1/* 2 * Mesa 3-D graphics library 3 * Version: 7.3 4 * 5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included 15 * in all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN 21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/* 27 * When the device driver doesn't implement triangle rasterization it 28 * can hook in _swrast_Triangle, which eventually calls one of these 29 * functions to draw triangles. 30 */ 31 32#include "main/glheader.h" 33#include "main/context.h" 34#include "main/colormac.h" 35#include "main/imports.h" 36#include "main/macros.h" 37#include "main/mtypes.h" 38#include "main/state.h" 39#include "main/samplerobj.h" 40#include "program/prog_instruction.h" 41 42#include "s_aatriangle.h" 43#include "s_context.h" 44#include "s_feedback.h" 45#include "s_span.h" 46#include "s_triangle.h" 47 48 49/** 50 * Test if a triangle should be culled. Used for feedback and selection mode. 51 * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise. 52 */ 53GLboolean 54_swrast_culltriangle( struct gl_context *ctx, 55 const SWvertex *v0, 56 const SWvertex *v1, 57 const SWvertex *v2 ) 58{ 59 SWcontext *swrast = SWRAST_CONTEXT(ctx); 60 GLfloat ex = v1->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0]; 61 GLfloat ey = v1->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1]; 62 GLfloat fx = v2->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0]; 63 GLfloat fy = v2->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1]; 64 GLfloat c = ex*fy-ey*fx; 65 66 if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F) 67 return GL_FALSE; 68 69 return GL_TRUE; 70} 71 72 73 74/* 75 * Render a flat-shaded RGBA triangle. 76 */ 77#define NAME flat_rgba_triangle 78#define INTERP_Z 1 79#define SETUP_CODE \ 80 ASSERT(ctx->Texture._EnabledCoordUnits == 0);\ 81 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \ 82 span.interpMask |= SPAN_RGBA; \ 83 span.red = ChanToFixed(v2->color[0]); \ 84 span.green = ChanToFixed(v2->color[1]); \ 85 span.blue = ChanToFixed(v2->color[2]); \ 86 span.alpha = ChanToFixed(v2->color[3]); \ 87 span.redStep = 0; \ 88 span.greenStep = 0; \ 89 span.blueStep = 0; \ 90 span.alphaStep = 0; 91#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 92#include "s_tritemp.h" 93 94 95 96/* 97 * Render a smooth-shaded RGBA triangle. 98 */ 99#define NAME smooth_rgba_triangle 100#define INTERP_Z 1 101#define INTERP_RGB 1 102#define INTERP_ALPHA 1 103#define SETUP_CODE \ 104 { \ 105 /* texturing must be off */ \ 106 ASSERT(ctx->Texture._EnabledCoordUnits == 0); \ 107 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \ 108 } 109#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 110#include "s_tritemp.h" 111 112 113 114/* 115 * Render an RGB, GL_DECAL, textured triangle. 116 * Interpolate S,T only w/out mipmapping or perspective correction. 117 * 118 * No fog. No depth testing. 119 */ 120#define NAME simple_textured_triangle 121#define INTERP_INT_TEX 1 122#define S_SCALE twidth 123#define T_SCALE theight 124 125#define SETUP_CODE \ 126 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ 127 const struct gl_texture_object *obj = \ 128 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 129 const struct gl_texture_image *texImg = \ 130 obj->Image[0][obj->BaseLevel]; \ 131 const struct swrast_texture_image *swImg = \ 132 swrast_texture_image_const(texImg); \ 133 const GLfloat twidth = (GLfloat) texImg->Width; \ 134 const GLfloat theight = (GLfloat) texImg->Height; \ 135 const GLint twidth_log2 = texImg->WidthLog2; \ 136 const GLubyte *texture = (const GLubyte *) swImg->Map; \ 137 const GLint smask = texImg->Width - 1; \ 138 const GLint tmask = texImg->Height - 1; \ 139 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \ 140 if (!rb || !texture) { \ 141 return; \ 142 } 143 144#define RENDER_SPAN( span ) \ 145 GLuint i; \ 146 GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \ 147 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 148 span.intTex[1] -= FIXED_HALF; \ 149 for (i = 0; i < span.end; i++) { \ 150 GLint s = FixedToInt(span.intTex[0]) & smask; \ 151 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 152 GLint pos = (t << twidth_log2) + s; \ 153 pos = pos + pos + pos; /* multiply by 3 */ \ 154 rgba[i][RCOMP] = texture[pos+2]; \ 155 rgba[i][GCOMP] = texture[pos+1]; \ 156 rgba[i][BCOMP] = texture[pos+0]; \ 157 rgba[i][ACOMP] = 0xff; \ 158 span.intTex[0] += span.intTexStep[0]; \ 159 span.intTex[1] += span.intTexStep[1]; \ 160 } \ 161 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, span.end, \ 162 span.x, span.y, rgba, NULL); 163 164#include "s_tritemp.h" 165 166 167 168/* 169 * Render an RGB, GL_DECAL, textured triangle. 