1/* 2 * jquant2.c 3 * 4 * Copyright (C) 1991-1996, Thomas G. Lane. 5 * Modified 2011 by Guido Vollbeding. 6 * This file is part of the Independent JPEG Group's software. 7 * For conditions of distribution and use, see the accompanying README file. 8 * 9 * This file contains 2-pass color quantization (color mapping) routines. 10 * These routines provide selection of a custom color map for an image, 11 * followed by mapping of the image to that color map, with optional 12 * Floyd-Steinberg dithering. 13 * It is also possible to use just the second pass to map to an arbitrary 14 * externally-given color map. 15 * 16 * Note: ordered dithering is not supported, since there isn't any fast 17 * way to compute intercolor distances; it's unclear that ordered dither's 18 * fundamental assumptions even hold with an irregularly spaced color map. 19 */ 20 21#define JPEG_INTERNALS 22#include "jinclude.h" 23#include "jpeglib.h" 24 25#ifdef QUANT_2PASS_SUPPORTED 26 27 28/* 29 * This module implements the well-known Heckbert paradigm for color 30 * quantization. Most of the ideas used here can be traced back to 31 * Heckbert's seminal paper 32 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", 33 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. 34 * 35 * In the first pass over the image, we accumulate a histogram showing the 36 * usage count of each possible color. To keep the histogram to a reasonable 37 * size, we reduce the precision of the input; typical practice is to retain 38 * 5 or 6 bits per color, so that 8 or 4 different input values are counted 39 * in the same histogram cell. 40 * 41 * Next, the color-selection step begins with a box representing the whole 42 * color space, and repeatedly splits the "largest" remaining box until we 43 * have as many boxes as desired colors. Then the mean color in each 44 * remaining box becomes one of the possible output colors. 45 * 46 * The second pass over the image maps each input pixel to the closest output 47 * color (optionally after applying a Floyd-Steinberg dithering correction). 48 * This mapping is logically trivial, but making it go fast enough requires 49 * considerable care. 50 * 51 * Heckbert-style quantizers vary a good deal in their policies for choosing 52 * the "largest" box and deciding where to cut it. The particular policies 53 * used here have proved out well in experimental comparisons, but better ones 54 * may yet be found. 55 * 56 * In earlier versions of the IJG code, this module quantized in YCbCr color 57 * space, processing the raw upsampled data without a color conversion step. 58 * This allowed the color conversion math to be done only once per colormap 59 * entry, not once per pixel. However, that optimization precluded other 60 * useful optimizations (such as merging color conversion with upsampling) 61 * and it also interfered with desired capabilities such as quantizing to an 62 * externally-supplied colormap. We have therefore abandoned that approach. 63 * The present code works in the post-conversion color space, typically RGB. 64 * 65 * To improve the visual quality of the results, we actually work in scaled 66 * RGB space, giving G distances more weight than R, and R in turn more than 67 * B. To do everything in integer math, we must use integer scale factors. 68 * The 2/3/1 scale factors used here correspond loosely to the relative 69 * weights of the colors in the NTSC grayscale equation. 70 * If you want to use this code to quantize a non-RGB color space, you'll 71 * probably need to change these scale factors. 72 */ 73 74#define R_SCALE 2 /* scale R distances by this much */ 75#define G_SCALE 3 /* scale G distances by this much */ 76#define B_SCALE 1 /* and B by this much */ 77 78/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined 79 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B 80 * and B,G,R orders. If you define some other weird order in jmorecfg.h, 81 * you'll get compile errors until you extend this logic. In that case 82 * you'll probably want to tweak the histogram sizes too. 83 */ 84 85#if RGB_RED == 0 86#define C0_SCALE R_SCALE 87#endif 88#if RGB_BLUE == 0 89#define C0_SCALE B_SCALE 90#endif 91#if RGB_GREEN == 1 92#define C1_SCALE G_SCALE 93#endif 94#if RGB_RED == 2 95#define C2_SCALE R_SCALE 96#endif 97#if RGB_BLUE == 2 98#define C2_SCALE B_SCALE 99#endif 100 101 102/* 103 * First we have the histogram data structure and routines for creating it. 104 * 105 * The number of bits of precision can be adjusted by changing these symbols. 106 * We recommend keeping 6 bits for G and 5 each for R and B. 107 * If you have plenty of memory and cycles, 6 bits all around gives marginally 108 * better results; if you are short of memory, 5 bits all around will save 109 * some space but degrade the results. 110 * To maintain a fully accurate histogram, we'd need to allocate a "long" 111 * (preferably unsigned long) for each cell. In practice this is overkill; 112 * we can get by with 16 bits per cell. Few of the cell counts will overflow, 113 * and clamping those that do overflow to the maximum value will give close- 114 * enough results. This reduces the recommended histogram size from 256Kb 115 * to 128Kb, which is a useful savings on PC-class machines. 116 * (In the second pass the histogram space is re-used for pixel mapping data; 117 * in that capacity, each cell must be able to store zero to the number of 118 * desired colors. 16 bits/cell is plenty for that too.) 119 * Since the JPEG code is intended to run in small memory model on 80x86 120 * machines, we can't just allocate the histogram in one chunk. Instead 121 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each 122 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and 123 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that 124 * on 80x86 machines, the pointer row is in near memory but the actual 125 * arrays are in far memory (same arrangement as we use for image arrays). 126 */ 127 128#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ 129 130/* These will do the right thing for either R,G,B or B,G,R color order, 131 * but you may not like the results for other color orders. 