1/*M/////////////////////////////////////////////////////////////////////////////////////// 2// 3// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4// 5// By downloading, copying, installing or using the software you agree to this license. 6// If you do not agree to this license, do not download, install, 7// copy or use the software. 8// 9// 10// License Agreement 11// For Open Source Computer Vision Library 12// 13// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14// Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15// Third party copyrights are property of their respective owners. 16// 17// Redistribution and use in source and binary forms, with or without modification, 18// are permitted provided that the following conditions are met: 19// 20// * Redistribution's of source code must retain the above copyright notice, 21// this list of conditions and the following disclaimer. 22// 23// * Redistribution's in binary form must reproduce the above copyright notice, 24// this list of conditions and the following disclaimer in the documentation 25// and/or other materials provided with the distribution. 26// 27// * The name of the copyright holders may not be used to endorse or promote products 28// derived from this software without specific prior written permission. 29// 30// This software is provided by the copyright holders and contributors "as is" and 31// any express or implied warranties, including, but not limited to, the implied 32// warranties of merchantability and fitness for a particular purpose are disclaimed. 33// In no event shall the Intel Corporation or contributors be liable for any direct, 34// indirect, incidental, special, exemplary, or consequential damages 35// (including, but not limited to, procurement of substitute goods or services; 36// loss of use, data, or profits; or business interruption) however caused 37// and on any theory of liability, whether in contract, strict liability, 38// or tort (including negligence or otherwise) arising in any way out of 39// the use of this software, even if advised of the possibility of such damage. 40// 41//M*/ 42 43#ifndef __OPENCV_CUDAARITHM_HPP__ 44#define __OPENCV_CUDAARITHM_HPP__ 45 46#ifndef __cplusplus 47# error cudaarithm.hpp header must be compiled as C++ 48#endif 49 50#include "opencv2/core/cuda.hpp" 51 52/** 53 @addtogroup cuda 54 @{ 55 @defgroup cudaarithm Operations on Matrices 56 @{ 57 @defgroup cudaarithm_core Core Operations on Matrices 58 @defgroup cudaarithm_elem Per-element Operations 59 @defgroup cudaarithm_reduce Matrix Reductions 60 @defgroup cudaarithm_arithm Arithm Operations on Matrices 61 @} 62 @} 63 */ 64 65namespace cv { namespace cuda { 66 67//! @addtogroup cudaarithm 68//! @{ 69 70//! @addtogroup cudaarithm_elem 71//! @{ 72 73/** @brief Computes a matrix-matrix or matrix-scalar sum. 74 75@param src1 First source matrix or scalar. 76@param src2 Second source matrix or scalar. Matrix should have the same size and type as src1 . 77@param dst Destination matrix that has the same size and number of channels as the input array(s). 78The depth is defined by dtype or src1 depth. 79@param mask Optional operation mask, 8-bit single channel array, that specifies elements of the 80destination array to be changed. 81@param dtype Optional depth of the output array. 82@param stream Stream for the asynchronous version. 83 84@sa add 85 */ 86CV_EXPORTS void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null()); 87 88/** @brief Computes a matrix-matrix or matrix-scalar difference. 89 90@param src1 First source matrix or scalar. 91@param src2 Second source matrix or scalar. Matrix should have the same size and type as src1 . 92@param dst Destination matrix that has the same size and number of channels as the input array(s). 93The depth is defined by dtype or src1 depth. 94@param mask Optional operation mask, 8-bit single channel array, that specifies elements of the 95destination array to be changed. 96@param dtype Optional depth of the output array. 97@param stream Stream for the asynchronous version. 98 99@sa subtract 100 */ 101CV_EXPORTS void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null()); 102 103/** @brief Computes a matrix-matrix or matrix-scalar per-element product. 104 105@param src1 First source matrix or scalar. 106@param src2 Second source matrix or scalar. 107@param dst Destination matrix that has the same size and number of channels as the input array(s). 108The depth is defined by dtype or src1 depth. 