1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                        Intel License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2000, Intel Corporation, all rights reserved.
14// Third party copyrights are property of their respective owners.
15//
16// Redistribution and use in source and binary forms, with or without modification,
17// are permitted provided that the following conditions are met:
18//
19//   * Redistribution's of source code must retain the above copyright notice,
20//     this list of conditions and the following disclaimer.
21//
22//   * Redistribution's in binary form must reproduce the above copyright notice,
23//     this list of conditions and the following disclaimer in the documentation
24//     and/or other materials provided with the distribution.
25//
26//   * The name of Intel Corporation may not be used to endorse or promote products
27//     derived from this software without specific prior written permission.
28//
29// This software is provided by the copyright holders and contributors "as is" and
30// any express or implied warranties, including, but not limited to, the implied
31// warranties of merchantability and fitness for a particular purpose are disclaimed.
32// In no event shall the Intel Corporation or contributors be liable for any direct,
33// indirect, incidental, special, exemplary, or consequential damages
34// (including, but not limited to, procurement of substitute goods or services;
35// loss of use, data, or profits; or business interruption) however caused
36// and on any theory of liability, whether in contract, strict liability,
37// or tort (including negligence or otherwise) arising in any way out of
38// the use of this software, even if advised of the possibility of such damage.
39//
40//M*/
41
42#include "_cvaux.h"
43
44/****************************************************************************************\
45    The code below is some modification of Stan Birchfield's algorithm described in:
46
47    Depth Discontinuities by Pixel-to-Pixel Stereo
48    Stan Birchfield and Carlo Tomasi
49    International Journal of Computer Vision,
50    35(3): 269-293, December 1999.
51
52    This implementation uses different cost function that results in
53    O(pixPerRow*maxDisparity) complexity of dynamic programming stage versus
54    O(pixPerRow*log(pixPerRow)*maxDisparity) in the above paper.
55\****************************************************************************************/
56
57/****************************************************************************************\
58*       Find stereo correspondence by dynamic programming algorithm                      *
59\****************************************************************************************/
60#define ICV_DP_STEP_LEFT  0
61#define ICV_DP_STEP_UP    1
62#define ICV_DP_STEP_DIAG  2
63
64#define ICV_BIRCH_DIFF_LUM 5
65
66#define ICV_MAX_DP_SUM_VAL (INT_MAX/4)
67
68typedef struct _CvDPCell
69{
70    uchar  step; //local-optimal step
71    int    sum;  //current sum
72}_CvDPCell;
73
74typedef struct _CvRightImData
75{
76    uchar min_val, max_val;
77} _CvRightImData;
78
79// When CV_IMAX3 and CV_IMIN3 are used in the same expression, the evulation
80// order is undefined, and they should not assign to the same temporary variable.
81#define CV_IMAX3(a,b,c) ((max3 = (a) >= (b) ? (a) : (b)),(max3 >= (c) ?  max3 : (c)))
82#define CV_IMIN3(a,b,c) ((min3 = (a) <= (b) ? (a) : (b)),(min3 <= (c) ?  min3 : (c)))
83
84void icvFindStereoCorrespondenceByBirchfieldDP( uchar* src1, uchar* src2,
85                                                uchar* disparities,
86                                                CvSize size, int widthStep,
87                                                int    maxDisparity,
88                                                float  _param1, float _param2,
89                                                float  _param3, float _param4,
90                                                float  _param5 )
91{
92    int     x, y, i, j, max3, min3;
93    int     d, s;
94    int     dispH =  maxDisparity + 3;
95    uchar  *dispdata;
96    int     imgW = size.width;
97    int     imgH = size.height;
98    uchar   val, prevval, prev, curr;