132 */ 133#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ 134#define HIST_C1_BITS 6 /* bits of precision in G histogram */ 135#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ 136 137/* Number of elements along histogram axes. */ 138#define HIST_C0_ELEMS (1<<HIST_C0_BITS) 139#define HIST_C1_ELEMS (1<<HIST_C1_BITS) 140#define HIST_C2_ELEMS (1<<HIST_C2_BITS) 141 142/* These are the amounts to shift an input value to get a histogram index. */ 143#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) 144#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) 145#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) 146 147 148typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ 149 150typedef histcell FAR * histptr; /* for pointers to histogram cells */ 151 152typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ 153typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ 154typedef hist2d * hist3d; /* type for top-level pointer */ 155 156 157/* Declarations for Floyd-Steinberg dithering. 158 * 159 * Errors are accumulated into the array fserrors[], at a resolution of 160 * 1/16th of a pixel count. The error at a given pixel is propagated 161 * to its not-yet-processed neighbors using the standard F-S fractions, 162 * ... (here) 7/16 163 * 3/16 5/16 1/16 164 * We work left-to-right on even rows, right-to-left on odd rows. 165 * 166 * We can get away with a single array (holding one row's worth of errors) 167 * by using it to store the current row's errors at pixel columns not yet 168 * processed, but the next row's errors at columns already processed. We 169 * need only a few extra variables to hold the errors immediately around the 170 * current column. (If we are lucky, those variables are in registers, but 171 * even if not, they're probably cheaper to access than array elements are.) 172 * 173 * The fserrors[] array has (#columns + 2) entries; the extra entry at 174 * each end saves us from special-casing the first and last pixels. 175 * Each entry is three values long, one value for each color component. 176 * 177 * Note: on a wide image, we might not have enough room in a PC's near data 178 * segment to hold the error array; so it is allocated with alloc_large. 179 */ 180 181#if BITS_IN_JSAMPLE == 8 182typedef INT16 FSERROR; /* 16 bits should be enough */ 183typedef int LOCFSERROR; /* use 'int' for calculation temps */ 184#else 185typedef INT32 FSERROR; /* may need more than 16 bits */ 186typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ 187#endif 188 189typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ 190 191 192/* Private subobject */ 193 194typedef struct { 195 struct jpeg_color_quantizer pub; /* public fields */ 196 197 /* Space for the eventually created colormap is stashed here */ 198 JSAMPARRAY sv_colormap; /* colormap allocated at init time */ 199 int desired; /* desired # of colors = size of colormap */ 200 201 /* Variables for accumulating image statistics */ 202 hist3d histogram; /* pointer to the histogram */ 203 204 boolean needs_zeroed; /* TRUE if next pass must zero histogram */ 205 206 /* Variables for Floyd-Steinberg dithering */ 207 FSERRPTR fserrors; /* accumulated errors */ 208 boolean on_odd_row; /* flag to remember which row we are on */ 209 int * error_limiter; /* table for clamping the applied error */ 210} my_cquantizer; 211 212typedef my_cquantizer * my_cquantize_ptr; 213 214 215/* 216 * Prescan some rows of pixels. 217 * In this module the prescan simply updates the histogram, which has been 218 * initialized to zeroes by start_pass. 219 * An output_buf parameter is required by the method signature, but no data 220 * is actually output (in fact the buffer controller is probably passing a 221 * NULL pointer). 222 */ 223 224METHODDEF(void) 225prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, 226 JSAMPARRAY output_buf, int num_rows) 227{ 228 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 229 register JSAMPROW ptr; 230 register histptr histp; 231 register hist3d histogram = cquantize->histogram; 232 int row; 233 JDIMENSION col; 234 JDIMENSION width = cinfo->output_width; 235 236 for (row = 0; row < num_rows; row++) { 237 ptr = input_buf[row]; 238 for (col = width; col > 0; col--) { 239 /* get pixel value and index into the histogram */ 240 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] 241 [GETJSAMPLE(ptr[1]) >> C1_SHIFT] 242 [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; 243 /* increment, check for overflow and undo increment if so. */ 244 if (++(*histp) <= 0) 245 (*histp)--; 246 ptr += 3; 247 } 248 } 249} 250 251 252/* 253 * Next we have the really interesting routines: selection of a colormap 254 * given the completed histogram. 255 * These routines work with a list of "boxes", each representing a rectangular 256 * subset of the input color space (to histogram precision). 257 */ 258 259typedef struct { 260 /* The bounds of the box (inclusive); expressed as histogram indexes */ 261 int c0min, c0max; 262 int c1min, c1max; 263 int c2min, c2max; 264 /* The volume (actually 2-norm) of the box */ 265 INT32 volume; 266 /* The number of nonzero histogram cells within this box */ 267 long colorcount; 268} box; 269 270typedef box * boxptr; 271 272 273LOCAL(boxptr) 274find_biggest_color_pop (boxptr boxlist, int numboxes) 275/* Find the splittable box with the largest color population */ 276/* Returns NULL if no splittable boxes remain */ 277{ 278 register boxptr boxp; 279 register int i; 280 register long maxc = 0; 281 boxptr which = NULL; 282 283 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { 284 if (boxp->colorcount > maxc && boxp->volume > 0) { 285 which = boxp; 286 maxc = boxp->colorcount; 287 } 288 } 289 return which; 290} 291 292 293LOCAL(boxptr) 294find_biggest_volume (boxptr boxlist, int numboxes) 295/* Find the splittable box with the largest (scaled) volume */ 296/* Returns NULL if no splittable boxes remain */ 297{ 298 register boxptr boxp; 299 register int i; 300 register INT32 maxv = 0; 301 boxptr which = NULL; 302 303 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { 304 if (boxp->volume > maxv) { 305 which = boxp; 306 maxv = boxp->volume; 307 } 308 } 309 return which; 310} 311 312 313LOCAL(void) 314update_box (j_decompress_ptr cinfo, boxptr boxp) 315/* Shrink the min/max bounds