109@param scale Optional scale factor. 110@param dtype Optional depth of the output array. 111@param stream Stream for the asynchronous version. 112 113@sa multiply 114 */ 115CV_EXPORTS void multiply(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); 116 117/** @brief Computes a matrix-matrix or matrix-scalar division. 118 119@param src1 First source matrix or a scalar. 120@param src2 Second source matrix or scalar. 121@param dst Destination matrix that has the same size and number of channels as the input array(s). 122The depth is defined by dtype or src1 depth. 123@param scale Optional scale factor. 124@param dtype Optional depth of the output array. 125@param stream Stream for the asynchronous version. 126 127This function, in contrast to divide, uses a round-down rounding mode. 128 129@sa divide 130 */ 131CV_EXPORTS void divide(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); 132 133/** @brief Computes per-element absolute difference of two matrices (or of a matrix and scalar). 134 135@param src1 First source matrix or scalar. 136@param src2 Second source matrix or scalar. 137@param dst Destination matrix that has the same size and type as the input array(s). 138@param stream Stream for the asynchronous version. 139 140@sa absdiff 141 */ 142CV_EXPORTS void absdiff(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()); 143 144/** @brief Computes an absolute value of each matrix element. 145 146@param src Source matrix. 147@param dst Destination matrix with the same size and type as src . 148@param stream Stream for the asynchronous version. 149 150@sa abs 151 */ 152CV_EXPORTS void abs(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); 153 154/** @brief Computes a square value of each matrix element. 155 156@param src Source matrix. 157@param dst Destination matrix with the same size and type as src . 158@param stream Stream for the asynchronous version. 159 */ 160CV_EXPORTS void sqr(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); 161 162/** @brief Computes a square root of each matrix element. 163 164@param src Source matrix. 165@param dst Destination matrix with the same size and type as src . 166@param stream Stream for the asynchronous version. 167 168@sa sqrt 169 */ 170CV_EXPORTS void sqrt(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); 171 172/** @brief Computes an exponent of each matrix element. 173 174@param src Source matrix. 175@param dst Destination matrix with the same size and type as src . 176@param stream Stream for the asynchronous version. 177 178@sa exp 179 */ 180CV_EXPORTS void exp(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); 181 182/** @brief Computes a natural logarithm of absolute value of each matrix element. 183 184@param src Source matrix. 185@param dst Destination matrix with the same size and type as src . 186@param stream Stream for the asynchronous version. 187 188@sa log 189 */ 190CV_EXPORTS void log(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); 191 192/** @brief Raises every matrix element to a power. 193 194@param src Source matrix. 195@param power Exponent of power. 196@param dst Destination matrix with the same size and type as src . 197@param stream Stream for the asynchronous version. 198 199The function pow raises every element of the input matrix to power : 200 201\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f] 202 203@sa pow 204 */ 205CV_EXPORTS void pow(InputArray src, double power, OutputArray dst, Stream& stream = Stream::Null()); 206 207/** @brief Compares elements of two matrices (or of a matrix and scalar). 208 209@param src1 First source matrix or scalar. 210@param src2 Second source matrix or scalar. 211@param dst Destination matrix that has the same size and type as the input array(s). 212@param cmpop Flag specifying the relation between the elements to be checked: 213- **CMP_EQ:** a(.) == b(.) 214- **CMP_GT:** a(.) \> b(.) 215- **CMP_GE:** a(.) \>= b(.) 216- **CMP_LT:** a(.) \< b(.) 217- **CMP_LE:** a(.) \<= b(.) 218- **CMP_NE:** a(.) != b(.) 219@param stream Stream for the asynchronous version. 220 221@sa compare 222 */ 223CV_EXPORTS void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop, Stream& stream = Stream::Null()); 224 225/** @brief Performs a per-element bitwise inversion. 226 227@param src Source matrix. 228@param dst Destination matrix with the same size and type as src . 229@param mask Optional operation mask. 8-bit single channel image. 230@param stream Stream for the asynchronous version. 