1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                           License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
14// Third party copyrights are property of their respective owners.
15//
16// Redistribution and use in source and binary forms, with or without modification,
17// are permitted provided that the following conditions are met:
18//
19//   * Redistribution's of source code must retain the above copyright notice,
20//     this list of conditions and the following disclaimer.
21//
22//   * Redistribution's in binary form must reproduce the above copyright notice,
23//     this list of conditions and the following disclaimer in the documentation
24//     and/or other materials provided with the distribution.
25//
26//   * The name of Intel Corporation may not be used to endorse or promote products
27//     derived from this software without specific prior written permission.
28//
29// This software is provided by the copyright holders and contributors "as is" and
30// any express or implied warranties, including, but not limited to, the implied
31// warranties of merchantability and fitness for a particular purpose are disclaimed.
32// In no event shall the Intel Corporation or contributors be liable for any direct,
33// indirect, incidental, special, exemplary, or consequential damages
34// (including, but not limited to, procurement of substitute goods or services;
35// loss of use, data, or profits; or business interruption) however caused
36// and on any theory of liability, whether in contract, strict liability,
37// or tort (including negligence or otherwise) arising in any way out of
38// the use of this software, even if advised of the possibility of such damage.
39//
40//M*/
41
42#include "precomp.hpp"
43
44namespace cv
45{
46
47struct KeypointResponseGreaterThanThreshold
48{
49    KeypointResponseGreaterThanThreshold(float _value) :
50    value(_value)
51    {
52    }
53    inline bool operator()(const KeyPoint& kpt) const
54    {
55        return kpt.response >= value;
56    }
57    float value;
58};
59
60struct KeypointResponseGreater
61{
62    inline bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) const
63    {
64        return kp1.response > kp2.response;
65    }
66};
67
68// takes keypoints and culls them by the response
69void KeyPointsFilter::retainBest(std::vector<KeyPoint>& keypoints, int n_points)
70{
71    //this is only necessary if the keypoints size is greater than the number of desired points.
72    if( n_points >= 0 && keypoints.size() > (size_t)n_points )
73    {
74        if (n_points==0)
75        {
76            keypoints.clear();
77            return;
78        }
79        //first use nth element to partition the keypoints into the best and worst.
80        std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), KeypointResponseGreater());
81        //this is the boundary response, and in the case of FAST may be ambigous
82        float ambiguous_response = keypoints[n_points - 1].response;
83        //use std::partition to grab all of the keypoints with the boundary response.
84        std::vector<KeyPoint>::const_iterator new_end =
85        std::partition(keypoints.begin() + n_points, keypoints.end(),
86                       KeypointResponseGreaterThanThreshold(ambiguous_response));
87        //resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
88        keypoints.resize(new_end - keypoints.begin());
89    }
90}
91
92struct RoiPredicate
93{
94    RoiPredicate( const Rect& _r ) : r(_r)
95    {}
96
97    bool operator()( const KeyPoint& keyPt ) const
98    {
99        return !r.contains( keyPt.pt );
100    }
101
102    Rect r;
103};
104
105void KeyPointsFilter::runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize )
106{
107    if( borderSize > 0)
108    {
109        if (imageSize.height <= borderSize * 2 || imageSize.width <= borderSize * 2)
110            keypoints.clear();
111        else
112            keypoints.erase( std::remove_if(keypoints.begin(), keypoints.end(),
113                                       RoiPredicate(Rect(Point(borderSize, borderSize),
114                                                         Point(imageSize.width - borderSize, imageSize.height - borderSize)))),
115                             keypoints.end() );
116    }
117}
118
119struct SizePredicate
120{
121    SizePredicate( float _minSize, float _maxSize ) : minSize(_minSize), maxSize(_maxSize)
122    {}
123
124    bool operator()( const KeyPoint& keyPt ) const
125    {
126        float size = keyPt.size;
127        return (size < minSize) || (size > maxSize);
128    }
129
130    float minSize, maxSize;
131};
132
133void KeyPointsFilter::runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize, float maxSize )
134{
135    CV_Assert( minSize >= 0 );
136    CV_Assert( maxSize >= 0);
137    CV_Assert( minSize <= maxSize );
138
139    keypoints.erase( std::remove_if(keypoints.begin(), keypoints.end(), SizePredicate(minSize, maxSize)),
140                     keypoints.end() );
141}
142
143class MaskPredicate
144{
145public:
146    MaskPredicate( const Mat& _mask ) : mask(_mask) {}
147    bool operator() (const KeyPoint& key_pt) const
148    {
149        return mask.at<uchar>( (int)(key_pt.pt.y + 0.5f), (int)(key_pt.pt.x + 0.5f) ) == 0;
150    }
151
152private:
153    const Mat mask;
154    MaskPredicate& operator=(const MaskPredicate&);
155};
156
157void KeyPointsFilter::runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask )
158{
159    if( mask.empty() )
160        return;
161
162    keypoints.erase(std::remove_if(keypoints.begin(), keypoints.end(), MaskPredicate(mask)), keypoints.end());
163}
164
165struct KeyPoint_LessThan
166{
167    KeyPoint_LessThan(const std::vector<KeyPoint>& _kp) : kp(&_kp) {}
168    bool operator()(int i, int j) const
169    {
170        const KeyPoint& kp1 = (*kp)[i];
171        const KeyPoint& kp2 = (*kp)[j];
172        if( kp1.pt.x != kp2.pt.x )
173            return kp1.pt.x < kp2.pt.x;
174        if( kp1.pt.y != kp2.pt.y )
175            return kp1.pt.y < kp2.pt.y;
176        if( kp1.size != kp2.size )
177            return kp1.size > kp2.size;
178        if( kp1.angle != kp2.angle )
179            return kp1.angle < kp2.angle;
180        if( kp1.response != kp2.response )
181            return kp1.response > kp2.response;
182        if( kp1.octave != kp2.octave )
183            return kp1.octave > kp2.octave;
184        if( kp1.class_id != kp2.class_id )
185            return kp1.class_id > kp2.class_id;
186
187        return i < j;
188    }
189    const std::vector<KeyPoint>* kp;
190};
191
192void KeyPointsFilter::removeDuplicated( std::vector<KeyPoint>& keypoints )
193{
194    int i, j, n = (int)keypoints.size();
195    std::vector<int> kpidx(n);
196    std::vector<uchar> mask(n, (uchar)1);
197
198    for( i = 0; i < n; i++ )
199        kpidx[i] = i;
200    std::sort(kpidx.begin(), kpidx.end(), KeyPoint_LessThan(keypoints));
201    for( i = 1, j = 0; i < n; i++ )
202    {
203        KeyPoint& kp1 = keypoints[kpidx[i]];
204        KeyPoint& kp2 = keypoints[kpidx[j]];
205        if( kp1.pt.x != kp2.pt.x || kp1.pt.y != kp2.pt.y ||
206            kp1.size != kp2.size || kp1.angle != kp2.angle )
207            j = i;
208        else
209            mask[kpidx[i]] = 0;
210    }
211
212    for( i = j = 0; i < n; i++ )
213    {
214        if( mask[i] )
215        {
216            if( i != j )
217                keypoints[j] = keypoints[i];
218            j++;
219        }
220    }
221    keypoints.resize(j);
222}
223
224}
225