of a box to enclose only nonzero elements, */ 316/* and recompute its volume and population */ 317{ 318 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 319 hist3d histogram = cquantize->histogram; 320 histptr histp; 321 int c0,c1,c2; 322 int c0min,c0max,c1min,c1max,c2min,c2max; 323 INT32 dist0,dist1,dist2; 324 long ccount; 325 326 c0min = boxp->c0min; c0max = boxp->c0max; 327 c1min = boxp->c1min; c1max = boxp->c1max; 328 c2min = boxp->c2min; c2max = boxp->c2max; 329 330 if (c0max > c0min) 331 for (c0 = c0min; c0 <= c0max; c0++) 332 for (c1 = c1min; c1 <= c1max; c1++) { 333 histp = & histogram[c0][c1][c2min]; 334 for (c2 = c2min; c2 <= c2max; c2++) 335 if (*histp++ != 0) { 336 boxp->c0min = c0min = c0; 337 goto have_c0min; 338 } 339 } 340 have_c0min: 341 if (c0max > c0min) 342 for (c0 = c0max; c0 >= c0min; c0--) 343 for (c1 = c1min; c1 <= c1max; c1++) { 344 histp = & histogram[c0][c1][c2min]; 345 for (c2 = c2min; c2 <= c2max; c2++) 346 if (*histp++ != 0) { 347 boxp->c0max = c0max = c0; 348 goto have_c0max; 349 } 350 } 351 have_c0max: 352 if (c1max > c1min) 353 for (c1 = c1min; c1 <= c1max; c1++) 354 for (c0 = c0min; c0 <= c0max; c0++) { 355 histp = & histogram[c0][c1][c2min]; 356 for (c2 = c2min; c2 <= c2max; c2++) 357 if (*histp++ != 0) { 358 boxp->c1min = c1min = c1; 359 goto have_c1min; 360 } 361 } 362 have_c1min: 363 if (c1max > c1min) 364 for (c1 = c1max; c1 >= c1min; c1--) 365 for (c0 = c0min; c0 <= c0max; c0++) { 366 histp = & histogram[c0][c1][c2min]; 367 for (c2 = c2min; c2 <= c2max; c2++) 368 if (*histp++ != 0) { 369 boxp->c1max = c1max = c1; 370 goto have_c1max; 371 } 372 } 373 have_c1max: 374 if (c2max > c2min) 375 for (c2 = c2min; c2 <= c2max; c2++) 376 for (c0 = c0min; c0 <= c0max; c0++) { 377 histp = & histogram[c0][c1min][c2]; 378 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) 379 if (*histp != 0) { 380 boxp->c2min = c2min = c2; 381 goto have_c2min; 382 } 383 } 384 have_c2min: 385 if (c2max > c2min) 386 for (c2 = c2max; c2 >= c2min; c2--) 387 for (c0 = c0min; c0 <= c0max; c0++) { 388 histp = & histogram[c0][c1min][c2]; 389 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) 390 if (*histp != 0) { 391 boxp->c2max = c2max = c2; 392 goto have_c2max; 393 } 394 } 395 have_c2max: 396 397 /* Update box volume. 398 * We use 2-norm rather than real volume here; this biases the method 399 * against making long narrow boxes, and it has the side benefit that 400 * a box is splittable iff norm > 0. 401 * Since the differences are expressed in histogram-cell units, 402 * we have to shift back to JSAMPLE units to get consistent distances; 403 * after which, we scale according to the selected distance scale factors. 404 */ 405 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; 406 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; 407 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; 408 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; 409 410 /* Now scan remaining volume of box and compute population */ 411 ccount = 0; 412 for (c0 = c0min; c0 <= c0max; c0++) 413 for (c1 = c1min; c1 <= c1max; c1++) { 414 histp = & histogram[c0][c1][c2min]; 415 for (c2 = c2min; c2 <= c2max; c2++, histp++) 416 if (*histp != 0) { 417 ccount++; 418 } 419 } 420 boxp->colorcount = ccount; 421} 422 423 424LOCAL(int) 425median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, 426 int desired_colors) 427/* Repeatedly select and split the largest box until we have enough boxes */ 428{ 429 int n,lb; 430 int c0,c1,c2,cmax; 431 register boxptr b1,b2; 432 433 while (numboxes < desired_colors) { 434 /* Select box to split. 435 * Current algorithm: by population for first half, then by volume. 436 */ 437 if (numboxes*2 <= desired_colors) { 438 b1 = find_biggest_color_pop(boxlist, numboxes); 439 } else { 440 b1 = find_biggest_volume(boxlist, numboxes); 441 } 442 if (b1 == NULL) /* no splittable boxes left! */ 443 break; 444 b2 = &boxlist[numboxes]; /* where new box will go */ 445 /* Copy the color bounds to the new box. */ 446 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; 447 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; 448 /* Choose which axis to split the box on. 449 * Current algorithm: longest scaled axis. 450 * See notes in update_box about scaling distances. 451 */ 452 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; 453 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; 454 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; 455 /* We want to break any ties in favor of green, then red, blue last. 456 * This code does the right thing for R,G,B or B,G,R color orders only. 457 */ 458#if RGB_RED == 0 459 cmax = c1; n = 1; 460 if (c0 > cmax) { cmax = c0; n = 0; } 461 if (c2 > cmax) { n = 2; } 462#else 463 cmax = c1; n = 1; 464 if (c2 > cmax) { cmax = c2; n = 2; } 465 if (c0 > cmax) { n = 0; } 466#endif 467 /* Choose split point along selected axis, and update box bounds. 468 * Current algorithm: split at halfway point. 469 * (Since the box has been shrunk to minimum volume, 470 * any split will produce two nonempty subboxes.) 471 * Note that lb value is max for lower box, so must be < old max. 472 */ 473 switch (n) { 474 case 0: 475 lb = (b1->c0max + b1->c0min) / 2; 476 b1->c0max = lb; 477 b2->c0min = lb+1; 478 break; 479 case 1: 480 lb = (b1->c1max + b1->c1min) / 2; 481 b1->c1max = lb; 482 b2->c1min = lb+1; 483 break; 484 case 2: 485 lb = (b1->c2max + b1->c2min) / 2; 486 b1->c2max = lb; 487 b2->c2min = lb+1; 488 break; 489 } 490 /* Update stats for boxes */ 491 update_box(cinfo, b1); 492 update_box(cinfo, b2); 493 numboxes++; 494 } 495 return numboxes; 496} 497 498 499LOCAL(void) 500compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) 501/* Compute representative color for a box, put it in colormap[icolor] */ 502{ 503 /* Current algorithm: mean weighted by pixels (not colors) */ 504 /* Note it is important to get the rounding correct! */ 505 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 506 hist3d histogram = cquantize->histogram; 507 histptr histp; 508 int c0,c1,c2; 509 int c0min,c0max,c1min,c1max,c2min,c2max; 510 long count; 511 long total = 0; 512 long c0total = 0; 513 long c1total = 0; 514 long c2total = 0; 515 516 c0min = boxp->c0min; c0max = boxp->c0max; 