 0, slice, 1425 &z_image_x, &z_image_y); 1426 1427 for (uint32_t y = 0; y < map->h; y++) { 1428 for (uint32_t x = 0; x < map->w; x++) { 1429 ptrdiff_t s_offset = intel_offset_S8(s_mt->region->pitch, 1430 x + s_image_x + map->x, 1431 y + s_image_y + map->y, 1432 intel->has_swizzling); 1433 ptrdiff_t z_offset = ((y + z_image_y) * z_mt->region->pitch + 1434 (x + z_image_x)); 1435 1436 if (map_z32f_x24s8) { 1437 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0]; 1438 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1]; 1439 } else { 1440 uint32_t packed = packed_map[y * map->w + x]; 1441 s_map[s_offset] = packed >> 24; 1442 z_map[z_offset] = packed; 1443 } 1444 } 1445 } 1446 1447 intel_region_unmap(intel, s_mt->region); 1448 intel_region_unmap(intel, z_mt->region); 1449 1450 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n", 1451 __FUNCTION__, 1452 map->x, map->y, map->w, map->h, 1453 z_mt, _mesa_get_format_name(z_mt->format), 1454 map->x + z_image_x, map->y + z_image_y, 1455 s_mt, map->x + s_image_x, map->y + s_image_y, 1456 map->ptr, map->stride); 1457 } 1458 1459 free(map->buffer); 1460} 1461 1462/** 1463 * Create and attach a map to the miptree at (level, slice). Return the 1464 * attached map. 1465 */ 1466static struct intel_miptree_map* 1467intel_miptree_attach_map(struct intel_mipmap_tree *mt, 1468 unsigned int level, 1469 unsigned int slice, 1470 unsigned int x, 1471 unsigned int y, 1472 unsigned int w, 1473 unsigned int h, 1474 GLbitfield mode) 1475{ 1476 struct intel_miptree_map *map = calloc(1, sizeof(*map)); 1477 1478 if (!map) 1479 return NULL; 1480 1481 assert(mt->level[level].slice[slice].map == NULL); 1482 mt->level[level].slice[slice].map = map; 1483 1484 map->mode = mode; 1485 map->x = x; 1486 map->y = y; 1487 map->w = w; 1488 map->h = h; 1489 1490 return map; 1491} 1492 1493/** 1494 * Release the map at (level, slice). 1495 */ 1496static void 1497intel_miptree_release_map(struct intel_mipmap_tree *mt, 1498 unsigned int level, 1499 unsigned int slice) 1500{ 1501 struct intel_miptree_map **map; 1502 1503 map = &mt->level[level].slice[slice].map; 1504 free(*map); 1505 *map = NULL; 1506} 1507 1508static void 1509intel_miptree_map_singlesample(struct intel_context *intel, 1510 struct intel_mipmap_tree *mt, 1511 unsigned int level, 1512 unsigned int slice, 1513 unsigned int x, 1514 unsigned int y, 1515 unsigned int w, 1516 unsigned int h, 1517 GLbitfield mode, 1518 void **out_ptr, 1519 int *out_stride) 1520{ 1521 struct intel_miptree_map *map; 1522 1523 assert(mt->num_samples <= 1); 1524 1525 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode); 1526 if (!map){ 1527 *out_ptr = NULL; 1528 *out_stride = 0; 1529 return; 1530 } 1531 1532 intel_miptree_slice_resolve_depth(intel, mt, level, slice); 1533 if (map->mode & GL_MAP_WRITE_BIT) { 1534 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice); 1535 } 1536 1537 if (mt->format == MESA_FORMAT_S8) { 1538 intel_miptree_map_s8(intel, mt, map, level, slice); 1539 } else if (mt->wraps_etc1) { 1540 intel_miptree_map_etc1(intel, mt, map, level, slice); 1541 } else if (mt->stencil_mt) { 1542 intel_miptree_map_depthstencil(intel, mt, map, level, slice); 1543 } else if (intel->has_llc && 1544 !(mode & GL_MAP_WRITE_BIT) && 1545 !mt->compressed && 1546 mt->region->tiling == I915_TILING_X) { 1547 intel_miptree_map_blit(intel, mt, map, level, slice); 1548 } else { 1549 intel_miptree_map_gtt(intel, mt, map, level, slice); 1550 } 1551 1552 *out_ptr = map->ptr; 1553 *out_stride = map->stride; 1554 1555 if (map->ptr == NULL) 1556 intel_miptree_release_map(mt, level, slice); 1557} 1558 1559static void 1560intel_miptree_unmap_singlesample(struct intel_context *intel, 1561 struct intel_mipmap_tree *mt, 1562 unsigned int level, 1563 unsigned int slice) 1564{ 1565 struct intel_miptree_map *map = mt->level[level].slice[slice].map; 