231 */ 232CV_EXPORTS void bitwise_not(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); 233 234/** @brief Performs a per-element bitwise disjunction of two matrices (or of matrix and scalar). 235 236@param src1 First source matrix or scalar. 237@param src2 Second source matrix or scalar. 238@param dst Destination matrix that has the same size and type as the input array(s). 239@param mask Optional operation mask. 8-bit single channel image. 240@param stream Stream for the asynchronous version. 241 */ 242CV_EXPORTS void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); 243 244/** @brief Performs a per-element bitwise conjunction of two matrices (or of matrix and scalar). 245 246@param src1 First source matrix or scalar. 247@param src2 Second source matrix or scalar. 248@param dst Destination matrix that has the same size and type as the input array(s). 249@param mask Optional operation mask. 8-bit single channel image. 250@param stream Stream for the asynchronous version. 251 */ 252CV_EXPORTS void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); 253 254/** @brief Performs a per-element bitwise exclusive or operation of two matrices (or of matrix and scalar). 255 256@param src1 First source matrix or scalar. 257@param src2 Second source matrix or scalar. 258@param dst Destination matrix that has the same size and type as the input array(s). 259@param mask Optional operation mask. 8-bit single channel image. 260@param stream Stream for the asynchronous version. 261 */ 262CV_EXPORTS void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); 263 264/** @brief Performs pixel by pixel right shift of an image by a constant value. 265 266@param src Source matrix. Supports 1, 3 and 4 channels images with integers elements. 267@param val Constant values, one per channel. 268@param dst Destination matrix with the same size and type as src . 269@param stream Stream for the asynchronous version. 270 */ 271CV_EXPORTS void rshift(InputArray src, Scalar_<int> val, OutputArray dst, Stream& stream = Stream::Null()); 272 273/** @brief Performs pixel by pixel right left of an image by a constant value. 274 275@param src Source matrix. Supports 1, 3 and 4 channels images with CV_8U , CV_16U or CV_32S 276depth. 277@param val Constant values, one per channel. 278@param dst Destination matrix with the same size and type as src . 279@param stream Stream for the asynchronous version. 280 */ 281CV_EXPORTS void lshift(InputArray src, Scalar_<int> val, OutputArray dst, Stream& stream = Stream::Null()); 282 283/** @brief Computes the per-element minimum of two matrices (or a matrix and a scalar). 284 285@param src1 First source matrix or scalar. 286@param src2 Second source matrix or scalar. 287@param dst Destination matrix that has the same size and type as the input array(s). 288@param stream Stream for the asynchronous version. 289 290@sa min 291 */ 292CV_EXPORTS void min(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()); 293 294/** @brief Computes the per-element maximum of two matrices (or a matrix and a scalar). 295 296@param src1 First source matrix or scalar. 297@param src2 Second source matrix or scalar. 298@param dst Destination matrix that has the same size and type as the input array(s). 299@param stream Stream for the asynchronous version. 300 301@sa max 302 */ 303CV_EXPORTS void max(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()); 304 305/** @brief Computes the weighted sum of two arrays. 306 307@param src1 First source array. 308@param alpha Weight for the first array elements. 309@param src2 Second source array of the same size and channel number as src1 . 310@param beta Weight for the second array elements. 311@param dst Destination array that has the same size and number of channels as the input arrays. 312@param gamma Scalar added to each sum. 313@param dtype Optional depth of the destination array. When both input arrays have the same depth, 314dtype can be set to -1, which will be equivalent to src1.depth(). 315@param stream Stream for the asynchronous version. 316 317The function addWeighted calculates the weighted sum of two arrays as follows: 318 319\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f] 320 321where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each 322channel is processed independently. 