517 c1min = boxp->c1min; c1max = boxp->c1max; 518 c2min = boxp->c2min; c2max = boxp->c2max; 519 520 for (c0 = c0min; c0 <= c0max; c0++) 521 for (c1 = c1min; c1 <= c1max; c1++) { 522 histp = & histogram[c0][c1][c2min]; 523 for (c2 = c2min; c2 <= c2max; c2++) { 524 if ((count = *histp++) != 0) { 525 total += count; 526 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; 527 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; 528 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; 529 } 530 } 531 } 532 533 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); 534 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); 535 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); 536} 537 538 539LOCAL(void) 540select_colors (j_decompress_ptr cinfo, int desired_colors) 541/* Master routine for color selection */ 542{ 543 boxptr boxlist; 544 int numboxes; 545 int i; 546 547 /* Allocate workspace for box list */ 548 boxlist = (boxptr) (*cinfo->mem->alloc_small) 549 ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); 550 /* Initialize one box containing whole space */ 551 numboxes = 1; 552 boxlist[0].c0min = 0; 553 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; 554 boxlist[0].c1min = 0; 555 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; 556 boxlist[0].c2min = 0; 557 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; 558 /* Shrink it to actually-used volume and set its statistics */ 559 update_box(cinfo, & boxlist[0]); 560 /* Perform median-cut to produce final box list */ 561 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); 562 /* Compute the representative color for each box, fill colormap */ 563 for (i = 0; i < numboxes; i++) 564 compute_color(cinfo, & boxlist[i], i); 565 cinfo->actual_number_of_colors = numboxes; 566 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); 567} 568 569 570/* 571 * These routines are concerned with the time-critical task of mapping input 572 * colors to the nearest color in the selected colormap. 573 * 574 * We re-use the histogram space as an "inverse color map", essentially a 575 * cache for the results of nearest-color searches. All colors within a 576 * histogram cell will be mapped to the same colormap entry, namely the one 577 * closest to the cell's center. This may not be quite the closest entry to 578 * the actual input color, but it's almost as good. A zero in the cache 579 * indicates we haven't found the nearest color for that cell yet; the array 580 * is cleared to zeroes before starting the mapping pass. When we find the 581 * nearest color for a cell, its colormap index plus one is recorded in the 582 * cache for future use. The pass2 scanning routines call fill_inverse_cmap 583 * when they need to use an unfilled entry in the cache. 584 * 585 * Our method of efficiently finding nearest colors is based on the "locally 586 * sorted search" idea described by Heckbert and on the incremental distance 587 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics 588 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that 589 * the distances from a given colormap entry to each cell of the histogram can 590 * be computed quickly using an incremental method: the differences between 591 * distances to adjacent cells themselves differ by a constant. This allows a 592 * fairly fast implementation of the "brute force" approach of computing the 593 * distance from every colormap entry to every histogram cell. Unfortunately, 594 * it needs a work array to hold the best-distance-so-far for each histogram 595 * cell (because the inner loop has to be over cells, not colormap entries). 596 * The work array elements have to be INT32s, so the work array would need 597 * 256Kb at our recommended precision. This is not feasible in DOS machines. 598 * 599 * To get around these problems, we apply Thomas' method to compute the 600 * nearest colors for only the cells within a small subbox of the histogram. 601 * The work array need be only as big as the subbox, so the memory usage 602 * problem is solved. Furthermore, we need not fill subboxes that are never 603 * referenced in pass2; many images use only part of the color gamut, so a 604 * fair amount of work is saved. An additional advantage of this 605 * approach is that we can apply Heckbert's locality criterion to quickly 606 * eliminate colormap entries that are far away from the subbox; typically 607 * three-fourths of the colormap entries are rejected by Heckbert's criterion, 608 * and we need not compute their distances to individual cells in the subbox. 609 * The speed of this approach is heavily influenced by the subbox size: too 610 * small means too much overhead, too big loses because Heckbert's criterion 611 * can't eliminate as many colormap entries. Empirically the best subbox 612 * size seems to be about 1/512th of the histogram (1/8th in each direction). 613 * 614 * Thomas' article also describes a refined method which is asymptotically 615 * faster than the brute-force method, but it is also far more complex and 616 * cannot efficiently be applied to small subboxes. It is therefore not 617 * useful for programs intended to be portable to DOS machines. On machines 618 * with plenty of memory, filling the whole histogram in one shot with Thomas' 619 * refined method might be faster than the present code --- but then again, 620 * it might not be any faster, and it's certainly more complicated. 621 */ 622 623 624/* log2(histogram cells in update box) for each axis; this can be adjusted */ 625#define BOX_C0_LOG (HIST_C0_BITS-3) 626#define BOX_C1_LOG (HIST_C1_BITS-3) 627#define BOX_C2_LOG (HIST_C2_BITS-3) 628 629#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ 630#define BOX_C1_ELEMS (1<<BOX_C1_LOG) 631#define BOX_C2_ELEMS (1<<BOX_C2_LOG) 632 633#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) 634#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) 635#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) 636 637 638/* 639 * The next three routines implement inverse colormap filling. They could 640 * all be folded into one big routine, but splitting them up this way saves 641 * some stack space (the mindist[] and bestdist[] arrays need not coexist) 642 * and may allow some compilers to produce better code by registerizing more 643 * inner-loop variables. 