99    int     min_val;
100    uchar*  dest = disparities;
101    int param1 = cvRound(_param1);
102    int param2 = cvRound(_param2);
103    int param3 = cvRound(_param3);
104    int param4 = cvRound(_param4);
105    int param5 = cvRound(_param5);
106
107    #define CELL(d,x)   cells[(d)+(x)*dispH]
108
109    uchar*              dsi = (uchar*)cvAlloc(sizeof(uchar)*imgW*dispH);
110    uchar*              edges = (uchar*)cvAlloc(sizeof(uchar)*imgW*imgH);
111    _CvDPCell*          cells = (_CvDPCell*)cvAlloc(sizeof(_CvDPCell)*imgW*MAX(dispH,(imgH+1)/2));
112    _CvRightImData*     rData = (_CvRightImData*)cvAlloc(sizeof(_CvRightImData)*imgW);
113    int*                reliabilities = (int*)cells;
114
115    for( y = 0; y < imgH; y++ )
116    {
117        uchar* srcdata1 = src1 + widthStep * y;
118        uchar* srcdata2 = src2 + widthStep * y;
119
120        //init rData
121        prevval = prev = srcdata2[0];
122        for( j = 1; j < imgW; j++ )
123        {
124            curr = srcdata2[j];
125            val = (uchar)((curr + prev)>>1);
126            rData[j-1].max_val = (uchar)CV_IMAX3( val, prevval, prev );
127            rData[j-1].min_val = (uchar)CV_IMIN3( val, prevval, prev );
128            prevval = val;
129            prev = curr;
130        }
131        rData[j-1] = rData[j-2];//last elem
132
133        // fill dissimularity space image
134        for( i = 1; i <= maxDisparity + 1; i++ )
135        {
136            dsi += imgW;
137            rData--;
138            for( j = i - 1; j < imgW - 1; j++ )
139            {
140                int t;
141                if( (t = srcdata1[j] - rData[j+1].max_val) >= 0 )
142                {
143                    dsi[j] = (uchar)t;
144                }
145                else if( (t = rData[j+1].min_val - srcdata1[j]) >= 0 )
146                {
147                    dsi[j] = (uchar)t;
148                }
149                else
150                {
151                    dsi[j] = 0;
152                }
153            }
154        }
155        dsi -= (maxDisparity+1)*imgW;
156        rData += maxDisparity+1;
157
158        //intensity gradients image construction
159        //left row
160        edges[y*imgW] = edges[y*imgW+1] = edges[y*imgW+2] = 2;
161        edges[y*imgW+imgW-1] = edges[y*imgW+imgW-2] = edges[y*imgW+imgW-3] = 1;
162        for( j = 3; j < imgW-4; j++ )
163        {
164            edges[y*imgW+j] = 0;
165
166            if( ( CV_IMAX3( srcdata1[j-3], srcdata1[j-2], srcdata1[j-1] ) -
167                  CV_IMIN3( srcdata1[j-3], srcdata1[j-2], srcdata1[j-1] ) ) >= ICV_BIRCH_DIFF_LUM )
168            {
169                edges[y*imgW+j] |= 1;
170            }
171            if( ( CV_IMAX3( srcdata2[j+3], srcdata2[j+2], srcdata2[j+1] ) -
172                  CV_IMIN3( srcdata2[j+3], srcdata2[j+2], srcdata2[j+1] ) ) >= ICV_BIRCH_DIFF_LUM )
173            {
174                edges[y*imgW+j] |= 2;
175            }
176        }
177
178        //find correspondence using dynamical programming
179        //init DP table
180        for( x = 0; x < imgW; x++ )
181        {
182            CELL(0,x).sum = CELL(dispH-1,x).sum = ICV_MAX_DP_SUM_VAL;
183            CELL(0,x).step = CELL(dispH-1,x).step = ICV_DP_STEP_LEFT;
184        }
185        for( d = 2; d < dispH; d++ )
186        {
187            CELL(d,d-2).sum = ICV_MAX_DP_SUM_VAL;
188            CELL(d,d-2).step = ICV_DP_STEP_UP;
189        }
190        CELL(1,0).sum  = 0;
191        CELL(1,0).step = ICV_DP_STEP_LEFT;
192
193        for( x = 1; x < imgW; x++ )
194        {
195            int d = MIN( x + 1, maxDisparity + 1);
196            uchar* _edges = edges + y*imgW + x;
197            int e0 = _edges[0] & 1;
198            _CvDPCell* _cell = cells + x*dispH;
199
200            do
201            {
202                int s = dsi[d*imgW+x];
203                int sum[3];
204
205                //check left step
206                sum[0] = _cell[d-dispH].sum - param2;
207
208                //check up step
209                if( _cell[d+1].step != ICV_DP_STEP_DIAG && e0 )
210                {
211                    sum[1] = _cell[d+1].sum + param1;
212
213                    if( _cell[d-1-dispH].step != ICV_DP_STEP_UP && (_edges[1-d] & 2) )
214                    {