170 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or 171 * perspective correction. 172 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE) 173 * 174 * No fog. 175 */ 176#define NAME simple_z_textured_triangle 177#define INTERP_Z 1 178#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 179#define INTERP_INT_TEX 1 180#define S_SCALE twidth 181#define T_SCALE theight 182 183#define SETUP_CODE \ 184 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ 185 const struct gl_texture_object *obj = \ 186 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 187 const struct gl_texture_image *texImg = \ 188 obj->Image[0][obj->BaseLevel]; \ 189 const struct swrast_texture_image *swImg = \ 190 swrast_texture_image_const(texImg); \ 191 const GLfloat twidth = (GLfloat) texImg->Width; \ 192 const GLfloat theight = (GLfloat) texImg->Height; \ 193 const GLint twidth_log2 = texImg->WidthLog2; \ 194 const GLubyte *texture = (const GLubyte *) swImg->Map; \ 195 const GLint smask = texImg->Width - 1; \ 196 const GLint tmask = texImg->Height - 1; \ 197 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \ 198 if (!rb || !texture) { \ 199 return; \ 200 } 201 202#define RENDER_SPAN( span ) \ 203 GLuint i; \ 204 GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \ 205 GLubyte *mask = swrast->SpanArrays->mask; \ 206 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 207 span.intTex[1] -= FIXED_HALF; \ 208 for (i = 0; i < span.end; i++) { \ 209 const GLuint z = FixedToDepth(span.z); \ 210 if (z < zRow[i]) { \ 211 GLint s = FixedToInt(span.intTex[0]) & smask; \ 212 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 213 GLint pos = (t << twidth_log2) + s; \ 214 pos = pos + pos + pos; /* multiply by 3 */ \ 215 rgba[i][RCOMP] = texture[pos+2]; \ 216 rgba[i][GCOMP] = texture[pos+1]; \ 217 rgba[i][BCOMP] = texture[pos+0]; \ 218 rgba[i][ACOMP] = 0xff; \ 219 zRow[i] = z; \ 220 mask[i] = 1; \ 221 } \ 222 else { \ 223 mask[i] = 0; \ 224 } \ 225 span.intTex[0] += span.intTexStep[0]; \ 226 span.intTex[1] += span.intTexStep[1]; \ 227 span.z += span.zStep; \ 228 } \ 229 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, \ 230 span.end, span.x, span.y, rgba, mask); 231 232#include "s_tritemp.h" 233 234 235#if CHAN_TYPE != GL_FLOAT 236 237struct affine_info 238{ 239 GLenum filter; 240 GLenum format; 241 GLenum envmode; 242 GLint smask, tmask; 243 GLint twidth_log2; 244 const GLchan *texture; 245 GLfixed er, eg, eb, ea; 246 GLint tbytesline, tsize; 247}; 248 249 250static inline GLint 251ilerp(GLint t, GLint a, GLint b) 252{ 253 return a + ((t * (b - a)) >> FIXED_SHIFT); 254} 255 256static inline GLint 257ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11) 258{ 259 const GLint temp0 = ilerp(ia, v00, v10); 260 const GLint temp1 = ilerp(ia, v01, v11); 261 return ilerp(ib, temp0, temp1); 262} 263 264 265/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA 266 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD 267 * texture env modes. 268 */ 269static inline void 270affine_span(struct gl_context *ctx, SWspan *span, 271 struct affine_info *info) 272{ 273 GLchan sample[4]; /* the filtered texture sample */ 274 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; 275 276 /* Instead of defining a function for each mode, a test is done 277 * between the outer and inner loops. This is to reduce code size 278 * and complexity. Observe that an optimizing compiler kills 279 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 280 */ 281 282#define NEAREST_RGB \ 283 sample[RCOMP] = tex00[2]; \ 284 sample[GCOMP] = tex00[1]; \ 285 sample[BCOMP] = tex00[0]; \ 286 sample[ACOMP] = CHAN_MAX; 287 288#define LINEAR_RGB \ 289 sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ 290 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ 291 sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\ 292 sample[ACOMP] = CHAN_MAX; 293 294#define NEAREST_RGBA \ 295 sample[RCOMP] = tex00[3]; \ 296 sample[GCOMP] = tex00[2]; \ 297 sample[BCOMP] = tex00[1]; \ 298 sample[ACOMP] = tex00[0]; 299 300#define LINEAR_RGBA \ 301 sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\ 302 sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ 303 sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ 304 sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]) 305 306#define MODULATE \ 307 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 308 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 309 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 310 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8) 311 312#define DECAL \ 313 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \ 314 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \ 315 >> (FIXED_SHIFT + 8); \ 316 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \ 317 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \ 318 >> (FIXED_SHIFT + 8); \ 319 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \ 320 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \ 321 >> (FIXED_SHIFT + 8); \ 322 dest[ACOMP] = FixedToInt(span->alpha) 323 324#define BLEND \ 325 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \ 326 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \ 327 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \ 328 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \ 329 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \ 330 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \ 331 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8) 332 333#define REPLACE COPY_CHAN4(dest, sample) 334 335#define ADD \ 336 { \ 337 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \ 338 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \ 339 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \ 340 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \ 341 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \ 342 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \ 343 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \ 344 } 345 346/* shortcuts */ 347 348#define NEAREST_RGB_REPLACE \ 349 NEAREST_RGB; \ 350 dest[0] = sample[0]; \ 351 dest[1] = sample[1]; \ 352 dest[2] = sample[2]; \ 353 dest[3] = FixedToInt(span->alpha); 354 355#define NEAREST_RGBA_REPLACE \ 356 dest[RCOMP] = tex00[3]; \ 357 dest[GCOMP] = tex00[2]; \ 358 dest[BCOMP] = tex00[1]; \ 359 dest[ACOMP] = tex00[0] 360 361#define SPAN_NEAREST(DO_TEX, COMPS) \ 362 for (i = 0; i < span->end; i++) { \ 363 /* Isn't it necessary to use FixedFloor below?? */ \ 364 GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 365 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 366 GLint pos = (t << info->twidth_log2) + s; \ 367 const GLchan *tex00 = info->texture + COMPS * pos; \ 368 DO_TEX; \ 369 span->red += span->redStep; \ 370 span->green += span->greenStep; \ 371 span->blue += span->blueStep; \ 372 span->alpha += span->alphaStep; \ 373 span->intTex[0] += span->intTexStep[0]; \ 374 span->intTex[1] += span->intTexStep[1]; \ 375 dest += 4; \ 376 } 377 378#define SPAN_LINEAR(DO_TEX, COMPS) \ 379 for (i = 0; i < span->end; i++) { \ 380 /* Isn't it necessary to use FixedFloor below?? */ \ 381 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 382 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 383 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \ 384 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \ 385 const GLint pos = (t << info->twidth_log2) + s; \ 386 const GLchan *tex00 = info->texture + COMPS * pos; \ 387 const GLchan *tex10 = tex00 + info->tbytesline; \ 388 const GLchan *tex01 = tex00 + COMPS; \ 389 const GLchan *tex11 = tex10 + COMPS; \ 390 if (t == info->tmask) { \ 391 tex10 -= info->tsize; \ 392 tex11 -= info->tsize; \ 393 } \ 394 if (s == info->smask) { \ 395 tex01 -= info->tbytesline; \ 396 tex11 -= info->tbytesline; \ 397 } \ 398 DO_TEX; \ 399 span->red += span->redStep; \ 400 span->green += span->greenStep; \ 401 span->blue += span->blueStep; \ 402 span->alpha += span->alphaStep; \ 403 span->intTex[0] += span->intTexStep[0]; \ 404 span->intTex[1] += span->intTexStep[1]; \ 405 dest += 4; \ 406 } 407 408 409 GLuint i; 410 GLchan *dest = span->array->rgba[0]; 411 412 /* Disable tex units so they're not re-applied in swrast_write_rgba_span */ 413 ctx->Texture._EnabledCoordUnits = 0x0; 414 415 span->intTex[0] -= FIXED_HALF; 416 span->intTex[1] -= FIXED_HALF; 417 switch (info->filter) { 418 case GL_NEAREST: 419 switch (info->format) { 420 case MESA_FORMAT_RGB888: 421 switch (info->envmode) { 422 case GL_MODULATE: 423 