644 */ 645 646LOCAL(int) 647find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, 648 JSAMPLE colorlist[]) 649/* Locate the colormap entries close enough to an update box to be candidates 650 * for the nearest entry to some cell(s) in the update box. The update box 651 * is specified by the center coordinates of its first cell. The number of 652 * candidate colormap entries is returned, and their colormap indexes are 653 * placed in colorlist[]. 654 * This routine uses Heckbert's "locally sorted search" criterion to select 655 * the colors that need further consideration. 656 */ 657{ 658 int numcolors = cinfo->actual_number_of_colors; 659 int maxc0, maxc1, maxc2; 660 int centerc0, centerc1, centerc2; 661 int i, x, ncolors; 662 INT32 minmaxdist, min_dist, max_dist, tdist; 663 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ 664 665 /* Compute true coordinates of update box's upper corner and center. 666 * Actually we compute the coordinates of the center of the upper-corner 667 * histogram cell, which are the upper bounds of the volume we care about. 668 * Note that since ">>" rounds down, the "center" values may be closer to 669 * min than to max; hence comparisons to them must be "<=", not "<". 670 */ 671 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); 672 centerc0 = (minc0 + maxc0) >> 1; 673 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); 674 centerc1 = (minc1 + maxc1) >> 1; 675 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); 676 centerc2 = (minc2 + maxc2) >> 1; 677 678 /* For each color in colormap, find: 679 * 1. its minimum squared-distance to any point in the update box 680 * (zero if color is within update box); 681 * 2. its maximum squared-distance to any point in the update box. 682 * Both of these can be found by considering only the corners of the box. 683 * We save the minimum distance for each color in mindist[]; 684 * only the smallest maximum distance is of interest. 685 */ 686 minmaxdist = 0x7FFFFFFFL; 687 688 for (i = 0; i < numcolors; i++) { 689 /* We compute the squared-c0-distance term, then add in the other two. */ 690 x = GETJSAMPLE(cinfo->colormap[0][i]); 691 if (x < minc0) { 692 tdist = (x - minc0) * C0_SCALE; 693 min_dist = tdist*tdist; 694 tdist = (x - maxc0) * C0_SCALE; 695 max_dist = tdist*tdist; 696 } else if (x > maxc0) { 697 tdist = (x - maxc0) * C0_SCALE; 698 min_dist = tdist*tdist; 699 tdist = (x - minc0) * C0_SCALE; 700 max_dist = tdist*tdist; 701 } else { 702 /* within cell range so no contribution to min_dist */ 703 min_dist = 0; 704 if (x <= centerc0) { 705 tdist = (x - maxc0) * C0_SCALE; 706 max_dist = tdist*tdist; 707 } else { 708 tdist = (x - minc0) * C0_SCALE; 709 max_dist = tdist*tdist; 710 } 711 } 712 713 x = GETJSAMPLE(cinfo->colormap[1][i]); 714 if (x < minc1) { 715 tdist = (x - minc1) * C1_SCALE; 716 min_dist += tdist*tdist; 717 tdist = (x - maxc1) * C1_SCALE; 718 max_dist += tdist*tdist; 719 } else if (x > maxc1) { 720 tdist = (x - maxc1) * C1_SCALE; 721 min_dist += tdist*tdist; 722 tdist = (x - minc1) * C1_SCALE; 723 max_dist += tdist*tdist; 724 } else { 725 /* within cell range so no contribution to min_dist */ 726 if (x <= centerc1) { 727 tdist = (x - maxc1) * C1_SCALE; 728 max_dist += tdist*tdist; 729 } else { 730 tdist = (x - minc1) * C1_SCALE; 731 max_dist += tdist*tdist; 732 } 733 } 734 735 x = GETJSAMPLE(cinfo->colormap[2][i]); 736 if (x < minc2) { 737 tdist = (x - minc2) * C2_SCALE; 738 min_dist += tdist*tdist; 739 tdist = (x - maxc2) * C2_SCALE; 740 max_dist += tdist*tdist; 741 } else if (x > maxc2) { 742 tdist = (x - maxc2) * C2_SCALE; 743 min_dist += tdist*tdist; 744 tdist = (x - minc2) * C2_SCALE; 745 max_dist += tdist*tdist; 746 } else { 747 /* within cell range so no contribution to min_dist */ 748 if (x <= centerc2) { 749 tdist = (x - maxc2) * C2_SCALE; 750 max_dist += tdist*tdist; 751 } else { 752 tdist = (x - minc2) * C2_SCALE; 753 max_dist += tdist*tdist; 754 } 755 } 756 757 mindist[i] = min_dist; /* save away the results */ 758 if (max_dist < minmaxdist) 759 minmaxdist = max_dist; 760 } 761 762 /* Now we know that no cell in the update box is more than minmaxdist 763 * away from some colormap entry. Therefore, only colors that are 764 * within minmaxdist of some part of the box need be considered. 765 */ 766 ncolors = 0; 767 for (i = 0; i < numcolors; i++) { 768 if (mindist[i] <= minmaxdist) 769 colorlist[ncolors++] = (JSAMPLE) i; 770 } 771 return ncolors; 772} 773 774 775LOCAL(void) 776find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, 777 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) 778/* Find the closest colormap entry for each cell in the update box, 779 * given the list of candidate colors prepared by find_nearby_colors. 780 * Return the indexes of the closest entries in the bestcolor[] array. 781 * This routine uses Thomas' incremental distance calculation method to 782 * find the distance from a colormap entry to successive cells in the box. 783 */ 784{ 785 int ic0, ic1, ic2; 786 int i, icolor; 787 register INT32 * bptr; /* pointer into bestdist[] array */ 788 JSAMPLE * cptr; /* pointer into bestcolor[] array */ 789 INT32 dist0, dist1; /* initial distance values */ 790 register INT32 dist2; /* current distance in inner loop */ 791 INT32 xx0, xx1; /* distance increments */ 792 register INT32 xx2; 793 INT32 inc0, inc1, inc2; /* initial values for increments */ 794 /* This array holds the distance to the nearest-so-far color for each cell */ 795 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; 796 797 /* Initialize best-distance for each cell of the update box */ 798 bptr = bestdist; 799 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) 800 *bptr++ = 0x7FFFFFFFL; 801 802 /* For each color selected by find_nearby_colors, 803 * compute its distance to the center of each cell in the box. 804 * If that's less than best-so-far, update best distance and color number. 