1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                          License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16// Third party copyrights are property of their respective owners.
17//
18// Redistribution and use in source and binary forms, with or without modification,
19// are permitted provided that the following conditions are met:
20//
21//   * Redistribution's of source code must retain the above copyright notice,
22//     this list of conditions and the following disclaimer.
23//
24//   * Redistribution's in binary form must reproduce the above copyright notice,
25//     this list of conditions and the following disclaimer in the documentation
26//     and/or other materials provided with the distribution.
27//
28//   * The name of the copyright holders may not be used to endorse or promote products
29//     derived from this software without specific prior written permission.
30//
31// This software is provided by the copyright holders and contributors "as is" and
32// any express or implied warranties, including, but not limited to, the implied
33// warranties of merchantability and fitness for a particular purpose are disclaimed.
34// In no event shall the Intel Corporation or contributors be liable for any direct,
35// indirect, incidental, special, exemplary, or consequential damages
36// (including, but not limited to, procurement of substitute goods or services;
37// loss of use, data, or profits; or business interruption) however caused
38// and on any theory of liability, whether in contract, strict liability,
39// or tort (including negligence or otherwise) arising in any way out of
40// the use of this software, even if advised of the possibility of such damage.
41//
42//M*/
43
44#ifndef __OPENCV_OBJDETECT_HPP__
45#define __OPENCV_OBJDETECT_HPP__
46
47#include "opencv2/core.hpp"
48
49/**
50@defgroup objdetect Object Detection
51
52Haar Feature-based Cascade Classifier for Object Detection
53----------------------------------------------------------
54
55The object detector described below has been initially proposed by Paul Viola @cite Viola01 and
56improved by Rainer Lienhart @cite Lienhart02 .
57
58First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is
59trained with a few hundred sample views of a particular object (i.e., a face or a car), called
60positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary
61images of the same size.
62
63After a classifier is trained, it can be applied to a region of interest (of the same size as used
64during the training) in an input image. The classifier outputs a "1" if the region is likely to show
65the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can
66move the search window across the image and check every location using the classifier. The
67classifier is designed so that it can be easily "resized" in order to be able to find the objects of
68interest at different sizes, which is more efficient than resizing the image itself. So, to find an
69object of an unknown size in the image the scan procedure should be done several times at different
70scales.
71
72The word "cascade" in the classifier name means that the resultant classifier consists of several
73simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some
74stage the candidate is rejected or all the stages are passed. The word "boosted" means that the
75classifiers at every stage of the cascade are complex themselves and they are built out of basic
76classifiers using one of four different boosting techniques (weighted voting). Currently Discrete
77Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are
78decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic
79classifiers, and are calculated as described below. The current algorithm uses the following
80Haar-like features:
81
82![image](pics/haarfeatures.png)
83
84The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within
85the region of interest and the scale (this scale is not the same as the scale used at the detection
86stage, though these two scales are multiplied). For example, in the case of the third line feature
87(2c) the response is calculated as the difference between the sum of image pixels under the
88rectangle covering the whole feature (including the two white stripes and the black stripe in the
89middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to
90compensate for the differences in the size of areas. The sums of pixel values over a rectangular
91regions are calculated rapidly using integral images (see below and the integral description).
92
93To see the object detector at work, have a look at the facedetect demo:
94<https://github.com/Itseez/opencv/tree/master/samples/cpp/dbt_face_detection.cpp>
95
96The following reference is for the detection part only. There is a separate application called
97opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
98
99@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
100addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
101using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
102<http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf>
103
104@{
105    @defgroup objdetect_c C API
106@}
107 */
108
109typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
110
111namespace cv
112{
113
114//! @addtogroup objdetect
115//! @{
116
117///////////////////////////// Object Detection ////////////////////////////
118
119//! class for grouping object candidates, detected by Cascade Classifier, HOG etc.