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 424 break; 425 case GL_DECAL: 426 case GL_REPLACE: 427 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 428 break; 429 case GL_BLEND: 430 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 431 break; 432 case GL_ADD: 433 SPAN_NEAREST(NEAREST_RGB;ADD,3); 434 break; 435 default: 436 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR"); 437 return; 438 } 439 break; 440 case MESA_FORMAT_RGBA8888: 441 switch(info->envmode) { 442 case GL_MODULATE: 443 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 444 break; 445 case GL_DECAL: 446 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 447 break; 448 case GL_BLEND: 449 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 450 break; 451 case GL_ADD: 452 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 453 break; 454 case GL_REPLACE: 455 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 456 break; 457 default: 458 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR"); 459 return; 460 } 461 break; 462 } 463 break; 464 465 case GL_LINEAR: 466 span->intTex[0] -= FIXED_HALF; 467 span->intTex[1] -= FIXED_HALF; 468 switch (info->format) { 469 case MESA_FORMAT_RGB888: 470 switch (info->envmode) { 471 case GL_MODULATE: 472 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 473 break; 474 case GL_DECAL: 475 case GL_REPLACE: 476 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 477 break; 478 case GL_BLEND: 479 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 480 break; 481 case GL_ADD: 482 SPAN_LINEAR(LINEAR_RGB;ADD,3); 483 break; 484 default: 485 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR"); 486 return; 487 } 488 break; 489 case MESA_FORMAT_RGBA8888: 490 switch (info->envmode) { 491 case GL_MODULATE: 492 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 493 break; 494 case GL_DECAL: 495 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 496 break; 497 case GL_BLEND: 498 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 499 break; 500 case GL_ADD: 501 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 502 break; 503 case GL_REPLACE: 504 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 505 break; 506 default: 507 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR"); 508 return; 509 } 510 break; 511 } 512 break; 513 } 514 span->interpMask &= ~SPAN_RGBA; 515 ASSERT(span->arrayMask & SPAN_RGBA); 516 517 _swrast_write_rgba_span(ctx, span); 518 519 /* re-enable texture units */ 520 ctx->Texture._EnabledCoordUnits = texEnableSave; 521 522#undef SPAN_NEAREST 523#undef SPAN_LINEAR 524} 525 526 527 528/* 529 * Render an RGB/RGBA textured triangle without perspective correction. 530 */ 531#define NAME affine_textured_triangle 532#define INTERP_Z 1 533#define INTERP_RGB 1 534#define INTERP_ALPHA 1 535#define INTERP_INT_TEX 1 536#define S_SCALE twidth 537#define T_SCALE theight 538 539#define SETUP_CODE \ 540 struct affine_info info; \ 541 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 542 const struct gl_texture_object *obj = \ 543 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 544 const struct gl_texture_image *texImg = \ 545 obj->Image[0][obj->BaseLevel]; \ 546 const struct swrast_texture_image *swImg = \ 547 swrast_texture_image_const(texImg); \ 548 const GLfloat twidth = (GLfloat) texImg->Width; \ 549 const GLfloat theight = (GLfloat) texImg->Height; \ 550 info.texture = (const GLchan *) swImg->Map; \ 551 info.twidth_log2 = texImg->WidthLog2; \ 552 info.smask = texImg->Width - 1; \ 553 info.tmask = texImg->Height - 1; \ 554 info.format = texImg->TexFormat; \ 555 info.filter = obj->Sampler.MinFilter; \ 556 info.envmode = unit->EnvMode; \ 557 info.er = 0; \ 558 info.eg = 0; \ 559 info.eb = 0; \ 560 span.arrayMask |= SPAN_RGBA; \ 561 \ 562 if (info.envmode == GL_BLEND) { \ 563 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 564 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 565 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 566 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 567 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 568 } \ 569 if (!info.texture) { \ 570 /* this shouldn't happen */ \ 571 return; \ 572 } \ 573 \ 574 switch (info.format) { \ 575 case MESA_FORMAT_RGB888: \ 576 info.tbytesline = texImg->Width * 3; \ 577 break; \ 578 case MESA_FORMAT_RGBA8888: \ 579 info.tbytesline = texImg->Width * 4; \ 580 break; \ 