805 */ 806 807 /* Nominal steps between cell centers ("x" in Thomas article) */ 808#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) 809#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) 810#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) 811 812 for (i = 0; i < numcolors; i++) { 813 icolor = GETJSAMPLE(colorlist[i]); 814 /* Compute (square of) distance from minc0/c1/c2 to this color */ 815 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; 816 dist0 = inc0*inc0; 817 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; 818 dist0 += inc1*inc1; 819 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; 820 dist0 += inc2*inc2; 821 /* Form the initial difference increments */ 822 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; 823 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; 824 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; 825 /* Now loop over all cells in box, updating distance per Thomas method */ 826 bptr = bestdist; 827 cptr = bestcolor; 828 xx0 = inc0; 829 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { 830 dist1 = dist0; 831 xx1 = inc1; 832 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { 833 dist2 = dist1; 834 xx2 = inc2; 835 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { 836 if (dist2 < *bptr) { 837 *bptr = dist2; 838 *cptr = (JSAMPLE) icolor; 839 } 840 dist2 += xx2; 841 xx2 += 2 * STEP_C2 * STEP_C2; 842 bptr++; 843 cptr++; 844 } 845 dist1 += xx1; 846 xx1 += 2 * STEP_C1 * STEP_C1; 847 } 848 dist0 += xx0; 849 xx0 += 2 * STEP_C0 * STEP_C0; 850 } 851 } 852} 853 854 855LOCAL(void) 856fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) 857/* Fill the inverse-colormap entries in the update box that contains */ 858/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ 859/* we can fill as many others as we wish.) */ 860{ 861 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 862 hist3d histogram = cquantize->histogram; 863 int minc0, minc1, minc2; /* lower left corner of update box */ 864 int ic0, ic1, ic2; 865 register JSAMPLE * cptr; /* pointer into bestcolor[] array */ 866 register histptr cachep; /* pointer into main cache array */ 867 /* This array lists the candidate colormap indexes. */ 868 JSAMPLE colorlist[MAXNUMCOLORS]; 869 int numcolors; /* number of candidate colors */ 870 /* This array holds the actually closest colormap index for each cell. */ 871 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; 872 873 /* Convert cell coordinates to update box ID */ 874 c0 >>= BOX_C0_LOG; 875 c1 >>= BOX_C1_LOG; 876 c2 >>= BOX_C2_LOG; 877 878 /* Compute true coordinates of update box's origin corner. 879 * Actually we compute the coordinates of the center of the corner 880 * histogram cell, which are the lower bounds of the volume we care about. 881 */ 882 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); 883 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); 884 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); 885 886 /* Determine which colormap entries are close enough to be candidates 887 * for the nearest entry to some cell in the update box. 888 */ 889 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); 890 891 /* Determine the actually nearest colors. */ 892 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, 893 bestcolor); 894 895 /* Save the best color numbers (plus 1) in the main cache array */ 896 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ 897 c1 <<= BOX_C1_LOG; 898 c2 <<= BOX_C2_LOG; 899 cptr = bestcolor; 900 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { 901 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { 902 cachep = & histogram[c0+ic0][c1+ic1][c2]; 903 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { 904 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); 905 } 906 } 907 } 908} 909 910 911/* 912 * Map some rows of pixels to the output colormapped representation. 913 */ 914 915METHODDEF(void) 916pass2_no_dither (j_decompress_ptr cinfo, 917 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) 918/* This version performs no dithering */ 919{ 920 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 921 hist3d histogram = cquantize->histogram; 922 register JSAMPROW inptr, outptr; 923 register histptr cachep; 924 register int c0, c1, c2; 925 int row; 926 JDIMENSION col; 927 JDIMENSION width = cinfo->output_width; 928 929 for (row = 0; row < num_rows; row++) { 930 inptr = input_buf[row]; 931 outptr = output_buf[row]; 932 for (col = width; col > 0; col--) { 933 /* get pixel value and index into the cache */ 934 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; 935 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; 936 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; 937 cachep = & histogram[c0][c1][c2]; 938 /* If we have not seen this color before, find nearest colormap entry */ 939 /* and update the cache */ 940 if (*cachep == 0) 941 fill_inverse_cmap(cinfo, c0,c1,c2); 942 /* Now emit the colormap index for this cell */ 943 *outptr++ = (JSAMPLE) (*cachep - 1); 944 } 945 } 946} 947 948 949METHODDEF(void) 950pass2_fs_dither (j_decompress_ptr cinfo, 951 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) 952/* This version performs Floyd-Steinberg dithering */ 953{ 954 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 955 hist3d histogram = cquantize->histogram; 956 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ 957 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ 958 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ 959 register FSERRPTR errorptr; /* => fserrors[] at column before current */ 960 JSAMPROW inptr; /* => current input pixel */ 961 JSAMPROW outptr; /* => current output pixel */ 962 histptr cachep; 963 int dir; /* +1 or -1 depending on direction */ 964 int dir3; /* 3*dir, for advancing inptr & errorptr */ 965 int row; 966 JDIMENSION col; 967 JDIMENSION width = cinfo->output_width; 968 JSAMPLE *range_limit = cinfo->sample_range_limit; 969 int *error_limit = cquantize->error_limiter; 970 JSAMPROW colormap0 = cinfo->colormap[0]; 971 JSAMPROW colormap1 = cinfo->colormap[1]; 972 JSAMPROW colormap2 = cinfo->colormap[2]; 973 SHIFT_TEMPS 974 975 for (row = 0; row < num_rows; row++) { 976 inptr = input_buf[row]; 977 outptr = output_buf[row]; 978 if (cquantize->on_odd_row) { 979 /* work right to left in this row */ 980 inptr += (width-1) * 3; /* so point to rightmost pixel */ 981 outptr += width-1; 982 dir = -1; 983 dir3 = -3; 984 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ 985 cquantize->on_odd_row = FALSE; /* flip for next time */ 986 } else { 987 /* work left to right in this row */ 988 dir = 1; 989 dir3 = 3; 990 errorptr = cquantize->fserrors; /* => entry before first real column */ 991 cquantize->on_odd_row = TRUE; /* flip for next time */ 992 } 993 /* Preset error values: no error propagated to first pixel from left */ 994 cur0 = cur1 = cur2 = 0; 995 /* and no error propagated to row below yet */ 996 belowerr0 = belowerr1 = belowerr2 = 0; 997 bpreverr0 = bpreverr1 = bpreverr2 = 0; 998 999 for (col = width; col > 0; col--) { 1000 /* curN holds the error propagated from the previous pixel on the 1001 * current line. Add the error propagated from the previous line 1002 * to form the complete error correction term for this pixel, and 1003 * round the error term (which is expressed * 16) to an integer. 