1566 1567 assert(mt->num_samples <= 1); 1568 1569 if (!map) 1570 return; 1571 1572 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__, 1573 mt, _mesa_get_format_name(mt->format), level, slice); 1574 1575 if (mt->format == MESA_FORMAT_S8) { 1576 intel_miptree_unmap_s8(intel, mt, map, level, slice); 1577 } else if (mt->wraps_etc1) { 1578 intel_miptree_unmap_etc1(intel, mt, map, level, slice); 1579 } else if (mt->stencil_mt) { 1580 intel_miptree_unmap_depthstencil(intel, mt, map, level, slice); 1581 } else if (map->bo) { 1582 intel_miptree_unmap_blit(intel, mt, map, level, slice); 1583 } else { 1584 intel_miptree_unmap_gtt(intel, mt, map, level, slice); 1585 } 1586 1587 intel_miptree_release_map(mt, level, slice); 1588} 1589 1590static void 1591intel_miptree_map_multisample(struct intel_context *intel, 1592 struct intel_mipmap_tree *mt, 1593 unsigned int level, 1594 unsigned int slice, 1595 unsigned int x, 1596 unsigned int y, 1597 unsigned int w, 1598 unsigned int h, 1599 GLbitfield mode, 1600 void **out_ptr, 1601 int *out_stride) 1602{ 1603 struct intel_miptree_map *map; 1604 1605 assert(mt->num_samples > 1); 1606 1607 /* Only flat, renderbuffer-like miptrees are supported. */ 1608 if (mt->target != GL_TEXTURE_2D || 1609 mt->first_level != 0 || 1610 mt->last_level != 0) { 1611 _mesa_problem(&intel->ctx, "attempt to map a multisample miptree for " 1612 "which (target, first_level, last_level != " 1613 "(GL_TEXTURE_2D, 0, 0)"); 1614 goto fail; 1615 } 1616 1617 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode); 1618 if (!map) 1619 goto fail; 1620 1621 if (!mt->singlesample_mt) { 1622 mt->singlesample_mt = 1623 intel_miptree_create_for_renderbuffer(intel, 1624 mt->format, 1625 mt->singlesample_width0, 1626 mt->singlesample_height0, 1627 0 /*num_samples*/); 1628 if (!mt->singlesample_mt) 1629 goto fail; 1630 1631 map->singlesample_mt_is_tmp = true; 1632 mt->need_downsample = true; 1633 } 1634 1635 intel_miptree_downsample(intel, mt); 1636 intel_miptree_map_singlesample(intel, mt->singlesample_mt, 1637 level, slice, 1638 x, y, w, h, 1639 mode, 1640 out_ptr, out_stride); 1641 return; 1642 1643fail: 1644 intel_miptree_release_map(mt, level, slice); 1645 *out_ptr = NULL; 1646 *out_stride = 0; 1647} 1648 1649static void 1650intel_miptree_unmap_multisample(struct intel_context *intel, 1651 struct intel_mipmap_tree *mt, 1652 unsigned int level, 1653 unsigned int slice) 1654{ 1655 struct intel_miptree_map *map = mt->level[level].slice[slice].map; 1656 1657 assert(mt->num_samples > 1); 1658 1659 if (!map) 1660 return; 1661 1662 intel_miptree_unmap_singlesample(intel, mt->singlesample_mt, level, slice); 1663 1664 mt->need_downsample = false; 1665 if (map->mode & GL_MAP_WRITE_BIT) 1666 intel_miptree_upsample(intel, mt); 1667 1668 if (map->singlesample_mt_is_tmp) 1669 intel_miptree_release(&mt->singlesample_mt); 1670 1671 intel_miptree_release_map(mt, level, slice); 1672} 1673 1674void 1675intel_miptree_map(struct intel_context *intel, 1676 struct intel_mipmap_tree *mt, 1677 unsigned int level, 1678 unsigned int slice, 1679 unsigned int x, 1680 unsigned int y, 1681 unsigned int w, 1682 unsigned int h, 1683 GLbitfield mode, 1684 void **out_ptr, 1685 int *out_stride) 1686{ 1687 if (mt->num_samples <= 1) 1688 intel_miptree_map_singlesample(intel, mt, 1689 level, slice, 1690 x, y, w, h, 1691 mode, 1692 out_ptr, out_stride); 1693 else 1694 intel_miptree_map_multisample(intel, mt, 1695 level, slice, 1696 x, y, w, h, 1697 mode, 1698 out_ptr, out_stride); 1699} 1700 1701void 1702intel_miptree_unmap(struct intel_context *intel, 1703 struct intel_mipmap_tree *mt, 1704 unsigned int level, 1705 unsigned int slice) 1706{ 1707 if (mt->num_samples <= 1) 1708 intel_miptree_unmap_singlesample(intel, mt, level, slice); 1709 else 1710 intel_miptree_unmap_multisample(intel, mt, level, slice); 1711} 1712