215                        int t;
216
217                        sum[2] = _cell[d-1-dispH].sum + param1;
218
219                        t = sum[1] < sum[0];
220
221                        //choose local-optimal pass
222                        if( sum[t] <= sum[2] )
223                        {
224                            _cell[d].step = (uchar)t;
225                            _cell[d].sum = sum[t] + s;
226                        }
227                        else
228                        {
229                            _cell[d].step = ICV_DP_STEP_DIAG;
230                            _cell[d].sum = sum[2] + s;
231                        }
232                    }
233                    else
234                    {
235                        if( sum[0] <= sum[1] )
236                        {
237                            _cell[d].step = ICV_DP_STEP_LEFT;
238                            _cell[d].sum = sum[0] + s;
239                        }
240                        else
241                        {
242                            _cell[d].step = ICV_DP_STEP_UP;
243                            _cell[d].sum = sum[1] + s;
244                        }
245                    }
246                }
247                else if( _cell[d-1-dispH].step != ICV_DP_STEP_UP && (_edges[1-d] & 2) )
248                {
249                    sum[2] = _cell[d-1-dispH].sum + param1;
250                    if( sum[0] <= sum[2] )
251                    {
252                        _cell[d].step = ICV_DP_STEP_LEFT;
253                        _cell[d].sum = sum[0] + s;
254                    }
255                    else
256                    {
257                        _cell[d].step = ICV_DP_STEP_DIAG;
258                        _cell[d].sum = sum[2] + s;
259                    }
260                }
261                else
262                {
263                    _cell[d].step = ICV_DP_STEP_LEFT;
264                    _cell[d].sum = sum[0] + s;
265                }
266            }
267            while( --d );
268        }// for x
269
270        //extract optimal way and fill disparity image
271        dispdata = dest + widthStep * y;
272
273        //find min_val
274        min_val = ICV_MAX_DP_SUM_VAL;
275        for( i = 1; i <= maxDisparity + 1; i++ )
276        {
277            if( min_val > CELL(i,imgW-1).sum )
278            {
279                d = i;
280                min_val = CELL(i,imgW-1).sum;
281            }
282        }
283
284        //track optimal pass
285        for( x = imgW - 1; x > 0; x-- )
286        {
287            dispdata[x] = (uchar)(d - 1);
288            while( CELL(d,x).step == ICV_DP_STEP_UP ) d++;
289            if ( CELL(d,x).step == ICV_DP_STEP_DIAG )
290            {
291                s = x;
292                while( CELL(d,x).step == ICV_DP_STEP_DIAG )
293                {
294                    d--;
295                    x--;
296                }
297                for( i = x; i < s; i++ )
298                {
299                    dispdata[i] = (uchar)(d-1);
300                }
301            }
302        }//for x
303    }// for y
304
305    //Postprocessing the Disparity Map
306
307    //remove obvious errors in the disparity map
308    for( x = 0; x < imgW; x++ )
309    {
310        for( y = 1; y < imgH - 1; y++ )
311        {
312            if( dest[(y-1)*widthStep+x] == dest[(y+1)*widthStep+x] )
313            {
314                dest[y*widthStep+x] = dest[(y-1)*widthStep+x];
315            }
316        }
317    }
318
319    //compute intensity Y-gradients
320    for( x = 0; x < imgW; x++ )
321    {
322        for( y = 1; y < imgH - 1; y++ )
323        {
324            if( ( CV_IMAX3( src1[(y-1)*widthStep+x], src1[y*widthStep+x],
325                        src1[(y+1)*widthStep+x] ) -
326                  CV_IMIN3( src1[(y-1)*widthStep+x], src1[y*widthStep+x],
327                        src1[(y+1)*widthStep+x] ) ) >= ICV_BIRCH_DIFF_LUM )
328            {
329                edges[y*imgW+x] |= 4;
330                edges[(y+1)*imgW+x] |= 4;
331                edges[(y-1)*imgW+x] |= 4;
332                y++;
333            }
334        }
335    }
336
337    //remove along any particular row, every gradient
338    //for which two adjacent columns do not agree.