1004 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct 1005 * for either sign of the error value. 1006 * Note: errorptr points to *previous* column's array entry. 1007 */ 1008 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); 1009 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); 1010 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); 1011 /* Limit the error using transfer function set by init_error_limit. 1012 * See comments with init_error_limit for rationale. 1013 */ 1014 cur0 = error_limit[cur0]; 1015 cur1 = error_limit[cur1]; 1016 cur2 = error_limit[cur2]; 1017 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. 1018 * The maximum error is +- MAXJSAMPLE (or less with error limiting); 1019 * this sets the required size of the range_limit array. 1020 */ 1021 cur0 += GETJSAMPLE(inptr[0]); 1022 cur1 += GETJSAMPLE(inptr[1]); 1023 cur2 += GETJSAMPLE(inptr[2]); 1024 cur0 = GETJSAMPLE(range_limit[cur0]); 1025 cur1 = GETJSAMPLE(range_limit[cur1]); 1026 cur2 = GETJSAMPLE(range_limit[cur2]); 1027 /* Index into the cache with adjusted pixel value */ 1028 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; 1029 /* If we have not seen this color before, find nearest colormap */ 1030 /* entry and update the cache */ 1031 if (*cachep == 0) 1032 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); 1033 /* Now emit the colormap index for this cell */ 1034 { register int pixcode = *cachep - 1; 1035 *outptr = (JSAMPLE) pixcode; 1036 /* Compute representation error for this pixel */ 1037 cur0 -= GETJSAMPLE(colormap0[pixcode]); 1038 cur1 -= GETJSAMPLE(colormap1[pixcode]); 1039 cur2 -= GETJSAMPLE(colormap2[pixcode]); 1040 } 1041 /* Compute error fractions to be propagated to adjacent pixels. 1042 * Add these into the running sums, and simultaneously shift the 1043 * next-line error sums left by 1 column. 1044 */ 1045 { register LOCFSERROR bnexterr, delta; 1046 1047 bnexterr = cur0; /* Process component 0 */ 1048 delta = cur0 * 2; 1049 cur0 += delta; /* form error * 3 */ 1050 errorptr[0] = (FSERROR) (bpreverr0 + cur0); 1051 cur0 += delta; /* form error * 5 */ 1052 bpreverr0 = belowerr0 + cur0; 1053 belowerr0 = bnexterr; 1054 cur0 += delta; /* form error * 7 */ 1055 bnexterr = cur1; /* Process component 1 */ 1056 delta = cur1 * 2; 1057 cur1 += delta; /* form error * 3 */ 1058 errorptr[1] = (FSERROR) (bpreverr1 + cur1); 1059 cur1 += delta; /* form error * 5 */ 1060 bpreverr1 = belowerr1 + cur1; 1061 belowerr1 = bnexterr; 1062 cur1 += delta; /* form error * 7 */ 1063 bnexterr = cur2; /* Process component 2 */ 1064 delta = cur2 * 2; 1065 cur2 += delta; /* form error * 3 */ 1066 errorptr[2] = (FSERROR) (bpreverr2 + cur2); 1067 cur2 += delta; /* form error * 5 */ 1068 bpreverr2 = belowerr2 + cur2; 1069 belowerr2 = bnexterr; 1070 cur2 += delta; /* form error * 7 */ 1071 } 1072 /* At this point curN contains the 7/16 error value to be propagated 1073 * to the next pixel on the current line, and all the errors for the 1074 * next line have been shifted over. We are therefore ready to move on. 1075 */ 1076 inptr += dir3; /* Advance pixel pointers to next column */ 1077 outptr += dir; 1078 errorptr += dir3; /* advance errorptr to current column */ 1079 } 1080 /* Post-loop cleanup: we must unload the final error values into the 1081 * final fserrors[] entry. Note we need not unload belowerrN because 1082 * it is for the dummy column before or after the actual array. 1083 */ 1084 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ 1085 errorptr[1] = (FSERROR) bpreverr1; 1086 errorptr[2] = (FSERROR) bpreverr2; 1087 } 1088} 1089 1090 1091/* 1092 * Initialize the error-limiting transfer function (lookup table). 1093 * The raw F-S error computation can potentially compute error values of up to 1094 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be 1095 * much less, otherwise obviously wrong pixels will be created. (Typical 1096 * effects include weird fringes at color-area boundaries, isolated bright 1097 * pixels in a dark area, etc.) The standard advice for avoiding this problem 1098 * is to ensure that the "corners" of the color cube are allocated as output 1099 * colors; then repeated errors in the same direction cannot cause cascading 1100 * error buildup. However, that only prevents the error from getting 1101 * completely out of hand; Aaron Giles reports that error limiting improves 1102 * the results even with corner colors allocated. 1103 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty 1104 * well, but the smoother transfer function used below is even better. Thanks 1105 * to Aaron Giles for this idea. 1106 */ 1107 1108LOCAL(void) 1109init_error_limit (j_decompress_ptr cinfo) 1110/* Allocate and fill in the error_limiter table */ 1111{ 1112 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 1113 int * table; 1114 int in, out; 1115 1116 table = (int *) (*cinfo->mem->alloc_small) 1117 ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); 1118 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ 1119 cquantize->error_limiter = table; 1120 1121#define STEPSIZE ((MAXJSAMPLE+1)/16) 1122 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ 1123 out = 0; 1124 for (in = 0; in < STEPSIZE; in++, out++) { 1125 table[in] = out; table[-in] = -out; 1126 } 1127 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ 1128 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { 1129 