581 default: \ 582 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\ 583 return; \ 584 } \ 585 info.tsize = texImg->Height * info.tbytesline; 586 587#define RENDER_SPAN( span ) affine_span(ctx, &span, &info); 588 589#include "s_tritemp.h" 590 591 592 593struct persp_info 594{ 595 GLenum filter; 596 GLenum format; 597 GLenum envmode; 598 GLint smask, tmask; 599 GLint twidth_log2; 600 const GLchan *texture; 601 GLfixed er, eg, eb, ea; /* texture env color */ 602 GLint tbytesline, tsize; 603}; 604 605 606static inline void 607fast_persp_span(struct gl_context *ctx, SWspan *span, 608 struct persp_info *info) 609{ 610 GLchan sample[4]; /* the filtered texture sample */ 611 612 /* Instead of defining a function for each mode, a test is done 613 * between the outer and inner loops. This is to reduce code size 614 * and complexity. Observe that an optimizing compiler kills 615 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 616 */ 617#define SPAN_NEAREST(DO_TEX,COMP) \ 618 for (i = 0; i < span->end; i++) { \ 619 GLdouble invQ = tex_coord[2] ? \ 620 (1.0 / tex_coord[2]) : 1.0; \ 621 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 622 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 623 GLint s = IFLOOR(s_tmp) & info->smask; \ 624 GLint t = IFLOOR(t_tmp) & info->tmask; \ 625 GLint pos = (t << info->twidth_log2) + s; \ 626 const GLchan *tex00 = info->texture + COMP * pos; \ 627 DO_TEX; \ 628 span->red += span->redStep; \ 629 span->green += span->greenStep; \ 630 span->blue += span->blueStep; \ 631 span->alpha += span->alphaStep; \ 632 tex_coord[0] += tex_step[0]; \ 633 tex_coord[1] += tex_step[1]; \ 634 tex_coord[2] += tex_step[2]; \ 635 dest += 4; \ 636 } 637 638#define SPAN_LINEAR(DO_TEX,COMP) \ 639 for (i = 0; i < span->end; i++) { \ 640 GLdouble invQ = tex_coord[2] ? \ 641 (1.0 / tex_coord[2]) : 1.0; \ 642 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 643 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 644 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \ 645 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \ 646 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \ 647 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \ 648 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \ 649 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \ 650 const GLint pos = (t << info->twidth_log2) + s; \ 651 const GLchan *tex00 = info->texture + COMP * pos; \ 652 const GLchan *tex10 = tex00 + info->tbytesline; \ 653 const GLchan *tex01 = tex00 + COMP; \ 654 const GLchan *tex11 = tex10 + COMP; \ 655 if (t == info->tmask) { \ 656 tex10 -= info->tsize; \ 657 tex11 -= info->tsize; \ 658 } \ 659 if (s == info->smask) { \ 660 tex01 -= info->tbytesline; \ 661 tex11 -= info->tbytesline; \ 662 } \ 663 DO_TEX; \ 664 span->red += span->redStep; \ 665 span->green += span->greenStep; \ 666 span->blue += span->blueStep; \ 667 span->alpha += span->alphaStep; \ 668 tex_coord[0] += tex_step[0]; \ 669 tex_coord[1] += tex_step[1]; \ 670 tex_coord[2] += tex_step[2]; \ 671 dest += 4; \ 672 } 673 674 GLuint i; 675 GLfloat tex_coord[3], tex_step[3]; 676 GLchan *dest = span->array->rgba[0]; 677 678 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; 679 ctx->Texture._EnabledCoordUnits = 0; 680 681 tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1); 682 tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1); 683 tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1); 684 tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1); 685 /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */ 686 tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3]; 687 tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3]; 688 689 switch (info->filter) { 690 case GL_NEAREST: 691 switch (info->format) { 692 case MESA_FORMAT_RGB888: 693 switch (info->envmode) { 694 case GL_MODULATE: 695 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 696 break; 697 case GL_DECAL: 698 case GL_REPLACE: 699 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 700 break; 701 case GL_BLEND: 702 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 703 break; 704 case GL_ADD: 705 SPAN_NEAREST(NEAREST_RGB;ADD,3); 706 break; 707 default: 708 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR"); 709 return; 710 } 711 break; 712 case MESA_FORMAT_RGBA8888: 713 switch(info->envmode) { 714 case GL_MODULATE: 715 