323 324@sa addWeighted 325 */ 326CV_EXPORTS void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, 327 int dtype = -1, Stream& stream = Stream::Null()); 328 329//! adds scaled array to another one (dst = alpha*src1 + src2) 330static inline void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()) 331{ 332 addWeighted(src1, alpha, src2, 1.0, 0.0, dst, -1, stream); 333} 334 335/** @brief Applies a fixed-level threshold to each array element. 336 337@param src Source array (single-channel). 338@param dst Destination array with the same size and type as src . 339@param thresh Threshold value. 340@param maxval Maximum value to use with THRESH_BINARY and THRESH_BINARY_INV threshold types. 341@param type Threshold type. For details, see threshold . The THRESH_OTSU and THRESH_TRIANGLE 342threshold types are not supported. 343@param stream Stream for the asynchronous version. 344 345@sa threshold 346 */ 347CV_EXPORTS double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type, Stream& stream = Stream::Null()); 348 349/** @brief Computes magnitudes of complex matrix elements. 350 351@param xy Source complex matrix in the interleaved format ( CV_32FC2 ). 352@param magnitude Destination matrix of float magnitudes ( CV_32FC1 ). 353@param stream Stream for the asynchronous version. 354 355@sa magnitude 356 */ 357CV_EXPORTS void magnitude(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null()); 358 359/** @brief Computes squared magnitudes of complex matrix elements. 360 361@param xy Source complex matrix in the interleaved format ( CV_32FC2 ). 362@param magnitude Destination matrix of float magnitude squares ( CV_32FC1 ). 363@param stream Stream for the asynchronous version. 364 */ 365CV_EXPORTS void magnitudeSqr(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null()); 366 367/** @overload 368 computes magnitude of each (x(i), y(i)) vector 369 supports only floating-point source 370@param x Source matrix containing real components ( CV_32FC1 ). 371@param y Source matrix containing imaginary components ( CV_32FC1 ). 372@param magnitude Destination matrix of float magnitudes ( CV_32FC1 ). 373@param stream Stream for the asynchronous version. 374 */ 375CV_EXPORTS void magnitude(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null()); 376 377/** @overload 378 computes squared magnitude of each (x(i), y(i)) vector 379 supports only floating-point source 380@param x Source matrix containing real components ( CV_32FC1 ). 381@param y Source matrix containing imaginary components ( CV_32FC1 ). 382@param magnitude Destination matrix of float magnitude squares ( CV_32FC1 ). 383@param stream Stream for the asynchronous version. 384*/ 385CV_EXPORTS void magnitudeSqr(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null()); 386 387/** @brief Computes polar angles of complex matrix elements. 388 389@param x Source matrix containing real components ( CV_32FC1 ). 390@param y Source matrix containing imaginary components ( CV_32FC1 ). 391@param angle Destination matrix of angles ( CV_32FC1 ). 392@param angleInDegrees Flag for angles that must be evaluated in degrees. 393@param stream Stream for the asynchronous version. 394 395@sa phase 396 */ 397CV_EXPORTS void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null()); 398 399/** @brief Converts Cartesian coordinates into polar. 400 401@param x Source matrix containing real components ( CV_32FC1 ). 402@param y Source matrix containing imaginary components ( CV_32FC1 ). 403@param magnitude Destination matrix of float magnitudes ( CV_32FC1 ). 404@param angle Destination matrix of angles ( CV_32FC1 ). 405@param angleInDegrees Flag for angles that must be evaluated in degrees. 406@param stream Stream for the asynchronous version. 407 408@sa cartToPolar 409 */ 410CV_EXPORTS void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null()); 411 412/** @brief Converts polar coordinates into Cartesian. 413 414@param magnitude Source matrix containing magnitudes ( CV_32FC1 ). 415@param angle Source matrix containing angles ( CV_32FC1 ). 416@param x Destination matrix of real components ( CV_32FC1 ). 417@param y Destination matrix of imaginary components ( CV_32FC1 ). 418@param angleInDegrees Flag that indicates angles in degrees. 419@param stream Stream for the asynchronous version. 420 */ 421CV_EXPORTS void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees = false, Stream& stream = Stream::Null()); 422 423//! @} cudaarithm_elem 424 425//! @addtogroup cudaarithm_core 426//! @{ 427 428/** @brief Makes a multi-channel matrix out of several single-channel matrices. 429 430@param src Array/vector of source matrices. 431@param n Number of source matrices. 432@param dst Destination matrix. 