120//! instance of the class is to be passed to cv::partition (see cxoperations.hpp)
121class CV_EXPORTS SimilarRects
122{
123public:
124    SimilarRects(double _eps) : eps(_eps) {}
125    inline bool operator()(const Rect& r1, const Rect& r2) const
126    {
127        double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
128        return std::abs(r1.x - r2.x) <= delta &&
129            std::abs(r1.y - r2.y) <= delta &&
130            std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
131            std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
132    }
133    double eps;
134};
135
136/** @brief Groups the object candidate rectangles.
137
138@param rectList Input/output vector of rectangles. Output vector includes retained and grouped
139rectangles. (The Python list is not modified in place.)
140@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
141group of rectangles to retain it.
142@param eps Relative difference between sides of the rectangles to merge them into a group.
143
144The function is a wrapper for the generic function partition . It clusters all the input rectangles
145using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
146locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
147\f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small
148clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
149cluster, the average rectangle is computed and put into the output rectangle list.
150 */
151CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
152/** @overload */
153CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights,
154                                  int groupThreshold, double eps = 0.2);
155/** @overload */
156CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold,
157                                  double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
158/** @overload */
159CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
160                                  std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
161/** @overload */
162CV_EXPORTS   void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
163                                            std::vector<double>& foundScales,
164                                            double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
165
166template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const;
167
168enum { CASCADE_DO_CANNY_PRUNING    = 1,
169       CASCADE_SCALE_IMAGE         = 2,
170       CASCADE_FIND_BIGGEST_OBJECT = 4,
171       CASCADE_DO_ROUGH_SEARCH     = 8
172     };
173
174class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm
175{
176public:
177    virtual ~BaseCascadeClassifier();
178    virtual bool empty() const = 0;
179    virtual bool load( const String& filename ) = 0;
180    virtual void detectMultiScale( InputArray image,
181                           CV_OUT std::vector<Rect>& objects,
182                           double scaleFactor,
183                           int minNeighbors, int flags,
184                           Size minSize, Size maxSize ) = 0;
185
186    virtual void detectMultiScale( InputArray image,
187                           CV_OUT std::vector<Rect>& objects,
188                           CV_OUT std::vector<int>& numDetections,
189                           double scaleFactor,
190                           int minNeighbors, int flags,
191                           Size minSize, Size maxSize ) = 0;
192
193    virtual void detectMultiScale( InputArray image,
194                                   CV_OUT std::vector<Rect>& objects,
195                                   CV_OUT std::vector<int>& rejectLevels,
196                                   CV_OUT std::vector<double>& levelWeights,
197                                   double scaleFactor,
198                                   int minNeighbors, int flags,
199                                   Size minSize, Size maxSize,
200                                   bool outputRejectLevels ) = 0;
201
202    virtual bool isOldFormatCascade() const = 0;
203    virtual Size getOriginalWindowSize() const = 0;
204    virtual int getFeatureType() const = 0;
205    virtual void* getOldCascade() = 0;
206
207    class CV_EXPORTS MaskGenerator
208    {
209    public:
210        virtual ~MaskGenerator() {}
211        virtual Mat generateMask(const Mat& src)=0;
212        virtual void initializeMask(const Mat& /*src*/) { }
213    };
214    virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0;
215    virtual Ptr<MaskGenerator> getMaskGenerator() = 0;
216};
217
218/** @brief Cascade classifier class for object detection.
219 */
220class CV_EXPORTS_W CascadeClassifier
221{
222public:
223    CV_WRAP CascadeClassifier();
224    /** @brief Loads a classifier from a file.
225
226    @param filename Name of the file from which the classifier is loaded.
227     */
228    CV_WRAP CascadeClassifier(const String& filename);
229    ~CascadeClassifier();
230    /** @brief Checks whether the classifier has been loaded.
231    */
232    CV_WRAP bool empty() const;
233    /** @brief Loads a classifier from a file.
234
235    @param filename Name of the file from which the classifier is loaded. The file may contain an old
236    HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
237    traincascade application.