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 716 break; 717 case GL_DECAL: 718 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 719 break; 720 case GL_BLEND: 721 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 722 break; 723 case GL_ADD: 724 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 725 break; 726 case GL_REPLACE: 727 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 728 break; 729 default: 730 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR"); 731 return; 732 } 733 break; 734 } 735 break; 736 737 case GL_LINEAR: 738 switch (info->format) { 739 case MESA_FORMAT_RGB888: 740 switch (info->envmode) { 741 case GL_MODULATE: 742 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 743 break; 744 case GL_DECAL: 745 case GL_REPLACE: 746 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 747 break; 748 case GL_BLEND: 749 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 750 break; 751 case GL_ADD: 752 SPAN_LINEAR(LINEAR_RGB;ADD,3); 753 break; 754 default: 755 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR"); 756 return; 757 } 758 break; 759 case MESA_FORMAT_RGBA8888: 760 switch (info->envmode) { 761 case GL_MODULATE: 762 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 763 break; 764 case GL_DECAL: 765 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 766 break; 767 case GL_BLEND: 768 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 769 break; 770 case GL_ADD: 771 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 772 break; 773 case GL_REPLACE: 774 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 775 break; 776 default: 777 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR"); 778 return; 779 } 780 break; 781 } 782 break; 783 } 784 785 ASSERT(span->arrayMask & SPAN_RGBA); 786 _swrast_write_rgba_span(ctx, span); 787 788#undef SPAN_NEAREST 789#undef SPAN_LINEAR 790 791 /* restore state */ 792 ctx->Texture._EnabledCoordUnits = texEnableSave; 793} 794 795 796/* 797 * Render an perspective corrected RGB/RGBA textured triangle. 798 * The Q (aka V in Mesa) coordinate must be zero such that the divide 799 * by interpolated Q/W comes out right. 800 * 801 */ 802#define NAME persp_textured_triangle 803#define INTERP_Z 1 804#define INTERP_RGB 1 805#define INTERP_ALPHA 1 806#define INTERP_ATTRIBS 1 807 808#define SETUP_CODE \ 809 struct persp_info info; \ 810 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 811 const struct gl_texture_object *obj = \ 812 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 813 const struct gl_texture_image *texImg = \ 814 obj->Image[0][obj->BaseLevel]; \ 815 const struct swrast_texture_image *swImg = \ 816 swrast_texture_image_const(texImg); \ 817 info.texture = (const GLchan *) swImg->Map; \ 818 info.twidth_log2 = texImg->WidthLog2; \ 819 info.smask = texImg->Width - 1; \ 820 info.tmask = texImg->Height - 1; \ 821 info.format = texImg->TexFormat; \ 822 info.filter = obj->Sampler.MinFilter; \ 823 info.envmode = unit->EnvMode; \ 824 info.er = 0; \ 825 info.eg = 0; \ 826 info.eb = 0; \ 827 \ 828 if (info.envmode == GL_BLEND) { \ 829 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 830 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 831 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 832 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 833 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 834 } \ 835 if (!info.texture) { \ 836 /* this shouldn't happen */ \ 837 return; \ 838 } \ 839 \ 840 switch (info.format) { \ 841 case MESA_FORMAT_RGB888: \ 842 info.tbytesline = texImg->Width * 3; \ 843 break; \ 844 case MESA_FORMAT_RGBA8888: \ 845 info.tbytesline = texImg->Width * 4; \ 846 break; \ 847 default: \ 848 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\ 849 return; \ 850 } \ 851 info.tsize = texImg->Height * info.tbytesline; 852 853#define RENDER_SPAN( span ) \ 854 span.interpMask &= ~SPAN_RGBA; \ 855 span.arrayMask |= SPAN_RGBA; \ 856 fast_persp_span(ctx, &span, &info); 857 858#include "s_tritemp.h" 859 860#endif /*CHAN_TYPE != GL_FLOAT*/ 861 862 863 864/* 865 * Render an RGBA triangle with arbitrary attributes. 