433@param stream Stream for the asynchronous version. 434 435@sa merge 436 */ 437CV_EXPORTS void merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream = Stream::Null()); 438/** @overload */ 439CV_EXPORTS void merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& stream = Stream::Null()); 440 441/** @brief Copies each plane of a multi-channel matrix into an array. 442 443@param src Source matrix. 444@param dst Destination array/vector of single-channel matrices. 445@param stream Stream for the asynchronous version. 446 447@sa split 448 */ 449CV_EXPORTS void split(InputArray src, GpuMat* dst, Stream& stream = Stream::Null()); 450/** @overload */ 451CV_EXPORTS void split(InputArray src, std::vector<GpuMat>& dst, Stream& stream = Stream::Null()); 452 453/** @brief Transposes a matrix. 454 455@param src1 Source matrix. 1-, 4-, 8-byte element sizes are supported for now. 456@param dst Destination matrix. 457@param stream Stream for the asynchronous version. 458 459@sa transpose 460 */ 461CV_EXPORTS void transpose(InputArray src1, OutputArray dst, Stream& stream = Stream::Null()); 462 463/** @brief Flips a 2D matrix around vertical, horizontal, or both axes. 464 465@param src Source matrix. Supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or 466CV_32F depth. 467@param dst Destination matrix. 468@param flipCode Flip mode for the source: 469- 0 Flips around x-axis. 470- \> 0 Flips around y-axis. 471- \< 0 Flips around both axes. 472@param stream Stream for the asynchronous version. 473 474@sa flip 475 */ 476CV_EXPORTS void flip(InputArray src, OutputArray dst, int flipCode, Stream& stream = Stream::Null()); 477 478/** @brief Base class for transform using lookup table. 479 */ 480class CV_EXPORTS LookUpTable : public Algorithm 481{ 482public: 483 /** @brief Transforms the source matrix into the destination matrix using the given look-up table: 484 dst(I) = lut(src(I)) . 485 486 @param src Source matrix. CV_8UC1 and CV_8UC3 matrices are supported for now. 487 @param dst Destination matrix. 488 @param stream Stream for the asynchronous version. 489 */ 490 virtual void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0; 491}; 492 493/** @brief Creates implementation for cuda::LookUpTable . 494 495@param lut Look-up table of 256 elements. It is a continuous CV_8U matrix. 496 */ 497CV_EXPORTS Ptr<LookUpTable> createLookUpTable(InputArray lut); 498 499/** @brief Forms a border around an image. 500 501@param src Source image. CV_8UC1 , CV_8UC4 , CV_32SC1 , and CV_32FC1 types are supported. 502@param dst Destination image with the same type as src. The size is 503Size(src.cols+left+right, src.rows+top+bottom) . 504@param top 505@param bottom 506@param left 507@param right Number of pixels in each direction from the source image rectangle to extrapolate. 508For example: top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built. 509@param borderType Border type. See borderInterpolate for details. BORDER_REFLECT101 , 510BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now. 511@param value Border value. 512@param stream Stream for the asynchronous version. 513 */ 514CV_EXPORTS void copyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType, 515 Scalar value = Scalar(), Stream& stream = Stream::Null()); 516 517//! @} cudaarithm_core 518 519//! @addtogroup cudaarithm_reduce 520//! @{ 521 522/** @brief Returns the norm of a matrix (or difference of two matrices). 523 524@param src1 Source matrix. Any matrices except 64F are supported. 525@param normType Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now. 526@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. 527 528@sa norm 529 */ 530CV_EXPORTS double norm(InputArray src1, int normType, InputArray mask = noArray()); 531/** @overload */ 532CV_EXPORTS void calcNorm(InputArray src, OutputArray dst, int normType, InputArray mask = noArray(), Stream& stream = Stream::Null()); 533 534/** @brief Returns the difference of two matrices. 535 536@param src1 Source matrix. Any matrices except 64F are supported. 537@param src2 Second source matrix (if any) with the same size and type as src1. 538@param normType Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now. 539 540@sa norm 541 */ 542CV_EXPORTS double norm(InputArray src1, InputArray src2, int normType=NORM_L2); 543/** @overload */ 544CV_EXPORTS void calcNormDiff(InputArray src1, InputArray src2, OutputArray dst, int normType=NORM_L2, Stream& stream = Stream::Null()); 545 546/** @brief Returns the sum of matrix elements. 