339    for( y = 0; y < imgH; y++ )
340    {
341        prev = edges[y*imgW];
342        for( x = 1; x < imgW - 1; x++ )
343        {
344            curr = edges[y*imgW+x];
345            if( (curr & 4) &&
346                ( !( prev & 4 ) ||
347                  !( edges[y*imgW+x+1] & 4 ) ) )
348            {
349                edges[y*imgW+x] -= 4;
350            }
351            prev = curr;
352        }
353    }
354
355    // define reliability
356    for( x = 0; x < imgW; x++ )
357    {
358        for( y = 1; y < imgH; y++ )
359        {
360            i = y - 1;
361            for( ; y < imgH && dest[y*widthStep+x] == dest[(y-1)*widthStep+x]; y++ )
362                ;
363            s = y - i;
364            for( ; i < y; i++ )
365            {
366                reliabilities[i*imgW+x] = s;
367            }
368        }
369    }
370
371    //Y - propagate reliable regions
372    for( x = 0; x < imgW; x++ )
373    {
374        for( y = 0; y < imgH; y++ )
375        {
376            d = dest[y*widthStep+x];
377            if( reliabilities[y*imgW+x] >= param4 && !(edges[y*imgW+x] & 4) &&
378                d > 0 )//highly || moderately
379            {
380                disparities[y*widthStep+x] = (uchar)d;
381                //up propagation
382                for( i = y - 1; i >= 0; i-- )
383                {
384                    if(  ( edges[i*imgW+x] & 4 ) ||
385                         ( dest[i*widthStep+x] < d &&
386                           reliabilities[i*imgW+x] >= param3 ) ||
387                         ( reliabilities[y*imgW+x] < param5 &&
388                           dest[i*widthStep+x] - 1 == d ) ) break;
389
390                    disparities[i*widthStep+x] = (uchar)d;
391                }
392
393                //down propagation
394                for( i = y + 1; i < imgH; i++ )
395                {
396                    if(  ( edges[i*imgW+x] & 4 ) ||
397                         ( dest[i*widthStep+x] < d &&
398                           reliabilities[i*imgW+x] >= param3 ) ||
399                         ( reliabilities[y*imgW+x] < param5 &&
400                           dest[i*widthStep+x] - 1 == d ) ) break;
401
402                    disparities[i*widthStep+x] = (uchar)d;
403                }
404                y = i - 1;
405            }
406            else
407            {
408                disparities[y*widthStep+x] = (uchar)d;
409            }
410        }
411    }
412
413    // define reliability along X
414    for( y = 0; y < imgH; y++ )
415    {
416        for( x = 1; x < imgW; x++ )
417        {
418            i = x - 1;
419            for( ; x < imgW && dest[y*widthStep+x] == dest[y*widthStep+x-1]; x++ );
420            s = x - i;
421            for( ; i < x; i++ )
422            {
423                reliabilities[y*imgW+i] = s;
424            }
425        }
426    }
427
428    //X - propagate reliable regions
429    for( y = 0; y < imgH; y++ )
430    {
431        for( x = 0; x < imgW; x++ )
432        {
433            d = dest[y*widthStep+x];
434            if( reliabilities[y*imgW+x] >= param4 && !(edges[y*imgW+x] & 1) &&
435                d > 0 )//highly || moderately
436            {
437                disparities[y*widthStep+x] = (uchar)d;
438                //up propagation
439                for( i = x - 1; i >= 0; i-- )
440                {
441                    if(  (edges[y*imgW+i] & 1) ||
442                         ( dest[y*widthStep+i] < d &&
443                           reliabilities[y*imgW+i] >= param3 ) ||
444                         ( reliabilities[y*imgW+x] < param5 &&
445                           dest[y*widthStep+i] - 1 == d ) ) break;
446
447                    disparities[y*widthStep+i] = (uchar)d;
448                }
449
450                //down propagation
451                for( i = x + 1; i < imgW; i++ )
452                {
453                    if(  (edges[y*imgW+i] & 1) ||
454                         ( dest[y*widthStep+i] < d &&
455                           reliabilities[y*imgW+i] >= param3 ) ||
456                         ( reliabilities[y*imgW+x] < param5 &&
457                           dest[y*widthStep+i] - 1 == d ) ) break;
458
459                    disparities[y*widthStep+i] = (uchar)d;
460                }
461                x = i - 1;
462            }
463            else
464            {
465                disparities[y*widthStep+x] = (uchar)d;
466            }
467        }
468    }
469
470    //release resources
471    cvFree( &dsi );
472    cvFree( &edges );
473    cvFree( &cells );
474    cvFree( &rData );
475}
476
477
478/*F///////////////////////////////////////////////////////////////////////////
479//
480//    Name:    cvFindStereoCorrespondence
481//    Purpose: find stereo correspondence on stereo-pair
482//    Context:
483//    Parameters:
484//      leftImage - left image of stereo-pair (format 8uC1).