866 */ 867#define NAME general_triangle 868#define INTERP_Z 1 869#define INTERP_RGB 1 870#define INTERP_ALPHA 1 871#define INTERP_ATTRIBS 1 872#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 873#include "s_tritemp.h" 874 875 876 877 878/* 879 * Special tri function for occlusion testing 880 */ 881#define NAME occlusion_zless_16_triangle 882#define INTERP_Z 1 883#define SETUP_CODE \ 884 struct gl_renderbuffer *rb = \ 885 ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; \ 886 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \ 887 ASSERT(ctx->Depth.Test); \ 888 ASSERT(!ctx->Depth.Mask); \ 889 ASSERT(ctx->Depth.Func == GL_LESS); \ 890 assert(rb->Format == MESA_FORMAT_Z16); \ 891 if (!q) { \ 892 return; \ 893 } 894#define RENDER_SPAN( span ) \ 895 { \ 896 GLuint i; \ 897 const GLushort *zRow = (const GLushort *) \ 898 _swrast_pixel_address(rb, span.x, span.y); \ 899 for (i = 0; i < span.end; i++) { \ 900 GLuint z = FixedToDepth(span.z); \ 901 if (z < zRow[i]) { \ 902 q->Result++; \ 903 } \ 904 span.z += span.zStep; \ 905 } \ 906 } 907#include "s_tritemp.h" 908 909 910 911static void 912nodraw_triangle( struct gl_context *ctx, 913 const SWvertex *v0, 914 const SWvertex *v1, 915 const SWvertex *v2 ) 916{ 917 (void) (ctx && v0 && v1 && v2); 918} 919 920 921/* 922 * This is used when separate specular color is enabled, but not 923 * texturing. We add the specular color to the primary color, 924 * draw the triangle, then restore the original primary color. 925 * Inefficient, but seldom needed. 926 */ 927void 928_swrast_add_spec_terms_triangle(struct gl_context *ctx, const SWvertex *v0, 929 const SWvertex *v1, const SWvertex *v2) 930{ 931 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */ 932 SWvertex *ncv1 = (SWvertex *)v1; 933 SWvertex *ncv2 = (SWvertex *)v2; 934 GLfloat rSum, gSum, bSum; 935 GLchan cSave[3][4]; 936 937 /* save original colors */ 938 COPY_CHAN4( cSave[0], ncv0->color ); 939 COPY_CHAN4( cSave[1], ncv1->color ); 940 COPY_CHAN4( cSave[2], ncv2->color ); 941 /* sum v0 */ 942 rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0]; 943 gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1]; 944 bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2]; 945 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum); 946 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum); 947 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum); 948 /* sum v1 */ 949 rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0]; 950 gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1]; 951 bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2]; 952 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum); 953 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum); 954 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum); 955 /* sum v2 */ 956 rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[FRAG_ATTRIB_COL1][0]; 957 gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[FRAG_ATTRIB_COL1][1]; 958 bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[FRAG_ATTRIB_COL1][2]; 959 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum); 960 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum); 961 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum); 962 /* draw */ 963 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 ); 964 /* restore original colors */ 965 COPY_CHAN4( ncv0->color, cSave[0] ); 966 COPY_CHAN4( ncv1->color, cSave[1] ); 967 COPY_CHAN4( ncv2->color, cSave[2] ); 968} 969 970 971 972#ifdef DEBUG 973 974/* record the current triangle function name */ 975const char *_mesa_triFuncName = NULL; 976 977#define USE(triFunc) \ 978do { \ 979 _mesa_triFuncName = #triFunc; \ 980 /*printf("%s\n", _mesa_triFuncName);*/ \ 981 swrast->Triangle = triFunc; \ 982} while (0) 983 984#else 985 986#define USE(triFunc) swrast->Triangle = triFunc; 987 988#endif 989 990 991 992 993/* 994 * Determine which triangle rendering function to use given the current 995 * rendering context. 996 * 997 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or 998 * remove tests to this code. 999 */ 1000void 1001_swrast_choose_triangle( struct gl_context *ctx ) 1002{ 1003 SWcontext *swrast = SWRAST_CONTEXT(ctx); 1004 1005 if (ctx->Polygon.CullFlag && 1006 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) { 1007 USE(nodraw_triangle); 1008 return; 1009 } 1010 1011 if (ctx->RenderMode==GL_RENDER) { 1012 struct gl_renderbuffer *depthRb = 1013 ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; 1014 1015 if (ctx->Polygon.SmoothFlag) { 1016 _swrast_set_aa_triangle_function(ctx); 1017 ASSERT(swrast->Triangle); 1018 return; 1019 } 1020 1021 /* special case for occlusion testing */ 1022 if (ctx->Query.CurrentOcclusionObject && 1023 ctx->Depth.Test && 1024 ctx->Depth.Mask == GL_FALSE && 1025 ctx->Depth.Func == GL_LESS && 1026 !ctx->Stencil._Enabled && 1027 depthRb && 1028 depthRb->Format == MESA_FORMAT_Z16) { 1029 if (ctx->Color.ColorMask[0][0] == 0 && 1030 ctx->Color.ColorMask[0][1] == 0 && 1031 ctx->Color.ColorMask[0][2] == 0 && 1032 ctx->Color.ColorMask[0][3] == 0) { 1033 USE(occlusion_zless_16_triangle); 1034 return; 1035 } 1036 } 1037 1038 /* 1039 * XXX should examine swrast->_ActiveAttribMask to determine what 1040 * needs to be interpolated. 