547 548@param src Source image of any depth except for CV_64F . 549@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. 550 551@sa sum 552 */ 553CV_EXPORTS Scalar sum(InputArray src, InputArray mask = noArray()); 554/** @overload */ 555CV_EXPORTS void calcSum(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); 556 557/** @brief Returns the sum of absolute values for matrix elements. 558 559@param src Source image of any depth except for CV_64F . 560@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. 561 */ 562CV_EXPORTS Scalar absSum(InputArray src, InputArray mask = noArray()); 563/** @overload */ 564CV_EXPORTS void calcAbsSum(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); 565 566/** @brief Returns the squared sum of matrix elements. 567 568@param src Source image of any depth except for CV_64F . 569@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. 570 */ 571CV_EXPORTS Scalar sqrSum(InputArray src, InputArray mask = noArray()); 572/** @overload */ 573CV_EXPORTS void calcSqrSum(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); 574 575/** @brief Finds global minimum and maximum matrix elements and returns their values. 576 577@param src Single-channel source image. 578@param minVal Pointer to the returned minimum value. Use NULL if not required. 579@param maxVal Pointer to the returned maximum value. Use NULL if not required. 580@param mask Optional mask to select a sub-matrix. 581 582The function does not work with CV_64F images on GPUs with the compute capability \< 1.3. 583 584@sa minMaxLoc 585 */ 586CV_EXPORTS void minMax(InputArray src, double* minVal, double* maxVal, InputArray mask = noArray()); 587/** @overload */ 588CV_EXPORTS void findMinMax(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); 589 590/** @brief Finds global minimum and maximum matrix elements and returns their values with locations. 591 592@param src Single-channel source image. 593@param minVal Pointer to the returned minimum value. Use NULL if not required. 594@param maxVal Pointer to the returned maximum value. Use NULL if not required. 595@param minLoc Pointer to the returned minimum location. Use NULL if not required. 596@param maxLoc Pointer to the returned maximum location. Use NULL if not required. 597@param mask Optional mask to select a sub-matrix. 598 599The function does not work with CV_64F images on GPU with the compute capability \< 1.3. 600 601@sa minMaxLoc 602 */ 603CV_EXPORTS void minMaxLoc(InputArray src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, 604 InputArray mask = noArray()); 605/** @overload */ 606CV_EXPORTS void findMinMaxLoc(InputArray src, OutputArray minMaxVals, OutputArray loc, 607 InputArray mask = noArray(), Stream& stream = Stream::Null()); 608 609/** @brief Counts non-zero matrix elements. 610 611@param src Single-channel source image. 612 613The function does not work with CV_64F images on GPUs with the compute capability \< 1.3. 614 615@sa countNonZero 616 */ 617CV_EXPORTS int countNonZero(InputArray src); 618/** @overload */ 619CV_EXPORTS void countNonZero(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); 620 621/** @brief Reduces a matrix to a vector. 622 623@param mtx Source 2D matrix. 624@param vec Destination vector. Its size and type is defined by dim and dtype parameters. 625@param dim Dimension index along which the matrix is reduced. 0 means that the matrix is reduced 626to a single row. 1 means that the matrix is reduced to a single column. 627@param reduceOp Reduction operation that could be one of the following: 628- **CV_REDUCE_SUM** The output is the sum of all rows/columns of the matrix. 629- **CV_REDUCE_AVG** The output is the mean vector of all rows/columns of the matrix. 630- **CV_REDUCE_MAX** The output is the maximum (column/row-wise) of all rows/columns of the 631matrix. 632- **CV_REDUCE_MIN** The output is the minimum (column/row-wise) of all rows/columns of the 633matrix. 634@param dtype When it is negative, the destination vector will have the same type as the source 635matrix. Otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels()) . 636@param stream Stream for the asynchronous version. 637 638The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of 6391D vectors and performing the specified operation on the vectors until a single row/column is 640obtained. For example, the function can be used to compute horizontal and vertical projections of a 641raster image. In case of CV_REDUCE_SUM and CV_REDUCE_AVG , the output may have a larger element 642bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction 643modes. 