238     */
239    CV_WRAP bool load( const String& filename );
240    /** @brief Reads a classifier from a FileStorage node.
241
242    @note The file may contain a new cascade classifier (trained traincascade application) only.
243     */
244    CV_WRAP bool read( const FileNode& node );
245
246    /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
247    of rectangles.
248
249    @param image Matrix of the type CV_8U containing an image where objects are detected.
250    @param objects Vector of rectangles where each rectangle contains the detected object, the
251    rectangles may be partially outside the original image.
252    @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
253    @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
254    to retain it.
255    @param flags Parameter with the same meaning for an old cascade as in the function
256    cvHaarDetectObjects. It is not used for a new cascade.
257    @param minSize Minimum possible object size. Objects smaller than that are ignored.
258    @param maxSize Maximum possible object size. Objects larger than that are ignored.
259
260    The function is parallelized with the TBB library.
261
262    @note
263       -   (Python) A face detection example using cascade classifiers can be found at
264            opencv_source_code/samples/python2/facedetect.py
265    */
266    CV_WRAP void detectMultiScale( InputArray image,
267                          CV_OUT std::vector<Rect>& objects,
268                          double scaleFactor = 1.1,
269                          int minNeighbors = 3, int flags = 0,
270                          Size minSize = Size(),
271                          Size maxSize = Size() );
272
273    /** @overload
274    @param image Matrix of the type CV_8U containing an image where objects are detected.
275    @param objects Vector of rectangles where each rectangle contains the detected object, the
276    rectangles may be partially outside the original image.
277    @param numDetections Vector of detection numbers for the corresponding objects. An object's number
278    of detections is the number of neighboring positively classified rectangles that were joined
279    together to form the object.
280    @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
281    @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
282    to retain it.
283    @param flags Parameter with the same meaning for an old cascade as in the function
284    cvHaarDetectObjects. It is not used for a new cascade.
285    @param minSize Minimum possible object size. Objects smaller than that are ignored.
286    @param maxSize Maximum possible object size. Objects larger than that are ignored.
287    */
288    CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image,
289                          CV_OUT std::vector<Rect>& objects,
290                          CV_OUT std::vector<int>& numDetections,
291                          double scaleFactor=1.1,
292                          int minNeighbors=3, int flags=0,
293                          Size minSize=Size(),
294                          Size maxSize=Size() );
295
296    /** @overload
297    if `outputRejectLevels` is `true` returns `rejectLevels` and `levelWeights`
298    */
299    CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image,
300                                  CV_OUT std::vector<Rect>& objects,
301                                  CV_OUT std::vector<int>& rejectLevels,
302                                  CV_OUT std::vector<double>& levelWeights,
303                                  double scaleFactor = 1.1,
304                                  int minNeighbors = 3, int flags = 0,
305                                  Size minSize = Size(),
306                                  Size maxSize = Size(),
307                                  bool outputRejectLevels = false );
308
309    CV_WRAP bool isOldFormatCascade() const;
310    CV_WRAP Size getOriginalWindowSize() const;
311    CV_WRAP int getFeatureType() const;
312    void* getOldCascade();
313
314    CV_WRAP static bool convert(const String& oldcascade, const String& newcascade);
315
316    void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator);
317    Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator();
318
319    Ptr<BaseCascadeClassifier> cc;
320};
321
322CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
323
324//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
325
326//! struct for detection region of interest (ROI)
327struct DetectionROI
328{
329   //! scale(size) of the bounding box
330   double scale;
331   //! set of requrested locations to be evaluated
332   std::vector<cv::Point> locations;
333   //! vector that will contain confidence values for each location
334   std::vector<double> confidences;
335};
336
337struct CV_EXPORTS_W HOGDescriptor
338{
339public:
340    enum { L2Hys = 0
341         };
342    enum { DEFAULT_NLEVELS = 64
343         };
344
345    CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
346        cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
347        histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
348        free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false)
349    {}
350