1041 */ 1042 if (ctx->Texture._EnabledCoordUnits || 1043 _swrast_use_fragment_program(ctx) || 1044 ctx->ATIFragmentShader._Enabled || 1045 _mesa_need_secondary_color(ctx) || 1046 swrast->_FogEnabled) { 1047 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */ 1048 const struct gl_texture_object *texObj2D; 1049 const struct gl_sampler_object *samp; 1050 const struct gl_texture_image *texImg; 1051 const struct swrast_texture_image *swImg; 1052 GLenum minFilter, magFilter, envMode; 1053 gl_format format; 1054 texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; 1055 if (ctx->Texture.Unit[0].Sampler) 1056 samp = ctx->Texture.Unit[0].Sampler; 1057 else if (texObj2D) 1058 samp = &texObj2D->Sampler; 1059 else 1060 samp = NULL; 1061 1062 texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL; 1063 swImg = swrast_texture_image_const(texImg); 1064 1065 format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE; 1066 minFilter = texObj2D ? samp->MinFilter : GL_NONE; 1067 magFilter = texObj2D ? samp->MagFilter : GL_NONE; 1068 envMode = ctx->Texture.Unit[0].EnvMode; 1069 1070 /* First see if we can use an optimized 2-D texture function */ 1071 if (ctx->Texture._EnabledCoordUnits == 0x1 1072 && !_swrast_use_fragment_program(ctx) 1073 && !ctx->ATIFragmentShader._Enabled 1074 && ctx->Texture._EnabledUnits == 0x1 1075 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT 1076 && samp->WrapS == GL_REPEAT 1077 && samp->WrapT == GL_REPEAT 1078 && texObj2D->_Swizzle == SWIZZLE_NOOP 1079 && swImg->_IsPowerOfTwo 1080 && texImg->Border == 0 1081 && texImg->Width == swImg->RowStride 1082 && (format == MESA_FORMAT_RGB888 || format == MESA_FORMAT_RGBA8888) 1083 && minFilter == magFilter 1084 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR 1085 && !swrast->_FogEnabled 1086 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT 1087 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) { 1088 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) { 1089 if (minFilter == GL_NEAREST 1090 && format == MESA_FORMAT_RGB888 1091 && (envMode == GL_REPLACE || envMode == GL_DECAL) 1092 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT) 1093 && ctx->Depth.Func == GL_LESS 1094 && ctx->Depth.Mask == GL_TRUE) 1095 || swrast->_RasterMask == TEXTURE_BIT) 1096 && ctx->Polygon.StippleFlag == GL_FALSE 1097 && ctx->DrawBuffer->Visual.depthBits <= 16) { 1098 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) { 1099 USE(simple_z_textured_triangle); 1100 } 1101 else { 1102 USE(simple_textured_triangle); 1103 } 1104 } 1105 else { 1106#if CHAN_BITS != 8 1107 USE(general_triangle); 1108#else 1109 if (format == MESA_FORMAT_RGBA8888 && !_mesa_little_endian()) { 1110 /* We only handle RGBA8888 correctly on little endian 1111 * in the optimized code above. 1112 */ 1113 USE(general_triangle); 1114 } 1115 else { 1116 USE(affine_textured_triangle); 1117 } 1118#endif 1119 } 1120 } 1121 else { 1122#if CHAN_BITS != 8 1123 USE(general_triangle); 1124#else 1125 USE(persp_textured_triangle); 1126#endif 1127 } 1128 } 1129 else { 1130 /* general case textured triangles */ 1131 USE(general_triangle); 1132 } 1133 } 1134 else { 1135 ASSERT(!swrast->_FogEnabled); 1136 ASSERT(!_mesa_need_secondary_color(ctx)); 1137 if (ctx->Light.ShadeModel==GL_SMOOTH) { 1138 /* smooth shaded, no texturing, stippled or some raster ops */ 1139#if CHAN_BITS != 8 1140 USE(general_triangle); 1141#else 1142 USE(smooth_rgba_triangle); 1143#endif 1144 } 1145 else { 1146 /* flat shaded, no texturing, stippled or some raster ops */ 1147#if CHAN_BITS != 8 1148 USE(general_triangle); 1149#else 1150 USE(flat_rgba_triangle); 1151#endif 1152 } 1153 } 1154 } 1155 else if (ctx->RenderMode==GL_FEEDBACK) { 1156 USE(_swrast_feedback_triangle); 1157 } 1158 else { 1159 /* GL_SELECT mode */ 1160 USE(_swrast_select_triangle); 1161 } 1162} 1163