644 645@sa reduce 646 */ 647CV_EXPORTS void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null()); 648 649/** @brief Computes a mean value and a standard deviation of matrix elements. 650 651@param mtx Source matrix. CV_8UC1 matrices are supported for now. 652@param mean Mean value. 653@param stddev Standard deviation value. 654 655@sa meanStdDev 656 */ 657CV_EXPORTS void meanStdDev(InputArray mtx, Scalar& mean, Scalar& stddev); 658/** @overload */ 659CV_EXPORTS void meanStdDev(InputArray mtx, OutputArray dst, Stream& stream = Stream::Null()); 660 661/** @brief Computes a standard deviation of integral images. 662 663@param src Source image. Only the CV_32SC1 type is supported. 664@param sqr Squared source image. Only the CV_32FC1 type is supported. 665@param dst Destination image with the same type and size as src . 666@param rect Rectangular window. 667@param stream Stream for the asynchronous version. 668 */ 669CV_EXPORTS void rectStdDev(InputArray src, InputArray sqr, OutputArray dst, Rect rect, Stream& stream = Stream::Null()); 670 671/** @brief Normalizes the norm or value range of an array. 672 673@param src Input array. 674@param dst Output array of the same size as src . 675@param alpha Norm value to normalize to or the lower range boundary in case of the range 676normalization. 677@param beta Upper range boundary in case of the range normalization; it is not used for the norm 678normalization. 679@param norm_type Normalization type ( NORM_MINMAX , NORM_L2 , NORM_L1 or NORM_INF ). 680@param dtype When negative, the output array has the same type as src; otherwise, it has the same 681number of channels as src and the depth =CV_MAT_DEPTH(dtype). 682@param mask Optional operation mask. 683@param stream Stream for the asynchronous version. 684 685@sa normalize 686 */ 687CV_EXPORTS void normalize(InputArray src, OutputArray dst, double alpha, double beta, 688 int norm_type, int dtype, InputArray mask = noArray(), 689 Stream& stream = Stream::Null()); 690 691/** @brief Computes an integral image. 692 693@param src Source image. Only CV_8UC1 images are supported for now. 694@param sum Integral image containing 32-bit unsigned integer values packed into CV_32SC1 . 695@param stream Stream for the asynchronous version. 696 697@sa integral 698 */ 699CV_EXPORTS void integral(InputArray src, OutputArray sum, Stream& stream = Stream::Null()); 700 701/** @brief Computes a squared integral image. 702 703@param src Source image. Only CV_8UC1 images are supported for now. 704@param sqsum Squared integral image containing 64-bit unsigned integer values packed into 705CV_64FC1 . 706@param stream Stream for the asynchronous version. 707 */ 708CV_EXPORTS void sqrIntegral(InputArray src, OutputArray sqsum, Stream& stream = Stream::Null()); 709 710//! @} cudaarithm_reduce 711 712//! @addtogroup cudaarithm_arithm 713//! @{ 714 715/** @brief Performs generalized matrix multiplication. 716 717@param src1 First multiplied input matrix that should have CV_32FC1 , CV_64FC1 , CV_32FC2 , or 718CV_64FC2 type. 719@param src2 Second multiplied input matrix of the same type as src1 . 720@param alpha Weight of the matrix product. 721@param src3 Third optional delta matrix added to the matrix product. It should have the same type 722as src1 and src2 . 723@param beta Weight of src3 . 724@param dst Destination matrix. It has the proper size and the same type as input matrices. 725@param flags Operation flags: 726- **GEMM_1_T** transpose src1 727- **GEMM_2_T** transpose src2 728- **GEMM_3_T** transpose src3 729@param stream Stream for the asynchronous version. 730 731The function performs generalized matrix multiplication similar to the gemm functions in BLAS level 7323. For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to 733 734\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f] 735 736@note Transposition operation doesn't support CV_64FC2 input type. 737 738@sa gemm 739 */ 740CV_EXPORTS void gemm(InputArray src1, InputArray src2, double alpha, 741 InputArray src3, double beta, OutputArray dst, int flags = 0, Stream& stream = Stream::Null()); 742 743/** @brief Performs a per-element multiplication of two Fourier spectrums. 744 745@param src1 First spectrum. 746@param src2 Second spectrum with the same size and type as a . 747@param dst Destination spectrum. 748@param flags Mock parameter used for CPU/CUDA interfaces similarity. 