table[in] = out; table[-in] = -out; 1130 } 1131 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ 1132 for (; in <= MAXJSAMPLE; in++) { 1133 table[in] = out; table[-in] = -out; 1134 } 1135#undef STEPSIZE 1136} 1137 1138 1139/* 1140 * Finish up at the end of each pass. 1141 */ 1142 1143METHODDEF(void) 1144finish_pass1 (j_decompress_ptr cinfo) 1145{ 1146 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 1147 1148 /* Select the representative colors and fill in cinfo->colormap */ 1149 cinfo->colormap = cquantize->sv_colormap; 1150 select_colors(cinfo, cquantize->desired); 1151 /* Force next pass to zero the color index table */ 1152 cquantize->needs_zeroed = TRUE; 1153} 1154 1155 1156METHODDEF(void) 1157finish_pass2 (j_decompress_ptr cinfo) 1158{ 1159 /* no work */ 1160} 1161 1162 1163/* 1164 * Initialize for each processing pass. 1165 */ 1166 1167METHODDEF(void) 1168start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) 1169{ 1170 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 1171 hist3d histogram = cquantize->histogram; 1172 int i; 1173 1174 /* Only F-S dithering or no dithering is supported. */ 1175 /* If user asks for ordered dither, give him F-S. */ 1176 if (cinfo->dither_mode != JDITHER_NONE) 1177 cinfo->dither_mode = JDITHER_FS; 1178 1179 if (is_pre_scan) { 1180 /* Set up method pointers */ 1181 cquantize->pub.color_quantize = prescan_quantize; 1182 cquantize->pub.finish_pass = finish_pass1; 1183 cquantize->needs_zeroed = TRUE; /* Always zero histogram */ 1184 } else { 1185 /* Set up method pointers */ 1186 if (cinfo->dither_mode == JDITHER_FS) 1187 cquantize->pub.color_quantize = pass2_fs_dither; 1188 else 1189 cquantize->pub.color_quantize = pass2_no_dither; 1190 cquantize->pub.finish_pass = finish_pass2; 1191 1192 /* Make sure color count is acceptable */ 1193 i = cinfo->actual_number_of_colors; 1194 if (i < 1) 1195 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); 1196 if (i > MAXNUMCOLORS) 1197 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); 1198 1199 if (cinfo->dither_mode == JDITHER_FS) { 1200 size_t arraysize = (size_t) ((cinfo->output_width + 2) * 1201 (3 * SIZEOF(FSERROR))); 1202 /* Allocate Floyd-Steinberg workspace if we didn't already. */ 1203 if (cquantize->fserrors == NULL) 1204 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) 1205 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); 1206 /* Initialize the propagated errors to zero. */ 1207 FMEMZERO((void FAR *) cquantize->fserrors, arraysize); 1208 /* Make the error-limit table if we didn't already. */ 1209 if (cquantize->error_limiter == NULL) 1210 init_error_limit(cinfo); 1211 cquantize->on_odd_row = FALSE; 1212 } 1213 1214 } 1215 /* Zero the histogram or inverse color map, if necessary */ 1216 if (cquantize->needs_zeroed) { 1217 for (i = 0; i < HIST_C0_ELEMS; i++) { 1218 FMEMZERO((void FAR *) histogram[i], 1219 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); 1220 } 1221 cquantize->needs_zeroed = FALSE; 1222 } 1223} 1224 1225 1226/* 1227 * Switch to a new external colormap between output passes. 1228 */ 1229 1230METHODDEF(void) 1231new_color_map_2_quant (j_decompress_ptr cinfo) 1232{ 1233 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; 1234 1235 /* Reset the inverse color map */ 1236 cquantize->needs_zeroed = TRUE; 1237} 1238 1239 1240/* 1241 * Module initialization routine for 2-pass color quantization. 1242 */ 1243 1244GLOBAL(void) 1245jinit_2pass_quantizer (j_decompress_ptr cinfo) 1246{ 1247 my_cquantize_ptr cquantize; 1248 int i; 1249 1250 cquantize = (my_cquantize_ptr) 1251 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 1252 SIZEOF(my_cquantizer)); 1253 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; 1254 cquantize->pub.start_pass = start_pass_2_quant; 1255 cquantize->pub.new_color_map = new_color_map_2_quant; 1256 cquantize->fserrors = NULL; /* flag optional arrays not allocated */ 1257 cquantize->error_limiter = NULL; 1258 1259 /* Make sure jdmaster didn't give me a case I can't handle */ 1260 if (cinfo->out_color_components != 3) 1261 ERREXIT(cinfo, JERR_NOTIMPL); 1262 1263 /* Allocate the histogram/inverse colormap storage */ 1264 cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) 1265 ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); 1266 for (i = 0; i < HIST_C0_ELEMS; i++) { 1267 cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) 1268 ((j_common_ptr) cinfo, JPOOL_IMAGE, 1269 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); 1270 } 1271 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ 1272 1273 /* Allocate storage for the completed colormap, if required. 1274 * We do this now since it is FAR storage and may affect 1275 * the memory manager's space calculations. 1276 */ 1277 if (cinfo->enable_2pass_quant) { 1278 /* Make sure color count is acceptable */ 1279 int desired = cinfo->desired_number_of_colors; 1280 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ 1281 if (desired < 8) 1282 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); 1283 /* Make sure colormap indexes can be represented by JSAMPLEs */ 1284 if (desired > MAXNUMCOLORS) 1285 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); 1286 cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) 1287 ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); 1288 cquantize->desired = desired; 1289 } else 1290 cquantize->sv_colormap = NULL; 1291 1292 /* Only F-S dithering or no dithering is supported. */ 1293 /* If user asks for ordered dither, give him F-S. */ 1294 if (cinfo->dither_mode != JDITHER_NONE) 1295 cinfo->dither_mode = JDITHER_FS; 1296 1297 /* Allocate Floyd-Steinberg workspace if necessary. 1298 * This isn't really needed until pass 2, but again it is FAR storage. 1299 * Although we will cope with a later change in dither_mode, 1300 * we do not promise to honor max_memory_to_use if dither_mode changes. 1301 */ 1302 if (cinfo->dither_mode == JDITHER_FS) { 1303 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) 1304 ((j_common_ptr) cinfo, JPOOL_IMAGE, 1305 (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); 1306 /* Might as well create the error-limiting table too. */ 1307 init_error_limit(cinfo); 1308 } 1309} 1310 1311#endif /* QUANT_2PASS_SUPPORTED */ 1312