351    CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
352                  Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
353                  int _histogramNormType=HOGDescriptor::L2Hys,
354                  double _L2HysThreshold=0.2, bool _gammaCorrection=false,
355                  int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false)
356    : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
357    nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
358    histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
359    gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient)
360    {}
361
362    CV_WRAP HOGDescriptor(const String& filename)
363    {
364        load(filename);
365    }
366
367    HOGDescriptor(const HOGDescriptor& d)
368    {
369        d.copyTo(*this);
370    }
371
372    virtual ~HOGDescriptor() {}
373
374    CV_WRAP size_t getDescriptorSize() const;
375    CV_WRAP bool checkDetectorSize() const;
376    CV_WRAP double getWinSigma() const;
377
378    CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
379
380    virtual bool read(FileNode& fn);
381    virtual void write(FileStorage& fs, const String& objname) const;
382
383    CV_WRAP virtual bool load(const String& filename, const String& objname = String());
384    CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
385    virtual void copyTo(HOGDescriptor& c) const;
386
387    CV_WRAP virtual void compute(InputArray img,
388                         CV_OUT std::vector<float>& descriptors,
389                         Size winStride = Size(), Size padding = Size(),
390                         const std::vector<Point>& locations = std::vector<Point>()) const;
391
392    //! with found weights output
393    CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
394                        CV_OUT std::vector<double>& weights,
395                        double hitThreshold = 0, Size winStride = Size(),
396                        Size padding = Size(),
397                        const std::vector<Point>& searchLocations = std::vector<Point>()) const;
398    //! without found weights output
399    virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
400                        double hitThreshold = 0, Size winStride = Size(),
401                        Size padding = Size(),
402                        const std::vector<Point>& searchLocations=std::vector<Point>()) const;
403
404    //! with result weights output
405    CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
406                                  CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
407                                  Size winStride = Size(), Size padding = Size(), double scale = 1.05,
408                                  double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
409    //! without found weights output
410    virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
411                                  double hitThreshold = 0, Size winStride = Size(),
412                                  Size padding = Size(), double scale = 1.05,
413                                  double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;
414
415    CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
416                                 Size paddingTL = Size(), Size paddingBR = Size()) const;
417
418    CV_WRAP static std::vector<float> getDefaultPeopleDetector();
419    CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
420
421    CV_PROP Size winSize;
422    CV_PROP Size blockSize;
423    CV_PROP Size blockStride;
424    CV_PROP Size cellSize;
425    CV_PROP int nbins;
426    CV_PROP int derivAperture;
427    CV_PROP double winSigma;
428    CV_PROP int histogramNormType;
429    CV_PROP double L2HysThreshold;
430    CV_PROP bool gammaCorrection;
431    CV_PROP std::vector<float> svmDetector;
432    UMat oclSvmDetector;
433    float free_coef;
434    CV_PROP int nlevels;
435    CV_PROP bool signedGradient;
436
437
438    //! evaluate specified ROI and return confidence value for each location
439    virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
440                                   CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
441                                   double hitThreshold = 0, cv::Size winStride = Size(),
442                                   cv::Size padding = Size()) const;
443
444    //! evaluate specified ROI and return confidence value for each location in multiple scales
445    virtual void detectMultiScaleROI(const cv::Mat& img,
446                                                       CV_OUT std::vector<cv::Rect>& foundLocations,
447                                                       std::vector<DetectionROI>& locations,
448                                                       double hitThreshold = 0,
449                                                       int groupThreshold = 0) const;
450
451    //! read/parse Dalal's alt model file
452    void readALTModel(String modelfile);
453    void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
454};
455
456//! @} objdetect
457
458}
459
460#include "opencv2/objdetect/detection_based_tracker.hpp"
461
462#ifndef DISABLE_OPENCV_24_COMPATIBILITY
463#include "opencv2/objdetect/objdetect_c.h"
464#endif
465
466#endif
467