749@param conjB Optional flag to specify if the second spectrum needs to be conjugated before the 750multiplication. 751@param stream Stream for the asynchronous version. 752 753Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now. 754 755@sa mulSpectrums 756 */ 757CV_EXPORTS void mulSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, bool conjB=false, Stream& stream = Stream::Null()); 758 759/** @brief Performs a per-element multiplication of two Fourier spectrums and scales the result. 760 761@param src1 First spectrum. 762@param src2 Second spectrum with the same size and type as a . 763@param dst Destination spectrum. 764@param flags Mock parameter used for CPU/CUDA interfaces similarity, simply add a `0` value. 765@param scale Scale constant. 766@param conjB Optional flag to specify if the second spectrum needs to be conjugated before the 767multiplication. 768@param stream Stream for the asynchronous version. 769 770Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now. 771 772@sa mulSpectrums 773 */ 774CV_EXPORTS void mulAndScaleSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null()); 775 776/** @brief Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix. 777 778@param src Source matrix (real or complex). 779@param dst Destination matrix (real or complex). 780@param dft_size Size of a discrete Fourier transform. 781@param flags Optional flags: 782- **DFT_ROWS** transforms each individual row of the source matrix. 783- **DFT_SCALE** scales the result: divide it by the number of elements in the transform 784(obtained from dft_size ). 785- **DFT_INVERSE** inverts DFT. Use for complex-complex cases (real-complex and complex-real 786cases are always forward and inverse, respectively). 787- **DFT_REAL_OUTPUT** specifies the output as real. The source matrix is the result of 788real-complex transform, so the destination matrix must be real. 789@param stream Stream for the asynchronous version. 790 791Use to handle real matrices ( CV32FC1 ) and complex matrices in the interleaved format ( CV32FC2 ). 792 793The source matrix should be continuous, otherwise reallocation and data copying is performed. The 794function chooses an operation mode depending on the flags, size, and channel count of the source 795matrix: 796 797- If the source matrix is complex and the output is not specified as real, the destination 798matrix is complex and has the dft_size size and CV_32FC2 type. The destination matrix 799contains a full result of the DFT (forward or inverse). 800- If the source matrix is complex and the output is specified as real, the function assumes that 801its input is the result of the forward transform (see the next item). The destination matrix 802has the dft_size size and CV_32FC1 type. It contains the result of the inverse DFT. 803- If the source matrix is real (its type is CV_32FC1 ), forward DFT is performed. The result of 804the DFT is packed into complex ( CV_32FC2 ) matrix. So, the width of the destination matrix 805is dft_size.width / 2 + 1 . But if the source is a single column, the height is reduced 806instead of the width. 807 808@sa dft 809 */ 810CV_EXPORTS void dft(InputArray src, OutputArray dst, Size dft_size, int flags=0, Stream& stream = Stream::Null()); 811 812/** @brief Base class for convolution (or cross-correlation) operator. : 813 */ 814class CV_EXPORTS Convolution : public Algorithm 815{ 816public: 817 /** @brief Computes a convolution (or cross-correlation) of two images. 818 819 @param image Source image. Only CV_32FC1 images are supported for now. 820 @param templ Template image. The size is not greater than the image size. The type is the same as 821 image . 822 @param result Result image. If image is *W x H* and templ is *w x h*, then result must be *W-w+1 x 823 H-h+1*. 824 @param ccorr Flags to evaluate cross-correlation instead of convolution. 825 @param stream Stream for the asynchronous version. 826 */ 827 virtual void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null()) = 0; 828}; 829 830/** @brief Creates implementation for cuda::Convolution . 831 832@param user_block_size Block size. If you leave default value Size(0,0) then automatic 833estimation of block size will be used (which is optimized for speed). By varying user_block_size 834you can reduce memory requirements at the cost of speed. 835 */ 836CV_EXPORTS Ptr<Convolution> createConvolution(Size user_block_size = Size()); 837 838//! @} cudaarithm_arithm 839 840//! @} cudaarithm 841 842}} // namespace cv { namespace cuda { 843 844#endif /* __OPENCV_CUDAARITHM_HPP__ */ 845