485//      rightImage - right image of stereo-pair (format 8uC1).
486//      mode -mode of correspondance retrieval (now CV_RETR_DP_BIRCHFIELD only)
487//      dispImage - destination disparity image
488//      maxDisparity - maximal disparity
489//      param1, param2, param3, param4, param5 - parameters of algorithm
490//    Returns:
491//    Notes:
492//      Images must be rectified.
493//      All images must have format 8uC1.
494//F*/
495CV_IMPL void
496cvFindStereoCorrespondence(
497                   const  CvArr* leftImage, const  CvArr* rightImage,
498                   int     mode,
499                   CvArr*  depthImage,
500                   int     maxDisparity,
501                   double  param1, double  param2, double  param3,
502                   double  param4, double  param5  )
503{
504    CV_FUNCNAME( "cvFindStereoCorrespondence" );
505
506    __BEGIN__;
507
508    CvMat  *src1, *src2;
509    CvMat  *dst;
510    CvMat  src1_stub, src2_stub, dst_stub;
511    int    coi;
512
513    CV_CALL( src1 = cvGetMat( leftImage, &src1_stub, &coi ));
514    if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" );
515    CV_CALL( src2 = cvGetMat( rightImage, &src2_stub, &coi ));
516    if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" );
517    CV_CALL( dst = cvGetMat( depthImage, &dst_stub, &coi ));
518    if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" );
519
520    // check args
521    if( CV_MAT_TYPE( src1->type ) != CV_8UC1 ||
522        CV_MAT_TYPE( src2->type ) != CV_8UC1 ||
523        CV_MAT_TYPE( dst->type ) != CV_8UC1) CV_ERROR(CV_StsUnsupportedFormat,
524                        "All images must be single-channel and have 8u" );
525
526    if( !CV_ARE_SIZES_EQ( src1, src2 ) || !CV_ARE_SIZES_EQ( src1, dst ) )
527            CV_ERROR( CV_StsUnmatchedSizes, "" );
528
529    if( maxDisparity <= 0 || maxDisparity >= src1->width || maxDisparity > 255 )
530        CV_ERROR(CV_StsOutOfRange,
531                 "parameter /maxDisparity/ is out of range");
532
533    if( mode == CV_DISPARITY_BIRCHFIELD )
534    {
535        if( param1 == CV_UNDEF_SC_PARAM ) param1 = CV_IDP_BIRCHFIELD_PARAM1;
536        if( param2 == CV_UNDEF_SC_PARAM ) param2 = CV_IDP_BIRCHFIELD_PARAM2;
537        if( param3 == CV_UNDEF_SC_PARAM ) param3 = CV_IDP_BIRCHFIELD_PARAM3;
538        if( param4 == CV_UNDEF_SC_PARAM ) param4 = CV_IDP_BIRCHFIELD_PARAM4;
539        if( param5 == CV_UNDEF_SC_PARAM ) param5 = CV_IDP_BIRCHFIELD_PARAM5;
540
541        CV_CALL( icvFindStereoCorrespondenceByBirchfieldDP( src1->data.ptr,
542            src2->data.ptr, dst->data.ptr,
543            cvGetMatSize( src1 ), src1->step,
544            maxDisparity, (float)param1, (float)param2, (float)param3,
545            (float)param4, (float)param5 ) );
546    }
547    else
548    {
549        CV_ERROR( CV_StsBadArg, "Unsupported mode of function" );
550    }
551
552    __END__;
553}
554
555/* End of file. */
556
557